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ABSTRACT

As more people turn to online resources to learn, there will
be an increasing need for systems to understand and adapt to
the needs of their users. Engagement is an important aspect
to keep users committed to learning. Learning approaches
for online systems can benefit from personalization to engage
their users. However, many approaches for personalization
currently rely on methods (e.g., historical behavioral data,
questionnaires, quizzes) that are unable to provide a person-
alized experience from the start-of-use of a system. As users
in a learning environment are exposed to new content, the
first impression that they receive from the system influences
their commitment with the program. In this position paper
we propose a quantitative approach for personalization in on-
line learning environments to overcome current problems for
personalization in such environments.

CCS Concepts

•Social and professional topics → Informal education;
•Theory of computation → Online learning theory;
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INTRODUCTION

People are increasingly using online learning tools for both
their compulsory education (e.g., online college courses) and
own curiosity. As we move deeper into the 21st century and
more people turn to online educational resources to learn new
skills, we need to better understand how to support and engage
these learners.

Engagement is a necessary condition for learning [21]. Unlike
traditional classrooms, learners in discretionary settings have
the option to disengage with the content at any time. Tradi-
tional educational resources have peers and instructors that
can help motivate or engage a struggling learner immediately,
but most online resources do not. Therefore, knowing how
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to keep a learner engaged with the educational material, es-
pecially online, is essential for their success. If the learner
decides the material is too boring, too easy, or too difficult,
they may decide they do not like the subject, which may have
long-lasting, negative consequences.

Furthermore, many online educational resources incorrectly
assume that users will know how to use and progress through
given content content, curricula, or study materials without
additional guidance or scaffolding. In their work, Kirschner
& Merriënboer challenge these beliefs, arguing that people
(especially digital natives [34] or homo zappiens [41]—those
people who have been immersed in computing technologies all
their lives) cannot use the knowledge available on the internet
to self-educate themselves without instruction [27]. Moreover,
they disagree with the widespread and pervasive misconcep-
tion that learners have specific learning styles and conclude
that these ideas are largely unfounded and may actually be
hurting learners [27]. They argue that the nature of using
self-reported measures to categorize learners [42] is inaccurate
and pigeonhole learners into arbitrary categories [27] (which
themselves are not well-defined [9]).

If these established categorizations of learners do not exist and
learners do not innately know how to effectively teach them-
selves using online resources, how can we support the millions
of people using online resources to learn new skills without
teachers? These online educational tools have the potential to
reach a wide range of users, especially those in under-served or
underrepresented groups, so a static one-size-fits-all approach
will not work. We believe that empirical research, grounded in
the machine learning literature (especially work in intelligent
tutoring systems and recommendation systems) can inform the
future direction of teaching by detecting online learners’ dis-
engagement and providing interventions and personalization
to help them succeed.

RELATED WORK

Engagement in Online Education

Educators have long used engagement to improve learning [7].
According to engagement theory, engaged students learn at
high levels, better grasp what they learn, and retain that knowl-
edge [25]. Experts agree that increasing engagement in educa-
tional topics is key to success [11]. Though these studies have
been largely in the context of compulsory learning settings,
engagement is key in online environments as well [29, 31].

Studies have shown that there is a positive relationship be-
tween the use the learning technology and student engagement



and learning outcomes [5, 30]. Herrington et al. found that the
use of authentic activities within online learning environments
engage learners, and discuss several design considerations to
keep users engaged with the experience [22]. Shea & Bid-
jerano found that social presence was an important factor in
keeping online learners engaged [38], suggesting that any au-
tomated intervention would need to demonstrate mastery or
knowledge of the material that exceeds the students’. More-
over, others’ work stresses that creating meaningful interac-
tions (and involvement) between the online tool and learners
is critical for learner engagement [37, 43]. Charters et al.
found that adults who initially had negative preconceptions
about computer programming changed their attitudes after
playing through an online programming tool [3]. These ex-
amples demonstrate that making sure learners are engaged is
a key component of their success in learning through online
educational resources.

Intelligent Tutoring Systems

Intelligent tutoring systems (ITSs) are designed to model hu-
man tutors using artificial intelligence to engage students in
sustained reasoning activity and to interact with the student
based on a deep understanding of the students’ behavior [10].
Educational systems incorporating ITSs have been shown to
lead to positive learning outcomes for students in diverse top-
ics such as computer programming, algebra, medicine, law,
and reading [32, 33].

Some of the intelligent tutoring system literature explores
detection of undesired behaviors such as off-task activities
and disengagement. Baker et al. found that some students
succeeded on tasks by exploiting parts of their intelligent tutor-
ing environment ("gaming the system"; for example, clicking
rapidly to collect all the tutor’s hints), leading to poor learning
outcomes [12]. They created a model using three data sources
(user action log data; human-coded observations; user learning
outcomes), and made a classifier to detect this gaming behav-
ior [2] (Walonoski & Heffernan used similar data to create
a classifier to detect gaming for another intelligent tutoring
system [44]). To counteract this gaming behavior, they added
an animated agent (i.e., a dog character) to the interface that
would visually change its emotional state from happy to pro-
gressively more angry as continued gaming was detected, and
provide additional positive messages (e.g., "You know how
to use the tutor right!") to encourage non-gamers to continue
their system-preferred behavior [12]. Moreover, the system
gave gaming students up to three additional supplementary
multiple-choice question exercises covering concepts they may
have missed (number determined by whether they answer a
question correctly). They found that including their tool led to
a decrease in the total number of people gaming the system,
and that the gamers’ completion of additional multiple-choice
questions exercises led to learning gains that were comparable
to those who did not game [12].

Many other studies examine motivation and (dis)engagement
detection within the intelligent tutoring and e-Learning lit-
erature. Some are based on the ARCS Model [26], using
inference rules on data from a short quiz [13], or from learn-
ers’ attention and action log data including data such as: time

to perform the task, time to read text related to the task, time
when learner starts/finishes the task [35]. Some studies use
log data such as problem-solving time, help requests, and
mistakes, in combination with Bayesian networks [1] or data-
mining techniques [8], to infer attitudes towards the tutor
[1]. Others, such as engagement tracing, is based on Item
Response Theory [14], and models disengagement by using
the estimation of the probability of a specific action occurring
given a specific response time [24]. These types of detection
mechanisms can be applied to a wider context to help online
learners succeed with their learning tasks.

PROPOSAL

Personalization in online learning environments is needed as
discussed in the previous sections. We discussed several works
that focused on detecting and counteracting on undesired learn-
ing behaviors. Many of these detection mechanisms rely their
inferences on historical behavioral data of users, which creates
a bootstrapping problem where the system can only provide the
user a personalized after a period of use (i.e., once the system
has gathered enough behavioral data). Although other quan-
titative or qualitative methods (e.g., questionnaires, quizzes)
would solve this problem, they have the drawback of interrupt-
ing the interaction flow between the user and the system. Not
being able to provide a personalized experience from the start
may be problematic for (new) users. The first impression that
users experience from the system may be crucial for further
commitment, especially in a learning environment where users
are often exposed to new, unfamiliar, and perhaps difficult
content. What we propose in this position paper is a way to
facilitate a personalized experience from when a user begins
using the system, which will also benefit current detection
mechanisms of undesired learning behaviors.

Systems are increasingly incorporating connections with ex-
ternal sources (e.g., Facebook, Twitter, Instagram) through
mechanisms such as single sign-on (SSO) buttons 1 to provide
convenience to the user. Through SSO mechanisms, the sys-
tem asks permission to access a user’s social media account.
While only the basic profile information of a user is needed,
systems often ask for additional permissions for accessing
other parts of a user’s account as well [6]. This creates an
additional source of information that systems can utilize for
personalization. As not all the information that becomes avail-
able may be directly applicable, a connection with a general
user model (e.g., personality traits) is needed. Personality
traits have shown to be a suitable general user model as it char-
acterizes a person’s thoughts, feelings, social adjustments, and
behaviors, which subsequently influences their expectations,
self-perceptions, values, attitudes, and their reactions to others,
problems, and stress [28, 45].

There is an increasing body of work that independently looks
at personality-based personalization (e.g., [15, 16, 20, 23, 40])
and personality acquisition from user-generated content (e.g.,
social media traces; e.g., [17, 18, 19, 36, 39]). For example,
in the field of recommendation systems, Hu & Pu found that
personality-based recommendation systems are more effective

1Buttons that allow users to easily register and log in to a system
with their social media account.



in increasing users’ loyalty towards a system and decreasing
cognitive effort compared to systems without personality in-
formation [23]. Works on several social networking services
have shown that the user-generated content from these ser-
vices can be effectively used to predict users’ personality (e.g.,
Facebook [18], Twitter [36, 39], and Instagram [17, 19]). Fer-
werda, Schedl, & Tkalcic have shown that personality traits
can also be reliably inferred from restricted Facebook accounts
by examining whether/which profile sections are disclosed by
the user [18]. This provides opportunities to infer users’ per-
sonality even when information is limited (e.g., when a social
media profile is not completely accessible through single sign-
on mechanisms).

Currently, there is a limited amount of work done on
personality-based relationships in online learning environ-
ments. By analyzing usage data, Chen et al. [4] found relation-
ships between users’ personality traits and different strategies
users adopt for learning. Based on prior works in other do-
mains (e.g., recommendation systems) we believe that online
learning environments would also benefit from personality-
based personalization. By further exploring the relationships
between personality traits and variables influencing learning
efficiency, and with the methods to implicitly acquire person-
ality traits from external information sources, we can take
the next steps on improving and personalizing online learning
environments for users.

As more people turn to online resources to learn, there will
be an increasing need for systems to understand and adapt
to the needs of their users. We believe that the knowledge
provided by the intelligent tutoring systems and recommenda-
tion systems literature, especially in areas such as off-task and
disengagement detection and user modeling, can inform the
next generation of online educational tools.
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