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DAVIES’ METHOD FOR ANOMALOUS DIFFUSIONS

MATHAV MURUGAN AND LAURENT SALOFF-COSTE

(Communicated by Mark M. Meerschaert)

Abstract. Davies’ method of perturbed semigroups is a classical technique to
obtain off-diagonal upper bounds on the heat kernel. However Davies’ method
does not apply to anomalous diffusions due to the singularity of energy mea-
sures. In this note, we overcome the difficulty by modifying the Davies’ pertur-
bation method to obtain sub-Gaussian upper bounds on the heat kernel. Our
computations closely follow the seminal work of Carlen, Kusuoka and Stroock
(1987). However, a cutoff Sobolev inequality due to Andres and Barlow (2015)
is used to bound the energy measure.

1. Introduction

Davies’ method of perturbed semigroups is a well-known method to obtain off-
diagonal upper bounds on the heat kernel. It was introduced by E. B. Davies to
obtain the explicit constants in the exponential term for Gaussian upper bounds [11]
using the logarithmic-Sobolev inequality. Davies’ method was extended by Carlen,
Kusuoka and Stroock to a non-local setting [9, Section 3] using Nash inequality.
Moreover, Davies extended this technique to higher order elliptic operators on Rn

[12, Section 6 and 7]. More recently Barlow, Grigor’yan and Kumagai applied
Davies’ method as presented in [9] to obtain off-diagonal upper bounds for the heat
kernel of heavy tailed jump processes [7, Section 3].

Despite these triumphs, Davies’ perturbation method has not yet been made to
work in the following contexts:

(a) Anomalous diffusions (see [4, Section 4.2]).
(b) Jump processes with jump index greater than or equal to 2 (see [22, Remark

1(d)] and [14, Section 1]).

The goal of this work is to extend Davies’ method to anomalous diffusions in order
to obtain sub-Gaussian upper bounds. In the anomalous diffusion setting, we use
cutoff functions satisfying a cutoff Sobolev inequality to perturb the corresponding
heat semigroup. We use a recent work of Andres and Barlow [1] to construct these
cutoff functions. We extend the techniques developed here in a sequel to a non-
local setting for the jump processes mentioned in (b) above [23]. In [23], we consider
the analogue of symmetric stable processes on fractals, while in this work we are
motivated by Brownian motion on fractals.

Before we proceed, we briefly outline Davies’ method as presented in [9] and
point out the main difficulty in extending it to the anomalous diffusion setting.
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1794 M. MURUGAN AND L. SALOFF-COSTE

Consider a metric measure space (M, d, µ) and a Markov semigroup (Pt)t≥0 sym-
metric with respect to µ. The most classical case is that of the heat semigroup in
Rn (corresponding to Brownian motion in Rn) associated with the Dirichlet form
E(f, f) =

∫
Rn |∇f|2 dµ, where µ is the Lebesgue measure.

Instead of considering the original Markov semigroup (Pt)t≥0, we consider the
perturbed semigroup

(1.1)
(
Pψ

t f
)

(x) = eψ(x)
(
Pt

(
e−ψf

))
(x)

where ψ is a ‘sufficiently nice function’. Given an ultracontractive estimate

(1.2) ∥Pt∥1→∞ ≤ m(t)

for the diffusion semigroup, Davies’ method yields an ultracontractive estimate for
the perturbed semigroup

(1.3)
∥∥∥Pψ

t

∥∥∥
1→∞

≤ mψ(t).

If pt(x, y) is the kernel of Pt, then the kernel of Pψ
t is pψt (x, y) = e−ψ(x)pt(x, y)eψ(y).

Therefore by (1.3), we obtain the off-diagonal estimate

(1.4) pt(x, y) ≤ mψ(t) exp (ψ(y) − ψ(x)) .

By varying ψ over a class of ‘nice functions’ to minimize the right hand side of
(1.4), Davies obtained off-diagonal upper bounds. In Davies’ method as presented
in [9, 11], it is crucial that the function ψ satisfies

e−2ψΓ(eψ, eψ) ≪ µ and e2ψΓ(e−ψ, e−ψ) ≪ µ,

where Γ(·, ·) denotes the corresponding energy measure (cf. Definition 1.1). For
the classical example of heat semigroup in Rn described above, the energy measure
Γ(f, g) is ∇f.∇g dµ, where µ is the Lebesgue measure.

In fact the expression of mψ in (1.3) depends on the uniform bound on the
Radon-Nikodym derivatives of the energy measure given by (see [9, Theorem 3.25])

Γ(ψ) :=

∥∥∥∥
de−2ψΓ(eψ, eψ)

dµ

∥∥∥∥
∞

∨
∥∥∥∥

de2ψΓ(e−ψ, e−ψ)

dµ

∥∥∥∥
∞

.

The main difficulty in extending Davies’ method to anomalous diffusions is that
for many ‘typical fractals’ that satisfy a sub-Gaussian estimate, the energy measure
Γ(·, ·) is singular with respect to the underlying symmetric measure µ [8, 16, 20].
This difficulty is well-known to experts (for instance, [5, p. 1507] or [19, p. 86]).
In this context, the condition e−2ψΓ(eψ, eψ) ≪ µ implies that ψ is necessarily a
constant, in which case the off-diagonal estimate of (1.4) is not an improvement
over the diagonal estimate (1.3).

We briefly recall some fundamental notions regarding Dirichlet form and refer the
reader to [13] for details. Let (M, d, µ) be a locally compact metric measure space
where µ is a positive Radon measure on M with supp(µ) = M . We denote by ⟨·, ·⟩
the inner product on L2(M, µ). Let X = (Ω, F∞, Ft, Xt, Px) denote the diffusion
corresponding to a strongly local regular Dirichlet form. Here Ω denotes the totality
of right continuous paths with left-limits from [0,∞) to M and Px denotes the
law of the process conditioned to start at X0 = x. The corresponding Markov
semigroup {Pt : t ≥ 0} of X is defined by Ptf(x) := Ex[f(Xt)], where Ex denotes
the expectation with respect to the measure Px. These operators {Pt : t ≥ 0}
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form a strongly continuous semigroup of self-adjoint contractions. The Dirichlet
form (E , D) associated with X is the symmetric, bilinear form

E(u, v) := lim
t↓0

1

t
⟨u − Ptu, v⟩

defined on the domain

D :=

{
u ∈ L2(M, µ) : sup

t>0

1

t
⟨u − Ptu, u⟩ < ∞

}
.

Recall that a Dirichlet form (E , D) on L2(M, µ) is said to be regular if Cc(M)∩D
is dense in both (Cc(M), ∥·∥∞) and the Hilbert space (D, E1). Here Cc(M) is the
space of continuous functions with compact support in M and E1(·, ·) := E(·, ·)+⟨·, ·⟩
denotes the inner product on D. For a µ-measurable function u let Supp[u] denote
the support of the measure u dµ. We say that a Dirichlet form (E , D) on L2(M, µ)
is strongly local if it satisfies the following property: For all functions u, v ∈ D such
that Supp[u], Supp[u] are compact and v is constant on a neighborhood of Supp[v],
we have E(u, v) = 0. For example, the form corresponding to the heat semigroup
on Rn defined by (f -→

∫
Rn |∇f|2 dµ, W 1,2(Rn)) is a regular, strongly local Dirichlet

form on L2(Rn, µ), where µ is the Lebesgue measure and W 1,2 denotes the Sobolev
space.

We denote by B(x, r) := {y ∈ M : d(x, y) < r} the ball centered at x with radius
r and by

V (x, r) := µ(B(x, r))

the corresponding volume. We assume that the metric measure space is Ahlfors-
regular, meaning that there exist C1 > 0 and df > 0 such that

V(df ) C−1
1 rdf ≤ V (x, r) ≤ C1r

df

for all x ∈ M and for all r ≥ 0. The quantity df > 0 is called the volume growth
exponent or fractal dimension. Let pt(·, ·) be the (regularized) kernel of Pt with
respect to µ [1, eq. (1.10)]. We are interested in obtaining sub-Gaussian upper
bounds of the form

USG(df , dw) pt(x, y) ≤ C1

tdf /dw
exp

(
−C2

(
d(x, y)dw

t

)1/(dw−1)
)

where dw ≥ 2 is the escape time exponent or walk dimension. It is known that
if the heat kernel pt satisfies USG(df , dw), then dw ≥ 2 (cf. [17, p. 252]). The
corresponding diffusion Xt then has a diffusive speed of at least t1/dw (up to con-
stants). This means that a process starting at x first exits a ball B(x, r) at the time
τB(x,r) ! rdw (cf. [1, Lemma 5.3]). Moreover, if the process satisfies a matching
sub-Gaussian lower bound for pt with different constants, then τB(x,r) ≍ rdw . For
comparison, recall that the Brownian motion on Euclidean space has a Gaussian
heat kernel and satisfies τB(x,r) ≍ r2.

Such sub-Gaussian estimates are typical of many fractals (cf. [3, Theorem 8.18]).
We assume the on-diagonal bound corresponding to the sub-Gaussian estimate of
USG(df , dw). That is, we assume that there exists C1 > 0 such that

(1.5) pt(x, x) ≤ C1

tdf /dw
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1796 M. MURUGAN AND L. SALOFF-COSTE

for all x ∈ M and for all t > 0. The on-diagonal estimate of (1.5) is equivalent to
the following Nash inequality ([9, Theorem 2.1]): there exists CN > 0 such that

N(df , dw) ∥f∥2(1+dw/df )
2 ≤ CNE(f, f) ∥f∥2dw/df

1

for all f ∈ D ∩ L1(M, µ). The Nash inequality N(df , dw) may be replaced by an
equivalent Sobolev inequality, a logarithmic Sobolev inequality or a Faber-Krahn
inequality (see [2]). However, we will follow the approach of [9] and use the Nash
inequality. Such a Nash inequality can be obtained from geometric assumptions
like a Poincaré inequality and a volume growth assumption like V(df ).

Since E is regular, it follows that E(f, g) can be written in terms of a signed
measure Γ(f, g) as

E(f, g) =

∫

M
Γ(f, g),

where the energy measure Γ is defined as follows.

Definition 1.1. For any essentially bounded f ∈ D, Γ(f, f) is the unique Borel
measure on M (called the energy measure) on M satisfying

∫

M
g dΓ(f, f) = E(f, fg) − 1

2
E(f2, g)

for all essentially bounded g ∈ D ∩ Cc(M); Γ(f, g) is then defined by polarization.

We shall use the following properties of the energy measure.

(i) Locality : For all functions f, g ∈ D and all measurable sets G ⊂ M on
which f is constant

1GdΓ(f, g) = 0.

(ii) Leibniz and chain rules : For f, g ∈ D essentially bounded and φ ∈ C1(R),

dΓ(fg, h) = fdΓ(g, h) + gdΓ(f, h),(1.6)

fΓ(φ(f), g) = φ′(f)dΓ(f, g).(1.7)

We wish to obtain an off-diagonal estimate using Davies’ perturbation method.
The main difference from the previous implementations of the method is that,
in addition to an on-diagonal upper bound (or equivalently Nash inequality), we
also require a cutoff Sobolev inequality. Spaces satisfying the sub-Gaussian upper
bound given in USG(df , dw) necessarily satisfy the cutoff Sobolev annulus inequality
CSA(dw), a condition introduced by Andres and Barlow [1]. The condition CSA
simplifies the cutoff Sobolev inequalities CS which were originally introduced by
Barlow and Bass [5] for weighted graphs. The significance of the cutoff Sobolev
inequalities CS and CSA is that they are stable under bounded perturbations of
the Dirichlet form (cf. [1, Corollary 5.2]). Moreover, the condition CS is stable under
quasi-isometries (rough isometries) of the underlying space [6, Theorem 2.21(b)].
Therefore cutoff Sobolev inequalities provide a robust method to obtain heat kernel
estimates with anomalous time-space scaling. We now define the cutoff Sobolev
inequality CSA(dw).

Definition 1.2. Let U ⊂ V be open sets in M with U ⊂ Ū ⊂ V . We say that a
continuous function φ is a cutoff function for U ⊂ V if φ ≡ 1 on U and φ ≡ 0 on
V c.
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DAVIES’ METHOD FOR ANOMALOUS DIFFUSIONS 1797

Definition 1.3 ([1, Definition 1.10]). We say CSA(dw) holds if there exist C1, C2 >
0 such that for every x ∈ M , R > 0, r > 0, there exists a cutoff function φ for
B(x, R) ⊂ B(x, R + r) such that if f ∈ D, then

CSA(dw)

∫

U
f2 dΓ(φ,φ) ≤ C1

∫

U
φ2 dΓ(f, f) +

C2

rdw

∫

U
f2 dµ,

where U = B(x, R + r) \ B(x, r).

It is clear that the condition CSA(dw) is preserved by bounded perturbations of
the Dirichlet form. The above definition is slightly different from the one introduced
in [1, Definition 1.10], where the constant C1 is taken to be 1/8. However both
definitions are equivalent due to a ‘self-improving’ property of CSA(dw) [1, Lemma
5.1].

Our main result is that the Nash inequality N(df , dw) and the cutoff Sobolev
inequality CSA(dw) imply the desired sub-Gaussian estimate USG(df , dw). By
[1, Theorem 1.12], it is known that both N(df , dw) and CSA(dw) are also necessary
for the sub-Gaussian estimate USG(df , dw) to hold. More precisely,

Theorem 1.4. Let (M, d, µ) be a locally compact metric measure space that sat-
isfies V(df ) with volume growth exponent df . Let (E , D) be a strongly local, reg-
ular Dirichlet form whose energy measure Γ satisfies the cutoff Sobolev inequality
CSA(dw) for some dw ≥ 2. Then the Nash inequality N(df , dw) implies the sub-
Gaussian upper bound USG(df , dw).

Remark 1.5. The above properties given by V(df ) and USG(df , dw) are a special
case of the more general assumptions of volume doubling and heat kernel upper
bounds with a general time-space scaling of [1]. In fact, Theorem 1.4 is subsumed
by [1, Theorem 1.12]. A recent work of Lierl provides an alternate proof of the sub-
Gaussian estimates in [1] using Moser’s iteration method and extends the results to
certain time-dependent, non-symmetric local bilinear forms [21]. Like earlier work
by Andres and Barlow and the present work, Lierl’s arguments involve improved
control on some cutoff functions.

Our methods give an alternate proof to [1, Theorem 1.12] in a restricted setting.
Moreover we show in [23] that this technique can be adapted to the non-local setting
to provide new results and resolve the conjecture posed in [22, Remark 1(d)].

2. Off-diagonal estimates using Davies’ method

Spaces satisfying CSA(dw) have a rich class of cutoff functions with low energy.
We start by studying energy estimates of these cutoff functions.

2.1. Self-improving property of CSA. The cutoff Sobolev inequality CSA(dw)
has a self-improving property which states that the constants C1, C2 in CSA(dw) are
flexible. For example, we can decrease the value of C1 in CSA(dw) by increasing C2

appropriately. This is quantified in Lemma 2.1. Lemma 2.1 is essentially contained
in [1]; we simplify the proof and obtain a slightly stronger result.

Lemma 2.1. Let (M, d, µ) satisfy V(df ). Let (E , D) denote a strongly local, reg-
ular Dirichlet form with energy measure Γ that satisfies CSA(dw). There exist
C1, C2 > 0 such that for all ρ ∈ (0, 1], for all R, r > 0 and for all x ∈ M , there
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1798 M. MURUGAN AND L. SALOFF-COSTE

exists a cutoff function φρ = φρ(f) for B(x, R) ⊂ B(x, R + r) that satisfies

(2.1)

∫

U
f2 dΓ(φρ,φρ) ≤ 4C1ρ

2

∫

U
dΓ(f, f) +

C2ρ2−dw

rdw

∫

U
f2 dµ

for all f ∈ D, where C1, C2 are the constants in CSA(dw). Further the cutoff
function φρ above satisfies

(2.2)

∣∣∣∣φρ(y) −
(

R + r − d(x, y)

r

)∣∣∣∣ ≤ 2ρ

for all y ∈ B(x, R + r) \ B(x, R).

Remark 2.2. Lemma 2.1 is essentially contained in work of Andres and Barlow
[1, Lemma 5.1]. More recently, following [1, Lemma 5.1], Lierl obtained a cutoff
Sobolev inequality [21, Lemma 2.3] that is similar to Lemma 2.1. However, the
estimate (2.2) is new and it shows that the cutoff functions converge in L∞ norm
as ρ → 0 to the ‘linear cutoff function’. The constructions in [1, Lemma 5.1] and
[21, Lemma 2.3] converge in L∞ norm as ρ → 0 to a somewhat more complicated
cutoff function that depends on dw. The proof below was suggested to us by Martin
Barlow.

Proof of Lemma 2.1. Let x ∈ M , r > 0, R > 0, ρ > 0, f ∈ D. Define n :=
⌊ρ−1⌋ ∈ [ρ−1/2, ρ−1]. We divide the annulus U = B(x, R + r) \ B(x, R) into n-
annuli U1, U2, . . . , Un of equal width, where

Ui := B(x, R + ir/n) \ B(x, R + (i − 1)r/n), i = 1, 2, . . . , n.

By CSA(dw), there exists a cutoff function φi for B(x, R+(i−1)r/) ⊂ B(x, R+ir/n)
satisfying

(2.3)

∫

Ui

f2 dΓ(φi,φi) ≤ C1

∫

Ui

dΓ(f, f) +
C2

(r/n)dw

∫

Ui

f2 dµ

for i = 1, 2, . . . , n. We define φ = n−1
∑n

i=1 φi. By locality, we have

(2.4) dΓ(φ,φ) =
1

n2

n∑

i=1

dΓ(φi,φi).

Therefore by (2.4), (2.3) and ρ−1/2 ≤ n = ⌊ρ−1⌋ ≤ ρ−1 , we obtain
∫

U
f2 dΓ(φ,φ) = n−2

n∑

i=1

∫

U
f2 dΓ(φ,φ)

≤ n−2
n∑

i=1

(
C1

∫

Ui

dΓ(f, f) +
C2

(r/n)dw

∫

Ui

f2 dµ

)

≤ C1n
−2

∫

U
dΓ(f, f) +

C2ndw−2

rdw

∫

Ui

f2 dµ

≤ 4C1ρ
2

∫

U
dΓ(f, f) +

C2ρ2−dw

rdw

∫

Ui

f2 dµ.

This completes the proof of (2.1).
Note that if y ∈ Ui, then 1 − i/n ≤ φ(y) ≤ 1 − (i − 1)/n and R + (i − 1)r/n ≤

d(x, y) < R+ ir/n, for each 1 ≤ i ≤ n. This along with n−1 ≤ 2ρ implies (2.2). "
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Observe that by (2.2), the cutoff function φρ for B(x, r) ⊂ B(x, R + r) satisfies

lim
ρ↓0

φρ(y) = 1 ∧
(

(R + r − d(x, y))+
r

)
.

2.2. Estimates on perturbed forms. The key to carrying out Davies’ method
is the following elementary inequality.

Lemma 2.3. Let (E , D) be a strongly local, regular Dirichlet form. Then

(2.5) E(eψf2p−1, e−ψf) ≥ 1

p
E(fp, fp) − p

∫

M
f2p dΓ(ψ,ψ)

for all f ∈ D, ψ ∈ D and p ∈ [1,∞).

Proof. Using Leibniz rule (1.6) and chain rule (1.7), we obtain

Γ(eψf2p−1, e−ψf) − 1

p
Γ(fp, fp) − pf2pΓ(ψ,ψ)

= (p − 1)
(
f2(p−1)Γ(f, f) + f2pΓ(ψ,ψ) − 2f2p−1Γ(f,ψ)

)
.(2.6)

By [9, Theorem 3.7] and the Cauchy-Schwarz inequality, we have

∫

M
f2p−1 dΓ(f,ψ) ≤

(∫

M
f2(p−1) dΓ(f, f) ·

∫

M
f2p dΓ(ψ,ψ)

)1/2

.

Therefore

(2.7) 2

∫

M
f2p−1 dΓ(f,ψ) ≤

∫

M
f2(p−1) dΓ(f, f) +

∫

M
f2p dΓ(ψ,ψ).

By integrating (2.6) and using (2.7), we obtain (2.5). "

Davies used the bound
∫

M
f2p dΓ(ψ,ψ) ≤

∥∥∥∥
dΓ(ψ,ψ)

dµ

∥∥∥∥
∞

∥f∥2p
2p

to control a term in (2.5). However, for anomalous diffusions, the energy measure is
singular to µ. We will instead use CSA(dw) to bound

∫
M f2p dΓ(ψ,ψ) by choosing

ψ to be a multiple of the cutoff function satisfying CSA(dw). The following estimate
is analogous to [9, Theorem 3.9], but unlike in [9], the cutoff functions depend on
both p and λ. This raises new difficulties in the implementation of Davies’ method.

Proposition 2.4. Let (M, d, µ) be a metric measure space. Let (E , D) be a strongly
local, regular Dirichlet form on M satisfying CSA(dw). There exists C > 0 such
that, for all λ ≥ 1, for all r > 0, for all x ∈ M , and for all p ∈ [1,∞), there exists
a cutoff function φ = φp,λ on B(x, r) ⊂ B(x, 2r) such that

(2.8) E(eλφf2p−1, e−λφf) ≥ 1

2p
E(fp, fp) − C

λdwpdw−1

rdw
∥f∥2p

2p ,

for all f ∈ D. There exists C ′ > 0 such that the cutoff functions φp,λ above satisfy

(2.9) ∥exp (λ(φp,λ − φ2p,λ))∥∞ ∨ ∥exp (−λ(φp,λ − φ2p,λ))∥∞ ≤ exp(C ′/p)

for all λ ≥ 1 and for all p ≥ 1.
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Proof. This theorem follows from Lemma 2.3 and Lemma 2.1. Let x ∈ M and
r > 0 be arbitrary. Using (2.5), we obtain

(2.10) E(eλφf2p−1, e−λφf) ≥ 1

p

(
E(fp, fp) − (pλ)2

∫

M
f2p dΓ(φ,φ)

)
.

By Lemma 2.1 and fixing ρ2 = (pλ)−2/(8C1) in (2.1), we obtain a cutoff function
φ = φp,λ for B(x, r) ⊂ B(x, 2r) and C > 0 such that

(2.11) (pλ)2
∫

M
f2p dΓ(φ,φ) ≤ 1

2
E(fp, fp) + C

(λp)dw

rdw

∫

M
f2p dµ.

By (2.10) and (2.11), we obtain (2.8).
By (2.2) and the above calculations, there exists C ′ > 0 such that the cutoff

functions φp,λ = φp,λ(f) satisfy

∥φp,λ − φ2p,λ∥∞ ≤ C ′

pλ

for all p ≥ 1, for all λ ≥ 1, for all f ∈ D, for all x ∈ M and for all r > 0. This
immediately implies (2.9). "

Remark 2.5. Estimates similar to (2.8) were introduced by Davies in [12, equation
(3)] to obtain off-diagonal estimates for higher order (order greater than 2) elliptic
operators. Roughly speaking, the generator L for anomalous diffusion with walk
dimension dw behaves like an ‘elliptic operator of order dw’. However the theory
presented in [12] is complete only when the ‘order’ dw is bigger than the volume
growth exponent df , i.e. in the strongly recurrent case. This is because the method
in [12] relies on a Gagliardo-Nirenberg inequality which is true only in the strongly
recurrent setting. We believe that one can adapt the methods of [12] to obtain an
easier proof for the strongly recurrent case. However, we will not impose any such
restrictions and our proof will closely follow the one in [9].

2.3. Proof of Theorem 1.4. Let λ ≥ 1 and x ∈ M and r > 0. Let pk = 2k and
let ψk = λφpk,λ, where φpk,λ is a cutoff function on B(x, r) ⊂ B(x, 2r) given by
Proposition 2.4. We write

(2.12) ft,k := Pψk
t f

for all k ∈ N, where f ∈ D and Pψk
t denotes the perturbed semigroup as in (1.1).

Using (2.8), there exists C0 > 0 such that

d

dt
∥ft,0∥2

2 = −2E
(
eψ1ft,0, e

−ψ1ft,0

)

≤ 2C0
λdw

rdw
∥ft,0∥2

2(2.13)

and
d

dt
∥ft,k∥2pk

2pk
= −2pkE

(
eψkf2pk−1

t,k , e−ψkft,k

)

≤ −E
(
fpk

t,k, fpk

t,k

)
+ 2C0

(
λpk

r

)dw

∥ft,k∥2pk

2pk
(2.14)

for all k ∈ N∗. By (2.13), we obtain

(2.15) ∥ft,0∥p1
= ∥ft,0∥2 ≤ exp

(
C0λ

dw t/rdw
)
∥f∥2 .
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Using (2.14) and the Nash inequality N(df , dw), we obtain
(2.16)

d
dt

∥ft,k∥2pk
≤− 1

2CNpk
∥ft,k∥

1+2dwpk/df
2pk

∥ft,k∥−2dwpk/df
pk

+ C0p
dw−1
k

(
λ
r

)dw

∥ft,k∥2pk

for all k ∈ N∗. By (2.9) and the fact that Pt is a contraction on L∞, we have

(2.17) exp(−2C1/pk)ft,k+1 ≤ ft,k ≤ exp(2C1/pk)ft,k+1

for all k ∈ N≥0. Combining (2.16) and (2.17), we obtain
(2.18)

d
dt

∥ft,k∥2pk
≤ − 1

CApk
∥ft,k∥

1+2dwpk/df
2pk

∥ft,k−1∥−2dwpk/df
pk

+ C0p
dw−1
k

(
λ
r

)dw

∥ft,k∥2pk

for all k ∈ N∗, where CA = 2CN exp(8dwC1/df ).
To obtain off-diagonal estimates using the differential inequalities (2.18) we use

the following lemma. The following lemma is analogous to [9, Lemma 3.21], but
the statement and its proof are slightly modified to suit our anomalous diffusion
context with walk dimension dw.

Lemma 2.6. Let w : [0,∞) → (0,∞) be a non-decreasing function and suppose
that u ∈ C1([0,∞); (0,∞)) satisfies

(2.19) u′(t) ≤ − ϵ

p

(
t(p−2)/θp

w(t)

)θp

u1+θp(t) + δpdw−1u(t)

for some positive ϵ, θ and δ, dw ∈ [2,∞) and p = 2k for some k ∈ N∗. Then u
satisfies

(2.20) u(t) ≤
(

2pdw

ϵθ

)1/θp

t(1−p)/θpw(t)eδt/p.

Proof. Set v(t) = e−δpdw−1tu(t). By (2.19), we have

v′(t) = e−δpdw−1t
(
u′(t) − δpdw−1u(t)

)
≤ − ϵtp−2

pw(t)θp
eθδpdw tv(t)1+θp.

Hence
d

dt
(v(t))−θp ≥ ϵθtp−2w(t)−θpeθδpdw t,

and so, since w is non-decreasing,

(2.21) eδθpdw tu(t)−θp ≥ ϵθw(t)−θp

∫ t

0
s(p−2)eθδpdw s ds.

Note that
∫ t

0
s(p−2)eθδpdw s ds ≥ (t/δθpdw)p−1

∫ δθpdw

δθpdw (1−1/pdw )
y(p−2)ety dy

≥ tp−1

p − 1
exp

(
δθpdw t − δθt

) [
1 − (1 − p−dw)p−1

]

≥ tp−1

2pdw
exp

(
δθpdw t − δθt

)
.(2.22)

In the last line above, we used the bound (1 − p−dw)p−1 ≥ 1 − p−dw(p − 1) for all
p, dw ≥ 2. Combining (2.21) and (2.22) yields (2.20). "
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We now pick f ∈ L2(M, µ) and f ≥ 0 with ∥f∥2 = 1. Let uk(t) = ∥ft,k−1∥pk

and let

wk(t) = sup{sdf (pk−2)/(2dwpk)uk(s) : s ∈ (0, t]}.

By (2.15), w1(t) ≤ exp(C0λdw t/rdw). Further by (2.18), uk+1 satisfies (2.19) with
ϵ = 1/CA, θ = 2dw/df , δ = C0(λ/r)dw , w = wk and p = pk. Hence by (2.20),

uk+1(t) ≤ (2dwk+1/ϵθ)1/(θpk)t(1−pk)/θpkeδt/pkwk(t).

Therefore

wk+1(t)/wk(t) ≤ (2dwk+1/ϵθ)1/(θ2k)t−1/(2kθ)eδt/2k

for k ∈ N∗. Hence, we obtain

lim
k→∞

wk(t) ≤ C2t
−1/θeδtw1(t) ≤ C2t

−1/θ exp(C0λ
dw t/rdw)

where C2 = C2(dw, ϵ, θ). Since Pt is a contraction on all Lp(M, µ) for 1 ≤ p ≤ ∞,
we obtain

lim
k→∞

uk(t) =
∥∥∥Pψ∞

t f
∥∥∥
∞

≤ C2

tdf /2dw
exp(C0λ

dw t/rdw)

where ψ∞ = limk→∞ ψk. Since the above bound holds for all f ∈ L2(M, µ) with
∥f∥2 = 1, we have

∥∥∥Pψ∞
t

∥∥∥
2→∞

≤ C2

tdf /2dw
exp(C0λ

dw t/rdw).

The estimate is unchanged if we replace ψk by −ψk. Since P−ψ
t is the adjoint of

Pψ
t , by duality we have that

∥∥∥Pψ∞
t

∥∥∥
1→2

≤ C2

tdf /2dw
exp(C0λ

dw t/rdw).

Combining the above, we have

(2.23)
∥∥∥Pψ∞

t

∥∥∥
1→∞

≤
∥∥∥Pψ∞

t/2

∥∥∥
1→2

∥∥∥Pψ∞
t/2

∥∥∥
2→∞

≤ C22df /dw

tdf /dw
exp(C0λ

dw t/rdw).

Therefore

pt(x, y) ≤ C22df /dw

tdf /dw
exp(C0λ

dw t/rdw + ψ∞(y) − ψ∞(x))

for all x, y ∈ M and for all r, t > 0 and λ ≥ 1. If we choose r = d(x, y)/2, we have
ψ∞(y) − ψ∞(x) = −λ. This yields

pt(x, y) ≤ C3

tdf /dw
exp(C4λ

dw t/d(x, y)dw − λ)

where C3, C4 > 1. Assuming λ = C−1/(dw−1)
4 (d(x, y)dw/t)1/(dw−1) ≥ 1 in the above

equation, we obtain

pt(x, y) ≤ C3

tdf /dw
exp

(
−
(

d(x, y)dw

C5t

)1/(dw−1)
)

for all x, y ∈ M and for all t > 0 such that d(x, y)dw ≥ C4t.
If d(x, y)dw < C4t, the on-diagonal estimate (1.5) suffices to obtain the desired

sub-Gaussian upper bound. "
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Remark 2.7. The following generalized capacity estimate is a weaker form of the
cutoff Sobolev inequality CSA(dw), where the cutoff function φ is allowed to depend
on the function f . This generalized capacity estimate was introduced by Grigor’yan,
Hu and Lau, and they obtain a sub-Gaussian estimate under this weaker assumption
[15, Theorem 1.2].

Definition 2.8. We say Gcap(dw) holds if there exists C1, C2 > 0 such that for
every x ∈ M , R > 0, r > 0, f ∈ D, there exists a cutoff function φ = φ(f) for
B(x, R) ⊂ B(x, R + r) such that

Gcap(dw)

∫

U
f2 dΓ(φ,φ) ≤ C1

∫

U
φ2 dΓ(f, f) +

C2

rdw

∫

U
f2 dµ,

where U = B(x, R + r) \ B(x, r).

We refer the reader to [10, Definition 1.5] for an analogous generalized capacity
estimate in a non-local setting.

It is an interesting open problem to modify the proof of Theorem 1.4 under the
above weaker assumption. The main difficulty for carrying out Davies’ method
under the weaker generalized capacity estimate assumption is that we require the
inequalities (2.13) and (2.14) as t > 0 varies. This would require the cutoff function
ψk to depend on ft,k for each t. Therefore the derivatives computed in (2.13) and
(2.14) will have additional terms, since ψk varies with time t.

We were informed of the reference [18] by the referee during the revision stage. In
[18], the techniques developed here and in the companion paper [23] are extended to
Dirichlet forms on metric measure spaces (possibly non-local) with jumps satisfying
a polynomial type upper bound.
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