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We obtain matching two sided estimates of the heat kernel on a connected sum of
parabolic manifolds, each of them satisfying the Li—Yau estimate. The key result
is the on-diagonal upper bound of the heat kernel at a central point. Contrary to
the non-parabolic case (which was settled in [15]), the on-diagonal behavior of the
heat kernel in our case is determined by the end with the mazimal volume growth
function. As examples, we give explicit heat kernel bounds on the connected sums
R2#R? and R'#R? where R! = Ry x St.
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RESUME

Nous obtenons, pour la somme connexe de vraiétés riemanniennes complétes et non-
compactes dont chacune satisfait ’'inégalité de Li—Yau, des estimations inférieures
et supérieures du noyau de la chaleur dans le cas ou la variété est parabolique. Le
résultat clef est ’estimation supéprieure du noyau de la chaleur sur la diagonale &
un point central de la variété. Contrairement au cas non-parabolique traité dans
[15], dans le cas présent, le comportement du noyau de la chaleur sur la diagonale
est déterminé par le bout dont la croissance du volume est la plus forte. Parmi les
exemples traités, nous donnons des estimations précises et explicites du noyau de la
chaleur pour les sommes connexes RZ#R? et RI'#R? ou R! = Ry x St.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a Riemannian manifold. The heat kernel p(t,z,y) on M is the minimal positive fundamental
solution of the heat equation d;u = Au on M where u = u (¢,z), t > 0, x € M and A is the (negative
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definite) Laplace-Beltrami operator on M. For example, in R™ the heat kernel is given by the classical
Gauss—Weierstrass formula

t — 1 |x_y|2
p(t,z,y) = WGXP T )

The heat kernel is sensitive to the geometry of the underlying manifold M, which results in numerous
applications of this notion in differential geometry. On the other hand, the heat kernel has a probabilistic
meaning: p(t, z,y) is the transition density of Brownian motion ({X;}1>0, {Ps}zen) on M. Namely, for any
Borel set A C M, we have

]Px(Xt S A) = /p(t,a:,y)dy,
A

where P, (X; € A) is the probability that Brownian particle starting at the point z will be found in the set
A in time t.

From now on let us assume that the manifold M is non-compact and geodesically complete. Dependence
of the long time behavior of the heat kernel on the large scale geometry of M is an interesting and important
problem that has been intensively studied during the past few decades by many authors (see, for example,
[4], [10], [21] and references therein). In the case when the Ricci curvature of M is non-negative, P. Li and
S.-T. Yau proved in their pioneering work [19] the following estimate, for all z,y € M and ¢ > 0:

2(x
p(t,x,y) < ﬁexp <—bd (t’y)) : (1.1)

where the sign < means that both < and > hold but with different values of positive constants C' and b,

V(z,r) is the Riemannian volume of the geodesic ball of radius r centered at € M, and d(x,y) is the
geodesic distance between the points z, y.

The estimate (1.1) is satisfied also for the heat kernel of uniformly elliptic operators in divergence form
in R™ as was proved by Aronson [1]. It was proved by Fabes and Stroock [6], that the estimate (1.1) is
equivalent to the uniform parabolic Harnack inequality (see also [21]). Grigor’yan [7] and Saloff-Coste [20],
[21] proved that (1.1) is equivalent to the conjunction of the Poincaré inequality and the volume doubling
property.

One of the simplest example of a manifold where (1.1) fails is the hyperbolic space H". A more interesting
counterexample was constructed by Kuz'menko and Molchanov [18]: they showed that the connected sum
R™#R"™ of two copies of R", n > 3, admits a non-trivial bounded harmonic function, which implies that
the Harnack inequality and, hence, (1.1) cannot be true. Benjamini, Chavel and Feldman [2] explained this
phenomenon by a bottleneck-effect: if x and y belong to the different ends of the manifold R"#R"™ and
lz| =~ |y| =~ vt — oo then p(t,z,y) < t~"/? where t~™/? is predicted by the right hand side of (1.1).
This phenomenon is especially transparent from probabilistic viewpoint: Brownian particle can go from x
to y only through the central part, which reduces drastically the transition density (see Fig. 1). A similar
phenomenon was observed by B. Davies [5] on a model case of one-dimensional line complex.

Based on these early works, the first and the third authors of the present paper started a project on
heat kernel bounds on connected sums of manifolds, provided each of them satisfies the Li—Yau estimate
(1.1). The results of this study are published in a series [11], [12], [13], [15], and [16]. In particular, they
obtained in [15] matching upper and lower estimates of heat kernels on connected sums of manifolds when
at least one of them is non-parabolic. Recall that a manifold M called parabolic if Brownian motion on M is
recurrent, and non-parabolic otherwise. There are several equivalent definitions of parabolicity in different
terms (see, for example, [9]).
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Fig. 1. Brownian path goes from z to y via the bottleneck.
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Fig. 2. Connected sum R!#R2.

In this paper we complement the results [15] by proving two-sided estimates of heat kernels on connected
sums of parabolic manifolds. The detailed statements are given in the next section. We illustrate our results
on the following two examples.

Consider first the manifold M = R!'#R?, where R! = Ry x S! (see Fig. 2). For z € M, define |z| :=
d(z,K) + e, where K C M is the central part of M. Then we obtain that for x € R, y € R? and t > 1

,bd"’(w«y) .
if |yl > V4,
1+ Giog ) i eyl < VA,

,d(w) .
YLt if 2] > VE> Jyl.

p(t,x,y) <

= = H~|>—‘
O»—' /\
02

In particular, if |z|, |y| are bounded and ¢ — oo, then

1
p(t,z,y) ~ e
If |z| ~ v/t — oo and |y| remains bounded, then
logt
p(t,xay) ~ T

Consider now the manifold M = R2#R? or, equivalently, a catenoid (see Fig. 3).
Then we have the following estimate for all x, y lying in different sheets and for ¢ > 1:

tlogzt(logtﬂog Vit —loglz|loglyl) if |z[, |y < V%,

7d(‘t) .
o) L log Sfe b if |yl < Vi< |al,
pit,r,y) = _ d(’f?) .
“ogtlogﬁﬁ b if 2] < VE <[y,

log |z] " log|y|

() it o), y] > VA
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Fig. 3. Catenoid.

In particular, if |z|, |y| are bounded and ¢ — oo, then

p(t,z,y) ~

S

If || ~ |y| ~ v/t — oo then

1
tlogt’

p(t,z,y) =

The heat kernel estimates on R2#R? was also obtained in [15] by an ad hoc method. In the present paper
these estimates are part of our general Theorem 2.3. We also give further examples, in particular, the heat
kernel estimates on R'#R'#R2.

In the next section we introduce necessary definitions and state our main results. In Section 3 we prove
some auxiliary results about the integrated resolvent. In Section 4 we prove the main technical result of this
paper — Theorem 2.1 about on-diagonal upper bound of the heat kernel on the connected sum of parabolic
manifolds. Finally, in Section 5 we use Theorem 2.1 and the gluing techniques from [15] to obtain full
off-diagonal estimates of the heat kernels; they are stated in Theorems 2.3-2.5 and Corollaries 2.8 and 2.9.

Notation. Throughout this article, the letters ¢, C,b,... denote positive constants whose values may be
different at different instances. When the value of a constant is significant, it will be explicitly stated. The
notation f = g for two non-negative functions f, g means that there are two positive constants c;, co such
that c1g < f < cog for the specified range of the arguments of f and g.

2. Statement of main results and examples
The main result will be stated in a more general setting of weighted manifolds that is explained below.
2.1. Weighted manifolds

Let M be a connected Riemannian manifold of dimension N. The Riemannian metric of M induces
the geodesic distance d(x,y) between points z,y € M and the Riemannian measure dvol. Given a smooth
positive function o on M, let 1 be the measure on M given by du(z) = o(z)dvol(z). The pair (M, u) is
called a weighted manifold. Any Riemannian manifold can be considered also as a weighted manifold with
o=1.

The Laplace operator A of the weighted manifold (M, p) is defined by

1
A= =div(cV
5 iv(oV)
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Fig. 4. Connected sum M = M1#Ms - - - #Mj,.

where div and V are the divergence and the gradient of the Riemannian metric of M. It is easy to see that
A is the generator of the following Dirichlet form

D(f,f)= [ IVf)?du
/

in W12 (M, uu). The associated heat semigroup e*® has always a smooth positive kernel p (¢, x,%) that is
called the heat kernel of (M, u). At the same time, p (t,z,y) is the minimal positive fundamental solution
of the corresponding heat equation dyu = Au on M x Ry (see [10]). The heat kernel is also the transition
probability density of Brownian motion ({X,},{P,}) on M that is generated by A.

A weighted manifold (M, p) is called parabolic if any positive superharmonic function on M is constant,
and non-parabolic otherwise. The parabolicity is equivalent to each of the following properties, that can be
regarded as equivalent definitions (see, for example, [9]):

1. There exists no positive fundamental solution of —A.
2. foop(t7x,y) dt = oo for all/some z,y € M.
3. Brownian motion on M is recurrent.

2.2. Notion of connected sum

Let (M, ) be a geodesically complete non-compact weighted manifold. Let K C M be a connected
compact subset of M with non-empty interior and smooth boundary such that M \ K has k non-compact
connected components E1, ..., Ej; moreover, assume also that the closures F; are disjoint. We refer to each
FE; as an end of M. Clearly, 0K is a disjoint union of 0F;, i =1,...,k.

Assume also that F; is isometric to the exterior of a compact set K; in another weighted manifold
(M;, ;). Then we refer to M as the connected sum of M, ..., My and write

M = My#Ma# - - - #M,

(see Fig. 4).
Denote by d; the geodesic distance on M; and by B; (z,r) the geodesic ball in M; of radius r centered at
x € M;. Set also V; (x,r) = u; (B; (z,7)). Fix a reference point o; € K; and set

‘/1(7") = W(Oi,’r‘).
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Fig. 5. Model manifold R*'.

In this paper we always assume that every manifold M;, i = 1,..., k, satisfies the following four conditions.
(a) The heat kernel p; (¢, z,y) of (M;, u;) satisfies the Li—Yau estimate (1.1), that is,

a2 (x,y)

C
Ltz y) = ———exp [ —pZ Y)Y 2.1
pi (t,2,y) AR p< ; ) (2.1)
(b) M; is parabolic; under the standing assumption (2.1), the parabolicity of M; is equivalent to

/ VL() ~ 0. (2.2)

(¢) M; has relatively connected annuli, that is, there exists a positive constant A > 1 such that for any
r > A% and all 2,y € M; with d;(0;,2) = d;(0;,y) = r, there exists a continuous path from z to y
staying in B;(o;, Ar) \ B;(0, A~'r). We denote this condition shortly by (RCA).

(d) M; is either critical or subcritical; here M; is called critical if, for all large enough r,

Vi(r) ~1r?,

and subcritical if, for all large enough r,

[ sds Cr?
(v =7 23

For example, if V;(r) ~ r® logﬁr for some 0 < a < 2 and 8 € R, then M; is subcritical. On the other
2
hand, in the case V; (r) ~ 102-5 — with 8 > 0 the manifold M; is neither critical nor subcritical, although still
parabolic.

Let us describe a class of manifolds satisfying all the hypotheses (a)—(d). For any 0 < o < 2 consider a
Riemannian model manifold R* :

(R?, o), where g, is a Riemannian metric on R? such that, in the polar
coordinates (p,0), it is given for p > 1 by

Go = dp2 +p2(o¢—1)d02'

For example, if & = 2 then g5 can be taken to be the Euclidean metric of R? so that in this case R? = R2.
If o = 1 then g; = dp? + df? so that the exterior domain {p > 1} of R! is isometric to the cylinder R, x S
(see Fig. 5).

For a general 0 < a < 2, the exterior domain {p > 1} of R® is isometric to a certain surface of revolution
in R3.

Observe that the volume function V(z,r) on R* admits for » > 1 the estimate

Vin ] o - 2.4
xr, )~ — N .
’ min (7‘2,7“|.13|a 1), |ZL‘| >r 1+W

(see [14, Sec. 4.4]). In particular, if x = o, where o is the origin of R?, then
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V(o,r) ~re. (2.5)

By [14, Prop. 4.10], R* satisfies the parabolic Harnack inequality and, hence, the Li—Yau estimate (1.1).
Obviously, R® satisfies (2.2) and, hence, R® is parabolic. It is easy to see that R< satisfies (RC'A). Note
also that R is critical if @ = 2 and subcritical if o < 2. Hence, R* satisfies all hypotheses (a)—(d).

One can make a similar family of examples also in class of weighted manifolds. Indeed, for any a > 0
consider in R? the following measure

21
dise = (1 + |x|2) * da.

It is easy to see that (R?, p,) satisfies (2.5). The Li-Yau estimate on (R?, uo) holds by [14, Prop. 4.9].
Hence, (RQ, ua) satisfies all the hypotheses (a)—(d) provided 0 < o < 2.

Returning to the general setting, let us mention that the hypotheses (a), (b), (¢) are essential for our
main result, whereas (d) is technical. Probably, the method of proof will work also without assuming (d)
but, even if that is the case, the necessary computations will become much more technical and complicated.
So, we prefer to impose here the additional condition (d) to simplify the computational part of the proof,
which even under (d) remains quite involved.

Observe also that the condition (b) follows from (d). Indeed, if the integral (2.2) converges then by (2.3)
V; (r) < Cr?, which implies the divergence of the integral in (2.2). However, for the aforementioned reason,
we state (b) independently of (d).

In fact, in the subcritical case we have

Vi(r)=o(r*) asr— oo, (2.6)

as it follows from (2.2) and (2.3). Moreover, substituting (2.6) to the left hand side of (2.3), we obtain that,
in the subcritical case,

7“2

w(r):o< )asr—)oo. (2.7)

logr
2.8. On-diagonal estimates

Denote by d (z,y) the geodesic distance between points x,y € M and by V (x,r) the Riemannian volume
of the geodesic ball on M of radius r centered at © € M. Fix a reference point o € K and set V(r) = V (o, 7).
Set also

Vinax(r) = yoax Vi(r).

It is easy to see that, for all r > 0,
V(r) = Vi(r) + Va(r) 4 -+ 4 Vi(r) = Vinax(r).
The first main result of this paper is as follows.
Theorem 2.1. Let M = My# - - - #Mj be a connected sum of non-compact complete manifolds My, ..., M.

Assume that each M; is parabolic and satisfies (1.1) and (RCA). We also assume that each M; is either
critical or subcritical. Then we have
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p(t,0,0) ~ ~ (2.8)

for all t > 0.

Let us mention for comparison the following result of [15]: if all manifolds M; are non-parabolic and
satisfy (1.1) and (RCA), then the heat kernel on M = M;# - - - # M), satisfies

1
p(t7 o, O) N (29)
Vmin(\/g)
where
Vmin(’r) = 121£k ‘/l(r)
The proof of the upper bound in (2.9), that is, of the inequality
C
p(t,0,0) < (2.10)

Vmin (\/%) ’

goes as follows. By [8, Prop. 5.2], the upper bound in (1.1) on M; is equivalent to a certain Faber—Krahn
type inequality on M;. Using a technique for merging of such inequalities, developed in [16, Thm. 3.5], one
obtains a similar Faber—Krahn inequality on M, which then implies the heat kernel upper bound (2.10) by
[8, Thm. 5.2] (see [16, Thm. 4.5] and [15, Cor. 4.7] for the details). The reason for appearing of Vi, in
(2.10) is that the Faber—Krahn inequality on M cannot be stronger than that of each end M; and, hence,
is determined by the end with the smallest function V; (r).

The proof of the lower bound in (2.9), that is, of the inequality

c

Vmin (\/E)

p(t,0,0) = (2.11)

uses the comparison

p(t,z,y) > pe,(t,z,y)

on each end E;, where pg,(t,x,y) is the Dirichlet heat kernel on F; vanishing on 0F;. By [12, Thm 3.1],
non-parabolicity of M; and (1.1) imply that, away from OF;,

P, (t,2,y) > cpi (Ct, z,y) . (2.12)
It follows that, for any i =1,... k,

p(t,0,0) >

Vi (Vi)'

which is equivalent to (2.11).

In the present setting, when all the manifolds M; are parabolic, both arguments described above work
but give non-optimal results. For example, one obtains as above the upper bound (2.10), which in general
is weaker than the upper in (2.8). As far as the lower bound is concerned, the estimate (2.12) fails in the
parabolic case and has to be replaced by a weaker one (cf. [12, Thm 4.9]), which does not yield an optimal
lower bound for p (¢, 0, 0). This explains why we have to develop entirely new method for obtaining optimal
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bounds for p(t,0,0) in the case when all manifolds M; are parabolic. The most significant part of the
estimate (2.8) is the upper bound

¢
Vmax (\/z) .

The proof of (2.13) is the main achievement of the present paper. We use for that a new method involving

p(t,0,0) < (2.13)

the integrated resolvent

oo

() = / / e~ (t,x,y) dtdp (y)
K

0

defined for A > 0. The parabolicity of M implies that vy (z) — co as A — 0, and the rate of increase of
Y (z) as A — 0 is related to the rate of decay of p (¢, 0,0) as t — co. In fact, the integrated resolvent v, on
the connected sum M satisfies a certain integral equation involving as coefficients the Laplace transforms
of the exit probabilities at each end. This allows to estimate the rate of growth of vy as A — 0 and then to
recover the upper bound (2.13) in the subcritical case. In the critical case one has to use instead Jxvx.
Since Vipax (r) = V (0,7) and V (o,r) satisfies the volume doubling property, the upper bound (2.13)
implies automatically a matching lower bound of p (¢, 0,0) by [3, Thm. 7.2] (see Section 4.3 for the details).

Remark 2.2. Kasahara and Kotani recently obtained in [17, Example 6.1] the same on-diagonal heat kernel
estimates for a connected sum of two Bessel processes on the half line [0, 00) by using the Stieltjes transforms.

2.4. Off-diagonal estimates

In order to state the estimates for p (¢, z,y) for arbitrary x,y € M, we need some notation. For any
x € M set

|z| :==d (z,K) +e.

For all x € M and for all ¢t > 2, define the following functions:

1, if |x| >+/tandz € E;,
21, .
D(z,t) := %, if |2| <+Vtandz € Ej, (2.14)
0, ifxe K,

U (x,t) :=

1 .
{ loglz i lal > vt (2.15)

1 T
10g\/Zlog E|x\ . if |z < VA,

1, if 2] >Vt

Wix,t) = ogle . 2.16
T 1Y 219

It is clear that U (z,t) < 1, U (z,t) /1 ast — oo, and W (z,¢) <1 and W (z,t) \,0 as t — oo. It is
also useful to observe that

1< U (z,t)+ W (2,t) < 2. (2.17)

If V; (r) is either critical or subcritical, then it is possible to show that D (x,t) is bounded.

The next three theorems constitute our second main result. It is obtained by combining Theorem 2.1
with several results from [12], [13] and [15].

In the first theorem we consider the case when x and y lie at different ends.
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Theorem 2.3. In the setting of Theorem 2.1, the following estimates are true for all x € E;, y € E; with
i # 7 and t > ty, where tg is large enough.

(i) If all the manifolds My, Il = 1,... k, are subcritical then

C d2(x.y)
_bTy

p(t,z,y) < me (2.18)
(@) Suppose that at least one of the manifolds My, l =1,... k, is critical.
(%), If both of M; and M; are subcritical, then
p(tz,y) = % (1+ (D(z, ) + Dy, 1)) log t) e P52 (2.19)
(%), If both of M; and M; are critical, then
p(t,z,y) =< % (U(z,)U(y,t) + W (z, t)U(y,t) + U(z, t)W(y,t)) e_bm (2.20)
(#)4 If M; is subcritical and M; is critical, then
p(t,z,y) < % (1+ D(z,t)U(y,t)logt) e*bw. (2.21)
The next two theorems cover the case when z, y lie at the same end.
Theorem 2.4. In the setting of Theorem 2.1, assume that x,y € E; and t > tg.
(a) If vVt <min(|z|,[y]) then
plt,2) = — oV (2.22)

(b) Moreover, if V; (r) = Viax (1) for all large r, then (2.22) holds for all t > to. In particular, this is the
case when M; is critical.

Estimate (2.22) means that, for a restricted time, Brownian motion on each end does not see the other
ends, which is natural to expect. Note that the same phenomenon holds also in the case when all M; are
non-parabolic.

The second claim of Theorem 2.4 means that, on the maximal end, Brownian motion does not see the
other ends for all times. It is interesting to observe that in the case when all M; are non-parabolic, a similar
statement holds for the minimal end.

Theorem 2.5. In the setting of Theorem 2.1, assume that M; is subcritical, x,y € E; and t > to. If vVt >
min (|x|,|y|) then the following is true.

(i) If all the manifolds My, 1 =1,...,k, are subcritical, then

D(z,t)D(y,t) 1
V;(\/i) N Vmax(ﬂ)) ‘

,bdz(zv,y)

p(t,z,y) < C ( (2.23)
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(@) If at least one of the manifolds My, l =1,...,k, is critical then

ez = (2000

,bd2(tmwy)

(14 (D(x,t) + D(y,t))log t)) e (2.24)
Remark 2.6. All the estimates of Theorems 2.3-2.5 can be extended to all x,y € M including also a
possibility 2 € K or y € K. This follows from the local Harnack inequality for the heat kernel p(t,x,y)
and from a careful analysis of the estimates. The latter shows that in all cases when |z| (or |y|) remains
bounded, the terms containing D (z,t) are dominated by others and, hence, can be eliminated, which is
equivalent to setting D (z,t) = 0 as in (2.14). A graphical summary of the estimates of Theorems 2.3-2.5
can be found at the following location:
https://www.math.uni-bielefeld.de/~grigor/tables.pdf

Remark 2.7. By [15, Lemma 5.9], for all 2,y € M and 0 < t < tg, the heat kernel on M satisfies the Li-Yau
estimate (1.1) with constants depending on tg. For this result it suffices to assume that each end M; satisfies
the Li—Yau estimate. Hence, in Theorems 2.3-2.5 we do not worry about the estimates for ¢ < ¢g.

If V;(r) is a power function for each ¢ = 1,...k, then we can simplify the heat kernel estimates of
Theorems 2.3-2.5 as follows. In the next statement x, y lie at different ends.

Corollary 2.8. Suppose that V;(r) = r® for alli=1,... k and r > 1, where 0 < o; < 2.
(1) Assume that 0 < o; <2 for alli=1,...,k and set

= max «; .
1<i<k

Then, for all x, y lying at different ends and for all t > 2, we have

C _,d%@w
p(t,x,y)xme b ¢ .

(#) Assume that oy = 2 for some 1 <1 < k. Then the following estimates hold for i # j, x € E;, y € Ej,
t> 2.
(i), Let oy <2 and o < 2. If min(|z|, |y|) > v/t then

2 €T
Clogtefbw

t.x =
p(t,r,y) ; ;

and if min(|z|, |y|) < V't then

p(t,z,y) =

=+ Q

(oo () (1))
(ii)y If a; = o = 2 then

¢ 1Og ‘y| log |-'17| _bd2(ﬂw/)
tr,y) < — (U (x,t) U (y,t Uz, t) ——"— 4U (y,t) — p
o t( (00 (10 + U (ot) 0 L)

Consequently, if |x|,|y| > V/t then
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p(t,z,y)

if el lyl < V& then

p(t,z,y) =

and if |x| > \/t > |y| then

p(t,z,y) <

Similarly, if ly| > vt > |z| then

p(t,z,y) <

(i1)y If a; <2 and oy =2 then

| Q

p(t,z,y) <

Consequently, if |y| > v/t then

if |2], |yl <V then

and if |x| > v/t > |y| then

&

t

tlog®t

(

C eVt
tlogt

C e\f

——o
tlogt & Tal |x\

log me

_¢ (L n L) o
B log |z|  logy|

cL

2
pa=(z.y)
t b

(logt + log® vt — log || log Iyl) ,

a2 (z,y)
—pazy)

(z y)

2—a;
|x‘ ' ,bdz(lwy)
_ U(y,t)logt |e .
|z + V1

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

Proof. All the estimates of Corollary 2.8 follow immediately from those of Theorem 2.3 and the definitions

of functions D and W. In the case (ii),, in the range |z, |y| < v/#, Theorem 2.3 gives the estimate

C
p(tvxay) t].Og \/— ( ﬁ

eVt eVt

Since the sum in the brackets is equal to

eVt eVt 2
(log |z| + log |a:—|> <log ly| + log 7|> — log |z|log ly| = (1 + log \ﬁf) — log |z|log |y|,

we obtain (2.26).

O

log

] + log |y| log

\/_ + log |z| log —

eVt
[yl

)
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Let us state some consequences of Theorems 2.3-2.5 in the general setting, but under some specific
restrictions of the variables z, y, t.

Corollary 2.9. Under the hypotheses of Theorems 2.3-2.5, we have the following estimates.

(a) (Long time regime) For fixred x,y € M and t — oo,

1

p(tz,y) ~ m (2.30)

(b) (Medium time regime) Let x € E; and y € E; with i # j. If |z| = |y| = \/t then in the cases (i) and
()5 we have (2.30), in the case (ii), we have

logt

and in the case (it)y
1
tx,y) ~ . 2.32
pltan) ~ o (2.32)

Proof. (a) The estimate (2.30) follows easily from Theorem 2.1 by using a local Harnack inequality. However,
we show here how it follows from Theorems 2.3, 2.5. Observe that, for a fixed z € F; and large t we have

~—. 2.33
logt ( )
Assume that « € E;, y € E; and consider the cases (i), (i), (i), and (%), as in Theorem 2.3.
Case (i). Using (2.18), (2.23), (2.33) and V; (z,Vt) =~ V; (V1) as t — oo we obtain

Vi (Vi 1 1
52 )51'J'+ ~

Vmax (\/E) Vmax (\/%) ’

p(t,z,y) =

where we have also used that V; (r) Vinax (r) = o (r4).
Case (ii),. By (2.19), (2.24) and (2.33) we have

p(t,z,y) ~ Vi(v?) bij + % {1+ (Vi(ﬂ) + Vj(t\/g)> logt}

t2 t

_
Vinax (V)

~ _ ~
~ -

~ |

because of Vipayx (1) &~ r? and (2.7).
Case (ii)y. If i # j then by (2.20) and (2.33)

(t ) 1 (1+ 1 ) 1 1
ST, Y) R — — - —.
AT 108t) T Vi (V)

If i = j then (2.30) follows trivially from (2.22).
Case (ii)4. In this case necessarily i # j, and we obtain by (2.21)

1 Vi(v1) } 1 1
t,r,y) = -1+ logtp~ -~ ———.
pltny = {1 st =~ o

t
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R
- -
ox o
R! ‘7zlk
Fig. 6. Connected sum RI#RI#R2.
(b) In the case |z| ~ |y| ~ v/t we have d? (x,y) ~ t and
D(z,t)~1, Ulx,t)~ W (x,t) ~ 1.

logt’

Then the required estimates follow directly from those stated in Theorem 2.3. O

Let us observe the following. In the medium time regime, that is, when x and y lie at different ends and
|z| & |y| & V/t, we have by (b): in the cases (i) and (i),

(t:zc )N;
PR =y e (Vi)

that is, p (¢, z, y) behaves itself as in the long time regime, whereas in the case (%),

logt 1
pta,y) ~ —= >

t Vinax (V)

and in the case (it),

1 1
< .
tlogt  Viax (V)

p(t,z,y) =~

Hence, we observe in the case (i), the bottleneck effect: the heat kernel value in the medium

1
time regime is significantly smaller than that of long time regime % For example, ttlricl)s tcase happens for
M = R?#R? (see Fig. 1). A similar bottleneck effect was observed in [15] for M = R"#R" with n > 3:
the heat kernel of M in the long time regime is comparable to tn% whereas in the medium time regime —
to t"%l In the case n = 2 the bottleneck effect is quantitatively weaker as the distinction between the two
regimes is determined by logt in contrast to the power of ¢ in the case n > 3.

On the contrary, in the case (i), we observe an interesting anti-bottleneck effect: the heat kernel value
lngt in the medium time regime is significantly larger than that of the long time regime % This effect occurs
only when there are at least three ends, one of them being critical and two — subcritical. For example, this

is the case for M = R'#R'#R? (see Fig. 6).
2.5. Examples

We present here heat kernel bounds on some specific examples using Theorems 2.3-2.5 and Corollary 2.8.
Example 2.10 (Heat kernel on R*#R2 ). Let us write down the heat kernel bounds on the connected sum

M = My#M; = R* #R**,
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where 1 < a3 < ag < 2. In this case both My and Ms are subcritical so that Theorem 2.3(4), Theorem 2.4
and Theorem 2.5(7) apply. Observe that

D(x,t) = 1\ 2@ 2.34
COZY () < v .
and
Vinax (1) = 7%, r > 1.

In the case x € Ey and y € E,, we obtain by (2.18) or by Corollary 2.8(7),

C 26w
p(t,x,y) < raa/2® o

Assume now that x,y € Ey. If [2], |y| > /%, then by (2.22) we have

C ,bM
e t .

p(t7 x’ y) N o
Vi(z,Vt)
If |z|, ly| < v/t then by (2.23) and (2.34) we obtain
L (g™ 1
p(tal‘7y) ~ ta1/2 ( n + ta2/2~ (235)

In particular, in the long time regime ¢ — co we obtain

1
ta2/2’

p(t,z,y) =~

which, of course, matches (2.30). Assume now that || > v/t > |y|. Substituting (2.34) into (2.23), we obtain

" - C 1 |y‘ 2 1 _bdZ(:',y)
P =0 () )T

A similar estimate holds in the case |y| > v/t > |z|.
Finally, if z,y € F5 then we have by Theorem 2.4 that for all ¢ > 1

C pd ()
p(t,z,y) X ————=e "t .
V2 (1’, \/E)
Example 2.11 (Heat kernel on R'#R?). Consider M = Mj#M; = R'#R? (see Fig. 2). Suppose that
x € E1, y € E;. Then by Theorem 2.3(ii), or by the estimate (2.29) of Corollary 2.8

C |LL“ bd2(w=y)
p(t,x,y x—<1+4U Y, logt>e_ t
() = 5 (14 0 U@
Using (2.15) we obtain: if |y| > /¢, then
12 (a,y
plt,z,y) = —e b,

t
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if ||, |y| < v/, then

C || eVt
p(t,x,y x—(l—l——log— ,
o) =3 (M 8y

and if |z| > v/t > |y/, then

C t 2 (2,4
p(t,z,y) < 7 log e|—\/|_e_bd )
Y

Assume that x,y € Ey. If min(|z|, [y|) < v/, then we obtain by (2.24) and (2.34)

1 -
p(t,z,y) ~ - (1 " [yl | |z] + |yl logt> b

_|_
Vit Vit
In particular, if |z| > v/ > |y|, we obtain

224
(ly| + logt) e b G y).

| Q

p(t,z,y) <

Similar estimate follows when |y| > v/t > |z|. If min(|z|,|y|) > v/t, we obtain by Theorem 2.4

C 7bd2(f~y>

p(t,l',y) = %6

In the case z,y € E», we obtain by Theorem 2.4

C a2(z.y)
—pn)

Example 2.12 (Heat kernel on R?#R?). Suppose that x € E; and y € Es. If |z, |y| < v/, then by (2.20),
or by (2.26)

plt2,y) ~ s (1ogt+log2 V- loglmlloglyI) :

log2 t

In particular, in the long time regime |z| = |y| = 1 we obtain

)

o~ | =

p(t,z,y) ~

and in the medium time regime |z| ~ |y| ~ v/t we have

t N
p(t,z,y) TTogt’

which means a mild bottleneck-effect on R2#R2.
If |z|,|y| > v/t then the heat kernel on R?#R? satisfies (2.25), that is,

C 1 1 bd2(w,y)
p(t,z,y ><—< + >e_ T
)= % \loglel * Tog il

The cases |z| > v/t > |y| and |y| > v/t > || are covered by (2.27) and (2.28), respectively.
If 2,y € Ey or x,y € Es then p (¢, z,y) satisfies (2.36) by Theorem 2.4.
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Example 2.13 (Heat kernel on R*#R'#R?). Let M = My#Mo# Mz = R'#RI#R? (see Fig. 6). If x and
y are at the same end, or z € R! and y € R?, then the heat kernel p(t,z,y) satisfies same estimates as in
the above case RI#R2.

Assume now that z € Ey and y € Ey. Then by Corollary 2.8(i¢), we obtain the following estimates: if
min(|z|, |y|) < v/t then

1 logt
tx,y) ~— |14+ —(|lz|+ ,
pltn) ~ g (145 e+ o))

and if min(|z|,|y|) > v/, then

logt 2(2,y)
plt,w,y) < —ol e b

In particular, if |z| ~ |y| ~ v/t, then

3. Some auxiliary estimates

In this section we prove some auxiliary results to be used in the proof of Theorem 2.1.

Let (M, u) be a geodesically complete non-compact weighted manifold. We do not assume so far the
parabolicity of M unless it is explicitly stated. For any open set 2 C M, denote by pq (¢, z,y) the Dirichlet
heat kernel in Q. Assume from now on that 2 has smooth boundary. Then pq (¢,2,y) = 0 whenever x or y
belongs to 9. Denote also by Pf? the associated heat semigroup. Denote as before by ({X;}1>0, {Ps }zenm)
Brownian motion on M. Let 7q be the first exit time of X; from 2, that is,

To=inf{t >0: X, ¢ Q}.
Then, for any bounded continuous function f on M,
PP (2) =By (f (X4) Lirg>1}) - (3.1)
3.1. Integrated resolvent

The resolvent operator G? is defined for any A > 0 as an operator on non-negative measurable functions
fon Q by

G f () = /e’“Pth dt.
0

Clearly, G? is a linear operator that preserves non-negativity. Note that by definition G? f vanishes in Q€.
If 2 = M then we write G\ = G}!. Clearly, G? is an integral operator whose kernel

oo
95 (z,y) =/€‘”pn (t,x,y)dt
0
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is called the resolvent kernel. In general, GS! f may take value +o00. However, if f is bounded and continuous
then the function u = GS!f is finite and, moreover, is the minimal non-negative solution of the equation
Au — A = —f (see [10]). It follows from (3.1) that

G f / f(X)e Mat | . (3.2)

If in addition §2 is precompact then the function u = Gf\z f solves the Dirichlet problem

Au— A u=—f 1in Q,
u=0 on Of).

For the proof of Theorem 2.1 we need the notion of integrated resolvent. Fix a compact set K C M with
non-empty interior K such that K is the closure of K and the boundary 0K is smooth. Fix also once and
for all a reference point o € K.

For any A\ > 0, define the function ) on M by

a(z) := Galg (x) z/gA (z,2)dp(2) ://e (t,z,z) dzdt. (3.3)
K K 0

The function «, is called the integrated resolvent. Set also
"}/)\ = G)\’}/)\. (3.4)

It follows from the resolvent equation G, — Gg = (8 — o) G, G that

o0

Ax = 8)\7 //te (t,z,z)dzdt. (3.5)

0

Lemma 3.1.

(1) If there exist positive constants C, \g and a function F : Ry — Ry such that, for some x € K,

C
ya(z) < @ for all X € (0, Aol (3.6)

then there exist positive constants C', to such that

p(t,0,0) < for allt > ty. (3.7)

F(Vt)
(it) If there exist positive constants C, Ao such that, for some x € K,

) C

Aa(z) < 3 for all A € (0, o), (3.8)

then there exist positive constants C', to such that

!

C
p(t,0,0) < + for all t > tg.
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Proof. (i) Set § = (diam K )?. By the local Harnack inequality, there exit positive constants c1, co such that,

for all z,z € K and s > 2¢q0,
p(S,Jj,Z) > c1p (8 - 6265 o, 0) )

which implies by (3.3), for all z € K,

Ya(z) > c1vol(K) / e Mp(s — ¢26,0,0)ds.
2(;26

(3.9)

Using the monotonicity of p(s, 0,0) with respect to s (see [10, Exercises 7.22]), we obtain, for ¢ > 4cad,

t

Y () > c1vol(K) /ef)‘sp(s — ¢20,0,0)ds
/2

t
> cyvol(K) /e_)‘sp(t, 0,0)ds > cte p(t, 0,0).
/2

t

Set to := max{4cad, \; ' }. For any ¢ > ¢, and using (3.6) and (3.10) with A = ¢~!, we obtain

¢ > cte p(t, 0,0)
)\F(%) — 3 9 )
which implies
C
p(t,0,0) < -
F(V1)

(4) Arguing as in (¢) and using (3.9) and (3.5), we obtain, for ¢ > 4¢2d and z € K,

() = 7 [ se ¥ opts i 2pdsdu(z)
0 K

t
> c1vol(K) [ se™*p(t,0,0)ds > ct?’e " p(t, 0,0).

t/2

Assuming ¢ > to := max{4cyd, \; '} and using (3.8) and (3.11) with A = ¢!, we obtain

> ct?e ' p(t,0,0),

> Q

which implies

IN
~la

p(t,0,0)

(3.10)

(3.11)
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Remark 3.2. Lemma 3.1 will be used in the proof of Theorem 2.1 in Section 4.2 as follows. In the case when
all the ends are subcritical, we will prove the following upper bound for the integrated resolvent:

sup Yy < ————, 3.12
oK /\Vmax(%) ( )

which then implies by Lemma 3.1(¢) the desired upper bound

N
Vmax ( \/E) .

p(t,0,0) <

However, in the case when one of the ends is critical, we obtain instead of (3.12) a weaker inequality

1
supyx < Clog —, (3.13)
oK A
which yields
logt
p(t,0,0) < C Of;
instead of the desired estimate
C
p(t,0,0) < 7 (3.14)

In order to be able to prove the latter, we will use the second part of Lemma 3.1. Namely, we will prove
that in the critical case

¢
A )

sup yx < (3.15)

0K
which then will imply (3.14) by Lemma 3.1(41).
Note that the estimate (3.13) of «, is already optimal as it is matched by the estimate (3.15) of 4y =
—%w\. However, the function ~y, alone does not allow to recover an optimal estimate of the heat kernel,
while its A-derivative 4, does.

8.2. Comparison principles

Fix an open set 2 C M and A > 0. We say that a function v is Ad-harmonic in 2 if it satisfies in 2 the
equation Au — Au = 0. A function u is called A-superharmonic if Au — Au < 0. We will frequently use the
following minimum principle: if Q is precompact, u € C () is A-superharmonic in © and u > 0 on 9
then w > 0 in €. It implies the comparison principle: if u,v € C (ﬁ), u is A-superharmonic in € and v is
A-harmonic in €2 then

u>vond = u>wvinld (3.16)

Let now 2 be an exterior domain, that is, 2 = F'¢ where F' is a compact subset of M. Let v € C (ﬁ) be
non-negative and A-harmonic in Q. We say that v is minimal in  if there exists an exhaustion {Uy} of M

by precompact open sets Uy O F' and a sequence {vy} of functions v, € C (Uk \ F ) that are non-negative

and A-harmonic in Uy \ F and such that vx|gp, = 0 and v T v in Q. Then the following modification
of the comparison principle holds in : if u,v € C (), u is non-negative A-superharmonic in  and v is
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non-negative minimal A-harmonic in € then (3.16) is satisfied. Indeed, by the comparison principle in Uy \ F

we obtain u > v whence the claim follows.

We are left to mention that, for any non-negative bounded function f with compact support, the function

G f is non-negative, minimal, A-harmonic outside supp f, since Gg{’“ fTGAS.
3.3. Functions (I>f\2 and \Ilf\2

In any open set Q C M, consider a function

O = \G1 = /)\e_/\tPtﬂl dt.
0
Since 0 < Pf*1 < 1, we see that
0<d¢ <1
It follows from (3.1) that
o0
O (z) = /AeiAth(Tg > t)dt.
0

Let A be a precompact open subset of M with smooth boundary and let K C A. Set

(@) = Gk (2) = / o (. 2) du (2) = / / e palt,z, 2)dtdu(z).

K
Lemma 3.3. (a) The following inequality holds in A:
T =75 < (supyn) (1 — @3 .
DA
(b) The following inequality holds in K°€:
YA < (supa) (1 - ‘P§(c> :
oK

Proof. (a) By (3.17), the function ®4 satisfies

AL —NP{=-\ inA
<I>§\‘ =0 on JA.

It follows that the function u := 1 — ®{ solves the boundary value problem

Au—du=0 inA
u=1 on 0A.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Note that 75 — 7§ = G\lx — G4'1f is A-harmonic in A and is equal to vy on JA, which implies by the

comparison principle in A that
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M=% < (upy)u in A4,
aA
which proves (3.21).

(b) Set 2 = K°. As in (a), the function u := 1 — ®} solves the following boundary value problem:

Au—Au=0 in
u=1 on 0f)
The function v, = G)1k is non-negative, \-harmonic, and minimal in Q. On 92 = K we have

Y < supya = (sup vy )u. (3.23)
oK oK

Since u is non-negative and A-harmonic in €, it follows by the comparison principle in €2 that (3.23) holds
also in Q, which proves (3.22). O

Set
T =G (1 - @) (3.24)
and observe that ¥$! > 0 by (3.18).

Lemma 3.4. We have the following identity for all x € Q:
T (z) = / te MO,P, (1o < t)dt. (3.25)
0

Proof. Integrating by parts in (3.19), we obtain

oo oo
O (z) = — /PI(TQ > t)de M =1 +/e_’\t8tIPm(TQ > t)dt
0 0
=1- ‘/eiAtath(TQ < t)dt. (326)
0

On the other hand, we have

Y =GR - GREY = GY1 - MGG
0
BN

0

_ Qq _ —_
Gl—l—)\)\Gl B

y (6f) =

oL

Hence, differentiating (3.26) in A (which is justified by the dominated convergence theorem), we obtain
(3.25). O

8.4. Some local estimates

Recall that, for any open set A containing K, we have defined

oo

7(x) = Gk (x //e Aty 2)dtdu(z).

0
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Set also

@) = Cfrf (2) = — 2o / [ 1€tz 2)atduz).
0

Note that 7;4 and %\4 vanish outside A. Note also that vy = ’yf\V[ and y = 7/]\‘4.
In what follows we fix a precompact open set A O K with smooth boundary.

Lemma 3.5. There exists a positive constant C = C (A) such that, for all X > 0,
sup7y < C,
A
sup g3 < C%,
A
and

sup U4 < C.
A

Proof. It follows from (3.20) that

s/]opux 2)dtdp(z) = /gA<x,z>du<z>,
0 A

where g4 = g§' is the Green function of A in A. The function

u(x) = / g7 (&, 2)d(2)

A

solves the following boundary value problem

Au= -1 1in A,
u=0 on 0A,

which implies that u (z) is bounded. Hence, (3.28) holds with C' = sup u.
By (3.27) we have

3 (2) = / G (2, 2) 4 () da (=),

A

which implies by (3.28), for any = € A,

A (x /gA:czdu (2) < Csupu = C?,
A

which proves (3.29).
Finally, it follows from (3.24) that

W4 (2) < G (x) = / g (2, 2) du (=) < C,
A

which proves (3.30). O

177

(3.27)

(3.28)

(3.29)

(3.30)



178 A. Grigor’yan et al. / J. Math. Pures Appl. 1138 (2018) 155-194

3.5. Global estimates of ® and V¥

So far we have used a compact set K and a precompact open set A O K. We have also assume that K
and A have smooth boundaries.

In the next Lemma we estimate infg4 <I>§( ° from below using additional geometric assumptions. Denote
by K. the e-neighborhood of K. We will assume in addition that K. C A for some large enough e specified
below.

Lemma 3.6. Let M be a geodesically complete, non-compact parabolic manifold satisfying (1.1), (RCA). Fiz
a reference point o € K and set V(r) = V(o,r). Assume in addition that K. C A for sufficiently large
e =¢€(K) > 0. Then there exists a constant ¢ > 0 such that

c by 1
f‘pK > 1— —As —d, 331
inf ey = ¢ (1—e )V(\/E)H(\/E)QS (3.31)
(diam A)2
where
s
Hir):=1 ds | 3.32
=1 { [y (3.32)
! +
In addition, we have:
(1) if V (r) is subcritical then, for 0 < A < m’
inf @fc > c)\V(L)' (3.33)
)
(it) If V (r) is critical then, for 0 < A < m,
el 2y (3.34)
9A ~ log 1

Proof. Denote 2 = K. By [12, Theorem 4.9 and (4.23)], if € is big enough then, for all a, y outside K/,
and for all s > 0, the following estimate holds:

pa(s,z,y) > Cl‘ZEZ’—gi’/_Z)) exp <—c@> , (3.35)

where

H{(|x)H{(|yl)
(H(jz|) + H(V5)) (H(ly]) + H(V5))

D(s,z,y) =

By [13, (3.29)], we have, for any = ¢ K.,

oo

]Pz (TQ > t) Z C/ inf PQ(Sa x,y)ds,
J YEKN\K /2

where ¢ = ¢ (K, €) > 0, which implies by (3.19)
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o0 oo

o >/A‘*t/ inf ,z,y)ds | dt
A(@) = [ Ae yEKIRKé/sz(s z,y)ds
0 t
o0 S
= Ae M inf Lz, y)dt | d
0 0
= 1—e inf Lz, y)ds. 3.36
c0/< )t pa(s.p)ds (3.36)

Assume that © € 0A. Since y € K., we see that d (z,y) < diam A. Also, |z|, |y| are bounded by diam A + e.
It follows from (3.35) that if s > (diam A4)? then

c

Pl )2 AR

Substituting into (3.36) yields (3.31).
In the case (7), when V' is subcritical, we obtain from (3.32)

(3.37)

Substituting into (3.31), we obtain, for 0 < A < m,

. [ o V5 !
16n£<1>§220/(1—e ’\‘)—Q)dSZC)\V( ),

5 VoY
1/
which proves (3.33).
In the case (i), when V is critical, we have

H(r) =~ logr, (3.38)

which implies, for 0 < A < m,

T d
inf @ > c/(l - ef)‘s)—s2
A slog” s

1/A

oo

1
20(1—6_1)/—d o83

log? s
1/A

1

—c(l—e H——
el —e e

which proves (3.34). O
Lemma 3.7. Let M be a geodesically complete, non-compact parabolic manifold satisfying (1.1), (RCA).

Assume in addition that K. C A for sufficiently large ¢ = € (K) > 0. Assume also that V (r) := V (o,r) is
either critical or subcritical. Then there exists a constant C' > 0 such that, for small enough A > 0,
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(3.39)

180

sup UE° <
af A ~ Alog

Proof. Set Q2 = K°. Fix a € 0A and set
1

T= .
21
Alog”

In the identity (3.25) for U, let us decompose the integration into two intervals: [0, 7] and [T, 0o). For the
first interval, we have by integration by parts
/T
0
Assume that A < e so that log? % > 1 and, hence, AT < 1. It follows that 1 — At > 0 on [0, T| and, therefore,

the integral in the right hand side of the above identity is non-negative. It follows that

T
te MOP, (tq < t)dt = Te P, (1 < T) — /e—“(l — AP, (1o < t)dt.
0

T
/te*“atﬂ)a(m <t)dt<T,
0

which matches the required estimate (3.39).
Let us estimate the integral (3.25) over [T, 00). By [13, Remark 4.3], if € is large enough then, for all
(3.40)

c

a € 0A C Q and for all t >ty (where t; depends on diam A), we have
OP (o <t) < —————,
A Or At

where H is defined by (3.32). Assuming that A is so small that T > t¢ and using (3.40), we obtain
te~Mdt
< (3.41)

te MOPy (o <t)dt < C | ——F———.
7/ / v (Vi) B (V)

Consider first the case when V (r) is critical, that is, V (r) ~ r2. Then H (r) ~ logr and we obtain

T T et c T c
/tef)‘tﬁtIP’a(m <t)dt < C’/ ¢ >— < — /e*’\tdt =
log“t log“T ) Aog“T
T

T
Taking A > 0 sufficiently small so that log® % < %, we obtain T > % and logT > %log %, whence

o0

/ te MO P, (o < t)dt < 4CT,

T

which proved (3.39) in the critical case.
Assume now that V (r) is subcritical. Then, for r > 2, we have

T

r? tdt
V(T)S3//2V—(t)S3H(T)'
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Substituting into (3.41), we obtain

oo

/te"\tatIPa(m < t)dt < C/
T

T

e~ Mdt . C CV(VT)
H(t) ~ AHNT) ~ T 7

where in the last inequality we have used (3.37). In order to prove that the right hand side is bounded by
CT, it suffices to verify that

V(VT) < CAT?.

Since log% ~ logT and, hence, A ~ it suffices to prove that

1
Tlog? T’

vT) < L
log“T

for large enough T'. Putting 7' = r2, this inequality is equivalent to

2

r
log?r < C . 3.42
o8’ < Cfes (3.42)
Since M is subcritical, there exists a constant b > 0 such that, for large enough r,
[ tdt r?
b< | —<C——. 3.43
< v =7 4
1

Since

T

[ tdt 2
I/V(t) —/V(wdlogt, (3.44)

1
substituting (3.43) into the right hand side of (3.44), we obtain

s T T

1 —/dlot</€idlot—/gﬂ<c—2r2
BT = =1 3ve T v v S e Vi)

1 1 1

Substituting this into (3.44) again, we obtain for large r > 0,

I I
Cc? t? 203 12
log?r=2 [ 1 logt <2 | =———dlogt < — ——
og-r /ogtd ogt < /b V(t)d ogt < b V)
1 1

whence (3.42) follows. O
4. On-diagonal estimates at center

In this section we prove Theorem 2.1. In order to obtain the upper bound of p(t,0,0) on M =
Mi# - - #Mj, we use the integrated resolvent introduced in the previous section. This idea of using the

resolvent on a connected sum goes back to Woess [22, p. 96] where it was used in the setting of connected
sums of graphs. Implementation in the present case of manifolds requires much more technique, though.
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Fig. 7. Sets K and A in the connected sum M.

4.1. Estimates of integrated resolvent on connected sums

From now on let M = My#Ms# - - - # M}, be a connected sum of parabolic manifolds My, ..., M} with a
central part K. Let A be a connected, precompact open subset of M with smooth boundary and such that
K C A. In fact, we will need that K. C A for large enough e. Set

0A; =0ANE,;, 1<i<k
so that 0A = LU;0A; (see Fig. 7).

Lemma 4.1. There is a constant h = h (A, K) > 0 such that, for any A > 0,

k

h(sup v, inf ¥ < sup~{. 4.1
(axwi;afu X' S SuUpay (4.1)

Proof. As it follows from (3.3) and (3.20) the function
ui=y\— 74 = Gilg — G{1k
is A-harmonic in A. Consider the function h; in A that solves the Dirichlet problem

hi = 13141' on JA.

Since on 0A; we have
u < supyx = (supya)hi,
3141, aAi

it follows that on 0A
n
u < Z(sup Vo) R (4.2)
=1 04

Since h; is A-superharmonic in A, we conclude by the comparison principle in A that (4.2) holds in A. Let
us also observe that on 0A
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k
> hi=1, (4.3)
=1

which implies then that (4.3) holds in A.
Since in E; we have ®¥° = @fi, we obtain by Lemma 3.3(b) that in F;

< (supya) (1 — ®Y°),
OK
which implies
sup v < (sup'yx) sup(1l — (I> ) = (supva)(1 — inf @f)
DA, DA, K 0A;

Substituting into (4.2) and recalling the definition of u, we obtain that on A

k
T <8+ sup YA Z (1-— 1nf <I>E (4.4)
i=1
Let x € 0K be a point where 7, attains its maximum on 0K . Considering (4.4) at this point  we obtain
k
T (@) <8 (@) + 9 (@) (1 inf @3k (@),
i=1
whence by (4.3)

(inf OX)hi (2) <5 ().

Mw

i=1

This implies (4.1) with A := min; infgx h; > 0. O

Lemma 4.2. There exists a constant h = h (A, K) > 0 such that

k
h(supn) ; inf O} < sup A+ (sup73) (bup il + 2; sup U 154 ) (4.5)
Proof. By (3.4) and (3.27), the function

vi=An — A8 = Gara — GIR
solves in A the following boundary value problem:

Av—)\v:—(')/)\—yf) in A
v =Yy on 0A.

Consider also function w that solves the problem

Aw—dw=0 inA
w = Y on 0A.
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Then we have
v=G% (w—18) +w. (4.6)
Using the estimate (3.21) of Lemma 3.3(a) and (3.24), we obtain that in A
GS (1 = 78) < (sup)GY (1= @5) = (supya) U4 (4.7)
0A 0A
Observe that
Y <supyy in K¢
oK

because the constant function supg v is A-superharmonic in K¢, while «, is minimal A-harmonic that is
bounded by supgg va on OK°. Hence, we obtain from (4.7) that

G (m—1) < (sup PR in A (4.8)

In order to estimate w, let us represent this function in the form

k
w = Z ws,
i=1
where w; solves the Dirichlet problem

Aw; —dw; =0 in A
w; = Yaloa, on OA.

Let h; be the same as in the proof of Lemma 4.1. By the comparison principle, we have that in A

w; < (sup ya)h;. (4.9)

i

Let us prove further that
A — Gy < (%lgp’}/)\)(l —®)) in E;. (4.10)
Indeed, by (3.4), the function

Aa — GRiyy = Gy — GV

is non-negative, A-harmonic, and minimal in E;. Besides, it is bounded by supyg, yx on dE;. The function
1 — & is non-negative and A-harmonic in F;, and is equal to 1 on dE;. The estimate (4.10) follows by the
comparison principle in F;.

Similarly, we have

T < (sup ) (L — @F) in E;,

i

because v, is non-negative, A-harmonic and minimal in E;, and is bounded by supsg, 7 on 9E;. It follows
that in Ei
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Gy < (salllspw)GA (1-2y) = (Saupw)%

Combining with (4.10), we obtain that in E;

Ya < (supAn) (1 — ) + (sup ) Ty
OF; OFE;

Substituting into (4.9), we obtain that in A
k
Z sup'w\ Yh; < Z ( (supya)(1 — mf <I> ) + (sup ) sup \I/fz> hi.
i—1 i—1 OE; OE; 0A;
Combining with (4.6) and (4.8), we obtain the following estimate of the function v = 45 — 4{ in A:
= AR < (Supw vy + Z ( SUP%)(l — Inf O') + (supyx) sup ‘Iff) hi.
i=1 i i

Let x be a point of maximum of 4 on K. It follows that

Y (2) < A4 () + (Sup ™S (z) + Z (% (1 nf V) + (sélng ) sup Wf) hi (x).

Since > h; = 1, we see that 4y (x) cancels out in the both sides, and we obtain

k
(Inf ®3)hi (2) < 330 (2) + (sup ) TR (7) + > (sup ) (sup U (o).
oK oA,

=1 =1 g

M;r

Since h < h; () < 1 where h := min; infx h; > 0, we obtain from here (4.5). O
4.2. Proof of Theorem 2.1: upper bound

As in the statement of Theorem 2.1, let M be a connected sum of parabolic manifolds M, ..., My,
where all M;, i =1,...,k satisfy (1.1) and (RCA). Let V;(r) = V; (0;,7) be the volume function on M; at
0; € K; = M; \ E;. We also assume that every V;(r) is either critical or subcritical, that is, condition (d) of
Section 2.2. Let V(r) = V (o, r) be the volume function on M at a reference point o € K.

It suffices to prove the main estimate (2.8) for large enough ¢ because for small ¢ we have p(t, 0, 0)
and V (V1) =< tIV/2.

Fix a connected precompact open set A with smooth boundary such that A O K, for large enough ¢ > 0

=t~ N/2

as in Lemmas 3.6 and 3.7 applied to all ends M;.
Recall that the integrated resolvent ~yy is defined by (3.3). By Lemmas 3.5 and 4.1, we have, for any
A>0andanyi=1,...,k

C
su < ——mmr) 4.11
81? = infaAi @fi ( )
where C = C (K, A).
Assume first that all manifolds M; are subcritical. Applying (3.33) on each end M; we obtain that

1nf <I> L>e\Vi(—=)

T
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provided A < A\g = Ao (A). Substituting into (4.11), we obtain that, for A < Ao,

supyy <
BKP’YA o )\Vmax(%)

where Vinax(r) = maxi<;<x Vi(r). By Lemma 3.1(3), we conclude that, for all t > to = to (Ao),

p(t,0,0) < ©

< —Vmax(\/%) (4.12)

which proves the on-diagonal upper bound in (2.8) in the subcritical case.
Assume now that there exists at least one critical end. Let it be M. Applying (3.34) in M}, we have

. C
inf &% > = _ 4.1
lanA A = log%’ ( 3)

which together with (4.11) yields, for all A < Ag,
1
supvya < Clog —. (4.14)
oK A

However, as we have pointed out before, in order to obtain upper bound in (2.8) in the critical case, we
need some additional argument about .

For that, let us use the estimate (4.5) of supyy . Substituting into (4.5) the estimates (3.29) and (3.30),
we obtain

k
su inf ®,” < C+ Csu 1+ sup Wy | .
(af?%)%j A= 31?%\< Z P A)

i=1 7%

Substituting here (4.13), (4.14), (3.39), we obtain, for all A < Ag,

!
§C+Clogl<1 L >< Cla

A

. 1
Sup ya
OK log

1
X
which implies
. C
supdx < — for all A < .
oK A
By Lemma 3.1(4), we conclude that

p(t,0,0) < for all t > tg (4.15)

| Q

which finishes the proof of the upper bound in (2.8) in the critical case.
4.3. Proof of Theorem 2.1: lower bound
Let M be a connected sum satisfying the assumption of Theorem 2.1. Let us observe that

Vir) = Vi(r) + Va(r) + - 4+ Vi(r) = Viax(7) (4.16)
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for all r > 0. By (4.12) and (4.15), we obtain that, for all ¢ > 0,

p(t,0,0) < ¢

TVt

Since each V; (r) satisfies the doubling condition, so does V (r) by (4.16). By [3, Theorem 7.2], the upper
bound (4.17) together with the doubling property of V' (r) implies the matching lower bound

(4.17)

p(t,0,0) > —

C V()

Replacing here V' by Vjax, we finish the proof of the lower bound in (2.8) and, hence, the proof of Theo-

rem 2.1.
5. Off-diagonal estimates

In this section, we prove Theorems 2.3-2.5 by combining Theorem 2.1 with some results from [12], [13]
and [15].

For any open set 2 in any weighted manifold M, define the exit probability function in Q: for all x € Q
and t > 0,

'(/}Q (y7t) = Pw(TQ < t)'

Equivalently, ¥q (x,t) is the minimal non-negative solution of the heat equation d;u = Au in Q x R} with
the initial condition u|t—g = 0 and the boundary condition u|gg = 1.

We will use the abstract upper and lower off-diagonal estimates of [15, Theorem 3.5] for the heat kernel
p (t,z,y) on an arbitrary manifold M for z € A and y € B where A, B are open subsets of M such either
A and B are disjoint or B C A. These estimates use the exit probabilities 14 (z,t) and ¥p (y,t), their time
derivatives, as well as the following quantities:

Pt (t)= sup sup p(s,21,22), P~ (t)= inf inf p(s,21,22),
) s€[t/4,t] 21€DA, 22,€0B ) 0 s€[t/4,t] 21€04, 22€0B (
t t

Gt (t) = su $,21,72)ds G (t)= inf S, 21, 22)ds.
M= _sw_ peamd Gw=[ bt )
0

With these notations, the estimates of [15, Theorem 3.5] read as follows: for all z € A, y € B and t > 0,

pt,z,y) ~ pa (t,z,y) + PE (t)Ya (x,ﬂ VB (y,f)
+ G (D) [00a (2,€) U (4,8) + o (9, Q) a (2,8)] (5.1)

b2

where the index “+” is used for the upper bound, “—?” is used for the lower bound, £ = ¢ for the upper
bound, = it for the lower bound, £ and ¢ are some values from [t/4,t] that may be different for upper

and lower bounds.

Proof of Theorem 2.3. Recall that M is a connected sum of My, ..., My with a central part K, where each
M; satisfies conditions (a)—(d) in Subsection 2.2. We apply (5.1) with A = E; and B = E; where i # j.
Since A and B are disjoint, we have pa (t,z,y) =0 for all zx € A and y € B.

Note that, for all z; € OF; and 2 € OF;, the distance d (z1, 22) is bounded from above and below by
positive constants. Therefore, assuming ¢t > 1, we obtain by the local Harnack inequality and Theorem 2.1
that
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P (t) < Cp(ct,0,0) ~

- (\/E) . (5.2)

Let us estimate similarly G* (¢). Assuming ¢ > 1, we can split the integrals in the definition of G* () into
the sum of two integrals: over (0, 1] and over (1,¢]. The first integral is bounded, while in the second integral
we can apply the local Harnack inequality to the heat kernel and, hence, replace z1, z2 by o. Using further
the estimate (2.8) of Theorem 2.1, we obtain that, for large ¢,

t

G* (t) =~ / ﬁds. (5.3)

If all ends are subcritical, then by (2.3) we have, for large ¢,

t

/ ds < Ct
[ Vva) = Vv

Since also
/t ds >/t ds t
V(/s) s V(Vs) T 2V (Vi)

we obtain that

t
+
t) ~ . (5.4)
(? V(Vt)
If there exists at least one critical end, then V' (\/Z) ~ t, and (5.3) implies, for large ¢,
G* () ~ logt. (5.5)

Note that the exit probability v; (x,t) depends only on the intrinsic geometry of E;. Since each M; satisfies
(1.1) and (RCA), we can use the results of [13, Theorem 4.6] that gives the following: for all z € E; with
large enough ||,

C|z)? exp(—blz|?/t) 2
s < 2|z
Vi(lz|)H (|x )

A R WY L (5.6)

7w el iy 221l

and, for large enough |z| and ¢,

CH (|a]) exp (~blal* /1)

g, (x,t) < (5.7)

Vi (V) (H () + H (V) H (VI)’

where H is the function defined in (3.32). Note that in the case of bounded |z| the estimate (5.7) matches
the estimate (3.40) used in the proof of Lemma 3.7.

If M; is subcritical then H (r) ~ r2/V; (r). Substituting this into then (5.6) and (5.7), we obtain, for all
large enough ¢ and ||,
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U, (2,t) < Ce ™, (5.8)
|2

dut, (2,1) = <D e (5.9)

where D is defined in (2.14).
If M; is critical then H (r) ~ logr which yields

E3

Vg, (x,t) < CU(z,t)e "7, (5.10)

O, (x,1) = Wz, t)e (5.11)

tlogt

where U is defined in (2.15) and W is defined in (2.16).

Now we are in position to verify all the heat kernel estimates claimed in Theorem 2.3 for x € E;, y € E;
with ¢ # j. It suffices to prove all the estimates for large enough |z|, |y| and ¢. Then the estimates for all
x € E; and y € E; (while t is still large enough) follow by application of the local Harnack inequality.

() If all ends are subcritical, then (5.1), (5.2), (5.4), (5.8), (5.9) yield:

_b|m|24{\y\2

pw%wx;§5u+me+Dmme

Observing that by (2.14) D (x,t) is bounded and that
[2l* + 1yl ~ & (2. 9)

we obtain (2.18).
(i) Now let at least one of the ends be critical, so that V (r) ~ r2.
(#), Let M;, M; are subcritical, then (5.1), (5.2), (5.5), (5.8), (5.9) yield:

C _plel? 1yl
p(t,z,y) = - (1+ (D(z,t) + D(y, 1)) logt) e 777,
which proves (2.19).
()4 Let both M; and M; be critical. Then we obtain from (5.1), (5.2), (5.5), (5.10), (5.11) that

_plzlP+y?
t

pt,z,y) < % [U (2, )U(y,t) + Wz, )U (y,1) + Uz, )W (y, ) e+,

that is, (2.20).
(#)4 Let M; be subcritical and M be critical. Then we obtain similarly

_plel®+y)?
t

C
plt,9) = < (U (2,1) + Dl O (5, 0)log t + W, 1))
By (2.17) we can replace here U + W by 1, which yields (2.21). O

For the proof of Theorems 2.4 and 2.5, we will use again the estimate (5.1) but this time we take A = E;
and B = E} where E/ = E;\ K’ and K’ is a closed e-neighborhood of K for large enough €. In this case we
have B C A.

Note that, for all z; € OE; and z2 € OF], the distance d (z1,22) is bounded from above and below by
positive constants. Hence, arguing as above, we obtain the same estimates of P* (¢), G* (t) as stated in the
proof of Theorem 2.3. The estimates of ¢ g, and 0;9g, also remain the same. Clearly, ¢ g, and 0y g; satisfy
similar estimates.
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To handle the term pa (¢,2,y) = pg, (¢, z,y) in (5.1), we use the result of [12, Theorem 4.9] that says the
following: for all ¢t > 0 and all x,y € E; with large |z], |y],

. c ) H(y) N o
pel o) = T <H<|x|> + H(x/%)) <H<|y|> + H(ﬂ)) ’
where d = d (x,y). If M; is subcritical, then H(r) ~ r2/V(r), which gives

pE; (t,x,y) < C%e‘bdj. (5.12)

If M; is critical, then H(r) ~ logr, which gives

W(JZ, t)W(y7 t) —b#

(t,2,y) = ALV 5.13
pia(ta,9) = O (5.13)
For the proof of Theorems 2.4 and 2.5 we need the following lemma.
Lemma 5.1. For all z,y € E; and +/t > min(|z|, |y|) we have
T 2 2 ’ 2 €T,
Ce b < oV =7 (5.14)
Moreover, if \/t > |x| then
C efbd2(f’y> _ c’ ot @2 (a.y) (5.15)
ARG At
Proof. Set ¢ = diam K. The triangle inequality |z| + |y| + ¢ > d(z,y) implies
|2 2 , d2? x, — 52 ,d2? T,
_plxl Jtr\y\ < 671) a=( g) L) < Cleib d (t y). (516)

To prove the opposite inequality, assume that || < v/t (the case |y| < v/t is similar). The triangle inequality
yl < |z[ + 6 +d(z,y)
implies
o] + |yl < 2J2] +6 + d(z,y) < 2VE+ 6+ d(z,y),

whence it follows that

2 2 2
d
ol + ol _ ) |
t 4
which completes the proof of (5.14).
To prove (5.15) observe first that by (5.14), the term d? (z,y) in the both sides of (5.15) can be replaced
by |z|* 4 |y|*. The doubling property of V; (z,r) yields
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for arbitrarily small € > 0, which implies that

C e_b\zxzjmz < c’ eaﬁe—b‘z‘zj'y‘z
Vi (2 0) = Vi(ovh)
! 22+ yl2
< C b a2 (5.17)

—e
Vi (0,V1)
The opposite inequality is proved similarly. O

Proof of Theorem 2.4(a). We consider the same cases as in Theorem 2.3 and use the same estimates of all
the terms in (5.1), except for the Dirichlet heat kernel. Note that the case (i), cannot occur because x, y
are at the same end F;.

(7) Assume that all ends are subcritical. Substituting (5.12), (5.2), (5.4), (5.8) and (5.9) into (5.1), we
obtain

D(,)D(y,1) _ye
é t

p(t,x,y) < C ARV

+—C (14 D t) + Dy, 1)) e (5.18)
V(1) ’ 7 ' '
By (2.14) and the assumption v/t < min (|z|, |y|) we have
D(z,t) =D (y,1) =1
and, hence,
C _pd2 .y C  _plel®+iy?
p(t,z,y) < ——e v+ e [ (5.19)
Vi(z, V1) V (Vi)
Using the volume doubling property of V;, we obtain
L plelom? Vi(0i V1) Vi(x, V) 1 pleap
B
|x> 1 _plz241wl?
<C(l1+52) ———e :
- < vt Vi(z, V1)
c’ 1 a2y
< e (5.20)
Vi(z, V1)
which shows that the first term in (5.19) is dominant, hence yielding (2.22).
(i) Let at least one of the ends be critical.
(#), Let M; be subcritical. In this case we have as above
C 2 logt _pl=2+iy?
p(t,z,y) < L —— Wk S o (5.21)

Vi(z, V) t

By (2.7) and the volume doubling property of M;, we obtain

log ¢ 22492 logt
ogt _pl=’riv® _ log Vi(on VD)

t t

1 Vi(z, V1) JAELEHE
Vi(z, Vt) Vi(os, V)
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C |m|>ﬁ _plal®+iyl?
<—— 14+ — t
= Vile, VB) ( vi)

c’ p 42y

< ——e 7. 5.22
= Vil v 22

Substituting (5.22) into (5.21), we obtain (2.22).

(), Let M; be critical. Substituting (5.13), (5.2), (5.5), (5.10) and (5.11) into (5.1), we obtain
W(Ivt)W(yvt) —bﬁ
t, 5 =~=(C——r—>7" 7 t
p(t, z,y) Vvl

+ SN0+ WU (1) + W, UG, 1)) =52 (5:23)

By (2.16) and v/t < min (|z|, |y|), we have
W(x,t) =W(y,t)=1.

Substituting into (5.23) we obtain

C 2
pt,2,y) < ————e 7"

+ S UGV +U 1) + UG 1)

_plal®4iy)?
t

Since U is bounded, (5.20) implies that the second term is dominated by the first one, which yields (2.22). O

Proof of Theorem 2.4(b). Let V; (r) = Vipax (r). In the view of part (a), we can assume that ¢ >
min (|z], |y|). Since by the doubling property of V;

C _pdiy) c’ _p 4 @y)
t ~ t

Vi (@ D) A0

(cf. (5.17)), the estimate (2.22) is symmetric in z, y. Hence, we can assume that v/t > |x|. As in Theorem 2.3,
we can also assume that |z, |y| are large enough.
(i) Let all the ends be subcritical. Then we have again (5.18). Using v/t > |z| and (5.14), we can replace

[z +]y|?

2 z,Y
et in the right hand side of (5.18) by e—b =Y Using further (5.15), we can replace V; (z,v/t) by
Vi (\/f) and, hence, by V' (\/E), which yields

a?(x,y)
t

(D(z,)D(y,t) + 1+ D(x,t) + D(y,t)) e ¢,

pltay) = —

? ) V(\/E)
and which implies (2.22) since D(z,t), D(y,t) are bounded.

(i7) Let at least one of the ends be critical. Then by V;(r) =~ V (r), the end M; has to be critical,

too. As in the case (it), of the proof of Theorem 2.4(a), we obtain again (5.23), where by (5.14) we can
_plzl+1vl?

replace e +  in the right hand side of (5.23) by e Using further (5.15), we replace V; (z, v/t) by
Vi (Vt) = V (Vt) & t, which yields

p?

p(t,z,y) < % [W(z, )W (y,t) + Uz, t)U(y,t) + W(x,t)U (y,t) + W(y,t)U(z,t)] e "

2

= S W)+ U 0} W (0t) + Ut %
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Using (2.17), we conclude (2.22). O

Proof of Theorem 2.5. As in Theorem 2.3, we can assume that |z|, |y| are large enough. Since vt >
min (Jz|,]y|) and the both estimates (2.23) and (2.24) are symmetric in z, y, so we can assume with-
out loss of generality that v/t > |z|. Then, by Lemma 5.1, the function V; (z,/t) in the estimates (5.12)
and (5.13) can be replaced by V; (V).

(7) Assume that all ends are subcritical. Applying (5.14) to (5.18) and observing that the function D is
bounded, we obtain (2.23).

(7) Let at least one of the ends be critical. Since M; is subcritical, substituting (5.12), (5.2), (5.5), (5.8)
and (5.9) into (5.1), we obtain

D(xat)D(yvt) _bé ge_b\f\z-i-\yIZ

Vivh) t
log

p(t,z,y) <C

_plzl®+lw®
t

(D(z,t) + D(y,t)) e ;
which together with (5.14) implies (2.24). O
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