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ABSTRACT. Davies’ method of perturbed semigroups is a classical technique to
obtain off-diagonal upper bounds on the heat kernel. However Davies’ method
does not apply to anomalous diffusions due to the singularity of energy mea-
sures. In this note, we overcome the difficulty by modifying the Davies’ pertur-
bation method to obtain sub-Gaussian upper bounds on the heat kernel. Our
computations closely follow the seminal work of Carlen, Kusuoka and Stroock
(1987). However, a cutoff Sobolev inequality due to Andres and Barlow (2015)
is used to bound the energy measure.

1. INTRODUCTION

Davies’ method of perturbed semigroups is a well-known method to obtain off-
diagonal upper bounds on the heat kernel. It was introduced by E. B. Davies to
obtain the explicit constants in the exponential term for Gaussian upper bounds [11]
using the logarithmic-Sobolev inequality. Davies’ method was extended by Carlen,
Kusuoka and Stroock to a non-local setting [9, Section 3] using Nash inequality.
Moreover, Davies extended this technique to higher order elliptic operators on R"
[12, Section 6 and 7]. More recently Barlow, Grigor’yan and Kumagai applied
Davies’ method as presented in [9] to obtain off-diagonal upper bounds for the heat
kernel of heavy tailed jump processes [7, Section 3].

Despite these triumphs, Davies’ perturbation method has not yet been made to
work in the following contexts:

(a) Anomalous diffusions (see [4, Section 4.2]).
(b) Jump processes with jump index greater than or equal to 2 (see [22, Remark
1(d)] and [14, Section 1]).

The goal of this work is to extend Davies’ method to anomalous diffusions in order
to obtain sub-Gaussian upper bounds. In the anomalous diffusion setting, we use
cutoff functions satisfying a cutoff Sobolev inequality to perturb the corresponding
heat semigroup. We use a recent work of Andres and Barlow [1] to construct these
cutoff functions. We extend the techniques developed here in a sequel to a non-
local setting for the jump processes mentioned in (b) above [23]. In [23], we consider
the analogue of symmetric stable processes on fractals, while in this work we are
motivated by Brownian motion on fractals.

Before we proceed, we briefly outline Davies’ method as presented in [9] and
point out the main difficulty in extending it to the anomalous diffusion setting.
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Consider a metric measure space (M,d, 1) and a Markov semigroup (P;)¢>0 sym-
metric with respect to p. The most classical case is that of the heat semigroup in
R™ (corresponding to Brownian motion in R™) associated with the Dirichlet form
E, ) = [zn V f|? du, where p is the Lebesgue measure.

Instead of considering the original Markov semigroup (F;):>0, we consider the
perturbed semigroup

(1.1) (P;” f) (@) = @ (P, (7)) (w)
where 1 is a ‘sufficiently nice function’. Given an ultracontractive estimate
(1.2) 1Pl 0 < m(t)

for the diffusion semigroup, Davies’ method yields an ultracontractive estimate for
the perturbed semigroup

(1.3) HP}’H < my(t).
1—o00

If p(z, y) is the kernel of P;, then the kernel of Ptd’ is p?’(x, y) = e Y@p,(z,y)e? W),
Therefore by (1.3), we obtain the off-diagonal estimate

(1.4) pe(x,y) < my(t) exp (Y(y) — P(2)) .

By varying 1 over a class of ‘nice functions’ to minimize the right hand side of
(1.4), Davies obtained off-diagonal upper bounds. In Davies’ method as presented
in [9,11], it is crucial that the function 1 satisfies

e T, e?) < and 2T (e ¥, e7V) < p,

where I'(-,-) denotes the corresponding energy measure (cf. Definition 1.1). For
the classical example of heat semigroup in R™ described above, the energy measure
[(f,g) is Vf.Vgdu, where i is the Lebesgue measure.

In fact the expression of my in (1.3) depends on the uniform bound on the
Radon-Nikodym derivatives of the energy measure given by (see [9, Theorem 3.25])

de=2¥T(e¥, e? de*¥T(e=¥, eV
L e e W e
du o dp o

The main difficulty in extending Davies’ method to anomalous diffusions is that
for many ‘typical fractals’ that satisfy a sub-Gaussian estimate, the energy measure
I(-,-) is singular with respect to the underlying symmetric measure p [8, 16, 20].
This difficulty is well-known to experts (for instance, [5, p. 1507] or [19, p. 86]).
In this context, the condition e~2¥T'(e¥,e¥) < p implies that ¢ is necessarily a
constant, in which case the off-diagonal estimate of (1.4) is not an improvement
over the diagonal estimate (1.3).

We briefly recall some fundamental notions regarding Dirichlet form and refer the
reader to [13] for details. Let (M,d, ) be a locally compact metric measure space
where p is a positive Radon measure on M with supp(u) = M. We denote by (-, -)
the inner product on L2(M, ). Let X = (Q, Foo, F¢, Xy, P,) denote the diffusion
corresponding to a strongly local regular Dirichlet form. Here €2 denotes the totality
of right continuous paths with left-limits from [0,00) to M and P, denotes the
law of the process conditioned to start at Xo = z. The corresponding Markov
semigroup {P; : t > 0} of X is defined by P;f(x) := E,[f(X¢)], where E, denotes
the expectation with respect to the measure P,. These operators {FP; : t > 0}
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form a strongly continuous semigroup of self-adjoint contractions. The Dirichlet
form (&, D) associated with X is the symmetric, bilinear form

1
E(u,v) := ltiinol ;(u — Pyu,v)

defined on the domain

D= {u € L*(M,pu) : supl<u — P, u) < oo} .
>0t

Recall that a Dirichlet form (€, D) on L?(M, p) is said to be regular if C.(M)ND
is dense in both (C.(M), |-||,) and the Hilbert space (D, &;). Here C.(M) is the
space of continuous functions with compact support in M and & (-, ) := E(-, )+ (-, )
denotes the inner product on D. For a p-measurable function u let Supp|u] denote
the support of the measure u du. We say that a Dirichlet form (£, D) on L?(M, )
is strongly local if it satisfies the following property: For all functions u,v € D such
that Supp[u], Supp[u] are compact and v is constant on a neighborhood of Supp[v],
we have £(u,v) = 0. For example, the form corresponding to the heat semigroup
on R™ defined by (f — [z Vf|2 dp, WH2(R™)) is a regular, strongly local Dirichlet
form on L2(R™, i), where p is the Lebesgue measure and W2 denotes the Sobolev
space.

We denote by B(z,r) :={y € M : d(z,y) < r} the ball centered at x with radius
r and by

Viz,r) = pu(B(z,r))

the corresponding volume. We assume that the metric measure space is Ahlfors-
regular, meaning that there exist C; > 0 and dy > 0 such that

V(dy) Crlr® < V(x,r) < Cirs

for all z € M and for all » > 0. The quantity dy > 0 is called the volume growth
exponent or fractal dimension. Let pi(-,-) be the (regularized) kernel of P, with
respect to p [1, eq. (1.10)]. We are interested in obtaining sub-Gaussian upper
bounds of the form

C d(z, )\ D
USG(dy. ) P9) < e exp (—cz (=)

where d,, > 2 is the escape time exponent or walk dimension. It is known that
if the heat kernel p; satisfies USG(dy,dy), then d,, > 2 (cf. [17, p. 252]). The
corresponding diffusion X; then has a diffusive speed of at least ¢!/w (up to con-
stants). This means that a process starting at  first exits a ball B(z, ) at the time
TB(ay) 2 T (cf. [1, Lemma 5.3]). Moreover, if the process satisfies a matching
sub-Gaussian lower bound for p; with different constants, then 7, ) = rdw. For
comparison, recall that the Brownian motion on Euclidean space has a Gaussian
heat kernel and satisfies 7p(,,,) < r?.

Such sub-Gaussian estimates are typical of many fractals (cf. [3, Theorem 8.18]).
We assume the on-diagonal bound corresponding to the sub-Gaussian estimate of
USG(dy,d,). That is, we assume that there exists C; > 0 such that

C1
(1.5) pe(z, ) < A
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1796 M. MURUGAN AND L. SALOFF-COSTE

for all z € M and for all ¢ > 0. The on-diagonal estimate of (1.5) is equivalent to
the following Nash inequality ([9, Theorem 2.1]): there exists Cy > 0 such that

N(dy, dy) I FI3F 49 < on e, ) 1 F13

for all f € DN LY (M, p). The Nash inequality N(dy,d,) may be replaced by an
equivalent Sobolev inequality, a logarithmic Sobolev inequality or a Faber-Krahn
inequality (see [2]). However, we will follow the approach of [9] and use the Nash
inequality. Such a Nash inequality can be obtained from geometric assumptions
like a Poincaré inequality and a volume growth assumption like V(dy).

Since & is regular, it follows that £(f,g) can be written in terms of a signed
measure I'(f, g) as

E(f.9) = / ()

where the energy measure I is defined as follows.

Definition 1.1. For any essentially bounded f € D, I'(f, f) is the unique Borel
measure on M (called the energy measure) on M satisfying

| oartrn =00 - 38(.0)

for all essentially bounded g € DN C.(M); I'(f, g) is then defined by polarization.

We shall use the following properties of the energy measure.

(i) Locality: For all functions f,¢g € D and all measurable sets G C M on
which f is constant

1edl(f,g9) = 0.
(ii) Leibniz and chain rules: For f,g € D essentially bounded and ¢ € C*(R),
(1.6) dr'(fg,h) = fdl(g,h)+gdL'(f,h),

(L.7) f(e(f).9) = ¢'(HdL(f.9).

We wish to obtain an off-diagonal estimate using Davies’ perturbation method.
The main difference from the previous implementations of the method is that,
in addition to an on-diagonal upper bound (or equivalently Nash inequality), we
also require a cutoff Sobolev inequality. Spaces satisfying the sub-Gaussian upper
bound given in USG(dy, d,,) necessarily satisfy the cutoff Sobolev annulus inequality
CSA(d,,), a condition introduced by Andres and Barlow [1]. The condition CSA
simplifies the cutoff Sobolev inequalities CS which were originally introduced by
Barlow and Bass [5] for weighted graphs. The significance of the cutoff Sobolev
inequalities CS and CSA is that they are stable under bounded perturbations of
the Dirichlet form (cf. [1, Corollary 5.2]). Moreover, the condition CS is stable under
quasi-isometries (rough isometries) of the underlying space [6, Theorem 2.21(b)].
Therefore cutoff Sobolev inequalities provide a robust method to obtain heat kernel
estimates with anomalous time-space scaling. We now define the cutoff Sobolev
inequality CSA(d,,).

Definition 1.2. Let U C V be open sets in M with U C U C V. We say that a
continuous function ¢ is a cutoff function for U C Vif ¢ =1 on U and ¢ = 0 on
Vve.
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DAVIES’ METHOD FOR ANOMALOUS DIFFUSIONS 1797

Definition 1.3 ([1, Definition 1.10]). We say CSA(d,,) holds if there exist Cy, Cy >
0 such that for every x € M, R > 0, r > 0, there exists a cutoff function ¢ for
B(z,R) C B(xz, R+ r) such that if f € D, then

CSA(du) [ racwo<a | daun+ g [ P

where U = B(z, R+ 1)\ B(z,r).

It is clear that the condition CSA(d,,) is preserved by bounded perturbations of
the Dirichlet form. The above definition is slightly different from the one introduced
in [1, Definition 1.10], where the constant C; is taken to be 1/8. However both
definitions are equivalent due to a ‘self-improving’ property of CSA(d,,) [1, Lemma
5.1].

Our main result is that the Nash inequality N(dy,d,,) and the cutoff Sobolev
inequality CSA(d,,) imply the desired sub-Gaussian estimate USG(dy,d,). By
[1, Theorem 1.12], it is known that both N(dy, d,,) and CSA(d,,) are also necessary
for the sub-Gaussian estimate USG(dy,d,,) to hold. More precisely,

Theorem 1.4. Let (M,d, ) be a locally compact metric measure space that sat-
isfies V(dy) with volume growth exponent ds. Let (£,D) be a strongly local, reg-
ular Dirichlet form whose energy measure I satisfies the cutoff Sobolev inequality
CSA(dy) for some d,, > 2. Then the Nash inequality N(dy,d,,) implies the sub-
Gaussian upper bound USG(dy, d).

Remark 1.5. The above properties given by V(dy) and USG(dy,d,,) are a special
case of the more general assumptions of volume doubling and heat kernel upper
bounds with a general time-space scaling of [1]. In fact, Theorem 1.4 is subsumed
by [1, Theorem 1.12]. A recent work of Lierl provides an alternate proof of the sub-
Gaussian estimates in [1] using Moser’s iteration method and extends the results to
certain time-dependent, non-symmetric local bilinear forms [21]. Like earlier work
by Andres and Barlow and the present work, Lierl’s arguments involve improved
control on some cutoff functions.

Our methods give an alternate proof to [1, Theorem 1.12] in a restricted setting.
Moreover we show in [23] that this technique can be adapted to the non-local setting
to provide new results and resolve the conjecture posed in [22, Remark 1(d)].

2. OFF-DIAGONAL ESTIMATES USING DAVIES’ METHOD

Spaces satisfying CSA(d,,) have a rich class of cutoff functions with low energy.
We start by studying energy estimates of these cutoff functions.

2.1. Self-improving property of CSA. The cutoff Sobolev inequality CSA(d,,)
has a self-improving property which states that the constants Cy, Cy in CSA(d,,) are
flexible. For example, we can decrease the value of Cy in CSA(d,,) by increasing Cs
appropriately. This is quantified in Lemma 2.1. Lemma 2.1 is essentially contained
in [1]; we simplify the proof and obtain a slightly stronger result.

Lemma 2.1. Let (M,d,n) satisfy V(dy). Let (€,D) denote a strongly local, reg-
ular Dirichlet form with energy measure I that satisfies CSA(dy). There exist
Cy,Cy > 0 such that for all p € (0,1], for all R,r > 0 and for all x € M, there
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1798 M. MURUGAN AND L. SALOFF-COSTE
exists a cutoff function ¢, = ¢,(f) for B(z,R) C B(l R + ) that satisfies

(2.1) /f2dF Gps §p) < AC p? /dF(f, /deu

for all f € D, where C1,Cy are the constants in CSA( w). Further the cutoff
function ¢, above satisfies

o) - (A <

forally € B(x,R+1)\ B(z,R).

(2.2)

Remark 2.2. Lemma 2.1 is essentially contained in work of Andres and Barlow
[1, Lemma 5.1]. More recently, following [1, Lemma 5.1], Lier]l obtained a cutoff
Sobolev inequality [21, Lemma 2.3] that is similar to Lemma 2.1. However, the
estimate (2.2) is new and it shows that the cutoff functions converge in L°® norm
as p — 0 to the ‘linear cutoff function’. The constructions in [1, Lemma 5.1] and
[21, Lemma 2.3] converge in L* norm as p — 0 to a somewhat more complicated
cutoff function that depends on d,,. The proof below was suggested to us by Martin
Barlow.

Proof of Lemma 2.1. Let x € M, r > 0, R > 0, p > 0, f € D. Define n :=
lp~t] € [p™1/2,p71]. We divide the annulus U = B(z, R+ r) \ B(z, R) into n-
annuli Uy, Us, ..., U, of equal width, where

Ui:=B(x,R+ir/n)\ Bz, R+ (i—1)r/n), i=1,2,...,n

By CSA(d,), there exists a cutoff function ¢; for B(z, R+(i—1)r/) C B(x, R+ir/n)
satisfying

2 2
ey [ raee <o | awons i [
fori=1,2,...,n. We define ¢ =n~! Ziﬂ ¢;. By locality, we have
(24) dr(¢,6) = — Zdr Bir Bi)-

Therefore by (2.4), (2.3) and p~1/2<n=|p~!| <p~!, we obtain

/ f2dP(¢7¢)=n‘QZ": | rare.s
o oo o)

<o [ aresa) 02”: /s
<acipt [ ani+ 2 /f2du

This completes the proof of (2.1).
Note that if y € U;, then 1 —i/n < ¢(y) <1—(i—1)/nand R+ (i — 1)r/n <
d(z,y) < R+ir/n, for each 1 < i < n. This along with n=! < 2p implies (2.2). O
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DAVIES’ METHOD FOR ANOMALOUS DIFFUSIONS 1799

Observe that by (2.2), the cutoff function ¢, for B(z,r) C B(x, R+ r) satisfies
R+4r— d(w,y))+>

r

: _ (
lplﬁ)lﬁﬁp(y) =1A (

2.2. Estimates on perturbed forms. The key to carrying out Davies’ method
is the following elementary inequality.

Lemma 2.3. Let (£,D) be a strongly local, regular Dirichlet form. Then
1
(25) S ) 2 8 M) —p [ P w)
M

forall f €D, €D andp € [1,00).

Proof. Using Leibniz rule (1.6) and chain rule (1.7), we obtain
(e e ) = ST ) = pf T (. 0)
(2:6) = (1) (ST + ST W)~ 20T 0))

By [9, Theorem 3.7] and the Cauchy-Schwarz inequality, we have

1/2
[ ptag < ([ povagn [ praves)
M M M
Therefore
en 2 f P < [ pevagn s [ pra.
M M M
By integrating (2.6) and using (2.7), we obtain (2.5). O

Davies used the bound

/ 22 dU(, ) <
M

‘dF(da )

2
T HOO £z
to control a term in (2.5). However, for anomalous diffusions, the energy measure is
singular to . We will instead use CSA(d,,) to bound [, f?* dI'(¢,¢) by choosing
1 to be a multiple of the cutoff function satisfying CSA(d,,). The following estimate
is analogous to [9, Theorem 3.9], but unlike in [9], the cutoff functions depend on
both p and A. This raises new difficulties in the implementation of Davies’ method.

Proposition 2.4. Let (M,d, 1) be a metric measure space. Let (€, D) be a strongly
local, reqular Dirichlet form on M satisfying CSA(d,,). There exists C > 0 such
that, for all X > 1, for all r > 0, for all x € M, and for all p € [1,00), there exists
a cutoff function ¢ = ¢, x on B(z,r) C B(x,2r) such that

_ _ 1 )\dw dy—1
(2.8) E PN ) 2 £ 1) = O I3

for all f € D. There exists C' > 0 such that the cutoff functions ¢p x above satisfy

(2.9)  llexp (Mpn = P2pa))ll e V llexp (=A(dp.x — d2p.0)) o < exp(C/p)
for all X > 1 and for all p > 1.
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1800 M. MURUGAN AND L. SALOFF-COSTE

Proof. This theorem follows from Lemma 2.3 and Lemma 2.1. Let x € M and
r > 0 be arbitrary. Using (2.5), we obtain

A0 F2p—1 Ao l D £D) _ 2 2p .
210) £, f)zp(8<f,f> w2 [ 1 dr<¢7¢>)

By Lemma 2.1 and fixing p? = (p\)~2/(8C}1) in (2.1), we obtain a cutoff function
¢ = ¢p,» for B(z,r) C B(z,2r) and C > 0 such that

dw
ey o0 [ Prave.e < jen PO [

7"d1u

By (2.10) and (2.11), we obtain (2.8).

By (2.2) and the above calculations, there exists C’ > 0 such that the cutoff
functions ¢, » = ¢p 1 (f) satisfy
/

C
lépx — d2pally, < Y

for all p > 1, for all A > 1, for all f € D, for all x € M and for all » > 0. This
immediately implies (2.9). O

Remark 2.5. Estimates similar to (2.8) were introduced by Davies in [12, equation
(3)] to obtain off-diagonal estimates for higher order (order greater than 2) elliptic
operators. Roughly speaking, the generator £ for anomalous diffusion with walk
dimension d,, behaves like an ‘elliptic operator of order d,,’. However the theory
presented in [12] is complete only when the ‘order’ d,, is bigger than the volume
growth exponent dy, i.e. in the strongly recurrent case. This is because the method
in [12] relies on a Gagliardo-Nirenberg inequality which is true only in the strongly
recurrent setting. We believe that one can adapt the methods of [12] to obtain an
easier proof for the strongly recurrent case. However, we will not impose any such
restrictions and our proof will closely follow the one in [9].

2.3. Proof of Theorem 1.4. Let A > 1 and z € M and r > 0. Let p; = 2* and
let ¥y = A¢p, ., where ¢p, » is a cutoff function on B(z,r) C B(z,2r) given by
Proposition 2.4. We write

(2.12) fig = PYf

for all £ € N, where f € D and thk denotes the perturbed semigroup as in (1.1).
Using (2.8), there exists Cy > 0 such that

d -
anft,OHE = —2E(e¥ fro.e V" fro0)
)\d”’ 2
(2.13) < 200 g Ifeollz
and
d 2p—1  —
ekl = =2m (XS e fu)
Ape )
. 2pk
(214) < e (smngr) v () I
for all k € N*. By (2.13), we obtain
(2.15) 1 feolly, = Ifuolly < exp (Coxtt/rt) | £l
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DAVIES’ METHOD FOR ANOMALOUS DIFFUSIONS 1801

Using (2.14) and the Nash inequality N(dy, d,,), we obtain
(2.16)

d 1 14+2dypr /dy —2dypi/d w—1 [ A d
E”ft;kHZka_m||ftka2pk | feorll, 7% + Copy, - | feokell 2,

for all k € N*. By (2.9) and the fact that P, is a contraction on L*°, we have

(2.17) exp(—2C1/pi) fr+1 < frr < exp(2C1/pr) fr k41
for all k € N>o. Combining (2.16) and (2.17), we obtain
(2.18)

d
d d _ 1A\
I sl Cope ™ (2) T el

for all k € N*, where C'y = 2C exp(8d,C1/dy).

To obtain off-diagonal estimates using the differential inequalities (2.18) we use
the following lemma. The following lemma is analogous to [9, Lemma 3.21], but
the statement and its proof are slightly modified to suit our anomalous diffusion
context with walk dimension d,,.

d 1 142
o I fekellap, < ~Carn | fe.ell2p,,

Lemma 2.6. Let w : [0,00) — (0,00) be a non-decreasing function and suppose
that u € C1(]0,00); (0,00)) satisfies

+(p=2)/0p\ P
(2.19) u'(t) < —;ﬁ (W) u TP () + Spteu(t)
for some positive €,0 and §, d, € [2,00) and p = 2% for some k € N*. Then u
satisfies
9t 1/6p
(2.20) ult) < ( p@ ) t(l—p)/&pw(t)eét/P.
€

Proof. Set v(t) = e=*" "tu(t). By (2.19), we have

/ —opTw Tt (0 dy—1 etP—? 05pTwt o\ 1+6p
V(t)=e (u'(t) — op u(t)) < fWe v(t) .

Hence

d _ w
7 (00) 77 = e u(t) e

and so, since w is non-decreasing,

t
(2.21) e‘wpdwtu(t)_ep > 6911)(75)_9”/ §(P=2) 8™ s g
0
Note that
t . s0pt
/ sP=2)f0p™s go > (t/(;gpdm)pfl/ y P2ty dy
0 §0pw (1—1/pdw)
P
> T exp (59pdwt - 5915) [1 -(1- p_d”)p_l]

P! d
(2.22) > 2 exp (60p™t — 66t) .
In the last line above, we used the bound (1 — p~%)P~1 > 1 — p=dw(p — 1) for all
D, dy > 2. Combining (2.21) and (2.22) yields (2.20). O
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1802 M. MURUGAN AND L. SALOFF-COSTE

We now pick f € L*(M, u) and f > 0 with [|f[l, = 1. Let u(t) = || fer—1ll,,
and let
wy(t) = sup{s¥ Pr=2/Cdurr)y, (5) : 5 € (0,4]}.
By (2.15), wy(t) < exp(CoA%t/rd W) Further by (2.18), ugy; satisfies (2.19) with
€=1/Ca, 0 =2dy/ds, § = Co(N/r)%, w = wy and p = p;. Hence by (2.20),
ups1(t) < (2dwk+1/ea)1/(9Pk)t(1_17k)/‘917k66t/?kwk(t)‘

Therefore
k k k
wk+1(t)/wk(t) < (2dwk+1/69)1/(92 )t—l/(2 6)6&/2

for k € N*. Hence, we obtain

klim wi(t) < Cot™ 9%y (1) < Cot =% exp(Cordwt 1w )
:— 00

where Cy = C3(dy,€,0). Since P; is a contraction on all LP(M, u) for 1 < p < oo,
we obtain

hm ug(t) = HPw“’fH eXp(CO/\dwt/r ")

Co
— tds 4ds)2dy
where %o, = limy_,o ¥. Since the above bound holds for all f € L?(M, ) with
|| fll, = 1, we have

HPZ"‘” H exp(CoA%t /rdw).

< Co
2—o00 td /2d

The estimate is unchanged if we replace ¥ by —g. Since Pt_w is the adjoint of
th , by duality we have that

HP;””H exp(CoAdwt /rdw).

1—2 tdf /2d

Combining the above, we have

CQde/dw

Yoo Yoo Yoo duy du
(2.23) HPt Hl—)oo - ‘ Pt/2 H1—>2 H ¢/2 H2—>oo = tdi/dw exp(CoA™t/r).
Therefore
Cy2%#/dw

pela,y) < =G 75— exp(CoA™ /1% + 9o (y) — Yoo ()

for all £,y € M and for all r,¢ > 0 and A > 1. If we choose r = d(z,y)/2, we have
Voo (y) — Voo (z) = —\. This yields

Cs
pe(r,y) < exp(CaA™t/d(z,y)* — \)

where C3,Cy > 1. Assuming A = C; /™Y (d(z, y)@» /t)1/(@==1D) > 1 in the above
equation, we obtain

1/(dw—1)
C3 d('r7y)dw
pi(z,y) < v d, P (— (Tsﬂf

for all ,y € M and for all ¢ > 0 such that d(z,y)% > Cyt.
If d(z,y)% < Cyt, the on-diagonal estimate (1.5) suffices to obtain the desired
sub-Gaussian upper bound. O
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Remark 2.7. The following generalized capacity estimate is a weaker form of the
cutoff Sobolev inequality CSA(d,,), where the cutoff function ¢ is allowed to depend
on the function f. This generalized capacity estimate was introduced by Grigor’yan,
Hu and Lau, and they obtain a sub-Gaussian estimate under this weaker assumption
[15, Theorem 1.2].

Definition 2.8. We say Gcap(d,,) holds if there exists C1,Cy > 0 such that for
every t € M, R > 0,7 > 0, f € D, there exists a cutoff function ¢ = ¢(f) for
B(z,R) C B(xz, R+ r) such that

Geap(d) [ rawe <o | daun+ g [ Fa

where U = B(x, R+7r) \ B(z,r).

We refer the reader to [10, Definition 1.5] for an analogous generalized capacity
estimate in a non-local setting.

It is an interesting open problem to modify the proof of Theorem 1.4 under the
above weaker assumption. The main difficulty for carrying out Davies’ method
under the weaker generalized capacity estimate assumption is that we require the
inequalities (2.13) and (2.14) as ¢ > 0 varies. This would require the cutoff function
1y, to depend on f  for each t. Therefore the derivatives computed in (2.13) and
(2.14) will have additional terms, since 15 varies with time ¢.

We were informed of the reference [18] by the referee during the revision stage. In
[18], the techniques developed here and in the companion paper [23] are extended to
Dirichlet forms on metric measure spaces (possibly non-local) with jumps satisfying
a polynomial type upper bound.
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