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We obtain matching two sided estimates of the heat kernel on a connected sum of 
parabolic manifolds, each of them satisfying the Li–Yau estimate. The key result 
is the on-diagonal upper bound of the heat kernel at a central point. Contrary to 
the non-parabolic case (which was settled in [15]), the on-diagonal behavior of the 
heat kernel in our case is determined by the end with the maximal volume growth 
function. As examples, we give explicit heat kernel bounds on the connected sums 
R2#R2 and R1#R2 where R1 = R+ × S1.
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r é s u m é

Nous obtenons, pour la somme connexe de vraiétés riemanniennes complètes et non-
compactes dont chacune satisfait l’inégalité de Li–Yau, des estimations inférieures 
et supérieures du noyau de la chaleur dans le cas où la variété est parabolique. Le 
résultat clef est l’estimation supéprieure du noyau de la chaleur sur la diagonale à 
un point central de la variété. Contrairement au cas non-parabolique traité dans 
[15], dans le cas présent, le comportement du noyau de la chaleur sur la diagonale 
est déterminé par le bout dont la croissance du volume est la plus forte. Parmi les 
exemples traités, nous donnons des estimations précises et explicites du noyau de la 
chaleur pour les sommes connexes R2#R2 et R1#R2 où R1 = R+ × S1.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a Riemannian manifold. The heat kernel p(t, x, y) on M is the minimal positive fundamental 
solution of the heat equation ∂tu = Δu on M where u = u (t, x), t > 0, x ∈ M and Δ is the (negative 
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definite) Laplace–Beltrami operator on M . For example, in Rn the heat kernel is given by the classical 
Gauss–Weierstrass formula

p(t, x, y) = 1
(4πt)n/2

exp
(
−|x− y|2

4t

)
.

The heat kernel is sensitive to the geometry of the underlying manifold M , which results in numerous 
applications of this notion in differential geometry. On the other hand, the heat kernel has a probabilistic 
meaning: p(t, x, y) is the transition density of Brownian motion ({Xt}t≥0, {Px}x∈M ) on M . Namely, for any 
Borel set A ⊂ M , we have

Px(Xt ∈ A) =
∫
A

p(t, x, y)dy,

where Px(Xt ∈ A) is the probability that Brownian particle starting at the point x will be found in the set 
A in time t.

From now on let us assume that the manifold M is non-compact and geodesically complete. Dependence 
of the long time behavior of the heat kernel on the large scale geometry of M is an interesting and important 
problem that has been intensively studied during the past few decades by many authors (see, for example, 
[4], [10], [21] and references therein). In the case when the Ricci curvature of M is non-negative, P. Li and 
S.-T. Yau proved in their pioneering work [19] the following estimate, for all x, y ∈ M and t > 0:

p(t, x, y) � C

V (x,
√
t)

exp
(
−b

d2(x, y)
t

)
, (1.1)

where the sign � means that both ≤ and ≥ hold but with different values of positive constants C and b, 
V (x, r) is the Riemannian volume of the geodesic ball of radius r centered at x ∈ M , and d (x, y) is the 
geodesic distance between the points x, y.

The estimate (1.1) is satisfied also for the heat kernel of uniformly elliptic operators in divergence form 
in Rn as was proved by Aronson [1]. It was proved by Fabes and Stroock [6], that the estimate (1.1) is 
equivalent to the uniform parabolic Harnack inequality (see also [21]). Grigor’yan [7] and Saloff-Coste [20], 
[21] proved that (1.1) is equivalent to the conjunction of the Poincaré inequality and the volume doubling 
property.

One of the simplest example of a manifold where (1.1) fails is the hyperbolic space Hn. A more interesting 
counterexample was constructed by Kuz’menko and Molchanov [18]: they showed that the connected sum 
R

n#R
n of two copies of Rn, n ≥ 3, admits a non-trivial bounded harmonic function, which implies that 

the Harnack inequality and, hence, (1.1) cannot be true. Benjamini, Chavel and Feldman [2] explained this 
phenomenon by a bottleneck-effect: if x and y belong to the different ends of the manifold Rn#R

n and 
|x| ≈ |y| ≈

√
t → ∞ then p (t, x, y) � t−n/2 where t−n/2 is predicted by the right hand side of (1.1). 

This phenomenon is especially transparent from probabilistic viewpoint: Brownian particle can go from x
to y only through the central part, which reduces drastically the transition density (see Fig. 1). A similar 
phenomenon was observed by B. Davies [5] on a model case of one-dimensional line complex.

Based on these early works, the first and the third authors of the present paper started a project on 
heat kernel bounds on connected sums of manifolds, provided each of them satisfies the Li–Yau estimate 
(1.1). The results of this study are published in a series [11], [12], [13], [15], and [16]. In particular, they 
obtained in [15] matching upper and lower estimates of heat kernels on connected sums of manifolds when 
at least one of them is non-parabolic. Recall that a manifold M called parabolic if Brownian motion on M is 
recurrent, and non-parabolic otherwise. There are several equivalent definitions of parabolicity in different 
terms (see, for example, [9]).
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Fig. 1. Brownian path goes from x to y via the bottleneck.

Fig. 2. Connected sum R1#R
2.

In this paper we complement the results [15] by proving two-sided estimates of heat kernels on connected 
sums of parabolic manifolds. The detailed statements are given in the next section. We illustrate our results 
on the following two examples.

Consider first the manifold M = R1#R
2, where R1 = R+ × S

1 (see Fig. 2). For x ∈ M , define |x| :=
d(x, K) + e, where K ⊂ M is the central part of M . Then we obtain that for x ∈ R1, y ∈ R

2 and t > 1

p(t, x, y) �

⎧⎪⎪⎨
⎪⎪⎩

1
t e

−b d2(x,y)
t if |y| >

√
t,

1
t

(
1 + |x|√

t
log e

√
t

|y|

)
if |x| , |y| ≤

√
t,

1
t log e

√
t

|y| e
−b d2(x,y)

t if |x| >
√
t ≥ |y| .

In particular, if |x|, |y| are bounded and t → ∞, then

p(t, x, y) ≈ 1
t
.

If |x| ≈
√
t → ∞ and |y| remains bounded, then

p(t, x, y) ≈ log t
t

.

Consider now the manifold M = R
2#R

2, or, equivalently, a catenoid (see Fig. 3).
Then we have the following estimate for all x, y lying in different sheets and for t > 1:

p(t, x, y) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
t log2 t

(
log t + log2 √t− log |x| log |y|

)
if |x|, |y| ≤

√
t,

1
t log t log e

√
t

|y| e
−b d2(x,y)

t if |y| ≤
√
t < |x|,

1
t log t log e

√
t

|x| e
−b d2(x,y)

t if |x| ≤
√
t < |y|,

1
(

1 + 1
)
e−b d2(x,y)

t if |x|, |y| >
√
t.
t log |x| log |y|
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Fig. 3. Catenoid.

In particular, if |x|, |y| are bounded and t → ∞, then

p(t, x, y) ≈ 1
t
.

If |x| ≈ |y| ≈
√
t → ∞ then

p(t, x, y) ≈ 1
t log t .

The heat kernel estimates on R2#R
2 was also obtained in [15] by an ad hoc method. In the present paper 

these estimates are part of our general Theorem 2.3. We also give further examples, in particular, the heat 
kernel estimates on R1#R1#R

2.
In the next section we introduce necessary definitions and state our main results. In Section 3 we prove 

some auxiliary results about the integrated resolvent. In Section 4 we prove the main technical result of this 
paper – Theorem 2.1 about on-diagonal upper bound of the heat kernel on the connected sum of parabolic 
manifolds. Finally, in Section 5 we use Theorem 2.1 and the gluing techniques from [15] to obtain full 
off-diagonal estimates of the heat kernels; they are stated in Theorems 2.3–2.5 and Corollaries 2.8 and 2.9.

Notation. Throughout this article, the letters c, C, b, . . . denote positive constants whose values may be 
different at different instances. When the value of a constant is significant, it will be explicitly stated. The 
notation f ≈ g for two non-negative functions f , g means that there are two positive constants c1, c2 such 
that c1g ≤ f ≤ c2g for the specified range of the arguments of f and g.

2. Statement of main results and examples

The main result will be stated in a more general setting of weighted manifolds that is explained below.

2.1. Weighted manifolds

Let M be a connected Riemannian manifold of dimension N . The Riemannian metric of M induces 
the geodesic distance d(x, y) between points x, y ∈ M and the Riemannian measure d vol. Given a smooth 
positive function σ on M , let μ be the measure on M given by dμ(x) = σ(x)d vol(x). The pair (M, μ) is 
called a weighted manifold. Any Riemannian manifold can be considered also as a weighted manifold with 
σ ≡ 1.

The Laplace operator Δ of the weighted manifold (M,μ) is defined by

Δ = 1 div (σ∇)

σ
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Fig. 4. Connected sum M = M1#M2 · · ·#Mk.

where div and ∇ are the divergence and the gradient of the Riemannian metric of M . It is easy to see that 
Δ is the generator of the following Dirichlet form

D (f, f) =
∫
M

|∇f |2 dμ

in W 1,2 (M,μ). The associated heat semigroup etΔ has always a smooth positive kernel p (t, x, y) that is 
called the heat kernel of (M,μ). At the same time, p (t, x, y) is the minimal positive fundamental solution 
of the corresponding heat equation ∂tu = Δu on M × R+ (see [10]). The heat kernel is also the transition 
probability density of Brownian motion ({Xt} , {Px}) on M that is generated by Δ.

A weighted manifold (M,μ) is called parabolic if any positive superharmonic function on M is constant, 
and non-parabolic otherwise. The parabolicity is equivalent to each of the following properties, that can be 
regarded as equivalent definitions (see, for example, [9]):

1. There exists no positive fundamental solution of −Δ.
2.

∫∞
p (t, x, y) dt = ∞ for all/some x, y ∈ M .

3. Brownian motion on M is recurrent.

2.2. Notion of connected sum

Let (M, μ) be a geodesically complete non-compact weighted manifold. Let K ⊂ M be a connected 
compact subset of M with non-empty interior and smooth boundary such that M \K has k non-compact 
connected components E1, . . . , Ek; moreover, assume also that the closures Ei are disjoint. We refer to each 
Ei as an end of M . Clearly, ∂K is a disjoint union of ∂Ei, i = 1, . . . , k.

Assume also that Ei is isometric to the exterior of a compact set Ki in another weighted manifold 
(Mi, μi). Then we refer to M as the connected sum of M1, . . . , Mk and write

M = M1#M2# · · ·#Mk

(see Fig. 4).
Denote by di the geodesic distance on Mi and by Bi (x, r) the geodesic ball in Mi of radius r centered at 

x ∈ Mi. Set also Vi (x, r) = μi (Bi (x, r)). Fix a reference point oi ∈ Ki and set

Vi(r) = Vi(oi, r).
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Fig. 5. Model manifold R1.

In this paper we always assume that every manifold Mi, i = 1, . . . , k, satisfies the following four conditions.

(a) The heat kernel pi (t, x, y) of (Mi, μi) satisfies the Li–Yau estimate (1.1), that is,

pi (t, x, y) �
C

Vi

(
x,

√
t
) exp

(
−b

d2
i (x, y)

t

)
. (2.1)

(b) Mi is parabolic; under the standing assumption (2.1), the parabolicity of Mi is equivalent to

∞∫
rdr

Vi (r)
= ∞. (2.2)

(c) Mi has relatively connected annuli, that is, there exists a positive constant A > 1 such that for any 
r > A2 and all x, y ∈ Mi with di(oi, x) = di(oi, y) = r, there exists a continuous path from x to y
staying in Bi(oi, Ar) \Bi(o, A−1r). We denote this condition shortly by (RCA).

(d) Mi is either critical or subcritical; here Mi is called critical if, for all large enough r,

Vi(r) ≈ r2,

and subcritical if, for all large enough r,

r∫
1

sds

Vi(s)
≤ Cr2

Vi(r)
. (2.3)

For example, if Vi(r) ≈ rα logβ r for some 0 < α < 2 and β ∈ R, then Mi is subcritical. On the other 
hand, in the case Vi (r) ≈ r2

logβ r
with β > 0 the manifold Mi is neither critical nor subcritical, although still 

parabolic.
Let us describe a class of manifolds satisfying all the hypotheses (a)–(d). For any 0 < α ≤ 2 consider a 

Riemannian model manifold Rα := (R2, gα), where gα is a Riemannian metric on R2 such that, in the polar 
coordinates (ρ, θ), it is given for ρ > 1 by

gα = dρ2 + ρ2(α−1)dθ2.

For example, if α = 2 then g2 can be taken to be the Euclidean metric of R2 so that in this case R2 = R
2. 

If α = 1 then g1 = dρ2 + dθ2 so that the exterior domain {ρ > 1} of R1 is isometric to the cylinder R+ × S

(see Fig. 5).
For a general 0 < α < 2, the exterior domain {ρ > 1} of Rα is isometric to a certain surface of revolution 

in R3.
Observe that the volume function V (x, r) on Rα admits for r > 1 the estimate

V (x, r) ≈
{

rα, |x| < r

min
(
r2, r |x|α−1

)
, |x| ≥ r

≈ r2

1 + r
(|x|+r)α−1

(2.4)

(see [14, Sec. 4.4]). In particular, if x = o, where o is the origin of R2, then
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V (o, r) ≈ rα. (2.5)

By [14, Prop. 4.10], Rα satisfies the parabolic Harnack inequality and, hence, the Li–Yau estimate (1.1). 
Obviously, Rα satisfies (2.2) and, hence, Rα is parabolic. It is easy to see that Rα satisfies (RCA). Note 
also that Rα is critical if α = 2 and subcritical if α < 2. Hence, Rα satisfies all hypotheses (a)–(d).

One can make a similar family of examples also in class of weighted manifolds. Indeed, for any α > 0
consider in R2 the following measure

dμα =
(
1 + |x|2

)α
2 −1

dx.

It is easy to see that 
(
R

2, μα

)
satisfies (2.5). The Li–Yau estimate on 

(
R

2, μα

)
holds by [14, Prop. 4.9]. 

Hence, 
(
R

2, μα

)
satisfies all the hypotheses (a)–(d) provided 0 < α ≤ 2.

Returning to the general setting, let us mention that the hypotheses (a), (b), (c) are essential for our 
main result, whereas (d) is technical. Probably, the method of proof will work also without assuming (d)
but, even if that is the case, the necessary computations will become much more technical and complicated. 
So, we prefer to impose here the additional condition (d) to simplify the computational part of the proof, 
which even under (d) remains quite involved.

Observe also that the condition (b) follows from (d). Indeed, if the integral (2.2) converges then by (2.3)
Vi (r) ≤ Cr2, which implies the divergence of the integral in (2.2). However, for the aforementioned reason, 
we state (b) independently of (d).

In fact, in the subcritical case we have

Vi (r) = o
(
r2) as r → ∞, (2.6)

as it follows from (2.2) and (2.3). Moreover, substituting (2.6) to the left hand side of (2.3), we obtain that, 
in the subcritical case,

Vi (r) = o

(
r2

log r

)
as r → ∞. (2.7)

2.3. On-diagonal estimates

Denote by d (x, y) the geodesic distance between points x, y ∈ M and by V (x, r) the Riemannian volume 
of the geodesic ball on M of radius r centered at x ∈ M . Fix a reference point o ∈ K and set V (r) = V (o, r). 
Set also

Vmax(r) = max
1≤i≤k

Vi(r).

It is easy to see that, for all r > 0,

V (r) ≈ V1(r) + V2(r) + · · · + Vk(r) ≈ Vmax(r).

The first main result of this paper is as follows.

Theorem 2.1. Let M = M1# · · ·#Mk be a connected sum of non-compact complete manifolds M1, . . . , Mk. 
Assume that each Mi is parabolic and satisfies (1.1) and (RCA). We also assume that each Mi is either 
critical or subcritical. Then we have
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p(t, o, o) ≈ 1
Vmax(

√
t)

≈ 1
V (

√
t)
, (2.8)

for all t > 0.

Let us mention for comparison the following result of [15]: if all manifolds Mi are non-parabolic and 
satisfy (1.1) and (RCA), then the heat kernel on M = M1# · · ·#Mk satisfies

p(t, o, o) ≈ 1
Vmin(

√
t)
, (2.9)

where

Vmin(r) := min
1≤i≤k

Vi(r).

The proof of the upper bound in (2.9), that is, of the inequality

p (t, o, o) ≤ C

Vmin
(√

t
) , (2.10)

goes as follows. By [8, Prop. 5.2], the upper bound in (1.1) on Mi is equivalent to a certain Faber–Krahn 
type inequality on Mi. Using a technique for merging of such inequalities, developed in [16, Thm. 3.5], one 
obtains a similar Faber–Krahn inequality on M , which then implies the heat kernel upper bound (2.10) by 
[8, Thm. 5.2] (see [16, Thm. 4.5] and [15, Cor. 4.7] for the details). The reason for appearing of Vmin in 
(2.10) is that the Faber–Krahn inequality on M cannot be stronger than that of each end Mi and, hence, 
is determined by the end with the smallest function Vi (r).

The proof of the lower bound in (2.9), that is, of the inequality

p (t, o, o) ≥ c

Vmin
(√

t
) (2.11)

uses the comparison

p(t, x, y) ≥ pEi
(t, x, y)

on each end Ei, where pEi
(t, x, y) is the Dirichlet heat kernel on Ei vanishing on ∂Ei. By [12, Thm 3.1], 

non-parabolicity of Mi and (1.1) imply that, away from ∂Ei,

pEi
(t, x, y) ≥ cpi (Ct, x, y) . (2.12)

It follows that, for any i = 1, . . . , k,

p (t, o, o) ≥ c

Vi

(√
t
) ,

which is equivalent to (2.11).
In the present setting, when all the manifolds Mi are parabolic, both arguments described above work 

but give non-optimal results. For example, one obtains as above the upper bound (2.10), which in general 
is weaker than the upper in (2.8). As far as the lower bound is concerned, the estimate (2.12) fails in the 
parabolic case and has to be replaced by a weaker one (cf. [12, Thm 4.9]), which does not yield an optimal 
lower bound for p (t, o, o). This explains why we have to develop entirely new method for obtaining optimal 
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bounds for p (t, o, o) in the case when all manifolds Mi are parabolic. The most significant part of the 
estimate (2.8) is the upper bound

p (t, o, o) ≤ C

Vmax
(√

t
) . (2.13)

The proof of (2.13) is the main achievement of the present paper. We use for that a new method involving 
the integrated resolvent

γλ (x) =
∫
K

∞∫
0

e−tλp (t, x, y) dtdμ (y)

defined for λ > 0. The parabolicity of M implies that γλ (x) → ∞ as λ → 0, and the rate of increase of 
γλ (x) as λ → 0 is related to the rate of decay of p (t, o, o) as t → ∞. In fact, the integrated resolvent γλ on 
the connected sum M satisfies a certain integral equation involving as coefficients the Laplace transforms 
of the exit probabilities at each end. This allows to estimate the rate of growth of γλ as λ → 0 and then to 
recover the upper bound (2.13) in the subcritical case. In the critical case one has to use instead ∂λγλ.

Since Vmax (r) ≈ V (o, r) and V (o, r) satisfies the volume doubling property, the upper bound (2.13)
implies automatically a matching lower bound of p (t, o, o) by [3, Thm. 7.2] (see Section 4.3 for the details).

Remark 2.2. Kasahara and Kotani recently obtained in [17, Example 6.1] the same on-diagonal heat kernel 
estimates for a connected sum of two Bessel processes on the half line [0, ∞) by using the Stieltjes transforms.

2.4. Off-diagonal estimates

In order to state the estimates for p (t, x, y) for arbitrary x, y ∈ M , we need some notation. For any 
x ∈ M set

|x| := d (x,K) + e.

For all x ∈ M and for all t > 2, define the following functions:

D(x, t) :=

⎧⎪⎨
⎪⎩

1, if |x| >
√
t and x ∈ Ei,

|x|2Vi(
√
t)

tVi(|x|) , if |x| ≤
√
t and x ∈ Ei,

0, if x ∈ K,

(2.14)

U (x, t) :=
{ 1

log|x| , if |x| >
√
t

1
log

√
t
log e

√
t

|x| , if |x| ≤
√
t,

(2.15)

W (x, t) :=
{

1, if |x| >
√
t

log|x|
log

√
t
, if |x| ≤

√
t.

(2.16)

It is clear that U (x, t) ≤ 1, U (x, t) ↗ 1 as t → ∞, and W (x, t) ≤ 1 and W (x, t) ↘ 0 as t → ∞. It is 
also useful to observe that

1 ≤ U (x, t) + W (x, t) ≤ 2. (2.17)

If Vi (r) is either critical or subcritical, then it is possible to show that D (x, t) is bounded.
The next three theorems constitute our second main result. It is obtained by combining Theorem 2.1

with several results from [12], [13] and [15].
In the first theorem we consider the case when x and y lie at different ends.
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Theorem 2.3. In the setting of Theorem 2.1, the following estimates are true for all x ∈ Ei, y ∈ Ej with 
i �= j and t > t0, where t0 is large enough.

(i) If all the manifolds Ml, l = 1, . . . , k, are subcritical then

p(t, x, y) � C

Vmax(
√
t)
e−b d2(x,y)

t . (2.18)

(ii) Suppose that at least one of the manifolds Ml, l = 1, . . . , k, is critical.
(ii)1 If both of Mi and Mj are subcritical, then

p(t, x, y) � C

t
(1 + (D(x, t) + D(y, t)) log t) e−b d2(x,y)

t . (2.19)

(ii)2 If both of Mi and Mj are critical, then

p(t, x, y) � C

t
(U(x, t)U(y, t) + W (x, t)U(y, t) + U(x, t)W (y, t)) e−b d2(x,y)

t . (2.20)

(ii)3 If Mi is subcritical and Mj is critical, then

p(t, x, y) � C

t
(1 + D(x, t)U(y, t) log t) e−b d2(x,y)

t . (2.21)

The next two theorems cover the case when x, y lie at the same end.

Theorem 2.4. In the setting of Theorem 2.1, assume that x, y ∈ Ei and t > t0.

(a) If 
√
t ≤ min (|x| , |y|) then

p(t, x, y) � C

Vi(x,
√
t)
e−b d2(x,y)

t . (2.22)

(b) Moreover, if Vi (r) ≈ Vmax (r) for all large r, then (2.22) holds for all t > t0. In particular, this is the 
case when Mi is critical.

Estimate (2.22) means that, for a restricted time, Brownian motion on each end does not see the other 
ends, which is natural to expect. Note that the same phenomenon holds also in the case when all Mi are 
non-parabolic.

The second claim of Theorem 2.4 means that, on the maximal end, Brownian motion does not see the 
other ends for all times. It is interesting to observe that in the case when all Mi are non-parabolic, a similar 
statement holds for the minimal end.

Theorem 2.5. In the setting of Theorem 2.1, assume that Mi is subcritical, x, y ∈ Ei and t > t0. If 
√
t ≥

min (|x| , |y|) then the following is true.

(i) If all the manifolds Ml, l = 1, . . . , k, are subcritical, then

p(t, x, y) � C

(
D(x, t)D(y, t)

Vi(
√
t)

+ 1
Vmax(

√
t)

)
e−b d2(x,y)

t . (2.23)
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(ii) If at least one of the manifolds Ml, l = 1, . . . , k, is critical then

p(t, x, y) � C

(
D(x, t)D(y, t)

Vi(
√
t)

+ 1
t

(1 + (D(x, t) + D(y, t)) log t)
)
e−b d2(x,y)

t . (2.24)

Remark 2.6. All the estimates of Theorems 2.3–2.5 can be extended to all x, y ∈ M including also a 
possibility x ∈ K or y ∈ K. This follows from the local Harnack inequality for the heat kernel p(t, x, y)
and from a careful analysis of the estimates. The latter shows that in all cases when |x| (or |y|) remains 
bounded, the terms containing D (x, t) are dominated by others and, hence, can be eliminated, which is 
equivalent to setting D (x, t) = 0 as in (2.14). A graphical summary of the estimates of Theorems 2.3–2.5
can be found at the following location:

https://www .math .uni -bielefeld .de /~grigor /tables .pdf

Remark 2.7. By [15, Lemma 5.9], for all x, y ∈ M and 0 < t ≤ t0, the heat kernel on M satisfies the Li–Yau 
estimate (1.1) with constants depending on t0. For this result it suffices to assume that each end Mi satisfies 
the Li–Yau estimate. Hence, in Theorems 2.3–2.5 we do not worry about the estimates for t ≤ t0.

If Vi(r) is a power function for each i = 1, . . . k, then we can simplify the heat kernel estimates of 
Theorems 2.3–2.5 as follows. In the next statement x, y lie at different ends.

Corollary 2.8. Suppose that Vi(r) ≈ rαi for all i = 1, . . . , k and r ≥ 1, where 0 < αi ≤ 2.

(i) Assume that 0 < αi < 2 for all i = 1, . . . , k and set

α = max
1≤i≤k

αi .

Then, for all x, y lying at different ends and for all t > 2, we have

p (t, x, y) � C

tα/2
e−b d2(x,y)

t .

(ii) Assume that αl = 2 for some 1 ≤ l ≤ k. Then the following estimates hold for i �= j, x ∈ Ei, y ∈ Ej, 
t > 2.
(ii)1 Let αi < 2 and αj < 2. If min(|x| , |y|) ≥

√
t then

p (t, x, y) � C log t
t

e−b d2(x,y)
t ,

and if min(|x| , |y|) ≤
√
t then

p (t, x, y) � C

t

(
1 + log t

[(
|x|√
t

)2−αi

+
(
|y|√
t

)2−αj
])

.

(ii)2 If αi = αj = 2 then

p (t, x, y) � C

t

(
U (x, t)U (y, t) + U (x, t) log |y|

log |y| + log t +U (y, t) log |x|
log |x| + log t

)
e−b d2(x,y)

t .

Consequently, if |x| , |y| ≥
√
t then

https://www.math.uni-bielefeld.de/~grigor/tables.pdf
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p (t, x, y) � C

t

(
1

log |x| + 1
log |y|

)
e−b d2(x,y)

t , (2.25)

if |x| , |y| ≤
√
t then

p (t, x, y) � C

t log2 t

(
log t + log2 √t− log |x| log |y|

)
, (2.26)

and if |x| ≥
√
t ≥ |y| then

p(t, x, y) � C

t log t log e
√
t

|y| e
−b d2(x,y)

t . (2.27)

Similarly, if |y| ≥
√
t ≥ |x| then

p(t, x, y) � C

t log t log e
√
t

|x| e
−b d2(x,y)

t . (2.28)

(ii)3 If αi < 2 and αj = 2 then

p (t, x, y) � C

t

(
1 +

(
|x|

|x| +
√
t

)2−αi

U (y, t) log t
)
e−b d2(x,y)

t . (2.29)

Consequently, if |y| ≥
√
t then

p (t, x, y) � C

t
e−b d2(x,y)

t ,

if |x| , |y| ≤
√
t then

p (t, x, y) � C

t

(
1 +

(
|x|√
t

)2−αi

log e
√
t

|y|

)
,

and if |x| ≥
√
t ≥ |y| then

p(t, x, y) � C

t
log e

√
t

|y| e
−b d2(x,y)

t .

Proof. All the estimates of Corollary 2.8 follow immediately from those of Theorem 2.3 and the definitions 
of functions D and W . In the case (ii)2, in the range |x| , |y| ≤

√
t, Theorem 2.3 gives the estimate

p (t, x, y) � C

t log2 √t

(
log e

√
t

|x| log e
√
t

|y| + log |y| log e
√
t

|x| + log |x| log e
√
t

|y|

)
.

Since the sum in the brackets is equal to

(
log |x| + log e

√
t

|x|

)(
log |y| + log e

√
t

|y|

)
− log |x| log |y| =

(
1 + log

√
t
)2

− log |x| log |y| ,

we obtain (2.26). �



A. Grigor’yan et al. / J. Math. Pures Appl. 113 (2018) 155–194 167
Let us state some consequences of Theorems 2.3–2.5 in the general setting, but under some specific 
restrictions of the variables x, y, t.

Corollary 2.9. Under the hypotheses of Theorems 2.3–2.5, we have the following estimates.

(a) (Long time regime) For fixed x, y ∈ M and t → ∞,

p (t, x, y) ≈ 1
Vmax

(√
t
) . (2.30)

(b) (Medium time regime) Let x ∈ Ei and y ∈ Ej with i �= j. If |x| ≈ |y| ≈
√
t then in the cases (i) and 

(ii)3 we have (2.30), in the case (ii)1 we have

p (t, x, y) ≈ log t
t

, (2.31)

and in the case (ii)2

p (t, x, y) ≈ 1
t log t . (2.32)

Proof. (a) The estimate (2.30) follows easily from Theorem 2.1 by using a local Harnack inequality. However, 
we show here how it follows from Theorems 2.3, 2.5. Observe that, for a fixed x ∈ Ei and large t we have

D (x, t) ≈
Vi

(√
t
)

t
, U (x, t) ≈ 1, W (x, t) ≈ 1

log t . (2.33)

Assume that x ∈ Ei, y ∈ Ej and consider the cases (i), (ii)1, (ii)2 and (ii)3 as in Theorem 2.3.
Case (i). Using (2.18), (2.23), (2.33) and Vi

(
x,

√
t
)
≈ Vi

(√
t
)

as t → ∞ we obtain

p (t, x, y) ≈
Vi

(√
t
)

t2
δij + 1

Vmax
(√

t
) ≈ 1

Vmax
(√

t
) ,

where we have also used that Vj (r)Vmax (r) = o 
(
r4).

Case (ii)1. By (2.19), (2.24) and (2.33) we have

p (t, x, y) ≈
Vi

(√
t
)

t2
δij + 1

t

{
1 +

(
Vi(

√
t)

t
+ Vj(

√
t)

t

)
log t

}

≈ 1
t
≈ 1

Vmax
(√

t
) ,

because of Vmax (r) ≈ r2 and (2.7).
Case (ii)2. If i �= j then by (2.20) and (2.33)

p(t, x, y) ≈ 1
t

(
1 + 1

log t

)
≈ 1

t
≈ 1

Vmax
(√

t
) .

If i = j then (2.30) follows trivially from (2.22).
Case (ii)3. In this case necessarily i �= j, and we obtain by (2.21)

p (t, x, y) ≈ 1
t

{
1 + Vi(

√
t)

t
log t

}
≈ 1

t
≈ 1(√ ) .
Vmax t
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Fig. 6. Connected sum R1#R1#R2.

(b) In the case |x| ≈ |y| ≈
√
t we have d2 (x, y) ≈ t and

D (x, t) ≈ 1, U (x, t) ≈ 1
log t , W (x, t) ≈ 1.

Then the required estimates follow directly from those stated in Theorem 2.3. �
Let us observe the following. In the medium time regime, that is, when x and y lie at different ends and 

|x| ≈ |y| ≈
√
t, we have by (b): in the cases (i) and (ii)3

p (t, x, y) ≈ 1
Vmax

(√
t
) ,

that is, p (t, x, y) behaves itself as in the long time regime, whereas in the case (ii)1

p (t, x, y) ≈ log t
t

� 1
Vmax

(√
t
) ,

and in the case (ii)2

p (t, x, y) ≈ 1
t log t � 1

Vmax
(√

t
) .

Hence, we observe in the case (ii)2 the bottleneck effect: the heat kernel value 1
t log t in the medium 

time regime is significantly smaller than that of long time regime 1
t . For example, this case happens for 

M = R
2#R

2 (see Fig. 1). A similar bottleneck effect was observed in [15] for M = R
n#R

n with n ≥ 3: 
the heat kernel of M in the long time regime is comparable to 1

tn/2 whereas in the medium time regime – 
to 1

tn−1 . In the case n = 2 the bottleneck effect is quantitatively weaker as the distinction between the two 
regimes is determined by log t in contrast to the power of t in the case n ≥ 3.

On the contrary, in the case (ii)1 we observe an interesting anti-bottleneck effect: the heat kernel value 
log t
t in the medium time regime is significantly larger than that of the long time regime 1t . This effect occurs 

only when there are at least three ends, one of them being critical and two – subcritical. For example, this 
is the case for M = R1#R1#R2 (see Fig. 6).

2.5. Examples

We present here heat kernel bounds on some specific examples using Theorems 2.3–2.5 and Corollary 2.8.

Example 2.10 (Heat kernel on Rα1#Rα2). Let us write down the heat kernel bounds on the connected sum

M = M1#M2 = Rα1#Rα2 ,
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where 1 ≤ α1 ≤ α2 < 2. In this case both M1 and M2 are subcritical so that Theorem 2.3(i), Theorem 2.4
and Theorem 2.5(i) apply. Observe that

D(x, t) =

⎧⎨
⎩

1, if |x| >
√
t,(

|x|√
t

)2−αi

, if |x| ≤
√
t,

(2.34)

and

Vmax (r) ≈ rα2 , r > 1.

In the case x ∈ E1 and y ∈ E2, we obtain by (2.18) or by Corollary 2.8(i),

p(t, x, y) � C

tα2/2
e−b d2(x,y)

t .

Assume now that x, y ∈ E1. If |x| , |y| >
√
t, then by (2.22) we have

p (t, x, y) � C

V1(x,
√
t)
e−b d2(x,y)

t .

If |x| , |y| ≤
√
t then by (2.23) and (2.34) we obtain

p(t, x, y) ≈ 1
tα1/2

(
|x| |y|

t

)2−α1

+ 1
tα2/2

. (2.35)

In particular, in the long time regime t → ∞ we obtain

p (t, x, y) ≈ 1
tα2/2

,

which, of course, matches (2.30). Assume now that |x| >
√
t ≥ |y|. Substituting (2.34) into (2.23), we obtain

p (t, x, y) � C

(
1

tα1/2

(
|y|√
t

)2−α1

+ 1
tα2/2

)
e−b d2(x,y)

t .

A similar estimate holds in the case |y| >
√
t ≥ |x|.

Finally, if x, y ∈ E2 then we have by Theorem 2.4 that for all t > 1

p(t, x, y) � C

V2(x,
√
t)
e−b d2(x,y)

t .

Example 2.11 (Heat kernel on R1#R2). Consider M = M1#M2 = R1#R2 (see Fig. 2). Suppose that 
x ∈ E1, y ∈ E2. Then by Theorem 2.3(ii)3 or by the estimate (2.29) of Corollary 2.8

p(t, x, y) � C

t

(
1 + |x|

|x| +
√
t
U(y, t) log t

)
e−b d2(x,y)

t .

Using (2.15) we obtain: if |y| >
√
t, then

p(t, x, y) � C
e−b d2(x,y)

t ;

t



170 A. Grigor’yan et al. / J. Math. Pures Appl. 113 (2018) 155–194
if |x|, |y| ≤
√
t, then

p(t, x, y) � C

t

(
1 + |x|√

t
log e

√
t

|y|

)
,

and if |x| >
√
t ≥ |y|, then

p(t, x, y) � C

t
log e

√
t

|y| e
−b d2(x,y)

t .

Assume that x, y ∈ E1. If min(|x| , |y|) ≤
√
t, then we obtain by (2.24) and (2.34)

p(t, x, y) ≈ 1
t

(
1 + |x| |y|√

t
+ |x| + |y|√

t
log t

)
e−b d2(x,y)

t .

In particular, if |x| >
√
t ≥ |y|, we obtain

p(t, x, y) � C

t
(|y| + log t) e−b d2(x,y)

t .

Similar estimate follows when |y| >
√
t ≥ |x|. If min(|x|, |y|) >

√
t, we obtain by Theorem 2.4

p(t, x, y) � C√
t
e−b d2(x,y)

t .

In the case x, y ∈ E2, we obtain by Theorem 2.4

p(t, x, y) � C

t
e−b d2(x,y)

t . (2.36)

Example 2.12 (Heat kernel on R2#R
2). Suppose that x ∈ E1 and y ∈ E2. If |x| , |y| ≤

√
t, then by (2.20), 

or by (2.26)

p(t, x, y) ≈ 1
t log2 t

(
log t + log2 √t− log |x| log |y|

)
.

In particular, in the long time regime |x| ≈ |y| ≈ 1 we obtain

p (t, x, y) ≈ 1
t
,

and in the medium time regime |x| ≈ |y| ≈
√
t we have

p(t, x, y) ≈ 1
t log t ,

which means a mild bottleneck-effect on R2#R
2.

If |x| , |y| ≥
√
t then the heat kernel on R2#R

2 satisfies (2.25), that is,

p (t, x, y) � C

t

(
1

log |x| + 1
log |y|

)
e−b d2(x,y)

t .

The cases |x| >
√
t ≥ |y| and |y| >

√
t ≥ |x| are covered by (2.27) and (2.28), respectively.

If x, y ∈ E1 or x, y ∈ E2 then p (t, x, y) satisfies (2.36) by Theorem 2.4.



A. Grigor’yan et al. / J. Math. Pures Appl. 113 (2018) 155–194 171
Example 2.13 (Heat kernel on R1#R1#R2). Let M = M1#M2#M3 = R1#R1#R2 (see Fig. 6). If x and 
y are at the same end, or x ∈ R1 and y ∈ R2, then the heat kernel p(t, x, y) satisfies same estimates as in 
the above case R1#R2.

Assume now that x ∈ E1 and y ∈ E2. Then by Corollary 2.8(ii)1 we obtain the following estimates: if 
min(|x| , |y|) ≤

√
t then

p(t, x, y) ≈ 1
t

(
1 + log t√

t
(|x| + |y|)

)
,

and if min(|x|, |y|) >
√
t, then

p(t, x, y) � log t
t

e−b d2(x,y)
t .

In particular, if |x| ≈ |y| ≈
√
t, then

p(t, x, y) ≈ log t
t

.

3. Some auxiliary estimates

In this section we prove some auxiliary results to be used in the proof of Theorem 2.1.
Let (M, μ) be a geodesically complete non-compact weighted manifold. We do not assume so far the 

parabolicity of M unless it is explicitly stated. For any open set Ω ⊂ M , denote by pΩ (t, x, y) the Dirichlet 
heat kernel in Ω. Assume from now on that Ω has smooth boundary. Then pΩ (t, x, y) = 0 whenever x or y
belongs to ∂Ω. Denote also by PΩ

t the associated heat semigroup. Denote as before by ({Xt}t≥0, {Px}x∈M )
Brownian motion on M . Let τΩ be the first exit time of Xt from Ω, that is,

τΩ = inf {t > 0 : Xt /∈ Ω} .

Then, for any bounded continuous function f on M ,

PΩ
t f (x) = Ex

(
f (Xt) 1{τΩ>t}

)
. (3.1)

3.1. Integrated resolvent

The resolvent operator GΩ
λ is defined for any λ > 0 as an operator on non-negative measurable functions 

f on Ω by

GΩ
λf (x) =

∞∫
0

e−λtPΩ
t f dt.

Clearly, GΩ
λ is a linear operator that preserves non-negativity. Note that by definition GΩ

λf vanishes in Ωc. 
If Ω = M then we write Gλ ≡ GM

λ . Clearly, GΩ
λ is an integral operator whose kernel

gΩ
λ (x, y) =

∞∫
e−λtpΩ (t, x, y) dt
0
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is called the resolvent kernel. In general, GΩ
λf may take value +∞. However, if f is bounded and continuous 

then the function u = GΩ
λf is finite and, moreover, is the minimal non-negative solution of the equation 

Δu − λu = −f (see [10]). It follows from (3.1) that

GΩ
λf (x) = Ex

⎛
⎝ τΩ∫

0

f (Xt) e−λtdt

⎞
⎠ . (3.2)

If in addition Ω is precompact then the function u = GΩ
λf solves the Dirichlet problem

{
Δu− λu = −f in Ω,

u = 0 on ∂Ω.

For the proof of Theorem 2.1 we need the notion of integrated resolvent. Fix a compact set K ⊂ M with 
non-empty interior K̊ such that K is the closure of K̊ and the boundary ∂K is smooth. Fix also once and 
for all a reference point o ∈ K.

For any λ > 0, define the function γλ on M by

γλ(x) := Gλ1K (x) =
∫
K

gλ (x, z) dμ (z) =
∫
K

∞∫
0

e−λtp (t, x, z) dz dt. (3.3)

The function γλ is called the integrated resolvent. Set also

γ̇λ = Gλγλ. (3.4)

It follows from the resolvent equation Gα −Gβ = (β − α)GαGβ that

γ̇λ = − ∂

∂λ
γλ =

∫
K

∞∫
0

te−λtp (t, x, z) dz dt. (3.5)

Lemma 3.1.

(i) If there exist positive constants C, λ0 and a function F : R+ → R+ such that, for some x ∈ K,

γλ(x) ≤ C

λF ( 1√
λ
)

for all λ ∈ (0, λ0], (3.6)

then there exist positive constants C ′, t0 such that

p(t, o, o) ≤ C ′

F (
√
t)

for all t ≥ t0. (3.7)

(ii) If there exist positive constants C, λ0 such that, for some x ∈ K,

γ̇λ(x) ≤ C

λ
for all λ ∈ (0, λ0], (3.8)

then there exist positive constants C ′, t0 such that

p(t, o, o) ≤ C ′

t
for all t ≥ t0.
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Proof. (i) Set δ = (diamK)2. By the local Harnack inequality, there exit positive constants c1, c2 such that, 
for all x, z ∈ K and s > 2c2δ,

p(s, x, z) ≥ c1p (s− c2δ, o, o) , (3.9)

which implies by (3.3), for all x ∈ K,

γλ(x) ≥ c1vol(K)
∞∫

2c2δ

e−λsp(s− c2δ, o, o)ds.

Using the monotonicity of p(s, o, o) with respect to s (see [10, Exercises 7.22]), we obtain, for t ≥ 4c2δ,

γλ (x) ≥ c1vol(K)
t∫

t/2

e−λsp(s− c2δ, o, o)ds

≥ c1vol(K)
t∫

t/2

e−λsp(t, o, o)ds ≥ cte−λtp(t, o, o). (3.10)

Set t0 := max{4c2δ, λ−1
0 }. For any t ≥ t0 and using (3.6) and (3.10) with λ = t−1, we obtain

C

λF ( 1√
λ
)
≥ cte−1p(t, o, o),

which implies

p(t, o, o) ≤ C

F (
√
t)
.

(ii) Arguing as in (i) and using (3.9) and (3.5), we obtain, for t ≥ 4c2δ and x ∈ K,

γ̇λ(x) =
∞∫
0

∫
K

se−λsp(s, x, z)dsdμ(z)

≥ c1vol(K)
t∫

t/2

se−λsp(t, o, o)ds ≥ ct2e−λtp(t, o, o). (3.11)

Assuming t ≥ t0 := max{4c2δ, λ−1
0 } and using (3.8) and (3.11) with λ = t−1, we obtain

C

λ
≥ ct2e−1p(t, o, o),

which implies

p(t, o, o) ≤ C

t
. �
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Remark 3.2. Lemma 3.1 will be used in the proof of Theorem 2.1 in Section 4.2 as follows. In the case when 
all the ends are subcritical, we will prove the following upper bound for the integrated resolvent:

sup
∂K

γλ ≤ C

λVmax( 1√
λ
)
, (3.12)

which then implies by Lemma 3.1(i) the desired upper bound

p(t, o, o) ≤ C

Vmax(
√
t)
.

However, in the case when one of the ends is critical, we obtain instead of (3.12) a weaker inequality

sup
∂K

γλ ≤ C log 1
λ
, (3.13)

which yields

p(t, o, o) ≤ C
log t
t

instead of the desired estimate

p(t, o, o) ≤ C

t
. (3.14)

In order to be able to prove the latter, we will use the second part of Lemma 3.1. Namely, we will prove 
that in the critical case

sup
∂K

γ̇λ ≤ C

λ
, (3.15)

which then will imply (3.14) by Lemma 3.1(ii).
Note that the estimate (3.13) of γλ is already optimal as it is matched by the estimate (3.15) of γ̇λ =

− ∂
∂λγλ. However, the function γλ alone does not allow to recover an optimal estimate of the heat kernel, 

while its λ-derivative γ̇λ does.

3.2. Comparison principles

Fix an open set Ω ⊂ M and λ > 0. We say that a function u is λ-harmonic in Ω if it satisfies in Ω the 
equation Δu − λu = 0. A function u is called λ-superharmonic if Δu − λu ≤ 0. We will frequently use the 
following minimum principle: if Ω is precompact, u ∈ C

(
Ω
)

is λ-superharmonic in Ω and u ≥ 0 on ∂Ω
then u ≥ 0 in Ω. It implies the comparison principle: if u, v ∈ C

(
Ω
)
, u is λ-superharmonic in Ω and v is 

λ-harmonic in Ω then

u ≥ v on ∂Ω ⇒ u ≥ v in Ω. (3.16)

Let now Ω be an exterior domain, that is, Ω = F c where F is a compact subset of M . Let v ∈ C
(
Ω
)

be 
non-negative and λ-harmonic in Ω. We say that v is minimal in Ω if there exists an exhaustion {Uk} of M
by precompact open sets Uk ⊃ F and a sequence {vk} of functions vk ∈ C

(
Uk \ F

)
that are non-negative 

and λ-harmonic in Uk \ F and such that vk|∂Uk
= 0 and vk ↑ v in Ω. Then the following modification 

of the comparison principle holds in Ω: if u, v ∈ C
(
Ω
)
, u is non-negative λ-superharmonic in Ω and v is 
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non-negative minimal λ-harmonic in Ω then (3.16) is satisfied. Indeed, by the comparison principle in Uk \F
we obtain u ≥ vk whence the claim follows.

We are left to mention that, for any non-negative bounded function f with compact support, the function 
Gλf is non-negative, minimal, λ-harmonic outside supp f , since GUk

λ f ↑ Gλf .

3.3. Functions ΦΩ
λ and ΨΩ

λ

In any open set Ω ⊂ M , consider a function

ΦΩ
λ := λGΩ

λ1 =
∞∫
0

λe−λtPΩ
t 1 dt. (3.17)

Since 0 ≤ PΩ
t 1 ≤ 1, we see that

0 ≤ ΦΩ
λ ≤ 1. (3.18)

It follows from (3.1) that

ΦΩ
λ (x) =

∞∫
0

λe−λt
Px(τΩ > t)dt. (3.19)

Let A be a precompact open subset of M with smooth boundary and let K ⊂ A. Set

γA
λ (x) := GA

λ 1K (x) =
∫
K

gAλ (x, z) dμ (z) =
∫
K

∞∫
0

e−λtpA(t, x, z)dtdμ(z). (3.20)

Lemma 3.3. (a) The following inequality holds in A:

γλ − γA
λ ≤ (sup

∂A
γλ)

(
1 − ΦA

λ

)
. (3.21)

(b) The following inequality holds in Kc:

γλ ≤ (sup
∂K

γλ)
(
1 − ΦKc

λ

)
. (3.22)

Proof. (a) By (3.17), the function ΦA
λ satisfies

{
ΔΦA

λ − λΦA
λ = −λ in A

ΦA
λ = 0 on ∂A.

It follows that the function u := 1 − ΦA
λ solves the boundary value problem

{
Δu− λu = 0 in A

u = 1 on ∂A.

Note that γλ − γA
λ = Gλ1K − GA

λ 1K is λ-harmonic in A and is equal to γλ on ∂A, which implies by the 
comparison principle in A that
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γλ − γA
λ ≤ (sup

∂A
γλ)u in A,

which proves (3.21).
(b) Set Ω = Kc. As in (a), the function u := 1 − ΦΩ

λ solves the following boundary value problem:
{

Δu− λu = 0 in Ω
u = 1 on ∂Ω

The function γλ = Gλ1K is non-negative, λ-harmonic, and minimal in Ω. On ∂Ω = ∂K we have

γλ ≤ sup
∂K

γλ = (sup
∂K

γλ)u. (3.23)

Since u is non-negative and λ-harmonic in Ω, it follows by the comparison principle in Ω that (3.23) holds 
also in Ω, which proves (3.22). �

Set

ΨΩ
λ := GΩ

λ

(
1 − ΦΩ

λ

)
(3.24)

and observe that ΨΩ
λ ≥ 0 by (3.18).

Lemma 3.4. We have the following identity for all x ∈ Ω:

ΨΩ
λ (x) =

∞∫
0

te−λt∂tPx(τΩ ≤ t)dt. (3.25)

Proof. Integrating by parts in (3.19), we obtain

ΦΩ
λ (x) = −

∞∫
0

Px(τΩ > t)de−λt = 1 +
∞∫
0

e−λt∂tPx(τΩ > t)dt

= 1 −
∞∫
0

e−λt∂tPx(τΩ ≤ t)dt. (3.26)

On the other hand, we have

ΨΩ
λ = GΩ

λ1 −GΩ
λΦΩ

λ = GΩ
λ1 − λGΩ

λG
Ω
λ1

= GΩ
λ1 + λ

∂

∂λ
GΩ

λ1 = ∂

∂λ

(
λGΩ

λ1
)

= ∂

∂λ
ΦΩ

λ .

Hence, differentiating (3.26) in λ (which is justified by the dominated convergence theorem), we obtain 
(3.25). �
3.4. Some local estimates

Recall that, for any open set A containing K, we have defined

γA
λ (x) = GA

λ 1K (x) =
∫ ∞∫

e−λtpA(t, x, z)dtdμ(z).

K 0
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Set also

γ̇A
λ (x) := GA

λ γ
A
λ (x) = − ∂

∂λ
γA
λ (x) =

∫
K

∞∫
0

te−λtpA(t, x, z)dtdμ(z). (3.27)

Note that γA
λ and γ̇A

λ vanish outside A. Note also that γλ = γM
λ and γ̇λ = γ̇M

λ .
In what follows we fix a precompact open set A ⊃ K with smooth boundary.

Lemma 3.5. There exists a positive constant C = C (A) such that, for all λ > 0,

sup
A

γA
λ ≤ C, (3.28)

sup
A

γ̇A
λ ≤ C2, (3.29)

and

sup
A

ΨA
λ ≤ C. (3.30)

Proof. It follows from (3.20) that

γA
λ (x) ≤

∫
A

∞∫
0

pA(t, x, z)dt dμ(z) =
∫
A

gA (x, z) dμ (z) ,

where gA = gA0 is the Green function of Δ in A. The function

u (x) =
∫
A

gA(x, z)dμ(z)

solves the following boundary value problem{
Δu = −1 in A,

u = 0 on ∂A,

which implies that u (x) is bounded. Hence, (3.28) holds with C = supu.
By (3.27) we have

γ̇A
λ (x) =

∫
A

gAλ (x, z) γA
λ (z) dμ (z) ,

which implies by (3.28), for any x ∈ A,

γ̇A
λ (x) ≤ sup

A
γA
λ

∫
A

gA (x, z) dμ (z) ≤ C supu = C2,

which proves (3.29).
Finally, it follows from (3.24) that

ΨA
λ (x) ≤ GA

λ 1 (x) =
∫
A

gA (x, z) dμ (z) ≤ C,

which proves (3.30). �
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3.5. Global estimates of ΦΩ
λ and ΨΩ

λ

So far we have used a compact set K and a precompact open set A ⊃ K. We have also assume that K
and A have smooth boundaries.

In the next Lemma we estimate inf∂A ΦKc

λ from below using additional geometric assumptions. Denote 
by Kε the ε-neighborhood of K. We will assume in addition that Kε ⊂ A for some large enough ε specified 
below.

Lemma 3.6. Let M be a geodesically complete, non-compact parabolic manifold satisfying (1.1), (RCA). Fix 
a reference point o ∈ K and set V (r) = V (o, r). Assume in addition that Kε ⊂ A for sufficiently large 
ε = ε (K) > 0. Then there exists a constant c > 0 such that

inf
∂A

ΦKc

λ ≥ c

∞∫
(diam A)2

(1 − e−λs) 1
V (

√
s)H(

√
s)2

ds, (3.31)

where

H(r) := 1 +

⎛
⎝ r∫

1

s

V (s)ds

⎞
⎠

+

. (3.32)

In addition, we have:

(i) if V (r) is subcritical then, for 0 < λ ≤ 1
(diam A)2 ,

inf
∂A

ΦKc

λ ≥ cλV ( 1√
λ

). (3.33)

(ii) If V (r) is critical then, for 0 < λ ≤ 1
(diam A)2 ,

inf
∂A

ΦKc

λ ≥ c

log 1
λ

. (3.34)

Proof. Denote Ω = Kc. By [12, Theorem 4.9 and (4.23)], if ε is big enough then, for all a, y outside Kε/2
and for all s > 0, the following estimate holds:

pΩ(s, x, y) ≥ C
D(s, x, y)
V (x,

√
s)

exp
(
−c

d2(x, y)
s

)
, (3.35)

where

D(s, x, y) = H(|x|)H(|y|)
(H(|x|) + H(

√
s)) (H(|y|) + H(

√
s))

.

By [13, (3.29)], we have, for any x /∈ Kε,

Px (τΩ > t) ≥ c

∞∫
t

inf
y∈Kε\Kε/2

pΩ(s, x, y)ds,

where c = c (K, ε) > 0, which implies by (3.19)
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ΦΩ
λ (x) ≥ c

∞∫
0

λe−λt

⎛
⎝ ∞∫

t

inf
y∈Kε\Kε/2

pΩ(s, x, y)ds

⎞
⎠ dt

= c

∞∫
0

⎛
⎝ s∫

0

λe−λt inf
y∈Kε\Kε/2

pΩ(s, x, y)dt

⎞
⎠ ds

= c

∞∫
0

(1 − e−λs) inf
y∈Kε\Kε/2

pΩ(s, x, y)ds. (3.36)

Assume that x ∈ ∂A. Since y ∈ Kε, we see that d (x, y) ≤ diamA. Also, |x|, |y| are bounded by diamA + e. 
It follows from (3.35) that if s ≥ (diamA)2 then

pΩ(s, x, y) ≥ c

V (
√
s)H(

√
s)2

.

Substituting into (3.36) yields (3.31).
In the case (i), when V is subcritical, we obtain from (3.32)

H(r) ≈ r2

V (r) . (3.37)

Substituting into (3.31), we obtain, for 0 < λ ≤ 1
(diam A)2 ,

inf
∂A

ΦΩ
λ ≥ c

∞∫
1/λ

(1 − e−λs)V (
√
s)

s2 ds ≥ cλV ( 1√
λ

),

which proves (3.33).
In the case (ii), when V is critical, we have

H(r) ≈ log r, (3.38)

which implies, for 0 < λ ≤ 1
(diam A)2 ,

inf
∂A

ΦΩ
λ ≥ c

∞∫
1/λ

(1 − e−λs) ds

s log2 s

≥ c(1 − e−1)
∞∫

1/λ

d log s
log2 s

= c(1 − e−1) 1
log 1

λ

,

which proves (3.34). �
Lemma 3.7. Let M be a geodesically complete, non-compact parabolic manifold satisfying (1.1), (RCA). 
Assume in addition that Kε ⊂ A for sufficiently large ε = ε (K) > 0. Assume also that V (r) := V (o, r) is 
either critical or subcritical. Then there exists a constant C > 0 such that, for small enough λ > 0,
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sup
∂A

ΨKc

λ ≤ C

λ log2 1
λ

. (3.39)

Proof. Set Ω = Kc. Fix a ∈ ∂A and set

T = 1
λ log2 1

λ

.

In the identity (3.25) for ΨΩ
λ , let us decompose the integration into two intervals: [0, T ] and [T, ∞). For the 

first interval, we have by integration by parts

T∫
0

te−λt∂tPa(τΩ ≤ t)dt = Te−λT
Pa (τΩ ≤ T ) −

T∫
0

e−λt(1 − λt)Pa(τΩ ≤ t)dt.

Assume that λ < e so that log2 1
λ > 1 and, hence, λT < 1. It follows that 1 −λt ≥ 0 on [0, T ] and, therefore, 

the integral in the right hand side of the above identity is non-negative. It follows that

T∫
0

te−λt∂tPa(τΩ ≤ t)dt ≤ T,

which matches the required estimate (3.39).
Let us estimate the integral (3.25) over [T, ∞). By [13, Remark 4.3], if ε is large enough then, for all 

a ∈ ∂A ⊂ Ω and for all t ≥ t0 (where t0 depends on diamA), we have

∂tPa(τΩ ≤ t) ≤ C

V
(√

t
)
H2

(√
t
) , (3.40)

where H is defined by (3.32). Assuming that λ is so small that T > t0 and using (3.40), we obtain

∞∫
T

te−λt∂tPa(τΩ ≤ t)dt ≤ C

∞∫
T

te−λtdt

V
(√

t
)
H2

(√
t
) . (3.41)

Consider first the case when V (r) is critical, that is, V (r) ≈ r2. Then H (r) ≈ log r and we obtain

∞∫
T

te−λt∂tPa(τΩ ≤ t)dt ≤ C

∞∫
T

e−λtdt

log2 t
≤ C

log2 T

∞∫
0

e−λtdt = C

λ log2 T
.

Taking λ > 0 sufficiently small so that log2 1
λ ≤ 1√

λ
, we obtain T ≥ 1√

λ
and log T ≥ 1

2 log 1
λ , whence

∞∫
T

te−λt∂tPa(τΩ ≤ t)dt ≤ 4CT,

which proved (3.39) in the critical case.
Assume now that V (r) is subcritical. Then, for r > 2, we have

r2

V (r) ≤ 3
r∫

tdt

V (t) ≤ 3H (r) .

r/2
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Substituting into (3.41), we obtain

∞∫
T

te−λt∂tPa(τΩ ≤ t)dt ≤ C

∞∫
T

e−λtdt

H
(√

t
) ≤ C

λH(
√
T )

≤ CV (
√
T )

λT
,

where in the last inequality we have used (3.37). In order to prove that the right hand side is bounded by 
CT , it suffices to verify that

V (
√
T ) ≤ CλT 2.

Since log 1
λ ≈ log T and, hence, λ ≈ 1

T log2 T
, it suffices to prove that

V (
√
T ) ≤ CT

log2 T

for large enough T . Putting T = r2, this inequality is equivalent to

log2 r ≤ C
r2

V (r) . (3.42)

Since M is subcritical, there exists a constant b > 0 such that, for large enough r,

b ≤
r∫

1

tdt

V (t) ≤ C
r2

V (r) . (3.43)

Since

r∫
1

tdt

V (t) =
r∫

1

t2

V (t)d log t, (3.44)

substituting (3.43) into the right hand side of (3.44), we obtain

log r =
r∫

1

d log t ≤
r∫

1

C

b

t2

V (t)d log t =
r∫

1

C

b

tdt

V (t) ≤ C2

b

r2

V (r) .

Substituting this into (3.44) again, we obtain for large r > 0,

log2 r = 2
r∫

1

log td log t ≤ 2
r∫

1

C2

b

t2

V (t)d log t ≤ 2C3

b

r2

V (r) ,

whence (3.42) follows. �
4. On-diagonal estimates at center

In this section we prove Theorem 2.1. In order to obtain the upper bound of p (t, o, o) on M =
M1# · · ·#Mk, we use the integrated resolvent introduced in the previous section. This idea of using the 
resolvent on a connected sum goes back to Woess [22, p. 96] where it was used in the setting of connected 
sums of graphs. Implementation in the present case of manifolds requires much more technique, though.
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Fig. 7. Sets K and A in the connected sum M .

4.1. Estimates of integrated resolvent on connected sums

From now on let M = M1#M2# · · ·#Mk be a connected sum of parabolic manifolds M1, . . . , Mk with a 
central part K. Let A be a connected, precompact open subset of M with smooth boundary and such that 
K ⊂ A. In fact, we will need that Kε ⊂ A for large enough ε. Set

∂Ai := ∂A ∩ Ei, 1 ≤ i ≤ k

so that ∂A = �i∂Ai (see Fig. 7).

Lemma 4.1. There is a constant h = h (A,K) > 0 such that, for any λ > 0,

h(sup
∂K

γλ)
k∑

i=1
inf
∂Ai

ΦEi

λ ≤ sup
∂K

γA
λ . (4.1)

Proof. As it follows from (3.3) and (3.20) the function

u := γλ − γA
λ = Gλ1K −GA

λ 1K

is λ-harmonic in A. Consider the function hi in A that solves the Dirichlet problem
{

Δhi = 0 in A

hi = 1∂Ai
on ∂A.

Since on ∂Ai we have

u ≤ sup
∂Ai

γλ = (sup
∂Ai

γλ)hi,

it follows that on ∂A

u ≤
n∑

i=1
(sup
∂Ai

γλ)hi. (4.2)

Since hi is λ-superharmonic in A, we conclude by the comparison principle in A that (4.2) holds in A. Let 
us also observe that on ∂A
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k∑
i=1

hi = 1, (4.3)

which implies then that (4.3) holds in A.
Since in Ei we have ΦKc

λ = ΦEi

λ , we obtain by Lemma 3.3(b) that in Ei

γλ ≤ (sup
∂K

γλ)(1 − ΦEi

λ ),

which implies

sup
∂Ai

γλ ≤ (sup
∂K

γλ) sup
∂Ai

(1 − ΦEi

λ ) = (sup
∂K

γλ)(1 − inf
∂Ai

ΦEi

λ ).

Substituting into (4.2) and recalling the definition of u, we obtain that on A

γλ ≤ γA
λ + (sup

∂K
γλ)

k∑
i=1

(1 − inf
∂Ai

ΦEi

λ )hi. (4.4)

Let x ∈ ∂K be a point where γλ attains its maximum on ∂K. Considering (4.4) at this point x we obtain

γλ (x) ≤ γA
λ (x) + γλ (x)

k∑
i=1

(1 − inf
∂Ai

ΦEi

λ )hi (x) ,

whence by (4.3)

γλ (x)
k∑

i=1
(inf
∂Ai

ΦEi

λ )hi (x) ≤ γA
λ (x) .

This implies (4.1) with h := mini inf∂K hi > 0. �
Lemma 4.2. There exists a constant h = h (A,K) > 0 such that

h(sup
∂K

γ̇λ)
k∑

i=1
inf
∂Ai

ΦEi

λ ≤ sup
∂K

γ̇A
λ + (sup

∂K
γλ)

(
sup
∂K

ΨA
λ +

k∑
i=1

sup
∂Ai

ΨEi

λ

)
. (4.5)

Proof. By (3.4) and (3.27), the function

v := γ̇λ − γ̇A
λ = Gλγλ −GA

λ γ
A
λ

solves in A the following boundary value problem:

{
Δv − λv = −

(
γλ − γA

λ

)
in A

v = γ̇λ on ∂A.

Consider also function w that solves the problem

{
Δw − λw = 0 in A

w = γ̇λ on ∂A.
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Then we have

v = GA
λ

(
γλ − γA

λ

)
+ w. (4.6)

Using the estimate (3.21) of Lemma 3.3(a) and (3.24), we obtain that in A

GA
λ

(
γλ − γA

λ

)
≤ (sup

∂A
γλ)GA

λ

(
1 − ΦA

λ

)
= (sup

∂A
γλ)ΨA

λ . (4.7)

Observe that

γλ ≤ sup
∂K

γλ in Kc

because the constant function sup∂K γλ is λ-superharmonic in Kc, while γλ is minimal λ-harmonic that is 
bounded by sup∂K γλ on ∂Kc. Hence, we obtain from (4.7) that

GA
λ

(
γλ − γA

λ

)
≤ (sup

∂K
γλ)ΨA

λ in A. (4.8)

In order to estimate w, let us represent this function in the form

w =
k∑

i=1
wi,

where wi solves the Dirichlet problem
{

Δwi − λwi = 0 in A

wi = γ̇λ1∂Ai
on ∂A.

Let hi be the same as in the proof of Lemma 4.1. By the comparison principle, we have that in A

wi ≤ (sup
∂Ai

γ̇λ)hi. (4.9)

Let us prove further that

γ̇λ −GEi

λ γλ ≤ (sup
∂Ei

γ̇λ)(1 − ΦEi

λ ) in Ei. (4.10)

Indeed, by (3.4), the function

γ̇λ −GEi

λ γλ = Gλγλ −GEi

λ γλ

is non-negative, λ-harmonic, and minimal in Ei. Besides, it is bounded by sup∂Ei
γ̇λ on ∂Ei. The function 

1 −ΦEi

λ is non-negative and λ-harmonic in Ei, and is equal to 1 on ∂Ei. The estimate (4.10) follows by the 
comparison principle in Ei.

Similarly, we have

γλ ≤ (sup
∂Ei

γλ)(1 − ΦEi

λ ) in Ei,

because γλ is non-negative, λ-harmonic and minimal in Ei, and is bounded by sup∂Ei
γλ on ∂Ei. It follows 

that in Ei
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GEi

λ γλ ≤ (sup
∂Ei

γλ)GEi

λ (1 − ΦEi

λ ) = (sup
∂Ei

γλ)ΨEi

λ .

Combining with (4.10), we obtain that in Ei

γ̇λ ≤ (sup
∂Ei

γ̇λ)(1 − ΦEi

λ ) + (sup
∂Ei

γλ)ΨEi

λ .

Substituting into (4.9), we obtain that in A

w ≤
k∑

i=1
(sup
∂Ai

γ̇λ)hi ≤
k∑

i=1

(
(sup
∂Ei

γ̇λ)(1 − inf
∂Ai

ΦEi

λ ) + (sup
∂Ei

γλ) sup
∂Ai

ΨEi

λ

)
hi.

Combining with (4.6) and (4.8), we obtain the following estimate of the function v = γ̇λ − γ̇A
λ in A:

γ̇λ − γ̇A
λ ≤ (sup

∂K
γλ)ΨA

λ +
k∑

i=1

(
(sup
∂Ei

γ̇λ)(1 − inf
∂Ai

ΦEi

λ ) + (sup
∂Ei

γλ) sup
∂Ai

ΨEi

λ

)
hi.

Let x be a point of maximum of γ̇λ on ∂K. It follows that

γ̇λ (x) ≤ γ̇A
λ (x) + (sup

∂K
γλ)ΨA

λ (x) +
k∑

i=1

(
γ̇λ (x) (1 − inf

∂Ai

ΦEi

λ ) + (sup
∂Ei

γλ) sup
∂Ai

ΨEi

λ

)
hi (x) .

Since 
∑

hi ≡ 1, we see that γ̇λ (x) cancels out in the both sides, and we obtain

γ̇λ (x)
k∑

i=1
(inf
∂Ai

ΦEi

λ )hi (x) ≤ γ̇A
λ (x) + (sup

∂K
γλ)ΨA

λ (x) +
k∑

i=1
(sup
∂Ei

γλ)(sup
∂Ai

ΨEi

λ )hi (x) .

Since h ≤ hi (x) ≤ 1 where h := mini infK hi > 0, we obtain from here (4.5). �
4.2. Proof of Theorem 2.1: upper bound

As in the statement of Theorem 2.1, let M be a connected sum of parabolic manifolds M1, . . . , Mk, 
where all Mi, i = 1, . . . , k satisfy (1.1) and (RCA). Let Vi(r) = Vi (oi, r) be the volume function on Mi at 
oi ∈ Ki = Mi \Ei. We also assume that every Vi(r) is either critical or subcritical, that is, condition (d) of 
Section 2.2. Let V (r) = V (o, r) be the volume function on M at a reference point o ∈ K.

It suffices to prove the main estimate (2.8) for large enough t because for small t we have p(t, o, o) � t−N/2

and V (
√
t) � tN/2.

Fix a connected precompact open set A with smooth boundary such that A ⊃ Kε for large enough ε > 0
as in Lemmas 3.6 and 3.7 applied to all ends Mi.

Recall that the integrated resolvent γλ is defined by (3.3). By Lemmas 3.5 and 4.1, we have, for any 
λ > 0 and any i = 1, . . . , k

sup
∂K

γλ ≤ C

inf∂Ai
ΦEi

λ

, (4.11)

where C = C (K,A).
Assume first that all manifolds Mi are subcritical. Applying (3.33) on each end Mi we obtain that

inf ΦEi

λ ≥ cλVi(
1√ )
∂Ai λ
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provided λ ≤ λ0 = λ0 (A). Substituting into (4.11), we obtain that, for λ ≤ λ0,

sup
∂K

γλ ≤ C

λVmax( 1√
λ
)
,

where Vmax(r) = max1≤i≤k Vi(r). By Lemma 3.1(i), we conclude that, for all t ≥ t0 = t0 (λ0),

p(t, o, o) ≤ C

Vmax(
√
t)

(4.12)

which proves the on-diagonal upper bound in (2.8) in the subcritical case.
Assume now that there exists at least one critical end. Let it be Mj . Applying (3.34) in Mj , we have

inf
∂A

ΦEj

λ ≥ c

log 1
λ

, (4.13)

which together with (4.11) yields, for all λ ≤ λ0,

sup
∂K

γλ ≤ C log 1
λ
. (4.14)

However, as we have pointed out before, in order to obtain upper bound in (2.8) in the critical case, we 
need some additional argument about γ̇λ.

For that, let us use the estimate (4.5) of sup∂K γ̇λ. Substituting into (4.5) the estimates (3.29) and (3.30), 
we obtain

(sup
∂K

γ̇λ) inf
∂Aj

ΦEj

λ ≤ C + C sup
∂K

γλ

(
1 +

k∑
i=1

sup
∂Ai

ΨEi

λ

)
.

Substituting here (4.13), (4.14), (3.39), we obtain, for all λ ≤ λ0,

sup
∂K

γ̇λ
1

log 1
λ

≤ C + C log 1
λ

(
1 + 1

λ log2 1
λ

)
≤ C ′

λ log 1
λ

,

which implies

sup
∂K

γ̇λ ≤ C

λ
for all λ ≤ λ0.

By Lemma 3.1(ii), we conclude that

p(t, o, o) ≤ C

t
for all t ≥ t0 (4.15)

which finishes the proof of the upper bound in (2.8) in the critical case.

4.3. Proof of Theorem 2.1: lower bound

Let M be a connected sum satisfying the assumption of Theorem 2.1. Let us observe that

V (r) ≈ V1(r) + V2(r) + · · · + Vk(r) ≈ Vmax(r) (4.16)
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for all r > 0. By (4.12) and (4.15), we obtain that, for all t > 0,

p(t, o, o) ≤ C

V (
√
t)
. (4.17)

Since each Vi (r) satisfies the doubling condition, so does V (r) by (4.16). By [3, Theorem 7.2], the upper 
bound (4.17) together with the doubling property of V (r) implies the matching lower bound

p(t, o, o) ≥ c

V (
√
t)
.

Replacing here V by Vmax, we finish the proof of the lower bound in (2.8) and, hence, the proof of Theo-
rem 2.1.

5. Off-diagonal estimates

In this section, we prove Theorems 2.3–2.5 by combining Theorem 2.1 with some results from [12], [13]
and [15].

For any open set Ω in any weighted manifold M , define the exit probability function in Ω: for all x ∈ Ω
and t > 0,

ψΩ (y, t) = Px(τΩ ≤ t).

Equivalently, ψΩ (x, t) is the minimal non-negative solution of the heat equation ∂tu = Δu in Ω × R+ with 
the initial condition u|t=0 = 0 and the boundary condition u|∂Ω = 1.

We will use the abstract upper and lower off-diagonal estimates of [15, Theorem 3.5] for the heat kernel 
p (t, x, y) on an arbitrary manifold M for x ∈ A and y ∈ B where A, B are open subsets of M such either 
A and B are disjoint or B ⊂ A. These estimates use the exit probabilities ψA (x, t) and ψB (y, t), their time 
derivatives, as well as the following quantities:

P+ (t) = sup
s∈[t/4,t]

sup
z1∈∂A, z2∈∂B

p (s, z1, z2) , P− (t) = inf
s∈[t/4,t]

inf
z1∈∂A, z2∈∂B

p (s, z1, z2) ,

G+ (t) =
t∫

0

sup
z1∈∂A, z2∈∂B

p (s, z1, z2) ds, G− (t) =
t∫

0

inf
z1∈∂A, z2∈∂B

p (s, z1, z2) ds.

With these notations, the estimates of [15, Theorem 3.5] read as follows: for all x ∈ A, y ∈ B and t > 0,

p(t, x, y) ≈ pA (t, x, y) + P± (t)ψA

(
x, t̃

)
ψB

(
y, t̃

)
+ G± (

t̃
) [

∂tψA (x, ξ)ψB

(
y, t̃

)
+ ∂tψB (y, ζ)ψA

(
x, t̃

)]
, (5.1)

where the index “+” is used for the upper bound, “−” is used for the lower bound, t̃ = t for the upper 
bound, t̃ = 1

4 t for the lower bound, ξ and ζ are some values from [t/4, t] that may be different for upper 
and lower bounds.

Proof of Theorem 2.3. Recall that M is a connected sum of M1, . . . , Mk with a central part K, where each 
Mi satisfies conditions (a)–(d) in Subsection 2.2. We apply (5.1) with A = Ei and B = Ej where i �= j. 
Since A and B are disjoint, we have pA (t, x, y) = 0 for all x ∈ A and y ∈ B.

Note that, for all z1 ∈ ∂Ei and z2 ∈ ∂Ej , the distance d (z1, z2) is bounded from above and below by 
positive constants. Therefore, assuming t > 1, we obtain by the local Harnack inequality and Theorem 2.1
that
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P± (t) � Cp (ct, o, o) ≈ 1
V
(√

t
) . (5.2)

Let us estimate similarly G± (t). Assuming t > 1, we can split the integrals in the definition of G± (t) into 
the sum of two integrals: over (0, 1] and over (1, t]. The first integral is bounded, while in the second integral 
we can apply the local Harnack inequality to the heat kernel and, hence, replace z1, z2 by o. Using further 
the estimate (2.8) of Theorem 2.1, we obtain that, for large t,

G± (t) ≈
t∫

1

1
V (

√
s)
ds. (5.3)

If all ends are subcritical, then by (2.3) we have, for large t,

t∫
1

ds

V (
√
s)

≤ Ct

V (
√
t)
.

Since also

t∫
1

ds

V (
√
s)

≥
t∫

t/2

ds

V (
√
s)

≥ t

2V (
√
t)
,

we obtain that

G± (
t̃
)
≈ t

V (
√
t)
. (5.4)

If there exists at least one critical end, then V
(√

t
)
≈ t, and (5.3) implies, for large t,

G± (
t̃
)
≈ log t. (5.5)

Note that the exit probability ψi (x, t) depends only on the intrinsic geometry of Ei. Since each Mi satisfies 
(1.1) and (RCA), we can use the results of [13, Theorem 4.6] that gives the following: for all x ∈ Ei with 
large enough |x|,

ψEi
(x, t) �

⎧⎨
⎩

C|x|2 exp
(
−b|x|2/t

)
Vi(|x|)H(|x|) t < 2 |x|2 ,
C

H
(√

t
) ∫√

t

|x|
sds
Vi(s) , t ≥ 2 |x|2

(5.6)

and, for large enough |x| and t,

∂tψEi
(x, t) �

CH (|x|) exp
(
−b |x|2 /t

)
Vi

(√
t
) (

H (|x|) + H
(√

t
))

H
(√

t
) , (5.7)

where H is the function defined in (3.32). Note that in the case of bounded |x| the estimate (5.7) matches 
the estimate (3.40) used in the proof of Lemma 3.7.

If Mi is subcritical then H (r) ≈ r2/Vi (r). Substituting this into then (5.6) and (5.7), we obtain, for all 
large enough t and |x|,
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ψEi
(x, t) � Ce−b |x|2

t , (5.8)

∂tψEi
(x, t) � C

t
D(x, t)e−b |x|2

t , (5.9)

where D is defined in (2.14).
If Mi is critical then H (r) ≈ log r which yields

ψEi
(x, t) � CU(x, t)e−b |x|2

t , (5.10)

∂tψEi
(x, t) � C

t log tW (x, t)e−b |x|2
t , (5.11)

where U is defined in (2.15) and W is defined in (2.16).
Now we are in position to verify all the heat kernel estimates claimed in Theorem 2.3 for x ∈ Ei, y ∈ Ej

with i �= j. It suffices to prove all the estimates for large enough |x|, |y| and t. Then the estimates for all 
x ∈ Ei and y ∈ Ej (while t is still large enough) follow by application of the local Harnack inequality.

(i) If all ends are subcritical, then (5.1), (5.2), (5.4), (5.8), (5.9) yield:

p(t, x, y) � C

V (
√
t)

[1 + D(x, t) + D(y, t)] e−b |x|2+|y|2
t .

Observing that by (2.14) D (x, t) is bounded and that

|x|2 + |y|2 ≈ d2 (x, y)

we obtain (2.18).
(ii) Now let at least one of the ends be critical, so that V (r) ≈ r2.
(ii)1 Let Mi, Mj are subcritical, then (5.1), (5.2), (5.5), (5.8), (5.9) yield:

p(t, x, y) � C

t
(1 + (D(x, t) + D(y, t)) log t) e−b |x|2+|y|2

t ,

which proves (2.19).
(ii)2 Let both Mi and Mj be critical. Then we obtain from (5.1), (5.2), (5.5), (5.10), (5.11) that

p(t, x, y) � C

t
[U(x, t)U(y, t) + W (x, t)U (y, t) + U(x, t)W (y, t)] e−b |x|2+|y|2

t ,

that is, (2.20).
(ii)3 Let Mi be subcritical and Mj be critical. Then we obtain similarly

p(t, x, y) � C

t
[U (x, t) + D(x, t)U (y, t) log t + W (x, t)] e−b |x|2+|y|2

t .

By (2.17) we can replace here U + W by 1, which yields (2.21). �
For the proof of Theorems 2.4 and 2.5, we will use again the estimate (5.1) but this time we take A = Ei

and B = E′
i where E′

i = Ei \K ′ and K ′ is a closed ε-neighborhood of K for large enough ε. In this case we 
have B ⊂ A.

Note that, for all z1 ∈ ∂Ei and z2 ∈ ∂E′
i, the distance d (z1, z2) is bounded from above and below by 

positive constants. Hence, arguing as above, we obtain the same estimates of P± (t), G± (t) as stated in the 
proof of Theorem 2.3. The estimates of ψEi

and ∂tψEi
also remain the same. Clearly, ψE′

i
and ∂tψE′

i
satisfy 

similar estimates.
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To handle the term pA (t, x, y) = pEi
(t, x, y) in (5.1), we use the result of [12, Theorem 4.9] that says the 

following: for all t > 0 and all x, y ∈ Ei with large |x|, |y|,

pEi
(t, x, y) � C

Vi(x,
√
t)

(
H(|x|)

H(|x|) + H(
√
t)

)(
H(|y|)

H(|y|) + H(
√
t)

)
e−b d2

t ,

where d = d (x, y). If Mi is subcritical, then H(r) ≈ r2/V (r), which gives

pEi
(t, x, y) � C

D(x, t)D(y, t)
Vi(x,

√
t)

e−b d2
t . (5.12)

If Mi is critical, then H(r) ≈ log r, which gives

pEi
(t, x, y) � C

W (x, t)W (y, t)
Vi(x,

√
t)

e−b d2
t . (5.13)

For the proof of Theorems 2.4 and 2.5 we need the following lemma.

Lemma 5.1. For all x, y ∈ Ei and 
√
t ≥ min(|x|, |y|) we have

Ce−b |x|2+|y|2
t � C ′e−b′ d2(x,y)

t . (5.14)

Moreover, if 
√
t ≥ |x| then

C

Vi

(
x,

√
t
)e−b d2(x,y)

t � C ′

Vi

(√
t
)e−b′ d2(x,y)

t (5.15)

Proof. Set δ = diamK. The triangle inequality |x| + |y| + δ ≥ d(x, y) implies

e−b |x|2+|y|2
t ≤ e−b′ d2(x,y)−δ2

t ≤ C ′e−b′ d2(x,y)
t . (5.16)

To prove the opposite inequality, assume that |x| ≤
√
t (the case |y| ≤

√
t is similar). The triangle inequality

|y| ≤ |x| + δ + d(x, y)

implies

|x| + |y| ≤ 2 |x| + δ + d(x, y) ≤ 2
√
t + δ + d(x, y),

whence it follows that

|x|2 + |y|2

t
≤ b′

d2(x, y)
t

+ const.,

which completes the proof of (5.14).
To prove (5.15) observe first that by (5.14), the term d2 (x, y) in the both sides of (5.15) can be replaced 

by |x|2 + |y|2. The doubling property of Vi (x, r) yields

Vi

(
oi,

√
t
)

( √ ) ≤ C

(
1 + |x|√

)β

≤ Ceε
|x|2
t ,
Vi x, t t
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for arbitrarily small ε > 0, which implies that

C

Vi

(
x,

√
t
)e−b |x|2+|y|2

t ≤ C ′

Vi

(
o,
√
t
)eε |x|2

t e−b |x|2+|y|2
t

≤ C ′

Vi

(
o,
√
t
)e−b′ |x|2+|y|2

t . (5.17)

The opposite inequality is proved similarly. �
Proof of Theorem 2.4(a). We consider the same cases as in Theorem 2.3 and use the same estimates of all 
the terms in (5.1), except for the Dirichlet heat kernel. Note that the case (ii)3 cannot occur because x, y
are at the same end Ei.

(i) Assume that all ends are subcritical. Substituting (5.12), (5.2), (5.4), (5.8) and (5.9) into (5.1), we 
obtain

p(t, x, y) � C
D(x, t)D(y, t)

Vi(x,
√
t)

e−b d2
t

+ C

V (
√
t)

(1 + D(x, t) + D(y, t)) e−b |x|2+|y|2
t . (5.18)

By (2.14) and the assumption 
√
t ≤ min (|x| , |y|) we have

D (x, t) = D (y, t) = 1

and, hence,

p (t, x, y) � C

Vi(x,
√
t)
e−b d2(x,y)

t + C

V
(√

t
)e−b |x|2+|y|2

t . (5.19)

Using the volume doubling property of Vi, we obtain

1
V (

√
t)
e−b |x|2+|y|2

t = Vi(oi,
√
t)

Vmax(
√
t)

Vi(x,
√
t)

Vi(oi,
√
t)

1
Vi(x,

√
t)
e−b |x|2+|y|2

t

≤ C

(
1 + |x|√

t

)β 1
Vi(x,

√
t)
e−b |x|2+|y|2

t

≤ C ′

Vi(x,
√
t)
e−b′ d2(x,y)

t , (5.20)

which shows that the first term in (5.19) is dominant, hence yielding (2.22).
(ii) Let at least one of the ends be critical.
(ii)1 Let Mi be subcritical. In this case we have as above

p(t, x, y) � C

Vi(x,
√
t)
e−b d2

t + C
log t
t

e−b |x|2+|y|2
t . (5.21)

By (2.7) and the volume doubling property of Mi, we obtain

log t
e−b |x|2+|y|2

t = log t
Vi(oi,

√
t) 1√ Vi(x,

√
t)√ e−b |x|2+|y|2

t

t t Vi(x, t) Vi(oi, t)
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≤ C

Vi(x,
√
t)

(
1 + |x|√

t

)β

e−b |x|2+|y|2
t

≤ C ′

Vi(x,
√
t)
e−b′ d2(x,y)

t . (5.22)

Substituting (5.22) into (5.21), we obtain (2.22).
(ii)2 Let Mi be critical. Substituting (5.13), (5.2), (5.5), (5.10) and (5.11) into (5.1), we obtain

p(t, x, y) � C
W (x, t)W (y, t)

Vi(x,
√
t)

e−b d2
t

+ C

t
[U(x, t)U(y, t) + W (x, t)U (y, t) + W (y, t)U(x, t)] e−b |x|2+|y|2

t . (5.23)

By (2.16) and 
√
t ≤ min (|x| , |y|), we have

W (x, t) = W (y, t) = 1.

Substituting into (5.23) we obtain

p(t, x, y) � C

Vi(x,
√
t)
e−b d2

t

+ C

t
[U(x, t)U(y, t) + U (y, t) + U(x, t)] e−b |x|2+|y|2

t .

Since U is bounded, (5.20) implies that the second term is dominated by the first one, which yields (2.22). �
Proof of Theorem 2.4(b). Let Vi (r) ≈ Vmax (r). In the view of part (a), we can assume that 

√
t >

min (|x| , |y|). Since by the doubling property of Vi

C

Vi

(
x,

√
t
)e−b d2(x,y)

t � C ′

Vi

(
y,
√
t
)e−b′ d2(x,y)

t

(cf. (5.17)), the estimate (2.22) is symmetric in x, y. Hence, we can assume that 
√
t > |x|. As in Theorem 2.3, 

we can also assume that |x|, |y| are large enough.
(i) Let all the ends be subcritical. Then we have again (5.18). Using 

√
t > |x| and (5.14), we can replace 

e−b |x|2+|y|2
t in the right hand side of (5.18) by e−b d2(x,y)

t . Using further (5.15), we can replace Vi

(
x,

√
t
)

by 
Vi

(√
t
)

and, hence, by V
(√

t
)
, which yields

p (t, x, y) � C

V (
√
t)

(D(x, t)D(y, t) + 1 + D(x, t) + D(y, t)) e−b d2(x,y)
t ,

and which implies (2.22) since D(x, t), D(y, t) are bounded.
(ii) Let at least one of the ends be critical. Then by Vi (r) ≈ V (r), the end Mi has to be critical, 

too. As in the case (ii)2 of the proof of Theorem 2.4(a), we obtain again (5.23), where by (5.14) we can 

replace e−b |x|2+|y|2
t in the right hand side of (5.23) by e−b d2

t . Using further (5.15), we replace Vi

(
x,

√
t
)

by 
Vi

(√
t
)
≈ V

(√
t
)
≈ t, which yields

p(t, x, y) � C

t
[W (x, t)W (y, t) + U(x, t)U(y, t) + W (x, t)U (y, t) + W (y, t)U(x, t)] e−b d2

t

= C {W (x, t) + U(x, t)} {W (y, t) + U(y, t)} e−b d2
t .
t
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Using (2.17), we conclude (2.22). �
Proof of Theorem 2.5. As in Theorem 2.3, we can assume that |x|, |y| are large enough. Since 

√
t ≥

min (|x| , |y|) and the both estimates (2.23) and (2.24) are symmetric in x, y, so we can assume with-
out loss of generality that 

√
t ≥ |x|. Then, by Lemma 5.1, the function Vi

(
x,

√
t
)

in the estimates (5.12)
and (5.13) can be replaced by Vi

(√
t
)
.

(i) Assume that all ends are subcritical. Applying (5.14) to (5.18) and observing that the function D is 
bounded, we obtain (2.23).

(ii) Let at least one of the ends be critical. Since Mi is subcritical, substituting (5.12), (5.2), (5.5), (5.8)
and (5.9) into (5.1), we obtain

p(t, x, y) � C
D(x, t)D(y, t)

Vi(
√
t)

e−b d2
t + C

t
e−b |x|2+|y|2

t

+ C
log t
t

(D(x, t) + D(y, t)) e−b |x|2+|y|2
t ,

which together with (5.14) implies (2.24). �
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