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Convolution powers of complex functions on Zd

Evan Randles and Laurent Saloff-Coste

Abstract. The study of convolution powers of a finitely supported prob-
ability distribution φ on the d-dimensional square lattice is central to ran-
dom walk theory. For instance, the nth convolution power φ(n) is the dis-
tribution of the nth step of the associated random walk and is described
by the classical local limit theorem. Following previous work of P. Diaco-
nis and the authors, we explore the more general setting in which φ takes
on complex values. This problem, originally motivated by the problem
of Erastus L. De Forest in data smoothing, has found applications to the
theory of stability of numerical difference schemes in partial differential
equations. For a complex valued function φ on Zd, we ask and address
four basic and fundamental questions about the convolution powers φ(n)

which concern sup-norm estimates, generalized local limit theorems, point-
wise estimates, and stability. This work extends one-dimensional results
of I. J. Schoenberg, T. N.E. Greville, P. Diaconis and the second author
and, in the context of stability theory, results by V. Thomée and M.V. Fe-
doryuk.

1. Introduction

We denote by �1(Zd) the space of complex valued functions φ : Zd → C such that

‖φ‖1 =
∑
x∈Zd

|φ(x)| <∞.

For ψ, φ ∈ �1(Zd), the convolution product ψ ∗ φ ∈ �1(Zd) is defined by

ψ ∗ φ(x) =
∑
y∈Zd

ψ(x− y)φ(y)

for x ∈ Zd. Given φ ∈ �1(Zd), we are interested in the convolution powers
φ(n) ∈ �1(Zd) defined iteratively by φ(n) = φ(n−1) ∗ φ(1) for n ∈ N+ =: {1, 2, . . .},
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where φ(1) = φ. This study was originally motivated by problems in data smooth-
ing, namely De Forest’s problem, and it was later found essential to the theory of
approximate difference schemes for partial differential equations [9], [21], [27], [26];
the recent article [4] gives background and pointers to the literature.

In random walk theory, the study of convolution powers is of central im-
portance: given an independent sequence of random vectors X1, X2, . . . ∈ Zd,
all with distribution φ (here, φ ≥ 0), φ(n) is the distribution of the random
vector Sn = X1 + X2 + · · · + Xn. Equivalently, a probability distribution φ
on Zd gives rise to a random walk whose nth-step transition kernel kn is given
by kn(x, y) = φ(n)(y − x) for x, y ∈ Zd. For an account of this theory, we encour-
age the reader to see the wonderful and classic book of F. Spitzer [24] and, for a
more modern treatment, the recent book of G. Lawler and V. Limic [15] (see also
Subsection 7.6). In the more general case that φ takes on complex values (or just
simply takes on both positive and negative values), its convolution powers φ(n) are
seen to exhibit rich and disparate behavior, much of which never appears in the
probabilistic setting. Given φ ∈ �1(Zd), we are interested in the most basic and
fundamental questions that can be asked about its convolution powers. Here are
four such questions:

(i) What can be said about the decay of

‖φ(n)‖∞ = sup
x∈Zd

|φ(n)(x)|

as n→ ∞?

(ii) Is there a simple pointwise description of φ(n)(x), analogous to the local
(central) limit theorem, that can be made for large n?

(iii) Are global space-time pointwise estimates obtainable for |φ(n)|?
(iv) Under what conditions is φ stable in the sense that

(1.1) sup
n∈N+

‖φ(n)‖1 <∞?

The above questions have well-known answers in random walk theory. For
simplicity we discuss the case in which φ is a probability distribution on Zd whose
associated random walk is symmetric, aperiodic, irreducible and of finite range. In
this case, it is known that nd/2φ(n)(0) converges to a non-zero constant as n→ ∞
and this helps to provide an answer to Question (i) in the form of the following
two-sided estimate: for positive constants C and C ′,

C n−d/2 ≤ sup
x∈Zd

φ(n)(x) ≤ C′n−d/2

for all n ∈ N+. Concerning the somewhat finer Question (ii), the classical local
limit theorem states that

φ(n)(x) = n−d/2Gφ(n
−1/2x) + o(n−d/2)
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uniformly for x ∈ Zd, where Gφ is the generalized Gaussian density

Gφ(x) =
1

(2π)d

∫
Rd

exp
(− ξ · Cφξ

)
e−ix·ξ dξ

=
1

(2π)d/2
√
detCφ

exp
(
− x · Cφ

−1x

2

)
;(1.2)

here, Cφ is the positive definite covariance matrix associated to φ and · denotes
the dot product. As an application of this local limit theorem, one can easily
settle the question of recurrence/transience for random walks on Zd which was
originally answered by G. Pólya in the context of simple random walk [16]. For
general complex valued functions φ ∈ �1(Zd), Question (ii) is a question about the
validity of (generalized) local limit theorems and can be restated as follows: under
what conditions can the convolution powers φ(n) be approximated pointwise by
a combination (perhaps a sum) of appropriately scaled smooth functions – called
attractors? The answer for Question (iii) for a finite range, symmetric, irreducible
and aperiodic random walk is provided in terms of the so-called Gaussian estimate:
For positive constants C and M ,

φ(n)(x) ≤ Cn−d/2 exp(−M |x|2/n)
for all x ∈ Zd and n ∈ N+; here, |·| is the standard Euclidean norm. Such estimates,
with matching lower bounds on appropriate space-time regions, are in fact valid in a
much wider context, see [11]. Finally, the conservation of mass provides an obvious
positive answer to Question (iv) in the case that φ is a probability distribution.

Beyond the probabilistic setting, the study of convolution powers for com-
plex valued functions has centered mainly around two applications, statistical data
smoothing procedures and finite difference schemes for numerical solutions to par-
tial differential equations; the vast majority of the existing theory pertains only to
one dimension. In the context of data smoothing, the earliest (known) study was
motivated by a problem of Erastus L. De Forest. De Forest’s problem, analogous
to Question (ii), concerns the behavior of convolution powers of symmetric real
valued and finitely supported functions on Z and was addressed by I. J. Schoen-
berg [21] and T.N. E. Greville [9]. In the context of numerical solutions in partial
differential equations, the stability of convolution powers (Question (iv)) saw ex-
tensive investigation following World War II spurred by advancements in numerical
computing. For an approximate difference scheme to an initial value problem, the
property (1.1) is necessary and sufficient for convergence to a classical solution;
this is the so-called Lax equivalence theorem [19] (see Section 6). Property (1.1) is
also called power boundedness and can be seen in the context of Banach algebras
where φ is an element of the Banach algebra (�1(Zd), ‖ · ‖1) equipped with the
convolution product [22], [14].

In one dimension, Questions (i-iv) were recently addressed in the articles [4]
and [17]. For the general class of finitely supported complex valued functions on Z,
[17] completely settles Questions (i) and (ii). For instance, consider the following
theorem of [17].
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Theorem 1.1 (Theorem 1.1 of [17]). Let φ : Z → C have finite support consisting
of more than one point. Then there is a positive constant A and a natural number
m ≥ 2 for which

C n−1/m ≤ An‖φ(n)‖∞ ≤ C′n−1/m

for all n ∈ N+, where C and C ′ are positive constants.

In settling Question (ii), the article [17] gives an exhaustive account of local
limit theorems in which the set of possible attractors includes the Airy function and
the heat kernel evaluated at purely imaginary time. In addressing Question (iii),
the article [4] contains a number of results concerning global space-time estimates
for φ(n) for a finitely supported function φ – our results recapture (and extend in
the case of Theorem 1.8) these results of [4]. The question of stability for finitely
supported functions on Z was answered completely in 1965 by V. Thomée [26] (see
Theorem 6.1 below). In fact, Thomée’s characterization is, in some sense, the light
in the dark that gives the correct framework for the study of local limit theorems
in one dimension and we take it as a starting point for our study in Zd.

Moving beyond one dimension, the situation becomes more interesting still, the
theory harder and much remains open. As we illustrate, convolution powers exhibit
a significantly wider range of behaviors in Zd than is seen in Z (see Remark 1.5).
The focus of this article is to address Questions (i-iv) under some strong hypotheses
on the Fourier transform – specifically, we work under the assumption that, near
its extrema, the Fourier transform of φ is “nice” in a sense we will shortly make
precise. To this end, we follow the article [4] and generalize the results therein.
A complete theory for finitely supported functions on Zd, in which the results
of [17] will fit, is not presently known. Not surprisingly, our results recapture the
well-known results of random walk theory on Zd (see Subsection 7.6).

As a first motivating example, consider φ : Z2 → C defined by

φ(x, y) =
1

22 + 2
√
3
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8 (x, y) = (0, 0),

5 +
√
3 (x, y) = (±1, 0),

−2 (x, y) = (±2, 0),

i(
√
3− 1) (x, y) = (±1,−1),

−i(√3− 1) (x, y) = (±1, 1),

2∓ 2i (x, y) = (0,±1),

0 otherwise.

The graphs of Re(φ(n)) for (x, y) ∈ Z2 for −20 ≤ x, y ≤ 20 are displayed in
Figures 1a and 1b for n = 10 and n = 100 respectively. By inspection, one observes
that Re(φ(n)) decays in absolute value as n increases and, when n = 100, there is
an apparent oscillation of Re(φ(n)) in the y-direction. Our results explain these
observations.

For φ ∈ �1(Zd), its Fourier transform φ̂ : Rd → C is defined by

φ̂(ξ) =
∑
x∈Zd

φ(x) eix·ξ
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(a) Re(φ(n)) for n = 10. (b) Re(φ(n)) for n = 100.

Figure 1: The graphs of Re(φ(n)) for n = 10, 100.

for ξ ∈ Rd; this series is absolutely convergent. The standard Fourier inversion
formula holds for all φ ∈ �1(Zd) and moreover, for each n ∈ N+,

(1.3) φ(n)(x) =
1

(2π)d

∫
Td

e−ix·ξ φ̂(ξ)n dξ

for all x ∈ Zd where Td = (−π, π]d. Like the classical local limit theorem, our ar-

guments are based on local approximations of φ̂ and such approximations require φ̂
to have a certain amount of smoothness. In our setting the order of smoothness
needed in each case is not known a priori. For our purposes, it is sufficient (but
not necessary) to consider only those φ ∈ �1(Zd) with finite moments of all orders.
That is, we consider the subspace of �1(Zd), denoted by Sd, consisting of those φ
for which

‖xβφ(x)‖1 =
∑
x∈Zd

|xβφ(x)| =
∑
x∈Zd

|xβ1

1 xβ2

2 · · ·xβd

d φ(x)| <∞

for all multi-indices β = (β1, β2, . . . , βd) ∈ Nd. It is straightforward to see that

φ̂ ∈ C∞(Rd) whenever φ ∈ Sd. We note that Sd contains all finitely supported

functions mapping Zd into C; of course, when φ is finitely supported, φ̂ extends
holomorphically to Cd.

Before we begin to formulate our hypotheses, let us introduce some important
objects by taking motivation from probability. The quadratic form ξ �→ ξ · Cφξ
which appears in (1.2) is a positive definite polynomial in ξ and is homogeneous
in the following sense. For all t > 0 and ξ ∈ Rd,

(t1/2ξ) · Cφ(t
1/2ξ) = t ξ · Cφξ.

The map (0,∞) � t �→ t1/2I ∈ Gld(R) is a continuous (Lie group) homomorphism
from the multiplicative group of positive real numbers into Gld(R); here I is the
identity matrix in the set of d×d real matrices Md(R) and Gld(R) ⊆ Md(R) denotes
the group of invertible matrices. For any such continuous homomorphism t �→ Tt,
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{Tt}t>0 is a Lie subgroup of Gld(R), that is, a continuous one-parameter group;
the Hille–Yosida construction guarantees that all such groups are of the form

Tt = tE = exp((log t)E) =

∞∑
k=0

(log t)k

k!
Ek

for t > 0 for some E ∈ Md(R). The Appendix (Section 8) amasses some basic
properties of continuous one-parameter groups.

Definition 1.2. For a continuous function P : Rd → C and a continuous one-
parameter group {Tt} ⊆ Gld(R), we say that P is homogeneous with respect to
Tt = tE if

tP (ξ) = P (Ttξ)

for all t > 0 and ξ ∈ Rd. In this case E is a member of the exponent set of P ,
Exp(P ).

We say that P is positive homogeneous if the real part of P , R = ReP , is
positive definite (that is, R(ξ) ≥ 0 and R(ξ) = 0 only when ξ = 0) and if Exp(P )
contains a matrix E ∈ Md(R) whose spectrum is real.

Throughout this article, we concern ourselves with positive homogeneous mul-
tivariate polynomials P : Rd → C; their appearance is seen to be natural, although
not exhaustive, when considering local approximations of φ̂ for φ ∈ Sd. A given
positive homogeneous polynomial P need not be homogeneous with respect to a
unique continuous one-parameter group. For example, for eachm ∈ N+, ξ �→ |ξ|2m
is a positive homogeneous polynomial and it can be shown directly that

Exp(| · |2m) = (2m)−1I + o(d),

where o(d) ⊆ Md(R) is the set of anti-symmetric matrices (these arise as the Lie
algebra of the orthogonal group Od(R) ⊆ Gld(R)). It will be shown however that,
for a positive homogeneous polynomial P , trE = trE′ whenever E,E′ ∈ Exp(P );
this is Corollary 2.4. To a given positive homogeneous polynomial P , the corollary
allows us to uniquely define the number

(1.4) μP := trE

for any E ∈ Exp(P ). This number appears in many of our results; in particu-
lar, it arises in addressing the Question (i) in which it plays the role of 1/m in
Theorem 1.1.

We now begin to discuss the framework and hypotheses under which our the-
orems are stated. Let φ ∈ Sd be such that supξ∈Rd |φ̂(ξ)| = 1; this can always be
arranged by multiplying φ by an appropriate constant. Set

Ω(φ) = {ξ ∈ Td : |φ̂(ξ)| = 1}
and, for ξ0 ∈ Ω(φ), define Γξ0 : U ⊆ Rd → C by

Γξ0(ξ) = log
( φ̂(ξ + ξ0)

φ̂(ξ0)

)
,
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where U is a convex open neighborhood of 0 which is small enough to ensure that
log, the principal branch of logarithm, is defined and continuous on φ̂(ξ+ξ0)/φ̂(ξ0)

for ξ ∈ U . Because φ̂ is smooth, Γξ0 ∈ C∞(U) and so we can use Taylor’s theorem
to approximate Γξ0 near 0. In this article, we focus on the case in which the Taylor
expansion yields a positive homogeneous polynomial. The following definition,
motivated by Thomée [26], captures this notion.

Definition 1.3. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and let ξ0 ∈ Ω(φ). We

say that ξ0 is of positive homogeneous type for φ̂ if the Taylor expansion for Γξ0

about 0 is of the form

(1.5) Γξ0(ξ) = i αξ0 · ξ − Pξ0(ξ) + Υξ0(ξ),

where αξ0 ∈ Rd, Pξ0 is a positive homogeneous polynomial and Υξ0(ξ) = o(Rξ0(ξ))
as ξ → 0; here Rξ0 = RePξ0 . We say that αξ0 is the drift associated to ξ0.

Though not obvious at first glance, αξ0 and Pξ0 of the above definition are
necessarily unique. When looking at any given Taylor polynomial, it will not
always be apparent when the conditions of the above definition are satisfied. In
Section 3, there is a discussion concerning this, and therein, necessary and sufficient
conditions are given for ξ0 ∈ Ω(φ) to be of positive homogeneous type for φ̂.

Our theorems are stated under the assumption that for φ ∈ Sd, sup |φ̂(ξ)| = 1

and each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. As we show in Section 3,
these hypotheses ensure that the set Ω(φ) is finite and in this case we set

(1.6) μφ = min
ξ∈Ω(φ)

μPξ
.

This is admittedly a slight abuse of notation. We are ready to state our first main
result.

Theorem 1.4. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and suppose that each

ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. Then

(1.7) C ′n−μφ ≤ ‖φ(n)‖∞ ≤ C n−μφ

for all n ∈ N+, where C and C ′ are positive constants.

The theorem above is a partial answer to Question (i) and nicely complements
Theorem 1.1 and the results of [4]. We note however that, in view of the wider
generality of Theorem 1.1, Theorem 1.4 is obviously not the final result in Zd on
this matter (see the discussion of tensor products in Subsection 7.4).

Returning to our motivating example and with the aim of applying Theo-
rem 1.4, we analyze the Fourier transform of φ. We have

φ̂(η, ζ) =
1

11 +
√
3

(
4− 2 cos(2η) + (5 +

√
3 ) cos(η) + 2(cos(ζ) + sin(ζ))

+ (2
√
3 + 2) cos(η) sin(ζ)

)
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for (η, ζ) ∈ R2. One easily sees that sup |φ̂| = 1 and that |φ̂| is maximized in T2

at only one point (0, π/3) and here, φ̂(0, π/3) = 1. As is readily computed,

Γ(η, ζ) = log
( φ̂(η, ζ + π/3)

φ̂(0, π/3)

)
= log(φ̂(η, ζ + π/3))

=
−11

11+
√
3
η4 +

7−6
√
3

118
η2ζ − 2

11+
√
3
ζ2 +O(|η|5) +O(|η4ζ|) +O(|ηζ|2) +O(|ζ|3)

as (η, ζ) → 0. Let us study the polynomial

P (η, ζ) =
1

22 + 2
√
3

(
2η4 + (

√
3− 1)η2ζ + 4ζ2

)
,

which leads this expansion. It is easily verified that P = ReP is positive definite
and

P (tE(η, ζ)) = P (t1/4η, t1/2ζ) = tP (η, ζ) with E =

(
1/4 0
0 1/2

)
for all t > 0 and (η, ζ) ∈ R2 and therefore P is a positive homogeneous polynomial
with E ∈ Exp(P ). Upon rewriting the error in the Taylor expansion, we have

Γ(η, ζ) = −P (η, ζ) + Υ(η, ζ)

where Υ(η, ζ) = o(P (η, ζ)) as (η, ζ) → (0, 0) and so it follows that (0, π/3) is of

positive homogeneous type for φ̂ with corresponding α = (0, 0) ∈ R2 and positive
homogeneous polynomial P . Consequently, φ satisfies the hypotheses of Theo-
rem 1.4 with μφ = μP = trE = 3/4 and so

C′n−3/4 ≤ ‖φ(n)‖∞ ≤ C n−3/4

for all n ∈ N+, where C and C′ are positive constants. With the help of a local
limit theorem, we will shortly describe the pointwise behavior of φ.

Coming back to the general setting, we now introduce the attractors which
appear in our main local limit theorem. For a positive homogeneous polynomial P ,

define H
(·)
P : (0,∞)× Rd → C by

(1.8) Ht
P (x) =

1

(2π)d

∫
Rd

e−tP (ξ)e−ix·ξ dξ

for t > 0 and x ∈ Rd; we write HP (x) = H1
P (x). As we show in Section 2, for

each t > 0, Ht
P (·) belongs to the Schwartz space, S(Rd), and moreover, for any

E ∈ Exp(P ),

(1.9) Ht
P (x) =

1

ttrE
HP (t

−E∗
x) =

1

tμP
HP (t

−E∗
x)

for all t > 0 and x ∈ Rd; here E∗ is the adjoint of E. These function arise naturally
in the study of partial differential equations. For instance, consider the partial
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differential operator ∂t + ΛP , where ΛP := P (D), called a positive homogeneous
operator, is defined by replacing the d-tuple ξ = (ξ1, ξ2, . . . , ξd) in P (ξ) by the
d-tuple of partial derivatives D = (i∂x1, i∂x2 , . . . , i∂xd

). The associated Cauchy
problem for this operator can be stated thus: given initial data f (from a suitable
class of functions), find u(x, t) satisfying

(1.10)

{
(∂t + ΛP )u(x, t) = 0, x ∈ Rd, t > 0,

u(0, x) = f(x), x ∈ Rd.

In this context, H
(·)
P is a fundamental solution to (1.10) in the sense that the

representation

(1.11) u(x, t) = (e−tΛP f)(x) =

∫
Rd

H
(t)
P (x− y)f(y) dy

satisfies (∂t + ΛP )u = 0 and has u(t, ·) → f as t → 0 in an appropriate topology.

Equivalently, H
(·)
P is the integral kernel of the semigroup e−tΛP with infinitesimal

generator ΛP . The Cauchy problem for the setting in which ΛP is replaced by an
operator H which depends on x and is uniformly comparable to (−Δ)m = Λ|·|2m
is the subject of (higher order) parabolic partial differential equations and its
treatment can be found in the classic texts [6] and [8] (see also [1] and [2]). The
recent article [18] considers the more general setting in which a partial differential
operators H , with sufficiently regular coefficients, is uniformly comparable to a
positive homogeneous operator. In the present article, we shall only need a few

basic facts concerning H
(·)
P .

Remark 1.5. When d = 1, every positive homogeneous polynomial is of the form
P (ξ) = βξm where Reβ > 0 and m is an even natural number. In this case, HP

is equal to the function Hβ
m of [17]. We note that the simplicity of the dilation

structure in one dimension is in complete contrast with the natural complexity of
the multi-dimensional analogue seen in this article.

For our next main theorem which addresses Question (ii), we restrict our at-
tention to the set of points {ξ1, ξ2, . . . , ξA} ⊆ Ω(φ) for which μPξq

= μφ for

q = 1, 2, . . . , A; the points ξ ∈ Ω(φ) for which μPξ
> μφ (if there are any) are

not seen in local limits. Finally for each ξq for q = 1, 2, . . . , A, we set αq = αξq

and Pq = Pξq . The following local limit theorem addresses Question (ii).

Theorem 1.6. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and suppose that every point

ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. Let μφ be defined by (1.6) and let
ξ1, ξ2, . . . , ξA, α1, α2, . . . , αA, and P1, P2, . . . , PA be as in the previous paragraph.
Then

(1.12) φ(n)(x) =

A∑
q=1

e−ix·ξq φ̂(ξq)nHn
Pq
(x− nαq) + o(n−μφ)

uniformly for x ∈ Zd.
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Let us make a few remarks about this theorem. First, the attractors Hn
Pq

ap-

pearing in (1.12) are rescaled versions of HPq = H1
Pq

in view of (1.9), and all decay

in absolute value on the order n−μφ – this is consistent with Theorem 1.4. Second,
the attractors HPq (x) often exhibit slowly varying oscillations as |x| increases (see
Subsection (7.1)), however, the main oscillatory behavior, which is present in Fig-

ure 1b, is a result of the prefactor e−ix·ξq φ̂(ξq). This is, of course, a consequence

of φ̂ being maximized away from the origin. In Subsection 7.6, we will see that
when φ is a probability distribution, all of the attractors in (1.12) are identical and
the prefactors collapse into a single function, Θ, which nicely describes the sup-
port of φ(n) and hence periodicity of the associated random walk (see Theorems 7.6
and 7.7).

Taking another look at our motivating example, we note that the hypotheses
of Theorem 1.4 are precisely the hypotheses of Theorem 1.6 and so an application
of the local limit theorem is justified, where, because Ω(φ) is a singleton, the sum
in (1.12) consists only of one term. We have

φ(n)(x, y) = e−i(x,y)·(0,π/3)φ̂((0, π/3))nHn
P (x, y) + o(n−μφ)

= e−iπy/3Hn
P (x, y) + o(n−3/4)

uniformly for (x, y) ∈ Z2. To illustrate this result, the graphs of Re(e−iπy/3Hn
P ) for

(x, y) ∈ Z2 for −20 ≤ x, y ≤ 20 are displayed in Figures 2a and 2b for n = 10 and
n = 100 respectively for comparison against Figures 1a and 1b. The oscillation in
the y-direction is now explained by the appearance of the multiplier e−iπy/3 and
is independent of n.

(a) Re(e−iπy/3Hn
P ) for n = 10. (b) Re(e−iπy/3Hn

P ) for n = 100.

Figure 2: The graphs of Re(e−iπy/3Hn
P ) for n = 10, 100.

To address Question (iii) and obtain pointwise estimates for the φ(n), we re-
strict our attention to those φ : Zd → C with finite support. In this article, we
present two theorems concerning pointwise estimates for |φ(n)(x)|. The most gen-
eral result, in addition to requiring finite support for φ, assumes the hypotheses
of Theorem 1.6; this is Theorem 5.12. The other result, Theorem 1.8, additionally
assumes that all ξ ∈ Ω(φ) have the same corresponding drift αξ = α ∈ Rd and
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positive homogeneous polynomial P = Pξ – a condition which is seen to be quite
natural by taking a look at Subsections 7.3 and 7.6, although not necessary, see
Remark 5.3. Theorem 1.8 extends the corresponding 1-dimensional result, Theo-
rem 3.1 of [4], to d-dimensions and, even in 1-dimension, is seen to be an improve-
ment. In addition to global pointwise estimates for φ(n), in Section 5 we present a
variety of results which give global pointwise estimates for discrete space and time
derivatives of φ(n). In what follows, we describe the statement of Theorem 1.8 as
it is the simplest.

For simplicity, assume that φ : Zd→ C is finitely supported, satisfies supξ |φ̂| = 1

and Ω(φ) consists of only one point ξ0 which is of positive homogeneous type for φ̂.
In this case, we use Theorem 1.6 to motivate the correct form for pointwise esti-
mated for φ(n). The theorem gives the approximation

(1.13) φ(n)(x) = e−ix·ξ0 φ̂(ξ0)nHn
P (x− nα) + o(n−μP )

uniformly for x ∈ Zd, where P = Pξ0 is positive homogeneous and α = αξ0 ∈ Rd.
Pointwise estimates for the attractor HP can be deduced with the help of the
Legendre–Fenchel transform, a central object in convex analysis [20], [28]. The
Legendre–Fenchel transform of R = ReP is the function R# : Rd → R defined by

R#(x) = sup
ξ∈Rd

{x · ξ −R(ξ)}.

It is evident that R#(x) ≥ 0 and, for E ∈ Exp(P ),

tR#(x) = sup
ξ∈Rd

{
tx · ξ −R(tEξ)

}
= R#

(
t(I−E)∗x

)
for all t > 0 and x ∈ Rd, i.e., (I − E)∗ ∈ Exp(R#). It turns out that R# is
necessarily continuous and positive definite (Proposition 8.15). In Section 2, we
establish the following pointwise estimates forHP . There exist positive constants C
and M such that

(1.14) |Ht
P (x)| ≤

C

ttrE
exp(−MR#(t−E∗

x)) =
C

tμP
exp(−tMR#(x/t))

for all x ∈ Rd and t > 0.

Remark 1.7. In the special case that P (ξ) = |ξ|2m, E = (2m)−1I ∈ Exp(P ) and
one can directly compute R#(x) = Cm|x|2m/(2m−1) where Cm = (2m)−1/(2m−1) −
(2m)−2m/(2m−1) > 0. Here, the estimate (1.14) takes the form

Ht
|·|2m(x) ≤ C

td/2m
exp

(−M |x|2m/(2m−1)/t1/(2m−1)
)

for t > 0 and x ∈ Rd and so we recapture the well-known off-diagonal estimate for
the semigroup e−t(−Δ)m , [8], [6], [1], [2]. In the context of local limit theorems,
H|·|2m is seen to be the attractor of the convolution powers of κm = δ0−(δ0−κ)(m)

where κ is the probability distribution assigning 1/2 probability to 0 and 1/(4d)
probability to ±ej for j = 1, 2, . . . , d; here and in what follows, e1, e2, . . . , ed denote
the standard Euclidean basis vectors of Rd.
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In view of (1.13) and the preceding discussion, one expects an estimate of
the form (1.14) to hold for φ(n), although, we note that no such estimate can be
established on these grounds (this is due to the error term in (1.13)). This however
motivates the correct form and we are able to establish the following result which
captures, as a special case, the situation described above in which Ω(φ) = {ξ0}.

Theorem 1.8. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)|=1.

Suppose that every point of ξ ∈ Ω(φ) is of positive homogeneous type for φ̂ and ev-
ery ξ ∈ Ω(φ) has the same drift α = αξ ∈ Rd and positive homogeneous polynomial
P = Pξ. Also let μφ = μP be defined by (1.4) and let R# be the Legendre–Fenchel
transform of R = ReP . Then there exists C,M > 0 for which

(1.15) |φ(n)(x)| ≤ C

nμφ
exp

(
− nMR#

(x− nα

n

))
for all n ∈ N+ and x ∈ Zd.

Revisiting, for a final time, our motivating example, we note that φ also satisfies
the hypotheses of Theorem 1.8. An appeal to the theorem gives constants C,M > 0
for which

(1.16) |φ(n)(x, y)| ≤ C

n3/4
exp

(−nMR#((x, y)/n)
)

for all n ∈ N+ and for all (x, y) ∈ Z2, where R# is the Legendre–Fenchel transform
of R = ReP = P . Instead of finding a closed-form expression for R#, which is not
particularly illuminating, we simply remark that

(1.17) R#(x, y) � |x|4/3 + |y|2,

where � means that the ratio of the functions is bounded above and below by
positive constants ((1.17) is straightforward to establish and can be seen as conse-
quence of Corollary 8.16). Upon combining (1.16) and (1.17), we obtain constants
C,M > 0 for which

|φ(n)(x, y)| ≤ C

n3/4
exp

(
−nM

(∣∣∣x
n

∣∣∣4/3+ ∣∣∣ y
n

∣∣∣2)) ≤ C

n3/4
exp

(
−M

( |x|4/3
n1/3

+
|y|2
n

))
for all n ∈ N+ and for all (x, y) ∈ Z2. This result illustrates the anisotropic
exponential decay of n3/4|φ(n)(x, y)| for each n ∈ N+.

Back within the general setting and continuing under the assumption that
φ : Zd → C is finitely supported, we come to the final question posed at the be-
ginning of this introduction, Question (iv). The following result extends the (af-
firmative) results of V. Thomée [26] and M.V. Fedoryuk [7] (see also Theorem 7.5
of [22]).

Theorem 1.9. Let φ : Zd → C be finitely supported and such that supξ |φ̂(ξ)| = 1.

Suppose additionally that each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂.
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Then, there exists a positive constant C for which

‖φ(n)‖1 =
∑
x∈Zd

|φ(n)(x)| ≤ C

for all n ∈ N+.

This article is organized as follows. Section 2 outlines the basic theory of
positive homogeneous polynomials and their corresponding attractors. Section 3
focuses on the local behavior of φ̂ wherein necessary and sufficient condition are
given to ensure that a given ξ0 ∈ Ω(φ) is of positive homogeneous type for φ̂. In
Section 4, we prove the main local limit theorem, Theorem 1.6, and deduce from
it Theorem 1.4. Section 5 focuses on global space-time bounds for φ(n) in the
case that φ is finitely supported. In addition to the proof of Theorem 1.8, Sub-
section 5.1 contains a number of results concerning global exponential estimates
for discrete space and time differences of φ(n). In Subsection 5.2, we prove global
sub-exponential estimates for φ(n) in the general case that φ, in addition to being
finitely supported, satisfies the hypotheses of Theorem 1.9; this is Theorem 5.12.
In Section 6, after a short discussion on stability of numerical difference schemes
in partial differential equations, we present Theorem 1.9 as a consequence of The-
orem 5.12. Section 7 contains a number of concrete examples, mostly in Z2, to
which we apply our results; the reader is encouraged to skip ahead to this section
as it can be read at any time. We end Section 7 by showing, from our perspective,
some results on the classical theory of random walks on Zd. The Appendix, Sec-
tion 8, contains a number of linear-algebraic results which highlight the interplay
between one-parameter contracting groups and positive homogeneous functions.

Notation. For y ∈ Zd, δy : Z
d → {0, 1} is the standard delta function defined

by δy(y) = 1 and δy(x) = 0 for x �= y. For any subset A of R, A+ denotes the
subset of positive elements of A. Given M ∈ Md(R), its corresponding linear
transformation on Rd is denoted by LM . For any r > 0, we denote the open unit
ball with center x ∈ Rd by Br(x) and the closed unit ball by Br(x). When x = 0,
we write Br = Br(0) and denote by Sr = ∂Br the sphere of radius r. Further, when
r = 1, we write B = B1 and S = S1. We define a d-dimensional floor function by
�·� : Rd → Zd by �x� = (�x1�, �x2�, . . . , �xd�) for x ∈ Rd where �xk� is the integer
part of xk for k = 1, 2, . . . d; this is admittedly a slight abuse of notation. Given
n = (n1, n2, . . . , nd) ∈ (N+)

d = Nd
+ and a multi-index β ∈ Nd, put

|β : n| =
d∑

k=1

βk
nk

;

this is consistent with Hörmander’s notation for semi-elliptic operators and poly-
nomials [12]. For any two real functions f, g on a set X , we write f � g when there
are positive constants C and C′ for which Cg(x) ≤ f(x) ≤ C ′g(x) for all x ∈ X .
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2. Positive homogeneous polynomials and attractors

In this section, we study positive homogeneous polynomials and their correspond-
ing attractors; let us first give some background. In Hörmander’s treatise [12],
polynomials of the form

Q(ξ) =
∑

|β:m|≤1

aβ ξ
β

for m ∈ Nd
+ are called semi-elliptic provided their principal part,

Qp(ξ) =
∑

|β:m|=1

aβ ξ
β,

is non-degenerate, that is, Qp(ξ) �= 0 whenever ξ �= 0. For a semi-elliptic poly-
nomial Q, its corresponding partial differential operator ΛQ = Q(D), called a
semi-elliptic operator, is hypoelliptic in the sense that all ΛQ-harmonic distribu-
tions are smooth. What appears to be the most desirable property of semi-elliptic
polynomials is the way that they scale in the sense that

Qp(t
1/m1ξ1, t

1/m2ξ2, . . . , t
1/mdξd)

=
∑

|β:m|=1

aβ

d∏
j=1

(t1/miξj)
βj =

∑
|β:m|=1

t|β:m| aβ ξβ = tQp(ξ)

for all t > 0 and ξ ∈ Rd. This property, used explicitly by Hörmander, is precisely
the statement that E = diag(1/m1, 1/m2, . . . , 1/md) ∈ Exp(Qp), in view of Defini-
tion 1.2. Further, the associated one-parameter group {Tt} = {tE} has the useful
property that it dilates and contracts space. The following definition captures this
behavior in general (see Section 1.1. of [10]).

Definition 2.1. Let {Tt}t>0 ⊆ Gld(R) be a continuous one-parameter group. We
say that {Tt} is contracting if

lim
t→0

‖Tt‖ = 0.

Here and in what follows, ‖ · ‖ denotes the operator norm on Gld(R).

To keep in mind, the canonical example of a contracting group is {tD} where
D = diag(γ1, γ2, . . . , γd) ∈ Md(R) with γi > 0 for i = 1, 2, . . . , d and here, it is
easily seen that tD = diag(tγ1 , tγ2 , . . . , tγd) for t > 0. Some basic results concern-
ing contracting groups are given in the Appendix and are used throughout this
article. As we will see shortly, for any positive homogeneous polynomial P , tE is
a contracting group for any E ∈ Exp(P ).

Of interest for us is the subclass of semi-elliptic polynomials of the form

(2.1) P (ξ) =
∑

|β:2m|=1

aβ ξ
β =

∑
|β:m|=2

aβ ξ
β ,
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where m ∈ Nd
+, {aβ} ⊆ C and ReP is positive definite. For these polynomials, it

is easy to see that the corresponding partial differential operator ∂t + ΛP is semi-
elliptic in the sense of Hörmander and hence hypoelliptic. By a slight abuse of
language, any reference to a semi-elliptic polynomial is a reference to a polynomial
of the form (2.1). It is straightforward to see that all such semi-elliptic polynomials
are positive homogeneous and have D = diag((2m1)

−1, (2m2)
−1, . . . , (2md)

−1) ∈
Exp(P ). However, not all positive homogeneous polynomials are semi-elliptic as
the example of Subsection 7.3 illustrates. As our first result of this section shows,
every positive homogeneous polynomial has a coordinate system in which it is
semi-elliptic.

Proposition 2.2. Let P be a positive homogeneous polynomial and let E ∈ Exp(P )
have real spectrum. There exist A ∈ Gld(R) and {m1,m2, . . . ,md} ⊆ N+ for which

(2.2) A−1EA = diag((2m1)
−1, (2m2)

−1, . . . , (2md)
−1)

and

(2.3) (P ◦ LA)(ξ) =
∑

|β:m|=2

aβ ξ
β for ξ ∈ Rd.

Proof. In light of the fact that the spectrum of E is real, the characteristic poly-
nomial for E factors completely over R and so we may apply the Jordan–Chevally
decomposition. This gives A ∈ Gld(R) for which F := A−1EA = D +N where D
is a diagonal matrix, N is a nilpotent matrix and ND = DN . It is evident that
Q := (P ◦ LA) is a polynomial and so we can write

(2.4) Q(ξ) =
∑
β

aβ ξ
β

for all ξ ∈ Rd. In fact, our hypothesis guarantees that Q is positive homogeneous
and F ∈ Exp(Q). Our proof proceeds in three steps, first we show that D ∈
Exp(Q). Second, we determine the spectrum of D. In the final step we show
that N = 0.

Step 1. We have

(2.5) tQ(ξ) = Q(tF ξ) = Q(tD+Nξ) = Q(tN tDξ)

for all t > 0 and ξ ∈ Rd where D = diag(γ1, γ2, . . . , γd) for γ1, γ2, . . . γd ∈ R.
Because N is nilpotent,

tN = I +
log t

1
N + · · ·+ (log t)k

k!
Nk,

where k + 1 is the index of N . Thus by (2.5), for all t > 0 and ξ ∈ Rd,

(2.6) tQ(t−Dξ) = Q
(
ξ + (log t)Nξ + · · ·+ (log t)k

k!
Nkξ

)
= Q(ξ) + SN (ξ, log t),



1060 E. Randles and L. Saloff-Coste

where SN is a polynomial on Rd × R with no constant term. Consequently, for
each ξ ∈ Rd we may write

(2.7) SN (ξ, x) =

l∑
j=1

bj(ξ)x
j ,

where bj(ξ) ∈ C for each j.
Let us now fix a non-zero ξ ∈ Rd. Combining (2.4), (2.6) and (2.7) yields

∑
β

aβ t
(1−β·γ) ξβ = Q(ξ) +

l∑
j=1

bj(ξ) (log t)
j

for all t > 0, where β · γ = β1γ1 + β2γ2 + · · · + βdγd and necessarily Q(ξ) �= 0.
Since distinct real powers of t and log t are linearly independent as C∞ functions
for t > 0, it follows that bj(ξ) = 0 for each j, and more importantly,

(2.8) Q(ξ) =
∑

β·γ=1

aβ ξ
β .

Since ξ was arbitrary, (2.8) must hold for all ξ ∈ Rd and from this we see that

(2.9) Q(tDξ) =
∑

β·γ=1

aβ(t
Dξ)β =

∑
β·γ=1

aβ t
β·γ(ξ)β = tQ(ξ)

for all t > 0 and ξ ∈ Rd; hence D ∈ Exp(Q).

Step 2. Writing RQ = ReQ, it follows from (2.8) that

(2.10) RQ(ξ) =
∑

β·γ=1

cβ ξ
β

for all ξ ∈ Rd where cβ = Re aβ for each multi-index β. Now for each i = 1, 2, . . . , d,
xei is an eigenvector of D with eigenvalue γi for all non-zero x ∈ R; here ei is that
of the standard Euclidean basis. Using the positive definiteness of RQ, for all t > 0
and x �= 0, we have

tRQ(xei) = RQ(t
D(xei)) = RQ(t

γixei) = t(|β|γi)cβx
|β| > 0

where β is the only surviving multi-index from the sum in (2.10) and necessarily β
is an integer multiple of ei. From this we see that |β| must be even for otherwise
positivity would be violated and also that 1/γi = |β| =: 2mi as claimed.

Step 3. In view of the previous step,

(2.11) tD = diag
(
t(2m1)

−1

, t(2m2)
−1

, . . . , t(2md)
−1)

for all t > 0 and so {tD}t>0 is a one-parameter contracting group. Using the
positive definiteness of RQ, it follows from Proposition 8.5 that

(2.12) lim
|ξ|→∞

RQ(ξ) ≥ lim
t→∞ inf

η∈S
RQ(t

Dη) ≥ lim
t→∞ t inf

η∈S
RQ(η) = ∞.
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Now because D commutes with F and D ∈ Exp(RQ),

RQ(ξ) = tt−1RQ(ξ) = RQ(t
F t−Dξ) = RQ(t

N ξ)

for t > 0 and ξ ∈ Rd. Our goal is to show that N = 0. For suppose that N �= 0,
then for some ξ ∈ Rd, ν = Nξ �= 0 but Nν = 0. Then,

RQ(ξ) = RQ(t
Nξ) = RQ

(
ξ + (log t)Nξ +

(log t)2

2!
(N)2ξ + · · ·

)
= RQ(ξ + (log t)ν)

for all t > 0. This however cannot hold for its validity would contradict (2.12),
and so N = 0 as desired. �

Proposition 2.3. If P is a positive homogeneous polynomial then Sym(P ) :=
{O ∈ Md(R) : P (Oξ) = P (ξ) for all ξ ∈ Rd} is a compact subgroup of Gld(R) and
hence a subgroup of the orthogonal group, Od(R).

Proof. It is clear that I ∈ Sym(P ) and that for any O1, O2 ∈ Sym(P ), O1O2 ∈
Sym(P ). If O ∈ Sym(P ), R(Oξ) = R(ξ) for all ξ ∈ Rd where R = ReP . The
positive definiteness of R implies that KerO is trivial and hence O ∈ Gld(R).
Consequently, P (O−1ξ) = P (OO−1ξ) = P (ξ) for all ξ ∈ Rd and hence O−1 ∈
Sym(P ).

It remains to show that Sym(P ) is compact and so, in view of the Heine–Borel
theorem, we show that Sym(P ) is closed and bounded. To see that Sym(P ) is
closed, let {On} ⊆ Sym(P ) be such that On → O ∈ Md(R). Then the continuity
of P implies that for all ξ ∈ Rd,

P (Oξ) = lim
n
P (Onξ) = P (ξ)

and so O ∈ Sym(P ).
To show that Sym(P ) is bounded, we first make an observation from the proof

of Proposition 2.2. Assuming the notation therein, we conclude from (2.12) that

(2.13) lim
|ξ|→∞

R(ξ) = ∞

because R(ξ) = RQ(A
−1ξ) for all ξ ∈ Rd. Finally, to reach a contradiction, we

assume that Sym(P ) is not bounded. Then there exist sequences {On} ⊆ Sym(P )
and {ξn} ⊆ S for which limn |Onξn| = ∞. Observe however that

R(Onξn) = R(ξn) ≤ sup
ξ∈S

R(ξ) <∞

for all n; in view of (2.13) we have obtained our desired contradiction. �

Corollary 2.4. Let P be a positive homogeneous polynomial. Then for any E,E′ ∈
Exp(P ),

tr(E) = tr(E′).
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Proof. For E,E′ ∈ Exp(P ), it follows immediately that tEt−E′ ∈ Sym(P ) for all
t > 0. In view of Proposition 2.3,

ttrE−trE′
= |ttrEt− trE′ | = | det(tE) det(t−E′

)| = | det(tEt−E′
)| = 1

for all t > 0; here we have used the fact that the trace of a real matrix is real
and that the determinant maps Od(R) into the unit circle. The corollary follows
immediately. �

Lemma 2.5. Let P be a positive homogeneous polynomial. For any E ∈ Exp(P ),
the continuous one-parameter group {tE}t>0 is contracting.

Proof. First let E0 ∈ Exp(P ) have real spectrum. In view of Proposition 2.2,

A−1tE0A = diag(tγ1 , tγ2 , . . . , tγd)

for all t > 0 where 0 < γi < 1/2 for i = 1, 2, . . . , d. By inspection, we can
immediately conclude that {tE0}t>0 is contracting. Now for any E ∈ Exp(P ),
tEt−E0 ∈ Sym(P ) ⊆ Od(R) for all t > 0 by virtue of Proposition 2.3; from this it
follows immediately that {tE} is contracting. �

We now turn to the study of the attractors appearing in Theorem 1.6; these are

of the form H
(·)
P , defined by (1.8), where P is a positive homogeneous polynomial.

Proposition 2.6. Let P be a positive homogeneous polynomial with R = ReP .
The following is true:

i) For any t > 0, H
(t)
P (·) ∈ S(Rd).

ii) If E ∈ Exp(P ) then, for all t > 0 and x ∈ Rd,

H
(t)
P (x) =

1

ttrE
H1

P (t
−E∗

x) =
1

tμP
HP (t

−E∗
x),

where E∗ is the adjoint of E.

iii) There exist constants C,M > 0 such that∣∣H(t)
P (x)

∣∣ ≤ C

tμP
exp(−tMR#(x/t))

for all t > 0 and x ∈ Rd.

Proof. To prove items i) and ii), it suffices only to show that HP = H1
P ∈ S(Rd).

Indeed, if HP ∈ S(Rd) then, in particular, e−P ∈ L1(Rd) and so the change-of-
variables formula guarantees that, for any t > 0 and x ∈ Rd,

Ht
P (x) =

1

(2π)d

∫
Rd

e−tP (ξ)e−ix·ξ dξ =
1

(2π)d

∫
Rd

e−P (tEξ)e−ix·ξ dξ

=
1

(2π)d

∫
Rd

e−P (ξ)e−ix·(t−Eξ) det(t−E) dξ =
t− trE

(2π)d

∫
Rd

e−P (ξ)e−i(t−E∗
x)·ξ dξ

= t−μPHP (t
−E∗

x)

whenever E ∈ Exp(P ). From this the validity of item ii) is clear but moreover, the
formula ensures that that Ht

P ∈ S(Rd) for all t > 0.
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In view of (1.8), HP ∈ S(Rd) if and only if e−P ∈ S(Rd) because the Fourier
transform is an isomorphism of S(Rd). Also, for any A ∈ Gld(R), it is clear that
e−P ∈ S(Rd) if and only if e−P◦LA . Hence, to show that HP ∈ S(Rd) it suffices
to show that e−P◦LA ∈ S(Rd) for some A ∈ Gld(R). This is precisely what we do
now: let E ∈ Exp(P ) have real spectrum and correspondingly, take A ∈ Gld(R)
as guaranteed by Proposition 2.2. As in the proof of the proposition, we write
Q = P ◦ LA, RQ = ReQ and D = diag((2m1)

−1, (2m2)
−1, . . . , (2md)

−1). It is
clear that e−Q ∈ C∞(Rd). Let μ and β be multi-indices and observe that

‖e−Q‖μ,β := sup
ξ∈Rd

∣∣ξμDβe−Q
∣∣ = sup

ξ∈Rd

∣∣Qμ,β(ξ) exp(−Q(ξ))
∣∣,

where Qμ,β is a polynomial. Using Proposition 8.5 and the continuity of Qμ,βe
−Q,

it follows that

‖e−Q‖μ,β = sup
ν∈S,t>0

∣∣Qμ,β(t
Dν) exp(−Q(tDν))

∣∣ = sup
ν∈S,t>0

∣∣Qμ,β(t
Dν) exp(−tQ(ν))

∣∣.
Now because Q is positive homogeneous, Qμ,β is a polynomial and tD has the
form (2.11),

|Qμ,β(t
Dν)e−tQ(ν)| ≤M1(1 + tm) e−tM2

for all t > 0 and ν ∈ S, where m,M1 and M2 are positive constants. We immedi-
ately see that

‖e−Q‖μ,β ≤ sup
t>0

M1(1 + tm) e−tM2 <∞

and therefore e−Q ∈ S(Rd).
The key to the proof of iii) is a complex change-of-variables. For each x ∈ Rd,

function z �→ e−P (z)e−ix·z is holomorphic on Cd and, in view of Proposition 8.13,
satisfies

(2.14) |e−P (ξ−iν) e−ix·(ξ−iν)| = e−x·ν|e−P (ξ−iν)| ≤ e−x·ν+MR(ν) e−εR(ξ)

for all z = ξ − iν ∈ Cd, where M, ε are positive constants. By virtue of (2.13),
(2.14) ensures that the integration in the definition of HP can be shifted to any
any complex plane in Cd parallel to Rd. In other words, for any x, ν ∈ Rd,∫

Rd

e−P (ξ)e−ix·ξ dξ =
∫
ξ∈Rd

e−P (ξ−iν)e−ix·(ξ−iν) dξ,

and therefore

|HP (x)| ≤ e−x·ν+MR(ν) 1

(2π)d

∫
Rd

e−εR(ξ) = C exp(−(x · ν −MR(ν))),

where C > 0. The natural appearance of the Legendre–Fenchel transform is now
seen by infimizing over ν ∈ Rd. We have

|HP (x)| ≤ C inf
ν∈Rd

exp(−(x · ν −MR(ν))) = C exp
(− sup

ν∈Rd

{x · ν −MR(ν)})
= C exp

(−(MR)#(x)
) ≤ C exp

(−MR#(x)
)



1064 E. Randles and L. Saloff-Coste

for all x ∈ Rd, where we have made use of Corollary 8.17 to adjust the constantM .
Finally, an appeal to ii) and Proposition 8.15, gives

|H(t)
P (x)| ≤ C

tμP
exp

(−MR#(t−E∗
x)
)
=

C

tμP
exp

(−MR#(t(I−E)∗(x/t))
)

=
C

tμP
exp

(− tMR#(x/t)
)

for all t > 0 and x ∈ Rd. �

3. Properties of φ̂

Lemma 3.1. Let φ ∈ Sd be such that sup |φ̂| = 1 and suppose that ξ0 ∈ Ω(φ) is

of positive homogeneous type for φ̂. Then the expansion (1.5), with αξ0 ∈ Rd and
positive homogeneous polynomial Pξ0 , is unique.

Proof. The fact that |φ̂(ξ)| ≤ 1 ensures that the linear term in the Taylor expansion
for Γξ0 is purely imaginary. This determines αξ0 uniquely. We assume that

Γξ0(ξ) = i αξ0 · ξ − P1(ξ) + Υ1(ξ) = i αξ0 · ξ − P2(ξ) + Υ2(ξ)

for ξ ∈ U where P1 and P2 are positive homogeneous polynomials with ReP1 = R1,
ReP2 = R2 and Υi = o(Ri) as ξ → 0 for i = 1, 2. We shall prove that P1 = P2.

Let ε > 0 and, for a fixed non-zero ζ ∈ Rd, set δi = ε/2Ri(ζ) for i = 1, 2. Also,
take Ei ∈ Exp(Pi) for i = 1, 2. Because Υi = o(Ri) as ξ → 0 for i = 1, 2 there is a
neighborhood O of 0 for which |Υi(ξ)| < δiRi(ξ) whenever ξ ∈ O for i = 1, 2. By
virtue of Lemma 2.5, t−E1ζ, t−E2ζ ∈ O for some t > 0 and therefore

|P1(ζ) − P2(ζ)| = t |P1(t
−E1ζ)− P2(t

−E2ζ)| ≤ t |Υ1(t
−E1ζ)|+ t |Υ2(t

−E2ζ)|
< t δ1R1(t

−E1ζ) + t δ2R2(t
−E2ζ) ≤ δ1R1(ζ) + δ2R2(ζ) ≤ ε

as required. �

Lemma 3.2. Let φ ∈ Sd be such that sup |φ̂| = 1 and suppose that ξ0 ∈ Ω(φ) is of

positive homogeneous type for φ̂ with associated positive homogeneous polynomial
P = Pξ0 and remainder Υ = Υξ0 . Then for any E ∈ Exp(P ),

lim
t→∞ tΥ(t−Eξ) = 0.

for each ξ ∈ Rd.

Proof. The assertion is clear when ξ = 0. When ξ ∈ Rd is non-zero, we note that
t−Eξ → 0 as t→ 0 by virtue of Lemma 2.5; in particular, t−Eξ ∈ U for sufficiently
large t. Consequently,

lim
t→∞

Υ(t−Eξ)

R(t−Eξ)
= 0
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because Υ(η) = o(R(η)) as η → 0 and so it follows that

lim
t→∞ tΥ(t−Eξ) = lim

t→∞R(ξ)
Υ(t−Eξ)

t−1R(ξ)
= R(ξ) lim

t→∞
Υ(t−Eξ)

R(t−Eξ)
= 0

as desired. �

Given ξ0 ∈ Ω(φ) and considering the Taylor expansion for Γξ0 , to recognize

whether or not ξ0 is of positive homogeneous type for φ̂ is not always straightfor-
ward, e.g., Subsection 7.3). Nonetheless, it is useful to have a method based on the
Taylor expansion for Γξ0 through which we can determine if ξ0 is of positive homo-

geneous type for φ̂ and, when it is, pick out the associated positive homogeneous
polynomial Pξ0 . The remainder of this section is dedicated to doing just this.

Given any integer m ≥ 2, the mth order Taylor expansion for Γξ0 is necessarily
of the form

(3.1) Γξ0(ξ) = i αξ0 · ξ −Qm
ξ0(ξ) +O(|ξ|m+1)

for ξ ∈ U where αξ0 ∈ Rd and Qm
ξ0
(ξ) is a polynomial given by

Qm
ξ0(ξ) =

∑
1<|α|≤m

cα ξ
α

for ξ ∈ Rd, where {cα} ⊆ C. No constant term appears in the expansion for Γξ0

because Γξ0(0) = 0. Moreover the fact that

φ̂(ξ + ξ0) = φ̂(ξ0) e
Γξ0

(ξ)

for all ξ ∈ U and the condition that sup |φ̂(ξ)| = 1 ensure that

Re(i αξ0 · ξ −Qm
ξ0(ξ)) = −ReQm

ξ0(ξ) ≤ 0

for ξ sufficiently close to 0 (in fact, this is precisely why αξ0 ∈ Rd). Our final
result of this section, Proposition 3.3, provides necessary and sufficient conditions
for ξ0 to be of positive homogeneous type for φ̂ in terms of Qm

ξ0
. We remark

that the proposition, although quite useful for examples, is not used anywhere else
in this work. As the proof is lengthy and in many ways parallels the proof of
Proposition 2.2, we have placed it in the Appendix, Subsection 8.4.

Proposition 3.3. Let φ ∈ Sd, suppose that sup |φ̂(ξ)| = 1 and let ξ0 ∈ Ω(φ). Then
the following are equivalent:

a) The point ξ0 is of positive homogeneous type for φ̂ with corresponding positive
homogeneous polynomial Pξ0 .

b) There exist m ≥ 2 and a positive homogeneous polynomial P such that, for
some C, r > 0,

C−1R(ξ) ≤ ReQm
ξ0(ξ) ≤ CR(ξ)

and
| ImQm

ξ0(ξ)| ≤ CR(ξ)

for all ξ ∈ Br, where R = ReP .
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c) There exist m ≥ 2 and E ∈ Md(R) with real spectrum such that, for some r > 0
and sequence of positive real numbers {tn} such that tn → ∞ as n → ∞, the
sequence {ρn} of polynomials defined by

(3.2) ρn(ξ) = tnQ
m
ξ0(t

−E
n ξ)

converges for all ξ ∈ Br as n → ∞, and its limit has positive real part for
all ξ ∈ Sr.

When the above equivalent conditions are satisfied, for any m′ ≥ m,

Pξ0(ξ) = lim
t→∞ tQm′

ξ0 (t
−Eξ)

for all ξ ∈ Rd and this convergence is uniform on all compact subsets of Rd.

4. Local limit theorems and �∞ estimates

In this section we prove Theorems 1.4 and 1.6. Our first result ensures that, under
the hypotheses of Theorem 1.6, we can approximate the convolution powers of φ
by a finite sum of attractors.

Proposition 4.1. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1. If each ξ ∈ Ω(φ) is of

positive homogeneous type for φ̂ then Ω(φ) is discrete (and hence finite).

Proof. Let ξ0 ∈ Ω(φ) be of positive homogeneous type for φ̂; it suffices to show
that ξ0 is an isolated point of Ω(φ). In view of Definitions 1.2 and 1.3, let Γξ0 ,
Rξ0 = RePξ0 and Υξ0 be associated to ξ0. Because Rξ0 is positive definite and
Υξ0(η) = o(Rξ0(η)) as η → 0, there is a neighborhood of 0 on which Γξ0(ξ) = 0

only when ξ = 0. Since φ̂(ξ + ξ0) = φ̂(ξ0) exp(Γξ0(ξ)) for all ξ ∈ U , there is a

neighborhood of ξ0 on which |φ̂(ξ)| < 1 for all ξ �= ξ0. Hence ξ0 is an isolated point
of Ω(φ). �

Remark 4.2. For any φ which satisfied the hypotheses of Proposition 4.1, we fix
Td
φ = (−π, π]d + ξφ where ξφ ∈ Rd makes Ω(φ) live in the interior of Td

φ (as a

subspace of Rd); this can always be done in view of the proposition. We do this
only to avoid non-essential technical issues arising from the difference between the
topology of Rd and the topology of Td inherited as a subspace.

Lemma 4.3. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and suppose that ξ0 ∈ Ω(φ)

is of positive homogeneous type for φ̂. Let α = αξ0 and P = Pξ0 be associated

to φ̂ in view of Definition 1.3 and let μP and H
(·)
P be defined by (1.4) and (1.8)

respectively. Then there exists an open neighborhood Uξ0 of ξ0 such that, for any
open sub-neighborhood Oξ0 ⊆ Uξ0 containing ξ0, the following limit holds. For all
ε > 0 there exists N ∈ N+ such that∣∣∣ nμP

(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ − nμP e−ix·ξ0 φ̂(ξ0)nHn
P (x− nα)

∣∣∣ < ε

for all natural numbers n ≥ N and for all x ∈ Rd.
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Proof. Given that ξ0 ∈ Ω(φ) is of positive homogeneous type for φ̂,

(4.1) φ̂(ξ + ξ0) = φ̂(ξ0) e
Γ(ξ)

for ξ ∈ U , where
Γ(ξ) = iα · ξ − P (ξ) + Υ(ξ)

and where Υ(ξ) = o(R(ξ)) and R = ReP . If necessary, we restrict U further so
that

(4.2)
∣∣eΓ(ξ)∣∣ = eRe(iα·ξ−P (ξ)+Υ(ξ)) ≤ e−R(ξ)/2

for all ξ ∈ U and put Uξ0 = ξ0+U . Now, let Oξ0 ⊆ Uξ0 be an open set containing ξ0.
It is clear that O := Oξ0 − ξ0 is open and is such that 0 ∈ O ⊆ U . Of course, (4.1)
and (4.2) hold for all ξ ∈ O.

Observe that, for all x ∈ Rd and n ∈ N+,

nμP

(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ − e−ix·ξ0 φ̂(ξ0)nnμPHn
P (x − nα)

=
nμP

(2π)d

∫
O
φ̂(ξ + ξ0)

ne−ix·(ξ+ξ0) dξ

− e−ix·ξ0 φ̂(ξ0)n
nμP

(2π)d

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

=
e−ix·ξ0 φ̂(ξ0)n

(2π)d

(
nμP

∫
O
enΓ(ξ)e−ix·ξ dξ − nμP

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ
)
.

(4.3)

Now for E ∈ Exp(P ),

nμP

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ = nμP

∫
Rd

e−P (nEξ)e−i(x−nα)·ξ dξ

= nμP

∫
nE(Rd)

e−P (ξ)e−i(x−nα)·n−Eξ det(n−E) dξ =

∫
Rd

e−P (ξ)e−i(x−nα)·n−Eξ dξ

for all x ∈ Rd and n ∈ N+ where, in view of Corollary 2.4, we have used the fact
that det(n−E) = n− trE = n−μP . Noting the adjoint relation (n−E)∗ = n−E∗

, and
upon putting y(n, x) = n−E∗

(x− nα), we have

(4.4) nμP

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ =
∫
Rd

e−P (ξ)e−iy(n,x)·ξ dξ

for all x ∈ Rd and n ∈ N+.
Let ε > 0 and observe that, in view of Proposition 2.6, e−P/2 ∈ L1(Rd) because

P (ξ)/2 is a positive homogeneous polynomial. We can therefore choose a compact
set K for which

(4.5)

∫
Rd\K

∣∣e−P
∣∣ dξ ≤ ∫

Rd\K
e−R(ξ) dξ ≤

∫
Rd\K

e−R(ξ)/2 < ε/3.
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By virtue of Proposition 8.6 and Lemma 2.5, there is N1 ∈ N+, such that
n−E(K) ⊆ O for all n ≥ N1. Thus∫

O
enΓ(ξ)e−ix·ξ dξ

=

∫
n−E(K)

enΓ(ξ)e−ix·ξ dξ +
∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

=

∫
n−E(K)

e−P (nEξ)+nΥ(ξ)e−i(x−nα)·ξ dξ +
∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

=
1

nμP

∫
K

e−P (ξ)+nΥ(n−Eξ)e−iy(n,x)·ξ dξ +
∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

(4.6)

for all n ≥ N1 and x ∈ Rd; here we have again used the fact that det(n−E) = n−μP .
Combining (4.3),(4.4) and (4.6) yields∣∣∣ nμP

(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ − e−ix·ξ0 φ̂(ξ0)nnμPHn
P (x− nα)

∣∣∣
≤
∣∣∣ ∫

K

(
e−P (ξ)+nΥ(n−Eξ) − e−P (ξ)

)
e−iy(n,x) dξ

∣∣∣
+

∫
Rd\K

∣∣e−P (ξ)e−iy(n,x)·ξ∣∣ dξ + nμP

∣∣∣ ∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ
∣∣∣

≤
∫
K

∣∣e−P (ξ)+nΥ(n−Eξ) − e−P (ξ)
∣∣ dξ

+

∫
Rd\K

e−R(ξ) dξ + nμP

∫
O\n−E(K)

∣∣eΓ(ξ)∣∣n dξ
=: I1(n) + I2(n) + I3(n)

(4.7)

for all n ≥ N1 and x ∈ Rd.
It is clear that I2(n) < ε/3 for all n ≥ N1 by virtue of (4.5). Now, in view

of (4.2) and (4.5),

I3(n) ≤ nμP

∫
O\n−E(K)

e−nR(ξ)/2 dξ ≤
∫
Rd\K

e−R(ξ)/2 dξ < ε/3

for all n ≥ N1; here we have used that facts that E ∈ Exp(P ) ⊆ Exp(R),
det(n−E) = n−μP , and

nE(O \ n−E(K)) = nE(O) \K ⊆ Rd \K.

To estimate I1, we recall that n
−E(K) ⊆ O for all n ≥ N1 and so the estimate (4.2)

ensures that the integrand of I1(n) is bounded by 2 for all n ≥ N1. In view
of Lemma 3.2, an appeal to the Bounded Convergence Theorem gives a natural
number N ≥ N1 for which I1(n) < ε/3 for all n ≥ N . The desired result follows
by combining our estimates for I1, I2 and I3 with (4.7). �
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The next lemma follows directly from Lemma 4.3 by upon recalling that nμPHn
P

= HP ◦ Ln−E∗ ∈ S(Rd) for all n ∈ N+.

Lemma 4.4. Let φ, ξ0 and P be as in the statement of Lemma 4.3. Under the
same hypotheses of the lemma, there exists an open neighborhood Uξ0 of ξ0 such
that, for any open sub-neighborhood Oξ0 ⊆ Uξ0 containing ξ0, there exists C > 0
and a natural number N such that∣∣∣ 1

(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ
∣∣∣ ≤ C

nμP

for all n ≥ N and x ∈ Rd.

Proof of Theorem 1.6. Under the hypotheses of the theorem, Proposition 4.1 en-
sures that Ω(φ) is finite. In line with the paragraph preceding the statement of
the theorem, we label

Ω(φ) = {ξ1, ξ2, . . . , ξA, ξA+1, . . . , ξB} ⊆ Td,

where μPξq
= μφ for q = 1, 2, . . . A and μPξq

> μφ for q = A+1, A+2, . . .B. Also,
we assume all additional notation from the paragraph preceding the statement of
the theorem and take Td

φ as in Remark 4.2.

Let {Oξq}q=1,2,...,B be a collection of disjoint open subsets of Td
φ for which the

conclusions of Lemmas 4.3 and 4.4 hold for q = 1, 2, . . . A and q = A+1, A+2, . . . B
respectively. Set

K = Td
φ \

( B⋃
q=1

Oξq

)
and observe that

s := sup
ξ∈K

|φ̂(ξ)| < 1.

Now, in view of the Fourier inversion formula,

φ(n)(x) =
1

(2π)d

∫
Td
φ

φ̂(ξ)ne−ix·ξ dξ

=
B∑

q=1

1

(2π)d

∫
Oξq

φ̂(ξ)ne−ix·ξ dξ +
1

(2π)d

∫
K

φ̂(ξ)ne−ix·ξ dξ
(4.8)

for all x ∈ Zd and n ∈ N+. Appealing to Lemma 4.3 ensures that for q = 1, 2, . . . , A,

(4.9)
1

(2π)d

∫
Oξq

φ̂(ξ)ne−ix·ξ dξ = e−ix·ξq φ̂(ξq)nHn
Pq
(x − nαq) + o(n−μφ)

uniformly for x ∈ Rd. Now, for each q = A+1, A+2, . . . , B, Lemma 4.4 guarantees
that

(4.10)
1

(2π)d

∫
Oξq

φ̂(ξ)ne−ix·ξ dξ = O(n
−μPξq ) = o(n−μφ)
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uniformly for x ∈ Rd because μPξq
> μφ. Finally, we note that

(4.11)
1

(2π)d

∫
K

φ̂(ξ)ne−ix·ξ dξ = o(n−μφ)

uniformly for x ∈ Rd because sn = o(n−μφ). The desired result is obtained by
combining (4.8), (4.9), (4.10) and (4.11). �

As an application to Theorem 1.6, we are now in a position to prove �∞(Zd)
estimates for φ(n) and thus give a partial answer to Question (i). We first treat a
basic lemma whose proof makes use of the famous theorem of R. Dedekind (gener-
alized by E. Artin) concerning the linear independence of characters. Interestingly
enough, the statement of the lemma below mirrors a result of Dedekind appearing
in the Vorlesungen [5] where the characters e−ix·ξ are replaced by field isomor-
phisms (see p. 6 of [3]).

Lemma 4.5. For any distinct ξ1, ξ2, . . . , ξA ∈ Td, there exists x1, x2, . . . xA ∈ Zd

such that

V =

⎛⎜⎜⎜⎝
e−ix1·ξ1 e−ix1·ξ2 · · · e−ix1·ξA
e−ix2·ξ1 e−ix2·ξ2 · · · e−ix2·ξA

...
...

. . .
...

e−ixA·ξ1 e−ixA·ξ2 · · · e−ixA·ξA

⎞⎟⎟⎟⎠
is invertible.

Proof. The statement is obviously true when A = 1 and so we use induction on A.
Let ξ1, ξ2, . . . , ξA+1 ∈ Td be distinct and take x1, x2, . . . , xA ∈ Zd as guaranteed
by the inductive hypotheses. For any ζ1, ζ2, . . . , ζA ∈ Td, we define

F (ζ1, ζ2, . . . , ζA) = det

⎛⎜⎜⎜⎝
e−ix1·ζ1 e−ix1·ζ2 · · · e−ix1·ζA
e−ix2·ζ1 e−ix2·ζ2 · · · e−ix2·ζA

...
...

. . .
...

e−ixA·ζ1 e−ixA·ζ2 · · · e−ixA·ζA

⎞⎟⎟⎟⎠ .

In this notation, our inductive hypothesis is the condition F (ξ1, ξ1, . . . , ξA) �= 0.
Let G : Zd → C be defined by

G(x) = det

⎛⎜⎜⎜⎜⎜⎝
e−ix1·ξ1 e−ix1·ξ2 · · · e−ix1·ξA e−ix1·ξA+1

e−ix2·ξ1 e−ix2·ξ2 · · · e−ix2·ξA e−ix1·ξA+1

...
...

. . .
...

...
e−ixA·ξ1 e−ixA·ξ2 · · · e−ixA·ξA e−ixA·ξA+1

e−ix·ξ1 e−ix·ξ2 · · · e−ix·ξA e−ix·ξA+1

⎞⎟⎟⎟⎟⎟⎠
for x ∈ Zd. Our job is to conclude that G(xA+1) �= 0 for some xA+1 ∈ Zd. We
assume to reach a contradiction that this is not the case, that is, for all x ∈ Zd,
G(x) = 0. Upon expanding by cofactors, we have

G(x) =

A+1∑
k=1

(−1)A+1+kF (ξ1, ξ2, . . . , ξ̂k, . . . , ξA+1)e
−ix·ξk = 0
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for all x ∈ Zd; here ξ̂k means that we have omitted ξk from the list ξ1, ξ2, . . . , ξA+1.
Given that ξ1, ξ2, . . . , ξA+1 are all distinct, the characters x �→ e−ix·ξk for k =
1, 2, . . . , A+ 1 are distinct and so by Dedekind’s independence theorem it follows
that F (ξ1, ξ2, . . . , ξ̂k, . . . , ξA+1) = 0 for all k = 1, 2, . . . , A+1. This however contra-

dicts our inductive hypotheses for F (ξ1, ξ2, . . . , ξA, ξ̂A+1) = F (ξ1, ξ2, . . . , ξA) �= 0.
�

Proof of Theorem 1.4. By virtue of Theorem 1.6 and (1.9), we have

(4.12) nμφ φ(n)(x) =

A∑
k=1

e−ix·ξk φ̂(ξk)nHPk

(
n−E∗

k (x− nαk)
)
+ o(1)

uniformly for x ∈ Zd where Ek ∈ Exp(Pk) for k = 1, 2, . . . A. Upon recalling that
the attractorsHPk

∈ S(Rd), the upper estimate of (1.7) follows directly from (4.12)
and the triangle inequality. Showing the lower estimate of (1.7) is trickier, for we
must ensure that the sum in (4.12) does not collapse at all x ∈ Zd – this is precisely
where Lemma 4.5 comes in.

For the distinct collection ξ1, ξ2, . . . , ξA ∈ Td, let x1, x2, . . . , xd ∈ Zd be as
guaranteed by Lemma 4.5 and, by focusing on x’s near nα1, we consider the A×A
systems

(4.13) f(n, xj) =
A∑

k=1

exp (−i(xj+�nα1�) · ξk) φ̂(ξk)nHPk
(n−E∗

k (xj+�nα1�−nαk))

and

(4.14) gj(n) =
∑
k=1

exp(−ixj · ξk)hk(n)

for j = 1, 2, . . . , A, where

hk(n) =

{
e−i	nα1
·ξk φ̂(ξk)nHPk

(0) if α1 = αk,

0 otherwise,

for k = 1, 2, . . . , A. By virtue of Lemma 8.3 and Propositions 2.2 and 2.3, it follows
that

lim
n→∞ |n−E∗

k (xj + �nα1� − nαk)| =
{
0 if αk = α1

∞ otherwise.

for all j, k = 1, 2, . . . , A. Again using the fact that each HPk
∈ S(Rd), the above

limit ensures that, for all ε > 0, there exists Nε ∈ N+ for which

(4.15) |f(n, xj)− gj(n)| < ε

for all j = 1, 2, . . . A and n ≥ Nε. The system (4.14) can be rewritten in the form⎛⎜⎜⎜⎝
g1(n)
g2(n)

...
gA(n)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
e−ix1·ξ1 e−ix1·ξ2 · · · e−ix1·ξA
e−ix2·ξ1 e−ix2·ξ2 · · · e−ix2·ξA

...
...

. . .
...

e−ixA·ξ1 e−ixA·ξ2 · · · e−ixA·ξA

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
h1(n)
h2(n)

...
hA(n)

⎞⎟⎟⎟⎠
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or equivalently

(4.16) g(n) = V h(n)

for n ∈ N+, where V is that of Lemma 4.5. Taking CA to be equipped with the
maximum norm, the matrix V determines a linear operator LV : CA → CA which
is bounded below by virtue of the lemma. So, in view of (4.17), there is a constant
δ > 0 for which

(4.17) max
j=1,2,...,A

|gj(n)| ≥ δ max
j=1,2,...,A

|hj(n)| ≥ δ|HP1(0)| =: 3C > 0

for all n ∈ N+. Upon combining (4.12), (4.15) and (4.17), we obtain N ∈ N+ for
which

nμφ‖φ(n)‖∞ ≥ max
j=1,2,...A

|nμφφ(n)(xj + �nα1�)| ≥ C

for all n ≥ N . The theorem now follows by, if necessary, adjusting the constant C
for n < N . �

5. Pointwise bounds for φ(n)

Throughout this section, we assume that φ : Zd → C is finitely supported. In
this case, φ̂(z) is a trigonometric polynomial on Cd. As usual, we assume that

supξ∈Td |φ̂(ξ)| = supξ∈Rd |φ̂(ξ + 0i)| = 1.

5.1. Generalized exponential bounds

In this subsection, we prove Theorem 1.8 and present a variety of results concerning
discrete space and time differences of convolution powers. The estimate of the
following lemma, Lemma 5.1, is crucial to our arguments to follow; its analogue
when d = 1 can be found the proof of Theorem 3.1 of [4]. We note that in [4],
the analogue of Lemma 5.1 is used to deduce Gevrey-type estimates from which
the desired estimates follow in one dimension. Such arguments are troublesome
when the decay is anisotropic for d > 1. By contrast, our off-diagonal estimates
are found by applying Lemma 5.1 following a complex change-of-variables.

Lemma 5.1. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Suppose that ξ0 ∈ Ω(φ) is of positive homogeneous type for φ̂ with associated α ∈ Rd

and positive homogeneous polynomial P . Define fξ0 : Cd → C by

(5.1) fξ0(z) = φ̂(ξ0)
−1e−α·(z+ξ0)φ̂(z + ξ0)

for z ∈ Cd. For any compact set K ⊆ Rd containing an open neighborhood of 0
for which |φ(ξ + ξ0)| < 1 for all non-zero ξ ∈ K, there exist ε,M > 0 for which

|fξ0(z)| ≤ exp(−εR(ξ) +MR(ν))

for all z = ξ − iν such that ξ ∈ K and ν ∈ Rd.
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Proof. Write f = fξ0 and denote by πr the canonical projection from Cd onto Rd.
We first estimate f(z) on a neighborhood of 0 in Cd.

Our assumption that ξ0 ∈ Ω(φ) ensures that the expansion (1.5) is valid on an
open set U ∈ Cd such that 0 ∈ πr(U) ⊆ K. By virtue of Proposition 8.13, we can
further restrict U to ensure that, for some ε′ > 0 and M > 0,

(5.2) |f(z)| ≤ e−ε′R(ξ)+MR(ν)

for z = ξ − iν ∈ U .
We now estimate f(z) on a cylinder of K in Cd. Since |φ̂(ξ)| < 1 for all non-

zero ξ ∈ K, the compactness K \ πr(U) ensures that, for some 0 < ε ≤ ε′, the
continuous function h : Cd → C, defined by

h(z) = eεR(ξ)f(z) = exp(−ε(R ◦ πr)(z))f(z)

for z = ξ − iν ∈ Cd, is such that |h(ξ)| < 1 for all ξ ∈ K \ πr(U). Because h is
continuous, there exists δ > 0 for which |h(z)| ≤ 1 for all z = ξ − iν such that
ξ ∈ K \ πr(U) and |ν| ≤ δ. Consequently,

(5.3) |h(z)| ≤ e−εR(ξ) ≤ e−εR(ξ)+MR(ν)

for all z = ξ − iν such that ξ ∈ K \ πr(U) and |ν| ≤ δ. Upon possibly further
restricting δ > 0, a combination of the estimates (5.2) and (5.3) ensures that

(5.4) |f(z)| ≤ e−εR(ξ)+MR(ν)

for all z = ξ − iν ∈ C such that ξ ∈ K and |ν| ≤ δ.

Finally, we estimate f(z) = f(ξ − iν) for unbounded ν. Because φ̂ is a
trigonometric polynomial, f(z) has exponential growth on the order of |ν| for
z = ξ − iν ∈ Cd when ξ is restricted to K. Therefore,

(5.5) |f(z)| ≤ e−εR(ξ)+|ν|+C

for all z = ξ−iν such that ξ ∈ K and ν ∈ Rd. Because |ν|+C is dominated by R(ν)
by virtue of Corollary 8.12, the lemma follows immediately from the estimates (5.4)
and (5.5). �

Lemma 5.2. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Assume additionally that Ω(φ) = {ξ0} and ξ0 is of positive homogeneous type for φ̂
with corresponding α ∈ Rd and positive homogeneous polynomial P and let Td

φ be

as in Remark 4.2. Define g(·) : N+ × Cd → C by gl(z) = 1 − fξ0(z)
l for l ∈ N+

and z ∈ Cd where fξ0 is given by (5.1). There exist positive constants C and M
for which

|gl(z)| ≤ lC(R(ν) +R(ξ)) elMR(ν)

for all l ∈ N+ and z = ξ − iν such that ξ ∈ Td
φ and ν ∈ Rd.
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Proof. By making similar arguments to those in the preceding lemma’s proof, we
obtain positive constants C and M for which |1− fξ0(z)| ≤ C(R(ξ)+R(ν))eMR(ν)

for all z = ξ − iν such that ξ ∈ Td
φ and ν ∈ Rd. The desired estimate now follows

from Lemma 5.1 (where K = T d
φ ) by writing gl = (1 − fξ0)

∑l−1
k=0 f

k
ξ0

and making
use of the triangle inequality. �

We are now in a position to prove Theorem 1.8.

Proof of Theorem 1.8. In view of the hypotheses, there exist α ∈ Rd and a pos-
itive homogeneous polynomial P such that each ξ ∈ Ω(φ) is of positive homo-

geneous type for φ̂ with corresponding αξ = α and Pξ = P . We write Ω(φ) =
{ξ1, ξ2, . . . , ξQ} in view of Proposition 4.1 and take Td

φ as in Remark 4.2. Because

Ω(φ) is finite and lives on the interior of Td
φ, there exits a collection of mutually

disjoint and relatively compact sets {Kq}Qq=1 such that Td
φ = ∪Q

q=1Kq and, for
each q = 1, 2, . . . , Q, Kq contains an open neighborhood of ξq. We now establish

two important uniform estimates. First, upon noting that |φ̂(ξ + ξq)| < 1 for all
ξ ∈ Kq − ξq for each q = 1, 2, . . . , Q, by virtue of Lemma 5.1 there are positive
constants M and ε such that, for each q = 1, 2, . . . , Q,

(5.6) |fξq (ξ − iν)| ≤ exp(−εR(ξ)−MR(ν))

for all ξ ∈ Kq − ξq and ν ∈ Rd. Also, by a similar argument to those given in the
proof of Lemma 4.3, we observe that

nμP

∫
Kq−ξq

e−εnR(ξ) dξ = nμP

∫
Kq−ξq

e−εR(n−Eξ) dξ

=

∫
nE(Kq−ξq)

e−εR(ξ) dξ ≤
∫
Rd

e−εR(ξ) dξ =: C <∞
(5.7)

for all n ∈ N+ and q = 1, 2, . . . , Q.
Now, let ν ∈ Rd be arbitrary but fixed. Because φ̂ is a trigonometric polynomial

(and so periodic on Cd), it follows that

φ(n)(x) =
1

(2π)d

∫
Td
φ

e−ix·(ξ−iν)φ̂(ξ − iν)n dξ

=
1

(2π)d

Q∑
q=1

∫
Kq

e−ix·(ξ−iν)φ̂(ξ − iν)n dξ

(5.8)

for all x ∈ Zd and n ∈ N+. Our aim is to uniformly estimate the integrals over Kq.
To this end, for each q = 1, 2, · · · , Q, we observe that∫

Kq

e−ix·(ξ−iν)φ̂(ξ − iν)n dξ

=

∫
Kq−ξq

e−ix·(ξq+ξ−iν)φ̂(ξq)
ne−inα·(ξ0+ξ−iν)fξq (ξ − iν)n dξ

= e−nyn(x)·ν
∫
Kq−ξq

(
e−iyn(x)·(ξq+ξ)φ̂(ξq)

)n
fξq (ξ − iν)n dξ
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for all x ∈ Zd and n ∈ N+, where yn(x) := (x−nα)/n. In view of the estimates (5.6)
and (5.7), we have∣∣∣ ∫

Kq

e−ix·(ξ−iν) φ̂(ξ − iν)n dξ
∣∣∣ ≤ e−nyn(x)·ν

∫
Kq−ξq

|fξq (ξ − iν)|n dξ

≤ C

nμφ
exp(−n(yn(x) · ν −MR(ν)))

(5.9)

for all x ∈ Zd, n ∈ N+ and q = 1, 2, . . . , Q where the constants M and C are
independent of ν. Upon setting C′ = (2π)d/Q and combining (5.8) and (5.9), we
obtain the estimate

|φ(n)(x)| ≤ C ′

nμφ
exp(−n(yn(x) · ν −MR(ν)))

which holds uniformly for x ∈ Zd and n ∈ N+ and ν ∈ Rd. Consequently,

|φ(n)(x)| ≤ inf
ν∈Rd

C′

nμφ
exp(−n(yn(x) · ν −MR(ν)))

≤ C ′

nμφ
exp

(− n sup
ν
(yn(x) · ν −MR(ν))

)
=

C ′

nμφ
exp

(−n(MR)#(yn(x))
)

for all x ∈ Zd and n ∈ N+. The desired result follows upon noting that (MR)# �
R# in view of Corollary 8.17. �

Remark 5.3. The essential hypothesis of Theorem 1.8 (essential for a global
exponential bound) is that each ξ ∈ Ω(φ) has the same drift α; this can be seen
by looking at the example of Subsection 7.2 wherein the convolution powers φ(n)

exhibit two “drift packets” which drift away from one another. The hypothesis
that all of the corresponding positive homogeneous polynomials are the same can
be weakened to include, at least, the condition that Rξ = RePξ � R for all
ξ ∈ Ω(φ), where R is some fixed real valued positive homogeneous polynomial.
In any case, the theorem’s hypotheses are seen to be natural when φ has some
form of “periodicity” as can be seen in the example of Subsection 7.3. Also,
the hypotheses are satisfied for all finitely supported and genuinely d-dimensional
probability distributions on Zd, see Subsection 7.6.

For the remainder of this subsection, we restrict our attention further to finitely
supported functions φ : Zd → C which satisfy supξ |φ̂| = 1 and where this supre-

mum is attained at only one point in Td, i.e., Ω(φ) = {ξ0}. In this setting, we
obtain global estimates for discrete space and time derivatives of convolution pow-
ers. Our first result concerns only discrete spatial derivatives of φ(n) and is a useful
complement to Theorem 1.8. For related results, see Theorem 3.1 of [4] and The-
orem 8.2 of [27], the latter being due to O.B. Widlund [30], [31]. For w ∈ Zd and
ψ : Zd → C, define Dwψ : Zd → C by

Dwψ(x) = ψ(x+ w)− ψ(x)

for x ∈ Zd.



1076 E. Randles and L. Saloff-Coste

Theorem 5.4. Let φ : Zd →C be finitely supported and such that supξ∈Td |φ̂(ξ)|=1.
Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous type

for φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial
P = Pξ0 . Also let μφ be defined by (1.6) (or equivalently (1.4)), let R# be the
Legendre–Fenchel transform of R = ReP and take E ∈ Exp(P ). There exists
M > 0 such that, for any B > 0 and m ∈ N+, there exists Cm > 0 such that, for
any w1, w2, . . . , wm ∈ Zd,∣∣Dw1Dw2 · · ·Dwm

(
φ̂(ξ0)

−neix·ξ0φ(n)(x)
)∣∣

≤ Cm

nμφ

( m∏
j=1

|n−E∗
wj |

)
exp

(
− nMR#

(x− nα

n

))(5.10)

for all x ∈ Zd and n ∈ N+ such that |n−E∗
wj | ≤ B for j = 1, 2, . . . ,m.

We remark that all constants in the statement of the theorem are indepen-
dent of E ∈ Exp(P ) in view of Proposition 2.3. The appearance of the prefactor

φ̂(ξ0)
−neix·ξ0 in the left hand side of the estimate is used to remove the highly

oscillatory behavior which appears, for instance, in the example outlined in the
introduction. That which remains of φ(n) is well-behaved when this oscillatory
prefactor is removed and this is loosely what the theorem asserts. Let us further
note that, in contrast to Theorem 1.8, Theorem 5.4 does not apply to the example
illustrated in Subsection 7.3 (where Ω(φ) consists of two points) and, in fact, the
latter theorem’s conclusion does not hold for this φ. See Subsection 7.3 for further
discussion.

Lemma 5.5. Given A > 0, ε > 0 and m ∈ N+, there exists C > 0 such that the
function

Qw1,w2,...,wm(z) =
m∏
i=1

(eiwi·z − 1)

satisfies

(5.11) |Qw1,w2,...,wm(ξ − iν)| ≤ C
( m∏

i=1

|n−E∗
wi|
)
en(εR(ξ)+R(v))

for all z = ξ − iν ∈ Cd, n ∈ N+ and w1, w2, . . . , wm ∈ Zd for which |n−E∗
wi| ≤ A

for all i = 1, 2, . . . ,m.

Proof. We observe that, for M = m(B + 1),

|Qw1,w2,...,wm(z)| ≤
m∏
j=1

|wj · z|e|wj·z| ≤
m∏
j=1

|n−E∗
wj ||nEz|eB|nEz|

≤
( m∏

j=1

|n−E∗
wj |

)
eM|nEz|

(5.12)

for all z ∈ Cd, n ∈ N+ and w1, w2, . . . , wm ∈ Zd for which |n−E∗
wj | ≤ B for all

j = 1, 2, . . . ,m.
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Given ε > 0, an appeal to Proposition 8.11 ensures that, for some M ′ > 0,

(5.13) M |nEz| ≤M ′ + εR(nEξ) +R(nEν) =M ′ + n(εR(ξ) + R(ν))

for all z = ξ − iν ∈ Cd and n ∈ N+. The desired estimate is obtained by combin-
ing (5.12) and (5.13). �

Proof of Theorem 5.4. By replacing φ(x) by φ̂(ξ0)
−1eix·ξ0φ(x), we assume without

loss of generality that ξ0 = 0 and φ̂(ξ0) = 1. For any x,w1, w2, . . . , wm ∈ Zd and

ν ∈ Rd, we invoke the periodicity of φ̂ to see that

Dw1Dw2 · · ·Dwmφ
(n)(x)

= Dw1Dw2 · · ·Dwm

1

(2π)d

∫
Td

e−ix·(ξ−iν)(φ̂(ξ − iν))n dξ

=
e−nyn(x)·ν

(2π)d

∫
Td

e−inyn(x)·ξQw1,w2,...,wm(ξ − iν)f(ξ − iν)n dξ,

(5.14)

where yn(x) = (x − nα)/n and f(z) = fξ0(z) = e−iα·zφ̂(z) is that of Lemma 5.1.
An appeal to the lemma shows that, for some ε > 0 and M ≥ 1,

(5.15) |f(ξ − iν)| ≤ e−2εR(ξ)+(M−1)R(ν)

for all ξ ∈ Td and ν ∈ Rd; note that these constants are independent of m. By
combining the estimates (5.7), (5.11), (5.14) and (5.15) we obtain, for ν ∈ Rd and
w1, w2, . . . , wm ∈ Zd,

|Dw1Dw2 · · ·Dwmφ
(n)(x)| ≤ e−nyn(x)·ν

∫
Td

|Qw1,w2,...,wm(ξ − iν)||f(ξ − iν)|n dξ

≤ C′
m

( m∏
j=1

|n−E∗
wj |

)
exp(−nyn(x) · ν + nMR(ν))

∫
Td

e−nεR(ξ) dξ

≤ C C ′
m

nμφ

( m∏
j=1

|n−E∗
wj |

)
exp(−n(yn(x) · ν −MR(ν)))

for all x ∈ Zd and n ∈ N+ for which |n−E∗
wj | ≤ B for all j = 1, 2, . . . ,m. As all

constants are independent of ν, the desired estimate is obtained by repeating the
same line of reasoning of the proof of Theorem 1.8. �

For a collection v = {v1, . . . , vd} ∈ Zd and a multi-index β, consider the discrete
spatial operator

(5.16) Dβ
v = (Dv1)

β1(Dv2)
β2 · · · (Dvd)

βd .

Our next result, a corollary to Theorem 5.4, gives estimates for Dβ
vφ

(n) in the
case that n−E∗

acts diagonally on vj for j = 1, 2, . . . , d and, in this case, the term
involving w’s in (5.10) simplifies considerably. We first give a definition.
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Definition 5.6. Let P : Rd → C be a positive homogeneous polynomial and let
A ∈ Gld(R) and m = (m1,m2, . . . ,md) ∈ Nd

+ be as given by Proposition 2.2. An
ordered collection v = {v1, v2, . . . , vd} ⊆ Zd is said to be P -fitted if A∗vj ∈ span(ej)
for j = 1, 2, . . . , d. In this case we say that m is the weight of v.

Let us make a few remarks about the above definition. First, for a P -fitted
collection v = {v1, v2, . . . , vd} of weight m, by virtue of Proposition 2.2, t−E∗

vj =
t−1/(2mj)vj for all t > 0 and j = 1, 2, . . . d, where E = ADA−1 ∈ Exp(P ). Our
definition does not require the v′js to be non-zero and, in fact, it is possible that
the only P -fitted collection to a given positive homogeneous polynomial P is the
zero collection. We note however that every positive homogeneous polynomial P
seen in this article admits a P -fitted collection v which is also a basis of Rd and,
in fact, whenever P is semi-elliptic, every P -fitted collection is of the form v =
{x1e1, x2e2, . . . , xded} where x1, x2, . . . , xd ∈ Z.

Corollary 5.7. Let φ : Zd →C be finitely supported and such that supξ∈Td |φ̂(ξ)|=1.
Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous type

for φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial
P = Pξ0 . Define μφ by (1.6) (or equivalently (1.4)), let m (and A) be as in Propo-
sition 2.2, and denote by R# the Legendre–Fenchel transform of R = ReP . There
exists M > 0 such that, for any B > 0 and multi-index β, there is a positive
constant Cβ such that, for any P -fitted collection v = {v1, v2, . . . , vd} of weight m,∣∣Dβ

v

(
φ̂(ξ0)

−neix·ξ0φ(n)(x)
)∣∣

≤ Cβ

∏d
j=1 |vj |βj

nμφ+|β:2m| exp
(
− nMR#

(x− nα

n

))(5.17)

for all x ∈ Zd and n ∈ N+ such that |vj | ≤ Bn1/(2mj) for j = 1, 2, . . . , d.

Proof. As we previously remarked,

|n−E∗
vj | = |aj | |n−E∗

(A∗)−1ej | = |aj |
∣∣(A∗)−1n−Dej

∣∣ = n−1/(2mj)|vk|

for j = 1, 2, . . . , d and n ∈ N+, where D = diag
(
(2m1)

−1, (2m2)
−1, . . . , (2md)

−1
)

and E = ADA−1. Considering the operator Dβ
v , the term involving w’s appearing

in the right hand side of (5.10) is, in our case,

(5.18)
d∏

j=1

(|n−E∗
vj |
)βj

=
d∏

j=1

|vj |βj n−βj/(2mj) = n−|β:2m|
d∏

j=1

|vj |βj

for all n ∈ N+. The desired estimate now follows by inserting (5.18) into (5.10). �

Our next theorem concerns discrete time estimates for convolution powers.
Given φ : Zd → C which satisfies the hypotheses of Theorem 5.4 with corresponding
α ∈ Rd. For any l ∈ N+, the theorem provides pointwise estimates for φ(n) −
φ(l+n) and analogous higher-order differences. Because, in general, the peak of
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the convolution powers drifts according to α, to compare φ(n) and φ(l+n), one
needs to account for this drift by re-centering φ(l+n) but, in doing this, a possible
complication arises: if lα �∈ Zd, one cannot re-center φ(l+n) in a way that keeps it
on the lattice. For this reason, the theorem requires lα ∈ Zd and in this case

(δ−lα ∗ φ(l)) ∗ φ(n)(x) = φ(l+n)(x+ lα),

which can then be compared to φ(n)(x). Assuming that φ satisfies the hypotheses
of Theorem 5.4 (with ξ0 ∈ Td and α ∈ Zd), for any l ∈ N+ such that lα ∈ Zd, we
define the discrete time difference operator ∂l = ∂l(φ, ξ0, α) by

(5.19) ∂lψ =
(
δ − φ̂(ξ0)

−l
(
δ−lα ∗ φ(l))) ∗ ψ = ψ − φ̂(ξ0)

−l
(
δ−lα ∗ φ(l)) ∗ ψ

for ψ ∈ �1(Zd).

Theorem 5.8. Let φ : Zd →C be finitely supported and such that supξ∈Td |φ̂(ξ)|=1.
Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous

type for φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polyno-
mial P = Pξ0 . Define μφ by (1.6) (or equivalently (1.4)), and denote by R#

the Legendre–Fenchel transform of R = ReP . There are positive constants C
and M such that, for any l1, l2, . . . , lk ∈ N+ such that lqα ∈ Zd for q = 1, 2, . . . , k
(assume k ≥ 1),

|∂l1∂l2 · · · ∂lkφ(n)(x)| ≤
Ckk!

∏k
q=1 lq

nμφ+k

× exp
(
− (n+ l1 + l2 + · · ·+ lk)MR#

( x− nα

n+ l1 + l2 + · · ·+ lk

))(5.20)

for all x ∈ Zd and n ∈ N+.

Proof. As in the proofs of Theorems 1.8 and 5.4, we fix ν ∈ Rd and invoke the
periodicity of φ̂ to see that

∂l1∂l2 · · ·∂lkφ(n)(x)

=
1

(2π)d

∫
ξ∈Td

φ

k∏
q=1

(
1− (φ̂(ξ0)

−1e−α·(ξ0+z)φ̂(ξ0 + z))lq
)
φ̂(ξ0 + z)ne−ix·(ξ0+z) dξ

=
1

(2π)d

∫
ξ∈Td

φ

k∏
q=1

glq(z)φ̂(ξ0)
nf(z)ne−i(x−nα)·(ξ0+z) dξ

for all x ∈ Zd and n ∈ N+, where z = ξ − iν; here, f = fξ0 is defined by (5.1) and
gl1gl2 , . . . , glk are those of Lemma 5.2. Put sk = l1 + l2 + · · ·+ lk, take ε,M and C
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as guaranteed by Lemmas 5.1 and 5.2 and set C1 = (2C/ε). Observe that∣∣∂l1 ∂l2 · · · ∂lkφ(n)(x)∣∣
≤ Ck

1 k!
∏k

q=1 lq

nk
e−(x−nα)·ν

×
∫
ξ∈Td

φ

1

k!

(nε
2
(R(ν) +R(ξ))

)k
eskMR(ν) exp(−nεR(ξ) + nMR(ν)) dξ

≤ Ck
1 k!

∏k
q=1 lq

nk
e−(x−nα)·ν

×
∫
ξ∈Td

φ

exp(nε(R(ξ) +R(ν))/2) exp((n+ sk)MR(ν)− nεR(ξ)) dξ

for x ∈ Zd and n ∈ N+. Upon setting yn,sk(x) = (x− nα)/(n+ sk) and replacing
M by M + ε/2, we can write∣∣∂l1∂l2 · · · ∂lkφ(n)(x)∣∣
≤ Ck

1 k!
∏k

q=1 lq

nk
exp(−(n+ sk) (yn,sk(x) · ν −MR(ν)))

∫
ξ∈Td

φ

exp(−nεR(ξ)/2) dξ

for x ∈ Zd and n ∈ N+. Now, as we observed in the proof of Theorem 1.8, the
integral over ξ is bounded above by C2n

−μφ ≤ Ck
2n

−μφ for some constant C2 ≥ 1
and so we obtain the estimate

∣∣∂l1∂l2 · · ·∂lkφ(n)(x)∣∣ ≤ (C1C2)
kk!

∏k
q=1 lq

nμφ+k
exp(−(n+ sk)(yn,sk(x) · ν −MR(ν)))

for all x ∈ Zd and n ∈ N+. Once again, the desired result is obtained by infimizing
over ν ∈ Rd. �

Remark 5.9. If one allows the constantM to depend on l1, l2, . . . , lk, then (5.20)
can be written

|∂l1∂l2 · · · ∂lkφ(n)(x)| ≤
Ckk!

∏k
q=1 lq

nμφ+k
exp

(
− nMl1,l2,...,lkR

#
(x− nα

n

))
for all x ∈ Zd and n ∈ N+. Indeed, set sk = l1 + l2 + · · ·+ lk and observe that

−(n+ sk)R
#
(x− nα

n+ sk

)
= −n sup

ν∈Rd

{(x− nα

n

)
· ν − n+ sk

n
R(ν)

}
≤ −n sup

ν

{(x− nα

n

)
· ν − (1 + ks)R(ν)

}
= −n ((1 + sk)R)

#
(x− nα

n

)
≤ −nMskR

#
(x− nα

n

)
,

where we have used Corollary 8.17 to obtain Msk =Ml1,l2,...,lk .
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In view the remark above, the following corollary is a special case of Theo-
rem 5.8 when α = 0, φ̂(ξ0) = 1 and we only consider one discrete time derivative;
it applies to the example in the introduction and the examples of Subsections 7.1
and 7.5.

Corollary 5.10. Let φ : Zd → C be finitely supported and such that sup |φ̂(ξ)| = 1.

Suppose that Ω(φ) = {ξ0} is of positive homogeneous type for φ̂ with corresponding
α ∈ Rd and positive homogeneous polynomial P . Also let μφ be defined by (1.6)
(or equivalently (1.4)) and let R# be the Legendre–Fenchel transform of R = ReP .

Additionally assume that α = 0 and φ̂(ξ0) = 1. There exists a positive constant C
and, to each l ∈ N+, a positive constant Ml such that∣∣φ(n)(x) − φ(l+n)(x)

∣∣ ≤ C l

nμφ+1
exp(−nMlR

#(x/n))

for all x ∈ Zd and n ∈ N+.

Our final theorem of this subsection concerns both time and space differences
for convolution powers.

Theorem 5.11. Let φ : Zd →C be finitely supported and such that supξ∈Td |φ̂(ξ)|
= 1. Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous

type for φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial
P = Pξ0 . Define μφ by (1.6) (or equivalently (1.4)), let m (and A) be as guaranteed
by Proposition 2.2, and denote by R# the Legendre–Fenchel transform of R = ReP .
There are positive constants M and C0 and, to each B > 0 and multi-index β, a
positive constant Cβ such that, for any P -fitted collection v = {v1, v2, . . . , vd} of
weight m and l1, l2, . . . , lk ∈ N+ such that lqα ∈ Zd for q = 1, 2, . . . , k,

∣∣∂l1∂l2 · · · ∂lkDβ
v (φ̂(ξ0)

−1eix·ξ0φ(n)(x))
∣∣ ≤ CβC

k
0 k!

∏k
q=1 lq

∏d
j=1 |vj |βj

nμφ+|β:2m|+k

× exp
(
− (n+ l1 + l2 + · · ·+ lk)MR#

( x− nα

n+ l1 + l2 + · · ·+ lk

))
for all x ∈ Zd and n ∈ N+ such that |vk| ≤ Bn1/(2mk) for k = 1, 2, . . . , d.

Proof. By replacing φ(x) by φ̂(ξ0)
−1eix·ξ0φ(x) we can assume without loss of gen-

erality that ξ0 = 0 and φ̂(ξ0) = 1. Assuming the notation of Lemma 5.1 (with
f = fξ0) and Lemma 5.2, we fix ν ∈ Rd and observe that

∂l1∂l2 · · · ∂lkDβ
vφ

(n)(x) =
1

(2π)d

∫
Td

k∏
q=1

glq(z)Q(z)f(z)ne−i(n+sk)ysk,n(x)·z dξ

for all x ∈ Zd and n ∈ N+, where z = ξ − iν, sk = l1 + l2 + · · · + lk, ysk,n(x) =

(x−nα)/(n+ sk) and Q(z) =
∏d

j=1(e
ivj ·z −1)βj is the subject of Lemma 5.5. The

desired estimate is now established by virtually repeating the arguments in the
proof of Theorems 5.4 and 5.8 while making use of Lemmas 5.1, 5.2 and 5.5 and
noting, as was done in the proof of Corollary 5.7, that |n−E∗

vj | = n−1/(2mj)|vj |
for j = 1, 2, . . . , d. �
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5.2. Sub-exponential bounds

In this subsection, we again consider a finitely supported function φ : Zd → C such
that supξ∈Td |φ̂(ξ)| = 1 and each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂.
In contrast to the previous subsection, we do not require any relationship between
the drifts αξ and positive homogeneous polynomials Pξ for those ξ ∈ Ω(φ); a
glimpse into Subsections 7.2 and 7.4 shows this situation to be a natural one. As
was noted in [4], the optimization procedure which yielded the exponential-type
estimates of the previous subsection is no longer of use. Here we have the following
result concerning sub-exponential estimates.

Theorem 5.12. Let φ :Zd →C be finitely supported and such that supξ∈Td |φ̂(ξ)|
= 1. Suppose additionally each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂ and
hence Ω(φ) = {ξ1, ξ2, . . . , ξQ}. Let αq ∈ Rd and positive homogeneous polynomial
Pq be those associated to ξq for q = 1, 2, . . . , Q. Moreover, for each q = 1, 2, . . . , Q,
set μq = μPq and let Eq ∈ Exp(Pq). Then, for any N ≥ 0, there is a positive
constant CN such that

(5.21) |φ(n)(x)| ≤ CN

Q∑
q=1

1

nμq
(1 + |n−E∗

q (x− nαq)|)−N

for all x ∈ Zd and n ∈ N+. The constant CN is independent of Eq ∈ Exp(Pq) for
q = 1, 2, . . .Q.

Proof. In view of Proposition 4.1 and Remark 4.2, there exist relatively open sub-
sets B1,B2, . . . ,BQ of Td

φ satisfying the following properties:

1. For each q = 1, 2, . . .Q, Bq contains ξq.

2. B1 contains the boundary of Td
φ (as a subset of Rd).

3. The closed sets {B1,B2, . . . ,BQ} are mutually disjoint.

For q = 1, 2, . . .Q, define

Oq = Td
φ \

( ⋃
r �=q

Br

)
and observe that each Oq is an open neighborhood of ξq (in the relative topology).

Let {uq}Qq=1 be a smooth partition of unity subordinate to {Oq}Qq=1. By construc-

tion, u1 ≡ 1 on the boundary of Td
φ and, for each q = 1, 2, . . .Q, uq is compactly

supported in Oq. We note that, for each q �= 1, Supp(uq) is also a compact subset
of Rd because the boundary of Td

φ is contained in B1 (the relative topology of Td
φ

is only seen in Supp(u1)). Set

δ =
minq=1,2,...,Q dist(Supp(uq), ∂Oq)

2
√
d

> 0.
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Observe that, for any x ∈ Zd and n ∈ N+,

φ(n)(x) =
1

(2π)d

∫
Td
φ

e−ix·ξφ̂(ξ)n dξ =
Q∑

q=1

1

(2π)d

∫
Oq

e−ix·ξφ̂(ξ)nuq(ξ) dξ

=

Q∑
q=1

eix·ξq φ̂(ξq)n

nμq (2π)d

∫
Uq,n

e−iyn(x)·ξfq,n(ξ)uq,n(ξ) dξ(5.22)

=

Q∑
q=1

eix·ξq φ̂(ξq)n

nμq (2π)d
Iq,n(x),

where we have set yq,n(x) = n−E∗
q (x− nαq), Uq,n = nEq(Oq)− ξq, defined

uq,n(ξ) = uq(n
−Eqξ),

and
fq,n(ξ) = (φ̂(ξq)

−1e−iα·n−Eq ξφ̂(n−Eqξ + ξq))
n

for ξ ∈ Uq,n, and put

Iq,n(x) =
∫
Uq,n

e−iyn(x)·ξfq,n(ξ)uq,n(ξ) dξ.

Of course, for each n and q, fn,q extends to an entire function on Cd; we make
no distinction between this function and fn,q. We will soon obtain the desired
estimates by integrating In,q by parts. For this purpose, it is useful to esti-
mate the derivatives of fq,n and this is done in the lemma below. The idea
behind the lemma’s proof is to look at fq,n on small neighborhoods in Cd of
ζ ∈ Supp(uq,n) ⊆ Rd. On such complex neighborhoods, Lemma 5.1 gives tractable
estimates for fq,n to which Cauchy’s d-dimensional integral formula can be applied
to estimate Dαfq,n(ζ).

Lemma 5.13. For each q = 1, 2, . . . , Q, there exist positive constants Cq and εq
such that, for each multi-index β,

|Dβfq,n(ζ)| ≤ Cq
β!

δ|β|
exp(−εq Rq(ζ))

for all n ∈ N+ and ζ ∈ Supp(uq,n).

Proof of Lemma 5.13. Our choice of the open cover {Oq} guarantees that |φ̂(η +
ξq)| < 1 for all non-zero η in the compact set Oq − ξq. An appeal to Lemma 5.1
gives ε′q,M

′
q > 0 such that

|fq,n(z)| ≤ exp
(− ε′qRq

(
n−Eqη

)
+M ′

qRq

(
n−Eqν

))n
≤ exp(−ε′qRq(η) +M ′

qRq(ν))
(5.23)

for all n ∈ N+ and z = η − iν ∈ Cd for which η ∈ Uq,n.
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We claim that there are constants εq,Mq > 0 for which

(5.24) − ε′q Rq(η) +M ′
q Rq(ν) ≤ −εq Rq(ζ) +Mq

for all z = η − iν ∈ Cd and ζ ∈ Rd such that |zi − ζi| = δ for i = 1, 2, . . . d.
Indeed, it is clear that Rq(ν) is bounded for all possible values of ν. An appeal to
Proposition 8.10 ensures that, there are M ′

q, εq > 0 for which

−ε′q Rq(η) = −ε′q Rq(ζ + (η − ζ)) ≤ −εq Rq(ζ) +M ′
q

for all η, ζ ∈ Rd provided |ηi − ζi| ≤ |zi − ζi| = δ for all i = 1, 2, . . . d. This proves
the claim.

By combining (5.23) and (5.24), we deduce that, for all n ∈ N+, ζ ∈ Rd, and
z = η − iν ∈ Cd for which η ∈ Uq,n,

(5.25) |fq,n(z)| ≤ exp(−εq Rq(ζ) +Mq)

whenever |zi − ζi| = δ for all i = 1, 2, . . . d. Our aim is to combine Cauchy’s
d-dimensional integral formula,

(5.26) Dβfq,n(ζ) =
β!

(2πi)d

∫
C1

∫
C2

· · ·
∫
Cd

fq,n(z) dz1dz2 . . . dzd
(z − ζ)(β1+1,β2+1,...,βd+1)

,

with (5.25) to obtain our desired bound for ζ ∈ Supp(uq,n); here, Ci = {z :
|zi − ζi| = δ} for i = 1, 2, . . . , d. To do this, we must verify that z = η − iν is such
that η ∈ Uq,n whenever |zi − ζi| = δ for i = 1, 2, . . . , d. This is easy to see, for if
ζ ∈ Supp(uq,n) and z is such that |zi − ζi| = δ for i = 1, 2, . . . , d,

|z − ζ| =
√
dδ < dist(Supp(uq), ∂Oq) ≤ dist(Supp(un,q), ∂Un,q)

for all n ∈ N+ (the distance only increases with n because {tEq} is contracting).
Consequently, a combination of (5.25) and (5.26) shows that, for any multi-index β,

|Dβfq,n(ζ)| ≤ β!

δ|β|
exp(−εq Rq(ζ) +Mq)

for all n ∈ N+ and ζ ∈ Supp(uq,n) and thus the desired result holds. //

We now finish the proof of Theorem 5.12. We assert that, for each q =
1, 2, . . . , Q and multi-index β, there exists Cβ > 0 such that

(5.27) |yq,n(x)βIq,n(x)| ≤ Cβ

for all x ∈ Zd and n ∈ N+. By inspecting (5.22), we see that the desired esti-
mate, (5.21), follows directly from (5.27) and so we prove (5.27).

We have, for any multi-index β,

(iyq,n(x))
βIq,n(x) =

∫
Uq,n

Dβ
ξ (e

−iyn(x)·ξ)fq,n(ξ)uq,n(ξ) dξ

= (−1)|β|
∫
Uq,n

e−iyn(x)·ξDβ(fq,n(ξ)uq,n(ξ)) dξ
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for all n ∈ N+ and x ∈ Zd where we have integrated by parts and made explicit
use of our partition of unity {uq} to ensure that all boundary terms vanished.
To see the absence of boundary contributions, note that when q �= 1, uq,n and
its derivatives are identically zero on a neighborhood of ∂Uq,n. When q = 1,
Supp(u1,n)∩∂U1,n = ∂(nETd) and because u1,n ≡ 1 on a neighborhood of ∂(nETd

φ),
the periodicity of fq,n and its derivatives (which are directly inherited form the

periodicity of φ̂(ξ)) ensure that the integral over the ∂U1,n is zero. Consequently,

|yq,n(x))βIq,n(x)| ≤
∫
Supp(uq,n)

∣∣Dβ(fq,n(ξ)uq,n(ξ))
∣∣ dξ

for, q = 1, 2, . . .Q, n ∈ N+ and x ∈ Zd. Once it is observed that derivatives
of uq,n are well-behaved as n increases, the estimate (5.27) follows immediately
from Lemma 5.13. The fact that CN is independent of Eq ∈ Exp(Pq) for q =
1, 2, . . . , Q follows by a direct application of Proposition 2.3. �

6. Stability theory

We now turn to the stability of convolution operators. In this brief section, we
show that Theorem 1.9 is a consequence of of estimates of the preceding section.
Let φ : Zd → C be finitely supported and define the operator Aφ on Lp = Lp(Rd)
for 1 ≤ p ≤ ∞ by

(6.1) (Aφf)(x) =
∑
y∈Zd

φ(y)f(x− y).

Such operators arise in the theory of finite difference schemes for partial differential
equations in which they produce extremely accurate numerical approximations to
solutions for initial value problems, e.g., (1.10). We encourage the reader to see [19]
and [29] for readable introductions to this theory; Thomée’s survey [27] is also an
excellent reference. In this framework, the operator Aφ is known as an explicit
constant-coefficient difference operator. General explicit difference operators are
produced by allowing φ to depend on a real parameter h > 0 which is usually the
grid size of an associated spatial discretization for the initial value problem.

The operator Aφ is said to be stable in Lp if the collection of successive powers
of Aφ is uniformly bounded on Lp, i.e., there is a positive constant C for which

‖An
φf‖Lp ≤ C ‖f‖Lp

for all f ∈ Lp and n ∈ N+; this property has profound consequences for differ-
ence schemes of partial differential equations as we discussed in the introduction.
For example, the Lax equivalence theorem states that a consistent approximate
difference scheme for (1.10) is stable in Lp if and only if the difference scheme
converges to the true solution (1.11) [27], [29]. In the L2 setting, checking stability
is straightforward. Using the Fourier transform, one finds that Aφ is stable in L2 if

and only if supξ |φ̂(ξ)| ≤ 1; this is a special case of the von Neumann condition [26].
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When p �= 2, the question of stability for Aφ is more subtle. It follows directly
from the definition (6.1) that An

φ = Aφ(n) for all n ∈ N+ and so by Minkowski’s
inequality we see that

(6.2) ‖An
φf‖Lp = ‖Aφ(n)‖Lp ≤ ‖φ(n)‖1‖f‖Lp

for all f ∈ Lp and n ∈ N+. This allows us to formulate a sufficient condition for
stability in Lp for 1 ≤ p ≤ ∞ in terms of the convolution powers of φ (which is
consistent with Question (iv) of Section 1) as follows: Aφ is stable in Lp whenever
there is a positive constant C for which

(6.3) ‖φ(n)‖1 =
∑
x∈Zd

|φ(n)(x)| ≤ C

for all n ∈ N+. The condition (6.3) is also necessary when p = ∞ and so it is
called the condition of max-norm stability. Originally investigated by John [13]
and Strang [25], this theory for difference schemes has been further developed by
many authors, see for example [27], [26], [7], and [23]. In one dimension (d = 1), the
question of stability in the max-norm was completely sorted out by Thomée [26].
Thomée showed that a sufficient condition of Strang was also necessary; this is
summarized in the following theorem.

Theorem 6.1 (Thomée 1965). The operator Aφ is stable in L∞(R) if and only if
one of the following conditions is satisfied:

(a) φ̂(ξ) = ceixξ for some x ∈ Z and |c| = 1.

(b) |φ̂(ξ)| < 1 except for at most a finite number of points ξ1, ξ2, . . . , ξQ in T where

|φ̂(ξ)| = 1. For q = 1, 2, . . .Q, there are constants αq, γq,mq, where αq ∈ R,
Re γq > 0 and where mq ∈ N+, such that

(6.4) φ̂(ξ + ξq) = φ̂(ξq) exp(i αq ξ − γk ξ
2mq + o(ξ2mq ))

as ξ → 0.

Thomée’s characterization makes use of the fact that the level sets of non-
constant holomorphic functions on C have no accumulation points – a fact that
breaks down in all other dimensions, e.g., f(z) = f(z1, z2) = cos(z1 − z2). When

φ : Z → C is finitely supported and such that supξ |φ̂(ξ)| = 1, the reader should
note that the condition (b) of Theorem 6.1 is equivalent to the hypotheses of
Theorem 5.12 for, in one dimension, every positive homogeneous polynomial is
necessarily of the form P (ξ) = γξ2m where Re γ > 0 and m ∈ N+. In Zd, we have
the following result.

Corollary 6.2. Let φ : Zd → C satisfy the hypotheses of Theorem 5.12 and de-
fine Aφ by (6.1). Then Aφ is stable in L∞ and hence stable in Lp(Rd) for all
1 ≤ p ≤ ∞.

Proof. An application of Theorem 5.12 with N ≥ d + 1 yields the uniform esti-
mate (6.3) after summing over x ∈ Zd. �
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Proof of Theorem 1.9. This is simply Corollary 6.2 translated into the language of
Section 1. �

In [26], Thomée also showed that when sup |φ̂| = 1 but the leading non-linear
term in the expansion (6.4) was purely imaginary, the corresponding difference
scheme was unstable. As was discussed in [4] and [17], such expansions give rise
to local limit theorems in which the corresponding attractors are bounded but
not in L2 and hence not in S(R); for instance, the Airy function. In the spirit
of [26], M.V. Fedoryuk explored stability and instability in higher dimensions [7].
Fedoryuk’s affirmative result assumes that, for ξ0 ∈ Ω(φ), the leading quadratic
polynomial in the expansion for Γξ0 has positive definite real part. Because any
quadratic polynomial P with positive definite real part is positive homogeneous
(2−1I ∈ Exp(P )), Corollary 6.2 (equivalently, Theorem 1.9) extends the affirmative
result of [7].

7. Examples

7.1. A well-behaved real valued function on Z2

This example illustrates the case in which φ̂ is maximized only at 0 which is of
positive homogeneous type for φ̂ with corresponding P . In this case, the local
limit theorem for φ yields one attractor with no oscillatory prefactor. The positive
homogeneous polynomial P is a semi-elliptic polynomial of the form (2.1) and the
corresponding attractor exhibits small oscillations and decays anisotropically.

Consider φ : Z2 → R defined by φ = (φ1 + φ2)/512, where

φ1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

326 (x, y) = (0, 0),

20 (x, y) = (±2, 0),

1 (x, y) = (±4, 0),

64 (x, y) = (0,±1),

−16 (x, y) = (0,±2),

0 otherwise,

and φ2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

76 (x, y) = (1, 0),

52 (x, y) = (−1, 0),

∓4 (x, y) = (±3, 0),

∓6 (x, y) = (±1, 1),

∓6 (x, y) = (±1,−1),

±2 (x, y) = (±3, 1),

±2 (x, y) = (±3,−1),

0 otherwise.

The graphs of φ(n) on the domain [−50, 50]× [−50, 50] for n = 100, n = 1000 and
n = 10000 are shown in Figure 3; in particular, the figure illustrates the decay
in ‖φ(n)‖∞. Figure 4 depicts φ(n)(x, y) when n = 10000 from various angles and
clearly illustrates its non-Gaussian anisotropic nature.

Given that φ is supported on 21 points, it is clear that φ ∈ S2. An easy
computation shows that sup |φ̂(ξ)| = 1 and this supremum is only attained at
ξ = (η, ζ) = (0, 0), where φ(0, 0) = 1, and hence Ω(φ) = {(0, 0)}. Expanding the
logarithm of φ(η, ζ)/φ(0, 0) about (0, 0) we find that, as (η, ζ) → (0, 0),

Γ(η, ζ) = − 1

64

(
η6 + 2ζ4 − 2iη3ζ2

)
+O(|η7|+ |ζ5|+ |η3ζ4|+ |η5ζ2|+ |η6ζ5|).
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(a) n = 100. (b) n = 1000.

(c) n = 10000.

Figure 3: The graphs of φ(n) for n = 100, n = 1000 and n = 10000.

It is easy to see that the polynomial which leads the expansion,

P (η, ζ) =
1

64

(
η6 + 2ζ4 − 2iη3ζ2

)
,

has positive definite real part,

R(η, ζ) = ReP (η, ζ) =
1

64

(
η6 + 2ζ4

)
.

Moreover

P (tE(η, ζ)) = P (t1/6η, t1/4ζ) = tP (η, ζ) with E =

(
1/6 0
0 1/4

)
∈ Exp(P )

for all t > 0 and (η, ζ) ∈ R2 and therefore P is a positive homogeneous polynomial
(it is also semi-elliptic). Further, we can rewrite the error to see that

Γ(η, ζ) = −P (η, ζ) + Υ(η, ζ)

where Υ(η, ζ) = o(R(η, ζ)) as (η, ζ) → (0, 0) and so we conclude that (0, 0) is of

positive homogeneous type for φ̂ with corresponding α = (0, 0) ∈ R2 and positive
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Figure 4: The graph of φ(n) for n = 10000.

(a) φ(n) for n = 10000. (b) Hn
P for n = 10000.

Figure 5: The graphs of φ(n) and Hn
P for n = 10000.

homogeneous polynomial P . Clearly, μφ = μP = trE = 5/12 and so Theorem 1.4
gives positive constants C and C′ for which

C ′n−5/12 ≤ ‖φ(n)‖∞ ≤ C n−5/12

for all n ∈ N+. An appeal to Theorem 1.6 shows that

(7.1) φ(n)(x, y) = Hn
P (x, y) + o(n−5/12)
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uniformly for (x, y) ∈ Z2 where,

Hn
P (x, y) =

1

(2π)2

∫
R2

e−i(x,y)·(ξ1,ξ2)−nP (ξ1,ξ2) dξ1 dξ2 =
1

n5/12
HP (n

−1/6x, n−1/4y)

for n ∈ N+ and (x, y) ∈ R2. The local limit (7.1) is illustrated in Figure 5 when
n = 10000. We also make an appeal to Theorem 1.8 to deduce pointwise estimates
for φ(n) (in fact, all results of Section 5 are valid for this φ). Upon noting that

R#(x, y) =
5

36/5
x6/5 +

(
1− 1

25

)
y4/3

for (x, y) ∈ R2, the theorem gives positive constants C and M for which

|φ(n)(x, y)| ≤ C

n5/12
exp

(
− nM

((x
n

)6/5
+
( y
n

)4/3))
for all n ∈ N+ and (x, y) ∈ Z2.

7.2. Two drifting packets

In this example, we study a complex valued function on Z2 whose convolution
powers φ(n) exhibit two packets which drift apart as n increases. This behavior is
easily described by applying Theorem 1.6 in which two distinct α’s appear.

Consider φ : Z2 → C defined by

φ(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+i
4a (x, y) = (−1,±1),

− 1+i
4a (x, y) = (1,±1),

± 1√
2a

(x, y) = (0,±1),

0 otherwise,

where a =
√
2 +

√
2. The graphs of Re(φ(n)) for n = 30, 60 are shown in Figures 6a

and 6b respectively; observe the appearance of the drifting packets.

In computing the Fourier transform of φ̂, we find that sup |φ̂| = 1 and

Ω(φ) = {ξ1, ξ2, ξ3, ξ4} = {(π/2, 3π/4), (π/2,−π/4), (−π/2,−3π/4), (−π/2, π/4)},
where

φ̂(ξ1) = φ̂(ξ3) = (i)5/4 and φ̂(ξ2) = φ̂(ξ4) = −(i)5/4.

Set γ =
√
2− 1 and

P (η, ζ) =
1 + iγ

4
η2 + γ ζ2.

As in the previous example, we expand the logarithm of φ̂ near ξj for j = 1, 2, 3, 4.

We find that each element of Ω(φ) is of positive homogeneous type for φ̂ with
αξ1 = αξ2 = (0, γ), αξ3 = αξ4 = (0,−γ) and Pξ1 = Pξ2 = Pξ3 = Pξ4 = P . Note
that P is obviously positive homogeneous with E = (1/2)I ∈ Exp(P ) and hence

(7.2) μφ = μPξ1
= μPξ2

= μPξ3
= μPξ4

= μP = 1.
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(a) Re(φ(n)) for n = 30. (b) Re(φ(n)) for n = 60.

(c) Re(fn) for n = 30. (d) Re(fn) for n = 60.

Figure 6: The graphs of Re(φ(n)) and Re(fn) for n = 30, 60.

An appeal to Theorem 1.4 gives positive constants C and C ′ for which

C n−1 ≤ ‖φ(n)‖∞ ≤ C′n−1

for all n ∈ N+. In view of (7.2), let us note that the contribution from all points
ξ1, ξ2, ξ3, ξ4 ∈ Ω(φ) appear in the local limit given by Theorem 1.6. An application
of the theorem gives

φ(n)(x, y) = (i)5n/4
(
e−i(x,y)·ξ1Hn

P (x, y − nγ) + (−1)nei(x,y)·ξ2Hn
P (x, y − nγ)

+ e−i(x,y)·ξ3Hn
P (x, y + nγ) + (−1)nei(x,y)·ξ4Hn

P (x, y + nγ)
)
+ o(n−1)

= (i)5n/4
(
(−1)y + (−1)n

) (
e−iπx/2eiπy/4Hn

P (x, y − γn)

+ eiπx/2ei3πy/4Hn
P (x, y + γn)

)
+ o(n−1)

which holds uniformly for (x, y) ∈ Z2. In this special case that P is of second
order, we can write

Hn
P (x, y) =

1

(2π)2

∫
R2

e−i(η,ζ)·(x,y)−P (η,ζ) dηdζ

=
1

2πn
√
γ(1 + iγ)

exp
(
− x2

n(1 + iγ)
− y2

4nγ

)
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for (x, y) ∈ R2 and from this, it is easily seen that φ(n) is approximated by two
generalized Gaussian packets respectively centered at ±(0, γn) for n ∈ N+. For
comparison, Figures 6a and 6b illustrate the approximation

fn(x, y) := (i)5n/4 ((−1)y + (−1)n)

× (
e−iπx/2eiπy/4Hn

P (x, y − γn) + eiπx/2ei3πy/4Hn
P (x, y + γn)

)
to φ(n) for n = 30 and 60.

7.3. A supporting lattice misaligned with Z2

In this example, we study a real valued function φ whose support is not well-aligned
with the principal coordinate axes. Here, the points at which φ̂ is maximized are
of positive homogeneous type for φ̂ but the corresponding positive homogeneous
polynomials are not semi-elliptic. In this way, we have a concrete example to
illustrate the conclusion of Proposition 2.2. In writing out the local limit theorem
for φ, we also see the appearance of a multiplicative prefactor which gives us
information concerning the support of φ(n). Finally, the validity of global space-
time exponential-type estimates is discussed.

Consider φ : Z2 → R defined by

φ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3/8 (x, y) = (0, 0),

1/8 (x, y) = ±(1, 1),

1/4 (x, y) = ±(1,−1),

−1/16 (x, y) = ±(2,−2),

0 otherwise.

Figures 7a and 7b illustrate the graph and heat map of φ(n) respectively when
n = 100.

We compute the Fourier transform of φ and find by a routine calculation that
sup |φ̂| = 1 and this maximum is attained at only two points in T2, (0, 0) and
(π, π). We write this as

Ω(φ) = {ξ1, ξ2} = {(0, 0), (π, π)},

and note that φ(ξ1) = φ(ξ2) = 1. For ξ1 = (0, 0), we have

Γ(η, ζ) = log
( φ̂(ξ + ξ1)

φ(ξ1)

)
= −η

2

8
− 23η4

384
− ηζ

4
+

25η3ζ

96
− ζ2

8
− 23η2ζ2

64
+

25ηζ3

96
− 23ζ4

384
+ o(|(η, ζ)|4)

as (η, ζ) → (0, 0). In seeking a positive homogeneous polynomial to lead the
expansion, we first note the appearance of the second order polynomial η2/8 +
ηζ/4 + ζ2/8. We might be tempted to choose this as our candidate, however, it is
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(a)

(b)

Figure 7: φ(n) for n = 100.

not positive definite because it vanishes on the line η = −ζ. Upon closer study, we
write

Γ(η, ζ) = −1

8
(η + ζ)2 − 23

384
(η − ζ)4 + o(|(η, ζ)|4) = −P (η, ζ) + o(P (η, ζ))

as (η, ζ) → (0, 0), where the polynomial

P (η, ζ) =
1

8
(η + ζ)2 +

23

384
(η − ζ)4.

is positive definite. Fortunately, it is also a positive homogeneous polynomial as
can be seen by observing that, for

E =

(
3/8 1/8
1/8 3/8

)
,

P (tE(η, ζ)) = P
(
t1/2(η + ζ)/2 + t1/4(η − ζ)/2, t1/2(η + ζ)/2 − t1/4(η − ζ)/2

)
=

1

8

(
t1/2(η + ζ)

)2
+

23

384

(
t1/4(η − ζ)

)4
= tP (η, ζ)

for all t > 0 and (η, ζ) ∈ R2. In contrast to the previous examples, P is not
semi-elliptic. However, observe that

A−1EA =

(
1/

√
2 1/

√
2

−1/
√
2 1/

√
2

)(
3/8 1/8
1/8 3/8

)(
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

)
=

(
1/2 0
0 1/4

)
and

(P ◦ LA)(η, ζ) = P
(η − ζ√

2
,
η + ζ√

2

)
=

1

8
(
√
2η)2 +

23

384
(−√

2ζ)4 =
1

4
η2 +

23

96
ζ4,

which is semi-elliptic; this illustrates the conclusion of Proposition 2.2.

We have shown that ξ1 is of positive homogeneous type for φ̂ with corresponding
αξ1 = (0, 0) and positive homogeneous polynomial P = Pξ1 . By expanding the
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logarithm of φ̂ near ξ2, a similar argument shows that ξ2 is also of positive ho-
mogeneous type for φ̂ with corresponding αξ2 = (0, 0) and the same positive ho-
mogeneous polynomial P = Pξ2 . It then follows immediately that φ meets they
hypotheses of Theorems 1.4 and 1.6 where

μφ = μP = trE = 3/4.

An appeal to Theorem 1.4 gives positive constants C and C′ for which

C ′n−3/4 ≤ ‖φ(n)‖∞ ≤ C n−3/4

for all n ∈ N+. By an appeal to Theorem 1.6, we also have

φ(n)(x, y) = φ̂(ξ1)
n e−iξ1·(x,y)Hn

P (x, y) + φ̂(ξ2) e
−iξ2·(x,y)Hn

P (x, y) + o(n−3/4)

= (1 + eiπ(x+y))Hn
P (x, y) + o(n−3/4)

= (1 + cos(π(x + y)))Hn
P (x, y) + o(n−3/4)

(7.3)

uniformly for (x, y) ∈ Z2. Upon closely inspecting the prefactor 1 + cos(π(x + y),
it is reasonable to assert that

Supp
(
φ(n)

) ⊆ {(x, y) ∈ Z2 : x± y ∈ 2Z} =: L
for all n ∈ N+ (Figure 7b also gives evidence for this when n = 100). The assertion
is indeed true, for it is easily verified that Supp(φ) ⊆ L and, because L is an additive
group, induction shows that

Supp(φ(n+1)) = Supp(φ(n) ∗ φ) ⊆ Supp(φ(n)) + Supp(φ) ⊆ L+ L = L
for all n ∈ N+. Thus, the prefactor (1+cos(π(x+y)) gives us information about the
support of the convolution powers. In Section 7.6, we will see that this situation
is commonplace when φ is a probability distribution.

Let us finally note that, because αξ1 = αξ2 = (0, 0) and Pξ1 = Pξ2 = P , φ
satisfies the hypotheses of Theorem 1.8. A straightforward computation shows
that R#(x, y) � |x + y|2 + |x − y|4/3 where R = ReP and so, by an appeal to
Theorem 1.8, there are positive constants C and M for which

|φ(n)(x, y)| ≤ C

n3/4
exp

(
−M

( |x+ y|2
n

+
|x− y|4/3
n1/3

))
for all (x, y) ∈ Z2 and n ∈ N+. We note however that because Ω(φ) = {ξ1, ξ2}, φ
does not satisfy the hypotheses of Theorem 5.4 and, by closely inspecting Figure 7a,
this should come at no surprise. In fact, by a direct application of (7.3), it is easily
shown that |φ(n)(0, 0)| ≥ εn−3/4 for some ε > 0 whereas φ(n)(0, 1) = 0 for all
n ∈ N+. Consequently, |D(0,1)φ

(n)(0, 0)| ≥ εn−3/4 for all n ∈ N+ from which it is
evident that the conclusion to Theorem 5.4, (5.10), does not hold.

7.4. Contribution from non-minimal decay exponent

In the present example, we study a real valued function φ on Z2 with Ω(φ) =

{ξ1, ξ2}. Although both ξ1 and ξ2 are of positive homogeneous type for φ̂ with cor-
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responding positive homogeneous polynomials Pξ1 and Pξ2 , we find that μφ =
μPξ1

< μPξ2
which is in contrast to the preceding examples. Consequently, only

the contribution from ξ1 appears in the local limit.

Consider φ : Z2 → R be defined by

(7.4) φ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

19/128 (x, y) = (0, 0),

19/256 (x, y) = (0,±1),

1/4 (x, y) = (±1, 0),

1/8 (x, y) = (±1,±1),

−5/64 (x, y) = (±2, 0),

−5/128 (x, y) = (±2,±1),

1/256 (x, y) = (±4, 0),

1/512 (x, y) = (±4,±1),

0 otherwise.

(a) φ(n) for n = 100. (b) Hn
Pξ1

for n = 100.

(c) φ(n) for n = 100. (d) Hn
Pξ1

for n = 100.

Figure 8: The graphs of φ(n) and Hn
Pξ1

for n = 100.
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(a) φ(n) for n = 1000. (b) Hn
Pξ1

for n = 1000.

(c) φ(n) for n = 1000. (d) Hn
Pξ1

for n = 1000.

Figure 9: The graphs of φ(n) and Hn
Pξ1

for n = 1000.

The graphs of φ(n) for (x, y) ∈ Z2 such that −100 ≤ x, y ≤ 100 are displayed
in Figures 8a and 8c for n = 100 and Figures 9a and 9c for n = 1000. Upon
considering the Fourier transform of φ, we find that sup |φ̂| = 1 and this maximum
is attained at exactly two points in T2. Specifically,

Ω(φ) = {ξ1, ξ2} = {(0, 0), (π, 0)},
where φ̂(ξ1) = 1 and φ̂(ξ2) = −1. In expanding the logarithm of φ̂(ξ + ξ1)/φ̂(ξ1)

about (0, 0), we find that ξ1 = (0, 0) is of positive homogeneous type for φ̂ with
αξ1 = (0, 0) and

Pξ1(η, ζ) =
η6

16
+
ζ2

4
.

Clearly Pξ1 is positive homogeneous with E1 = diag(1/6, 1/2) ∈ Exp(Pξ1) thus

μPξ1
= trE1 = 2/3. Now, upon expanding the logarithm of φ̂(ξ + ξ2)/φ̂(ξ2) we

find that ξ2 = (π, 0) is also of positive homogeneous type for φ̂ with αξ2 = (0, 0)
and positive homogeneous polynomial

Pξ2(η, ζ) = η2 +
ζ2

4
;
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here, E2 = (1/2)I ∈ Exp(Pξ2) and thus μPξ2
= trE2 = 1. In this case

μφ = min
i=1,2

μPξi
= μPξ1

= 2/3,

and so, in light of the paragraph preceding the statement of Theorem 1.6, we
restrict our attention to ξ1, in which case the theorem describes the approximation
of φ(n) by a single attractor HPξ1

. This is the local limit

(7.5) φ(n)(x, y) = Hn
Pξ1

(x, y) + o(n−2/3)

which holds uniformly for (x, y) ∈ Z2. Figures 8b, 8d, 9b and 9d illustrate this
result. It should be noted that the approximations shown in Figures 8 and 9 appear
more coarse than those of the previous examples. For instance, Figure 8c depicts
minor oscillations in the graph of φ(n) which do not appear in the approximation
illustrated in Figure 8d. These oscillations are due to the influence on φ(n) by φ̂
near ξ2 which for n = 1000 is not yet sufficiently scaled out. As demonstrated in the
proof of Theorem 1.6, this influence dies out on the relative order of n1−2/3 = n−1/3

and thus the influence is not negligible when n = 1000.

As a final remark, we note that φ is the tensor product of two functions map-
ping Z into C. Specifically, φ = φ1 ⊗ φ2 where,

φ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

19/64 x = 0,

1/2 x = ±1,

−5/32 x = ±2,

1/128 x = ±4,

0 otherwise,

and φ2(y) =

⎧⎪⎨⎪⎩
1/2 y = 0,

1/4 y = ±1,

0 otherwise.

In fact, had we studied the functions φ1 and φ2 separately, we would have found
that

φ
(n)
1 (x) = Hn

η6/16(x) + o(n−1/6) and φ
(n)
1 (y) = Hn

ζ2/4(y) + o(n−1/2)

uniformly for x, y ∈ Z and from this deduced the local limit (7.5) because φ(n) =

φ
(n)
1 ⊗φ(n)2 and HPξ1

= Hη6/16⊗Hζ2/4 (note also that μφ = 1/6+1/2 = μφ1 +μφ2).
In general, tensor products can be used to create a wealth of examples in any
dimension to which the results of lower dimensions can be applied. For instance,
by applying the much stronger theory of one dimension (in light of [17]), one
can deduce stronger results than are given here for the class of finitely supported
functions on Zd of the form

φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φd

where φk : Z �→ C is finitely supported for k = 1, 2, . . . , d. How to place these
examples in a d-dimensional theory is an open question.
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7.5. A simple class of real valued functions

In this subsection we consider a class of real valued and finitely supported func-
tions φm,λ determined by two multi-parameters m ∈ N+ and λ ∈ Rd

+, cf. Subsec-
tion 2.4 of [4]. Here, Ω(φm,λ) contains only 0 ∈ Td which is of positive homogeneous

type for φ̂m,λ with no drift and whose associated positive homogeneous polynomial
is a semi-elliptic polynomial with no “mixed” terms. In this setting, our methods

yield easily �∞-asymptotics and local limit theorems for φ
(n)
m,λ = (φm,λ)

(n). More-

over, all of the results of Section 5 concerning global space-estimates for φ
(n)
m,λ and

its discrete differences are valid and we apply them.

Let m = (m1,m2, . . . ,md) ∈ Nd
+ and λ = (λ1, λ2, . . . , λd) be such that λj ∈

(0, 21−mj/d] for j = 1, 2, . . . , d with at least one λj < 21−mj/d. Define

(7.6) φm,λ = δ0 −
d∑

j=1

λj (δ0 − ρj)
(mj),

where ρj = (1/2)(δej + δ−ej ) is the Bernoulli walk on the jth coordinate axis. By
a straightforward computation, we have

φ̂m,λ(ξ) = 1−
d∑

j=1

λj (1− cos(ξj))
mj

for ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd and from this it is easily seen that supξ |φ̂m,λ(ξ)| = 1

which is attained only at 0 ∈ Td, i.e., Ω(φm,λ) = {0}. Here, φ̂m,λ(0) = 1 and it is
easily seen that

Γ(ξ) = log(φ̂m,λ(ξ)) = −Pm,λ(ξ) + o(Pm,λ(ξ))

as ξ → 0, where

Pm,λ(ξ) =

d∑
j=1

λj
2mj

ξ
2mj

j

for ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd. Note that Pm,λ(ξ) is a semi-elliptic polynomial of
the form (2.1) with Dm = diag((2m1)

−1, (2m2)
−1, . . . , (2md)

−1) ∈ Exp(Pm,λ) and
hence

μφm,λ
= μPm,λ

= (2m1)
−1 + (2m2)

−1 + · · ·+ (2md)
−1 = |1 : 2m|,

where 1 = (1, 1, . . . , 1) ∈ Nd.
For any l ∈ N, recall from Section 5 the discrete time difference operator

∂l = ∂l(φm,λ, ξ0, α) which, in this case, is given by

∂lψ = (δ − φ
(l)
m,λ) ∗ ψ

for ψ ∈ �1(Zd). For any multi-index β ∈ Nd, consider the difference operator
Dβ = Dβ

e defined for any ψ ∈ �1(Zd) by

Dβψ = (De1)
β1(De2)

β2 · · · (Ded)
βdψ
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where Dejψ(x) = ψ(x + ej) − ψ(x) for x ∈ Zd and (Dej )
0 is the identity. We

note that e = {e1, e2, . . . , ed} is Pm,λ-fitted of weight m in view of the discussion
preceding Corollary 5.7. Finally, define

(7.7) |x|m =

d∑
j=1

|xj |2mi/(2mi−1)

for x = (x1, x2, . . . , xd) ∈ Rd and observe that, for x ∈ Rd and n ∈ N+,

|n−Dmx|m =
d∑

j=1

|xj |2mj/(2mj−1)/n1/(2mj−1).

Proposition 7.1. Let φm,λ be defined by (7.6), assume the notation above and

write (φm,λ)
(n) = φ

(n)
m,λ for n ∈ N+. There are positive constants C and C′ for

which

(7.8) C n−|1:2m| ≤ ‖φ(n)m,λ‖∞ ≤ C′n−|1:2m|

for all n ∈ N+. We have

φ
(n)
m,λ(x) = n−|1:2m|HPm,λ

(
n−Dmx

)
+ o(n−|1:2m|)

= n−|1:2m|HPm,λ

( x1
n1/(2m1)

,
x2

n1/(2m2)
, . . . ,

xd
n1/(2md)

)
+ o(n−|1:2m|)(7.9)

uniformly for x = (x1, x2, . . . , xd) ∈ Zd, where HPm,λ
is defined by (1.8). There

are positive constants C0, C1,M0 and M1 for which

(7.10) |φ(n)m,λ(x)| ≤
C0

n|1:2m| exp
(−M0

∣∣n−Dmx
∣∣
m

)
and

(7.11) |φ(n+1)
m,λ (x)− φ

(n)
m,λ(x)| ≤

C1

n|1+2m:2m| exp
(−M1

∣∣n−Dmx
∣∣
m

)
for all x ∈ Zd and n ∈ N+. Further, there are positive constants C0 and M and,
to each multi-index β, a positive constant Cβ such that, for any l1, l2, . . . , lk ∈ Nd

+,

(7.12) |∂l1∂l2 · · · ∂ljDβφ
(n)
m,λ(x)| ≤

Cβ C
k
0 k!

∏k
q=1 lq

n|1+β+2km:2m| exp
(−M ∣∣(n+ sk)

−Dmx
∣∣
m

)
for all x ∈ Zd and n ∈ N+, where sk = l1 + l2 + · · ·+ lk.

Remark 7.2. For simplicity, we have not treated the critical case in which λj =
21−mj/d for j = 1, 2, . . . , d in the proposition above, however, our methods handle
this easily. In this case, the local limit (7.9) instead contains the prefactor 1 +
exp(iπ(n − x1 − x2 − · · · − xd)). The estimate (7.11) is also valid here but (7.12)
and (7.10) fail to hold (for reasons similar to those of Subsection 7.3).
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Proof. In view of the discussion proceeding the proposition, straightforward ap-
plications of Theorems 1.4 and 1.6 yield (7.8) and (7.9) respectively. To see the
global space-time estimates, we first observe that

P#
m,λ(x1, x2, . . . , xd)

=

d∑
j=1

(( 1

2mj

)1/(2mj−1)

−
( 1

2mj

)2mj/(2mj−1))(2mj |xj |2mj

λj

)1/(2mj−1)

for x = (x1, x2, . . . , xd). From this it is easily checked that | · |m � P#
m,λ (this

can also be seen with the help of Corollary 8.16). Using the fact 0 ∈ Ω(φm,λ) has
corresponding α0 = 0 and P0 = Pm,λ which is semi-elliptic, φm,λ meets hypotheses
of Theorem 1.8, Corollary 5.10 and Theorem 5.8. The estimates (7.10) follows
immediately from Theorem 1.8. Upon noting that μφ+1 = |1 : 2m|+ |2m : 2m| =
|1 + 2m : 2m|, (7.11) follows from Corollary 5.10. Finally, the estimate (7.12)
follows from Theorem 5.11 once it is observed that μφ+|β : 2m|+k = |1+β+2km :
2m|, e = {e1, e2, . . . , ed} is Pm,λ-fitted with weight m and

∏
j=1 |ej |βj = 1. �

7.6. Random walks on Zd: a look at the classical theory

In this short subsection, we revisit the classical theory of random walks on Zd. We
denote by M1

d, the set functions φ : Zd → [0, 1] satisfying

‖φ‖1 =
∑
x∈Zd

φ(x) = 1,

i.e., M1
d is the set of probability distributions on Zd. As discussed in the introduc-

tion, each φ ∈ M1
d drives a random walk on Zd whose nth-step transition kernel kn

is given by kn(x, y) = φ(n)(y−x) for x, y ∈ Zd. Taking our terminology from p. 72
of [24], we say that φ ∈ M1

d is genuinely d-dimensional if Supp(φ) is not contained
in any (d− 1)-dimensional affine subspace of Rd; in this case, we also say that the
associated random walk is genuinely d-dimensional. Our main focus throughout
this subsection is on subset of φ ∈ M1

d which are genuinely d-dimensional with
finite second moments. In contrast to the standard literature, we make no as-
sumptions concerning periodicity/aperiodicity/irreducibility, cf. [24], [15]. In this
generality, our formulation of the (classical) local limit theorem, Theorem 7.6, nat-
urally contains a prefactor Θ which nicely describes the support of φ(n) and hence
the random walk’s periodic structure.

Our first two results, Lemma 7.3 and Proposition 7.4 are stated for the general
class of φ ∈ M1

d; one should note that both results fail to hold in the case that φ
is generally complex valued. The lemma and proposition highlight the importance
of the set Ω(φ) and, in particular, its inherent group structure. This intrinsic
structure (and much more) was also recognized by B. Schreiber in his study of
(complex valued) measure algebras on locally compact abelian groups [22]. In fact,
Schreiber’s results can be used to prove Lemma 7.3 and Proposition 7.4; although,
in our context, the proofs are straightforward and so we proceed directly.
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Lemma 7.3. Let φ ∈ M1
d. Then Ω(φ) depends only on Supp(φ) in the sense that,

if Supp(φ1) = Supp(φ2) for φ1, φ2 ∈ M1
d, then Ω(φ1) = Ω(φ2). Furthermore, for

each ξ ∈ Ω(φ), there exists ω(ξ) ∈ (−π, π] such that

φ̂(ξ) = eiω(ξ) = eix·ξ

for all x ∈ Supp(φ).

Proof. We shall use the following property of complex numbers. If {z1, z2, . . . } ⊆ C

satisfy
∞∑
k

|zk| = 1 =
∣∣∣ ∞∑
k=1

zk

∣∣∣,
then, for some ω ∈ (−π, π], zk = rke

iω for all k. Thus, whenever ξ ∈ Ω(φ), i.e.,

|φ̂(ξ)| =
∣∣∣ ∑
x∈Zd

φ(x) eix·ξ
∣∣∣ = 1,

there exists ω = ω(ξ) ∈ (−π, π] for which

(7.13) eix·ξ = eiω(ξ)

for all x ∈ Supp(φ). In particular, this shows that Ω(φ) depends only on Supp(φ).
Further, observe that

(7.14) φ̂(ξ) =
∑
x∈Zd

φ(x) eix·ξ = eiω(ξ)
∑
x∈Zd

φ(x) = eiω(ξ)

and so the result follows upon combining (7.13) and (7.14). �

Proposition 7.4. Let φ ∈ M1
d. Then Ω(φ) is a subgroup of Td and

φ̂
∣∣
Ω(φ)

: Ω(φ) → S1

is a homomorphism of groups; here, Td is taken to have the canonical group struc-
ture and S1 = {z ∈ C : |z| = 1}.

Proof. It is obvious that 0 ∈ Ω(φ); hence Ω(φ) is non-empty. Let ξ1, ξ2 ∈ Ω(φ)
and, in view of Lemma 7.3,

φ̂(ξ2−ξ1) =
∑

x∈Supp(φ)

φ(x) eix·(ξ1−ξ2) =
∑

x∈Supp(φ)

φ(x)φ̂(ξ2)φ̂(ξ1)
−1 = φ̂(ξ2)φ̂(ξ1)

−1

and thus ξ2− ξ1 ∈ Ω(φ) because |φ̂(ξ2− ξ1)| = |φ̂(ξ2)φ̂(ξ1)−1| = 1. As Ω(φ) is non-
empty and closed under subtraction, we conclude at once that Ω(φ) is a subgroup

of Td and the restriction of φ̂ to Ω(φ) is a homomorphism. �
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We now begin to develop what is needed to recapture and reformulate the
classical local limit theorem in the general case that φ ∈ M1

d is genuinely d-
dimensional and has finite second moments. In this case, the mean αφ ∈ Rd and
covariance Cφ ∈ Md(R) of φ are defined respectively by

{αφ}k =
∑
x∈Zd

xkφ(x) for k = 1, 2, . . . , d

and

{Cφ}k,l =
∑
x∈Zd

(xk − {αφ}k) (xl − {αφ}l)φ(x) for k, l = 1, 2, . . . , d.

Proposition 7.5. Let φ ∈ M1
d be genuinely d-dimensional with finite second mo-

ments and let αφ and Cφ be the mean and covariance of φ as defined above. Set

Pφ(ξ) =
1

2
ξ · Cφ ξ

for ξ ∈ Rd. Then each ξ0 is of positive homogeneous type for φ̂ with αξ0 = αφ and
positive homogeneous polynomial Pξ0 = Pφ. In particular, μφ = μPφ

= d/2.

Proof. When φ is genuinely d-dimensional, it is well known that the covariance
form

ξ �→ Cov(φ)(ξ) = ξ · Cφ ξ

is positive definite (when αφ = 0, Supp(φ) contains a basis of Rd and when
αφ �= 0, an appropriate shift does the trick). Upon noting that 2−1I ∈ Exp(Pφ),
we conclude that Pφ is a positive homogeneous polynomial. Observe that, for

Γ(ξ) = log(φ̂(ξ + ξ0)/φ̂(ξ0)),

∂kΓ(0) =
∂kφ̂(ξ0)

φ̂(ξ0)
=

1

φ̂(ξ0)

∑
x∈Supp(φ)

ixkφ(x) e
ix·ξ0

=
1

φ̂(ξ0)

∑
x∈Supp(φ)

ixkφ(x) e
iω(ξ0) =

eiω(ξ0)

φ̂(ξ0)

∑
x∈Supp(φ)

ixkφ(x) = i{αφ}k

for all k = 1, 2 . . . d, where we have used Lemma 7.3. By analogous reasoning,
which again makes use of the lemma, ∂k,lΓ(0) = −{Cφ}k,l for k, l = 1, 2, . . . , d.
Consequently,

Γ(ξ) =

d∑
k=1

∂kΓ(0) ξk +

d∑
k,l=1

1

2
∂k,lΓ(0) ξk ξl + o(|ξ|2)

= i αφ · ξ − Pφ(ξ) + o(|ξ|2),
(7.15)

as ξ → 0, where we have used the positive definiteness Pφ to rewrite the error.

From this it follows immediately that ξ0 is of positive homogeneous type for φ̂ with
αξ0 = αφ and positive homogeneous polynomial Pξ0 = Pφ. �



Convolution powers of complex functions on Zd 1103

We now present the classical local limit theorem in a new form. Assuming the
notation of the previous proposition, the attractor Gφ = HPφ

which appears below
is the generalized Gaussian density given by (1.2) (see p. 25 of [15]). Let us also
note that, in view of the previous proposition and Proposition 4.1, Ω(φ) is finite.

Theorem 7.6. Let φ ∈ M1
d be genuinely d-dimensional with finite second mo-

ments. Then there exists positive constants C and C′ for which

(7.16) C n−d/2 ≤ sup
x∈Zd

φ(n)(x) ≤ C′n−d/2

for all n ∈ N+. Furthermore,

(7.17) φ(n)(x) = n−d/2 Θ(n, x)Gφ

(x− nαφ√
n

)
+ o(n−d/2)

uniformly for x ∈ Zd, where Θ: N+×Zd is dependent only on Supp(φ) in the sense
of Lemma 7.3 and is given (equivalently) by

(7.18) Θ(n, x) =
∑

ξ∈Ω(φ)

ei(nω(ξ)−x·ξ) =
∑

ξ∈Ω(φ)

cos(nω(ξ)− x · ξ);

here, ω(ξ) ∈ (−π, π] is that given by Lemma 7.3 for each ξ ∈ Ω(φ).

Proof. The hypotheses of the present theorem are weaker than those of Theo-
rems 1.4 and 1.6, as the latter theorems require φ to have finite moments of all
orders. However, what is really used in the proof of the Theorem 1.6 is the condi-
tion that, for each ξ0 ∈ Ω(φ), Γξ0 can be written in the form (7.15) where Pξ0 = Pφ

is positive definite (in the general case that φ is complex valued, it is not known
a priori how many terms in the Taylor expansion for Γξ0 are needed for this to be
true). Under the present hypotheses and in view of Proposition 7.5, the proof of
Theorem 1.6 pushes through with no modification and so we apply it (or simply its
conclusion). As an immediate consequence, we obtain (7.16) because Theorem 1.4
follows directly from Theorem 1.6. It remains to show that the local limit yielded
by Theorem 1.6 can be written in the form (7.17).

By virtue of Proposition 7.5, we have αξ = αφ, Pξ = Pφ for all ξ ∈ Ω(φ)
and, moreover μφ = μP = d/2. Noting that all ξ ∈ Ω(φ) have corresponding
positive homogeneous polynomials of the same order (because the polynomials are
identical), all appear in the local limit. Consequently,

φ(n)(x) =
∑

ξ∈Ω(φ)

e−ix·ξ(φ̂(ξ))nHn
Pφ

(x− nαφ) + o(n−d/2)

=
( ∑

ξ∈Ω(φ)

e−ix·ξ(φ̂(ξ))n
)
n−d/2HPφ

(
n−1/2(x− nαφ)

)
+ o(n−d/2)

= n−d/2
( ∑

ξ∈Ω(φ)

ei(nω(ξ)−x·ξ)
)
Gφ

(
n−1/2(x− nαφ)

)
+ o(n−d/2)

= n−d/2 Θ(n, x)Gφ

(x− nαφ√
n

)
+ o(n−d/2)
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uniformly for x ∈ Zd. In view of Lemma 7.3, it is clear that Θ depends only on
Supp(φ) and so to complete the proof, we need only to verify the second equality
in (7.18). Using the fact that Ω(φ) is a subgroup of Td in view of Proposition 7.4,
for each ξ ∈ Ω(φ), −ξ ∈ Ω(φ) and therefore

Θ(n, x) =
1

2

( ∑
ξ∈Ω(φ)

ei(nω(ξ)−x·ξ) +
∑

ξ∈Ω(φ)

ei(nω(−ξ)−x·(−ξ))
)

=
∑

ξ∈Ω(φ)

cos(nω(ξ)− x · ξ),

where we have noted that ω(−ξ) = −ω(ξ) for each ξ ∈ Ω(φ). �

By close inspection of the theorem, one expects that in general Θ can help us
describe the support of φ(n) and hence the periodicity of the associated random
walk. This turns out to be the case as our next theorem shows.

Theorem 7.7. Let φ ∈ M1
d be genuinely d-dimensional with finite second moments

and define Θ: N+ × Zd → R by (7.18). Then

(7.19) Supp(φ(n)) ⊆ Supp(Θ(n, ·))
for all n ∈ N+. Further, if

lim sup
n

|Θ(n, x+ �nαφ�)| > 0

for x ∈ Zd, then
lim sup

n
nμφ φ(n)(x+ �nαφ�) > 0.

Proof. In view of Lemma 7.3, for any x0 ∈ Supp(φ), ω(ξ) = x0 · ξ for all ξ ∈ Ω(φ).
Therefore, for any x0 ∈ Supp(φ),

Θ(n, x) =
∑

ξ∈Ω(φ)

cos((nx0 − x) · ξ)

for all n ∈ N+ and x ∈ Zd and, in particular,

Θ(1, x0) =
∑

ξ∈Ω(φ)

cos(0) = #(Ω(φ)) > 0

whence Supp(φ) ⊆ Supp(Θ(1, ·)). The inclusion (7.19) follows straightforwardly
by induction. For the second conclusion, an appeal to Theorem 7.6 shows that, for
sufficiently large n,

nd/2φ(n)(x+ �nαφ�) ≥ |Θ(n, x+ �nαφ�)Gφ(n
−1/2(x+ �nαφ� − nαφ))|/2

for all x ∈ Rd. Of course, for any fixed x,

lim
n→∞ |Gφ(n

−1/2(x+ �nαφ� − nαφ))| = Gφ(0) > 0,

and from this the assertion follows without trouble. �
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To illustrate the utility of the function Θ, we consider a class of examples which
generalizes simple random walk. For a fixed m = (m1,m2, . . . ,m2) ∈ Nd

+ define
φm ∈ M1

d by

φm(mjej) = φm(−mjej) =
1

2d

for j = 1, 2, . . . , d and set φm(x) = 0 otherwise; here, {e1, e2, . . . , ed} is the stan-
dard Euclidean basis in Rd. This generates the random walk with statespace
{(k1m1, k2m2, . . . , kdmd) : kj ∈ Z for j = 1, 2, . . . , d}. We have:

Proposition 7.8. Let Θm : N+ × Zd → R be that associated to φm by (7.18).
Then

Θm(n, x) =

{
2
(∏d

j=1mj

)
if mj |xj for all j = 1, 2, . . . d and n− |x : m| is even,

0 otherwise.

Proof. For notational convenience, we write φ = φm and Θ = Θm. Observe
that φ̂(ξ) = (1/d)

∑d
j=1 cos(mjξj) for ξ = (ξ1, ξ2, . . . , ξd) ∈ Td and so by a direct

computation,

Ω(φ) = Ωe ∪̇Ωo

=
{
π
( k1
m2

,
k2
m2

, . . . ,
kd
md

)
: k ∈ Ze

}⋃̇{
π
( k1
m2

,
k2
m2

, . . . ,
kd
md

)
: k ∈ Zo

}
,

where

Ze = {k ∈ Zd : −mj < kj ≤ mj and kj is even for j = 1, 2, . . . , d}

and

Zo = {k ∈ Zd : −mj < kj ≤ kj and mj is odd for j = 1, 2, . . . , d}.

With this decomposition, we immediately observe that

ω(ξ) =

{
0 if ξ ∈ Ωe,

π if ξ ∈ Ωo.

In the case that mj

∣∣xj for j = 1, 2, . . . , d,

Θ(n, x) =
∑
ξ∈Ωe

ei(0n−x·ξ) +
∑
ξ∈Ωo

ei(πn−x·ξ)

=
∑
k∈Ze

exp
(
− iπ

d∑
j=1

kjxj
mj

)
+
∑
k∈Zo

exp
(
iπ
(
n−

d∑
j=1

kjxj
mj

))

= #(Ze) + exp
(
iπ
(
n−

d∑
j=1

xj
mj

))
#(Zo)
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where we have used (7.18). Now #(Ze) = #(Zo) =
∏d

j=1mj and so it follows that

Θ(n, x) =
(
1 + eiπ(n−|x:m|)) d∏

j=1

mj =

{
2
(∏d

j=1mj

)
if n− |x : m| is even,

0 if n− |x : m| is odd.

In the case that ml �
∣∣xl for some l = 1, 2, . . . , d, observe that

Θ(n, x) =
∑
ξ∈Ωe

e−iξ·x +
∑
ξ∈Ωo

ei(πn−ξ·x)

=

d∏
j=1

∑
mj<kj≤mj

kj even

exp
(
− iπ

xjkj
mj

)
+ eiπn

d∏
j=1

∑
mj<kj≤mj

kj odd

exp
(
− iπ

xjkj
mj

)
.(7.20)

Focusing on the lth multiplicand in the first term, it is straightforward to see that(
e−2πixl/ml − 1

) ∑
ml<kj≤ml

kl even

exp
(
− iπ

xlkl
ml

)

=
∑

ml<kj≤ml

kl even

exp
(
− iπ

xl(kl + 2)

ml

)
− exp

(
− iπ

xlkl
ml

)
= 0,

and since ml �
∣∣xl, we can immediately conclude that∑

ξ∈Ωe

e−iξ·x =
∑

ml<kj≤ml

kl even

exp
(
− iπ

xlkl
ml

)∏
j �=l

∑
mj<kj≤mj

kj even

exp
(
− iπ

xjkj
mj

)
= 0.

An analogous argument shows that
∑

ξ∈Ωo
ei(πn−ξ·x) = 0 and so, in view of (7.20),

it follows that Θ(n, x) = 0 as desired. �

Simple random walk is, of course, the random walk defined by φm where m =
(1, 1, . . . , 1). In this case, the proposition yields

Θ(1,1,...,1)(n, x) =

{
2 if n− x1 − x2 − · · · − xd is even,

0 if n− x1 − x2 − · · · − xd is odd;

this captures the walk’s well-known periodicity.

We end this section by showing that Theorem 1.8 provides a Gaussian (upper)
bound in the case that φ ∈ M1

d is finitely supported and genuinely d-dimensional.
To obtain a matching lower bound, it is necessary to make some assumptions
concerning aperiodicity.

Theorem 7.9. Let φ ∈ M1
d be finitely supported and genuinely d-dimensional with

mean αφ ∈ Rd. Then, there exist positive constants C and M for which

φ(n)(x) ≤ C

nd/2
exp

(−M |x− nαφ|2/n
)

for all n ∈ N+ and x ∈ Zd.
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Proof. In view of Proposition 7.5, our hypotheses guarantee that every ξ ∈ Ω(φ)
is of positive homogeneous type with corresponding αξ = αφ and positive homo-
geneous polynomial Pξ = Pφ; here μφ = μPφ

= d/2 and Rφ = RePφ = Pφ. An
appeal to Theorem 1.8 gives positive constants C and M for which

φ(n)(x) = |φ(n)(x)| ≤ C

nd/2
exp

(− nMP#
φ ((x− nαφ) /n)

)
for all n ∈ N+ and x ∈ Zd. Upon noting that P#

φ is necessarily quadratic and

positive definite by virtue of Proposition 8.15, we conclude that P#
φ � | · |2 and

the theorem follows at once. �

8. Appendix

8.1. Properties of contracting one-parameter groups

The following proposition is standard [10].

Proposition 8.1. Let E,G ∈ Md(R) and A ∈ Gld(R). Also, let E∗ ∈ Md(R)
denote the adjoint of E. Then for all t, s > 0, the following statements hold:

• 1E = I • tE∗
= (tE)∗ • If EG = GE then tEtG = tE+G

• (st)E = sEtE • AtEA−1 = tAEA−1 • det(tE) = ttrE

• (tE)−1 = t−E

Lemma 8.2. Let {Tt} ⊆ Gld(R) be a continuous one-parameter contracting group.
Then, for some E ∈ Gld(R), Tt = tE for all t > 0. Moreover, there exists a positive
constant C for which

‖Tt‖ ≤ C + t‖E‖

for all t > 0.

Proof. The representation Tt = tE for some E ∈ Md(R) follows from the Hille–
Yosida construction. If for some non-zero vector η, Eη = 0, then tEη = η for
all t > 0, and this would contradict our assumption that {Tt} is contracting. Hence
E ∈ Gld(R) and, in particular, ‖E‖ > 0. From the representation Tt = tE it follows
immediately that ‖Tt‖ ≤ t‖E‖ for all t ≥ 1 and so it remains to estimate ‖Tt‖
for t < 1. Given that {Tt} is continuous and contracting, the map t �→ ‖Tt‖ is
continuous and approaches 0 as t→ 0 and so it is necessarily bounded for 0 < t ≤ 1.

�

Lemma 8.3. Let E ∈ Gld(R) be diagonalizable with strictly positive spectrum.
Then {tE} is a continuous one-parameter contracting group. Moreover, there is a
positive constant C such that

‖tE‖ ≤ C tλmax
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for all t ≥ 1 and
‖tE‖ ≤ C tλmin

for all 0 < t < 1, where λmax = max(Spec(E)) and λmin = min(Spec(E)).

Proof. Let A ∈ Gld(R) be such that A−1EA = D = diag(λ1, λ2, . . . , λd) where
necessarily Spec(E) = Spec(D) = {λ1, λ2, . . . , λd} ⊆ (0,∞). It follows from the
spectral mapping theorem that Spec(tD) = {tλ1 , tλ2 , . . . , tλd} for all t > 0 and
moreover, because tD is symmetric,

‖tD‖ ≤ max({tλ1 , tλ2 , . . . , tλd}) =
{
tλmax if t ≥ 1,

tλmin if t < 1.

By virtue of Proposition 8.1, we have

‖tE‖ = ‖AtDA−1‖ ≤ ‖A‖‖tD‖‖A−1‖ ≤ C ‖tD‖ = C ×
{
tλmax if t ≥ 1

tλmin if t < 1

for t > 0, where C = ‖A‖‖A−1‖; in particular, {tE} is contracting because
λmin > 0. �

Proposition 8.4. Let {Tt}t>0 ⊆ Gld(R) be a continuous one-parameter contract-
ing group. Then, for all non-zero ξ ∈ Rd,

lim
t→0

|Ttξ| = 0 and lim
t→∞ |Ttξ| = ∞.

Proof. The validity of the first limit is clear. Upon noting that |ξ| = |T1/tTtξ| ≤
‖T1/t‖|Ttξ| for all t > 0, the second limit follows at once. �

Proposition 8.5. Let {Tt}t>0 ⊆ Gld(R) be a continuous one-parameter contract-
ing group. There holds the following:

a) For each non-zero ξ ∈ Rd, there exists t > 0 and η ∈ S for which Ttη = ξ.
Equivalently,

Rd \ {0} = {Ttη : t > 0 and η ∈ S}.

b) For each sequence {ξn} ⊆ Rd such that limn |ξn| = ∞, ξn = Ttnηn for each n,
where {ηn} ⊆ S and tn → ∞ as n→ ∞.

c) For each sequence {ξn} ⊆ Rd such that limn |ξn| = 0, ξn = Ttnηn for each n,
where {ηn} ⊆ S and tn → 0 as n→ ∞.

Proof. In view of Proposition 8.4, the assertion a) is a straightforward application
of the intermediate value theorem. For b), suppose that {ξn} ⊆ Rd is such that
|ξn| → ∞ as n → ∞. In view of a), take {ηn} ⊆ S and {tn} ⊆ (0,∞) for which
ξn = Ttnηn for each n. In view of Lemma 8.2,

∞ = lim inf
n

|ξn| ≤ lim inf
n

(
C + tMn

) |ηn| ≤ C + lim inf
n

tMn ,
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where C,M > 0, and therefore tn → ∞. If instead limn ξn = 0,

∞ = lim
n→∞

|ηn|
|ξn| = lim

n→∞
|T1/tnξn|

|ξn| ≤ lim sup
n

‖T1/tn‖ ≤ lim sup
n

(C + (1/tn)
M ),

from which we see that tn → 0, thus proving c). �

Proposition 8.6. Let {Tt} be a continuous contracting one-parameter group.
Then for any open neighborhood O ⊆ Rd of the origin and any compact set K ⊆ Rd,
K ⊆ Tt(O) for sufficiently large t.

Proof. Assume, to reach a contradiction, that there are sequences {ξn} ⊆ K and
tn → ∞ for which ξn /∈ Ttn(O) for all n. Because K is compact, {ξn} has a
subsequential limit and so by relabeling, let us take sequences {ζk} ⊆ K and
{rk} ⊆ (0,∞) for which ζk → ζ, rk → ∞ and ζk /∈ Trk(O) for all k. Setting
sk = 1/rk and using the fact that {Tt} is a one-parameter group, we have Tskζk /∈ O
for all k and so lim infk |Tskζk| > 0, where sk → 0. This is however impossible
because {Tt} is contracting and so

lim
k→∞

|Tskζk| ≤ lim
k→∞

|Tsk(ζk − ζ)|+ lim
k→∞

|Tskζ| ≤ C lim
k→∞

|ζk − ζ|+ 0 = 0

in view of Lemma 8.2. �

8.2. Properties of homogeneous functions on Rd

Proposition 8.7. Let {Tt} ⊆ Gld(R) be a contracting one-parameter group and
let R,Q : Rd → R be continuous and homogeneous with respect to {Tt}. If R is
positive definite, then there exists C > 0 such that

(8.1) |Q(ξ)| ≤ CR(ξ)

for all ξ ∈ Rd. If both Q and R are positive definite, then

(8.2) Q � R.

Proof. Upon reversing the roles of R and Q, it is clear that the (8.2) follows
from (8.1) and so it suffices to prove (8.1). Because R is continuous and positive
definite, it is strictly positive on S and so, given that Q is also continuous,

C := sup
η∈S

|Q(η)|
R(η)

<∞.

For any non-zero ξ ∈ Rd, let t > 0 be such that ξ = Ttν for ν ∈ S in view of
Proposition 8.5 and observe that

|Q(ξ)| = |Q(Ttη)| = t|Q(η)| ≤ tCR(η) = CR(Ttη) = CR(ξ).

By invoking the continuity of R and Q, the above estimate must also hold for
ξ = 0. �
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Proposition 8.8. Let E ∈ Gld(R) be diagonalizable with strictly positive spectrum
and suppose that R : Rd → R is continuous, positive definite, and homogeneous with
respect to {tE}. Then, for any γ > (min(Spec(E)))−1,

|ξ|γ = o(R(ξ)) as ξ → 0.

Proof. By virtue of Lemma 8.3, we know that {tE} is contracting and ‖tE‖ ≤ C tλ

for all t < 1 where λ = min(Spec(E)) and C > 0. Let {ξn} be such that limn ξn → 0
and, in view of Proposition 8.5, let {ηn} ⊆ S and tn → 0 be such that ξn = tEn ηn.
Then

lim sup
n

|ξn|γ
R(ξn)

= lim sup
n

|tEn ηn|γ
tnR(ηn)

≤ lim sup
n

(Ctλn|ηn|)γ
tnR(ηn)

≤M lim
n
tγλ−1
n = 0,

where

M := sup
η∈S

Cγ |η|γ
R(η)

is finite because R is continuous and positive definite. �

Lemma 8.9. Let m = (m1,m2, . . . ,md) ∈ Nd
+, D = diag(m−1

1 ,m−1
2 , . . . ,m−1

d ) ∈
Gld(R) and suppose that R : Rd → R is continuous, positive definite and homoge-
neous with respect to {tD}. Then for any multi-index β such that |β : m| > 1,

ξβ = o(R(ξ)) as ξ → 0.

Proof. Put γ = |β : m| − 1 > 0 observe that

sup
η∈S

|ηβ |
R(η)

:=M <∞

because R is continuous and non-zero on S. Let {ξn} ⊆ Rd be such that |ξn| → 0
as n → ∞. By virtue of Proposition 8.5, there are sequences {ηn} ⊆ S and
{tn} ⊆ (0,∞) for which tn → 0 and ξn = tDn ηn for all n. We see that

ξβn = (tDn ηn)
β =

(
t(m1)

−1

n η1
)β1

(
t(m2)

−1

n η2
)β2 · · · (t(md)

−1

n ηd
)βd = t|β:m|ηβn

for each n. Therefore

lim sup
n

|ξβn |
R(ξn)

= lim sup
n

t|β:m||ηβn |
tR(ηn)

≤ lim sup
n

Mtγn = 0,

as desired. �

For the remainder of this appendix, P is a positive homogeneous polynomial
and R = ReP .

Proposition 8.10. For any compact set K, there are positive constantsM andM ′

such that
MR(ξ) ≤ R(ξ + ζ) +M ′

for all ξ ∈ Rd and ζ ∈ K.
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Proof. Set U = B3/2 \B1/2 = {u ∈ Rd : 1/2 ≤ |u| ≤ 3/2} and

M = inf
η∈S,u∈U

R(u)

R(η)
;

M is necessarily positive because R is continuous and positive definite. For E ∈
Exp(P ), {tE} is contracting and so it follows that for some T > 0,

(
η + t−Eζ

) ∈ U
for all η ∈ S, ζ ∈ K and t > T . Consider the set V = {ξ = tEη ∈ Rd : t > T, η ∈ S}
and observe that for any ξ ∈ V and ζ ∈ K, t−E(ξ + ζ) = η + t−Eζ ∈ U for some
t > T and consequently

R(ξ + ζ)

R(ξ)
=
tR(η + t−Eζ)

tR(η)
≥M.

We have shown that MR(ξ) ≤ R(ξ + ζ) for all ξ ∈ V and ζ ∈ K. To complete
the proof, it remains to show that R is bounded on V C = Rd \ V ; however, given
the continuity of R, we need only verify that the set V C is bounded. By virtue of
Proposition 8.5, we can write

V C = {0} ∪ {ξ = tEη : t ≤ T, η ∈ S
}
.

and so, by an appeal to Lemma 8.2, we see that |ξ| ≤ C+T ‖E‖ for all ξ ∈ V C. �

Our final three results in this subsection concern estimates for P and R regarded
as functions on Cd. In what follows, | · | denotes the standard Euclidean norm on
Cd = R2d and S denotes the 2d-sphere.

Proposition 8.11. For any M,M ′ > 0, there exists C > 0, for which

|z| ≤ C +MR(ξ) +M ′R(ν)

for all z = ξ − iν ∈ Cd.

Proof. Define Q(ξ, ν) =MR(ξ) +M ′R(ν) for (ξ, ν) = z ∈ R2d and observe that Q
is positive definite. It suffices to show that there exists a set V with bounded
complement V C = R2d \ V such that

(8.3) |z| = |(ξ, ν)| ≤ Q(ξ, ν)

for all (ξ, ν) ∈ V . To this end, set

N = sup
(η,ζ)∈S

|(η, ζ)|
Q(η, ζ)

,

which is finite because Q is strictly positive on S. Let E ∈ Exp(P ) have real
spectrum and recall that E is diagonalizable with λ := max(Spec(E)) < 1 in view
of Proposition 2.2. An appeal to Lemma 8.3 gives C > 0 for which ‖tE‖ ≤ C tλ for
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all t ≥ 1; the lemma also guarantees that {tE⊕E} ⊆ Gl2d(R) is contracting. Set
T = max({1, (CN)1/(1−λ}) and consider the set

V = {(ξ, ν) = tE⊕E(η, ζ) ∈ R2d : t > T, (η, ζ) ∈ S}.

For any (ξ, ν) ∈ V , we have

|(ξ, ν)|
Q(ξ, ν)

=
|(tEη, tEζ)|
Q(tE⊕E(η, ζ))

≤ C tλ|(η, ζ)|
tQ(η, ζ)

≤ C tλ−1N < N−1N = 1,

and therefore (8.3) is satisfied. To see that V C is bounded, one simply repeats the
argument given in the proof of Proposition 8.11 where, in this case, Proposition 8.5
and Lemma 8.2 are applied to the one-parameter contracting group {tE⊕E}. �

By considering only real arguments ξ ∈ Rd, Proposition 8.11 ensures that, for
some constant C1 > 0, |ξ| ≤ C1+R(ξ) for all ξ ∈ Rd. Upon noting that R is strictly
positive on any sphere of radius δ, one easily obtains the following corollary.

Corollary 8.12. For each C, δ > 0, there exists M > 0 for which

|ξ|+ C ≤MR(ξ)

for all |ξ| > δ.

Proposition 8.13. Let P be a positive homogeneous polynomial with R = ReP .
There exist ε > 0 and M > 0 such that

(8.4) − ReP (z) ≤ −εR(ξ) +MR(ν)

and

(8.5) |P (z)| ≤M(R(ξ) +R(ν))

for all z = ξ − iν ∈ Cd.

Proof. Let E ∈ Exp(P ) have strictly real spectrum and, by virtue of Proposi-
tion 2.2, let A be such that D = A−1EA = diag((2m1)

−1, (2m2)
−1, . . . , (2md)

−1)
and

PA(ξ) := (P ◦ LA)(ξ) =
∑

|α:m|=2

aα ξ
α,

where m = (m1,m2, . . . ,md) ∈ Nd
+. Because A ∈ Gld(R) ⊆ Gld(C), it suffices to

verify the estimates (8.4) and (8.5) for PA and RA = RePA. As in the proof of
the previous proposition, we identify Cd = R2d by z = (ξ, ν), and observe that
{tD⊕D} ⊆ Gl2d(R) is contracting. Consequently, by considering Tt = tD⊕D, the
estimate (8.5) follows directly from Proposition 8.7.

An appeal to the multivariate binomial theorem shows that for all z=ξ − iν∈Cd,

(8.6) PA(ξ − iν) = PA(ξ) +Q(ξ, ν),
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where

Q(ξ, ν) =
∑

|α:m|=2

aα
∑
γ<α

(
α

γ

)
ξγ(−iν)α−γ =

∑
|α:m|=2
γ<α

bα,γ ξ
γ να−γ ;

here, {bα,γ} ⊆ C. We claim that for each δ > 0, there exists M > 0 such that

(8.7) |Q(ξ, ν)| ≤ δRA(ξ) +MRA(ν)

for all ξ, ν ∈ Rd. For the moment, let us accept the validity of the claim. By
choosing δ < 1, a combination of (8.6) and (8.7) yields

−Re(PA(ξ − iν)) +RA(ξ) ≤ δRA(ξ) +MRA(ν)

for all ξ, ν ∈ Rd and from this we see that (8.4) is satisfied with ε = 1 − δ. It
therefore suffices to prove (8.7).

For any multi-indices β and γ for which |β : m| = 2 and γ < β, it is straight-
forward to see that

(tDξ)γ(tDν)β−γ = t|γ:2m| t|β−γ:2m| ξγ νβ−γ = t|β:2m| ξγ νβ−γ = t ξγ νβ−γ

for all ξ, ν ∈ Rd and so the map (ξ, ν) �→ ξγνβ−γ is homogeneous with respect
to the contracting group {tD⊕D} ⊆ Gl2d(R). Consequently, an application of
Proposition 8.7 gives C > 0 for which

|ξγνβ−γ | ≤ C(RA(ξ) +RA(ν))

for all ξ, ν ∈ Rd. By invoking the homogeneity of ξγ and RA(ξ) with respect to
{tD} ⊆ Gld(R), the above estimate ensures that, for all t > 0,

|ξγνβ−γ | = |t|γ:2m| (t−Dξ)γνβ−γ | ≤ t|γ:2m|C (RA(t
−Dξ) +RA(ν))

= C t|γ:2m|−1RA(ξ) + C t|γ:2m|RA(ν)

for all ξ, ν ∈ Rd. Noting that |γ : 2m| − 1 < 0 because γ < β, we can make the
coefficient of RA(ξ) in the above estimate arbitrarily small by choosing t sufficiently
large. Consequently, for any δ > 0 there exists M > 0 for which

|ξγνβ−γ | ≤ δRA(ξ) +MRA(ν)

for all ξ, ν ∈ Rd. The claim (8.7) now follows by a simple application of the triangle
inequality. �

8.3. Properties of the Legendre–Fenchel transform of a positive homo-
geneous polynomial

Lemma 8.14. Let P be a positive homogeneous polynomial and let R = ReP . For
E ∈ Exp(P ) with real spectrum let λmax = max(Spec(E)) and λmin = min(Spec(E))
(note that 0 < λmin, λmax ≤ 1/2 by Proposition 2.2) and set

NE(x) =

{
|x|1/(1−λmax) if |x| ≥ 1,

|x|1/(1−λmin) if |x| < 1,
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for x ∈ Rd. There are positive constants M,M ′ for which

(8.8) |x| −M ≤ R#(x) ≤M ′NE(x)

for all x ∈ Rd.

Proof. Set M = supξ∈S R(ξ) and observe that, for any non-zero x ∈ Rd,

R#(x) = sup
ξ∈Rd

{x · ξ −R(ξ)} ≥ x · x|x| −R
( x

|x|
)
≥ |x| −M.

The lower estimate in (8.8) now follows from the observation that R#(0) = 0 which
is true because R is positive definite. We now focus on the upper estimate. In
view of Lemma 8.3 and Proposition 2.2, let C ≥ 1 be such that ‖tE‖ ≤ C tλmax for
t ≥ 1 and ‖tE‖ ≤ C tλmin for t ≤ 1. An appeal to Proposition 8.11 gives M ′ > 0
for which C|ξ| ≤ R(ξ) + M ′ for all ξ ∈ Rd. In the case that |x| ≥ 1, we set
t = |x|1/(1−λmax) and observe that

x · ξ ≤ |x| |tEt−Eξ| ≤ |x| ‖tE‖ |t−Eξ| ≤ |x| tλmax
(
R(t−Eξ) +M ′)

= |x| tλmax−1R(ξ) +M ′|x| tλmax = R(ξ) +M ′|x|1/(1−λmax)

for all ξ ∈ Rd, and therefore

R#(x) = sup
ξ∈Rd

{x · ξ −R(ξ)} ≤M ′|x|1/(1−λmax) =M ′NE(x).

When |x| ≤ 1, we repeat the argument above to find that

R#(x) ≤M ′|x|1/(1−λmin) =M ′NE(x)

as desired. �

Proposition 8.15. Let P be a positive homogeneous polynomial with R = ReP .
Then R# is continuous, positive definite, and for any E ∈ Exp(P ), F = (I−E)∗ ∈
Exp(R#).

Proof. Since R# is the Legendre–Fenchel transform of R : Rd → R it is convex (and
lower semi-continuous). Furthermore, the upper estimate in Lemma 8.14 guaran-
tees that R# is finite on Rd and therefore continuous in view of Corollary 10.1.1
of [20].

Given that R is positive definite and homogeneous with respect to {tE}, it
follows directly from the definition of the Legendre–Fenchel transform that R#

is non-negative, homogeneous with respect to {tF} where F = (I − E)∗ and has
R#(0) = 0. To complete the proof, it remains to show that R#(x) �= 0 for all
non-zero x ∈ Rd. Using the lower estimate in Lemma 8.14, we have

(8.9) lim
x→∞R#(x) = ∞.
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By virtue of Proposition 2.2, F is diagonalizable with Spec(F ) ⊆ [1/2, 1); in partic-
ular, {tF } is contracting in view of Lemma 8.3. Now if for some non-zero x ∈ Rd,
R#(x) = 0,

0 = lim
t→∞ tR#(x) = lim

t→∞R#(tFx),

which is impossible in view of Proposition 8.4 and (8.9). �

Corollary 8.16. Let P be a positive homogeneous polynomial of the form (2.1)
for m = (m1,m2, . . . ,md) ∈ Nd

+ and {aβ} ⊆ C. That is, the conclusion of Propo-
sition 2.2 holds where A = I ∈ Gld(R). Let R = ReP , let R# be the Legendre–
Fenchel transform of R and define | · |m : Rd → [0,∞) by (7.7) for x ∈ Rd. Then

R#(x) � |x|m.

Proof. Let us first note that | · |m is continuous, positive definite and homo-
geneous with respect to the one-parameter contracting group {tF} where F =
diag((2m1 − 1)/(2m1), (2m2 − 1)/(2m2), . . . , (2md − 1)/(2md)). Because E =
diag

(
(2m1)

−1, (2m2)
−1, . . . , (2md)

−1
) ∈ Exp(R), Proposition 8.15 ensures thatR#

is continuous, positive definite and has F = (I − E)∗ ∈ Exp(R#). The desired
result follows directly by an appeal to Proposition 8.7. �

Another application of Proposition 8.15 and 8.7 yields the following corollary.

Corollary 8.17. Let P be a positive homogeneous polynomial with R = ReP . For
any constant M > 0, (MR)# � R#.

8.4. The proof of Proposition 3.3

Proof of Proposition 3.3. (a ⇒ b) Let P = Pξ0 , take E ∈ Exp(Pξ0) with strictly
real spectrum and set m = maxi=1,2...,d 2mi in view of Proposition 2.2. Noting
that E is diagonalizable, m + 1 > (min(Spec(E)))−1 and Qm

ξ0
(ξ) + O(|ξ|m+1) =

Pξ0(ξ)+Υξ0(ξ) for ξ sufficiently close to 0, our result follows from Proposition 8.8.

(b⇒ c) Let E ∈ Exp(P ) have real spectrum and observe that, for all n ∈ N+,

(8.10) C−1R(ξ) ≤ nReQm
ξ0(n

−Eξ) ≤ CR(ξ) and |n ImQm
ξ0(n

−Eξ)| ≤ CR(ξ)

for ξ ∈ Br. It follows that the sequence {ρn} ⊆ C(Br) of degree m polynomials,
defined by ρn(ξ) = nQm

ξ0
(n−Eξ) for all n ∈ N+ and ξ ∈ Br, is bounded. As

the subspace of degree m polynomials is a finite dimensional subspace of C(Br),
{ρn} must have a convergent subsequence. Moreover, because R(ξ) is positive
definite, (8.10) ensures that the subsequential limit has positive real part on Sr.

(c ⇒ a) The proof of this implication is lengthy and will be shown using a
sequence of lemmas. We fix E ∈ Md(R) with real spectrum and for which the
condition (3.2) is satisfied. As the characteristic polynomial of E completely factors
over R, the Jordan–Chevally decomposition for E gives A ∈ Gld(R) for which
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F := A−1EA = D+N where D is diagonal, N is nilpotent and DN = ND. Upon
setting QA = Qm

ξ0
◦ LA, it follows that

QA(ξ) =
∑

1<|β|≤m

aβ ξ
β

for ξ ∈ Rd where {aβ} ⊆ C. Define ρA : (0,∞)×Rd → C by ρA(t, ξ) = tQA(t
−F ξ)

for t > 0 and ξ ∈ Rd. The hypotheses (3.2) ensures that, for each ξ ∈ A−1Br,

(8.11) PA(ξ) := lim
n→∞ ρA(tn, ξ)

exists and is such that RePA(ξ) > 0 whenever ξ ∈ A−1Sr.

Lemma 8.18. Under the hypotheses (3.2), limt→∞ ρA(t, ξ) exists for all ξ ∈ Rd

and the convergence is uniform on all compact sets of Rd. In particular, PA extends
uniquely to Rd (which we also denote by PA) by

(8.12) PA(ξ) = lim
t→∞ ρA(t, ξ) = lim

n→∞ ρA(tn, ξ)

for all ξ ∈ Rd. Moreover, PA : Rd → C is a positive homogeneous polynomial with
the representation

(8.13) PA(ξ) =
∑

|β:m|=2

aβ ξ
β

for some m = (m1,m2, . . . ,md) ∈ Nd
+ where m ≥ 2mi for i = 1, 2, . . . d and

(8.14) F = D = diag((2m1)
−1, (2m2)

−1, . . . , (2md)
−1) ∈ Exp(PA).

Furthermore,

(8.15) QA(ξ) =
∑

|β:2m|≥1

aβ ξ
β = PA(ξ) +

∑
|β:2m|>1

aβ ξ
β

for ξ ∈ Rd.

Proof of Lemma 8.18. Our proof is broken into three steps. In the first step we
show that the representation (8.13) is valid on A−1Br and the first equality in (8.15)
holds on Rd. The first step also ensures the validity of the second equality in (8.14).
In the second step, we define PA : Rd → C by the right hand side of (8.13) and
check that PA is a positive homogeneous polynomial with D ∈ Exp(PA). In the
third step we show that N = 0 and hence F = D and in the fourth step we show
that the limit (8.12) converges uniformly on any compact set K ⊆ Rd. The second
inequality in (8.15) follows directly by combining the results.

Step 1. Write D = diag(γ1, γ2, . . . , γd) and put γ = (γ1, γ2, . . . , γd) ∈ Rd. We
fix ξ ∈ A−1Br and observe that

ρA(t, ξ) =
∑

1<|β|≤m

aβ t
(
t−D

(
I + log tNξ + · · ·+ (log t)k

k!
Nkξ

))β

=
∑

1<|β|≤m

aβ t
1−γ·βξβ +

l∑
j=1

bjt
ωj (log t)j

(8.16)
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for all t > 0 where, by invoking the multinomial theorem, we have simplified
the expression so that ω1, ω2, . . . , ωl ∈ R are distinct and bj = bj(ξ;N) ∈ C for
j = 1, 2, . . . l = km. Considering the sum

(8.17)

l∑
j=1

bj t
ωj (log t)j

we see that, as t → ∞, the summands must either converge to 0 or diverge to ∞
in absolute value. Moreover, the distinctness of the collection {ω1, ω2, . . . , ωl} and
the presence of positive powers of log t ensure that this convergence or divergence
happens at distinct rates. Consequently, as tn → ∞ the divergence of even a
single summand would force the non-existence of the limit (8.11). Consequently,
the expression (8.17) converges to 0 as t→ ∞ and so

(8.18) PA(ξ) = lim
n→∞ ρA(tn, ξ) = lim

t→∞ ρA(t, ξ) = lim
t→∞

∑
1<|β|≤m

aβ t
1−γ·β ξβ .

Since ξ was arbitrary, (8.18) must hold for all ξ ∈ A−1Br. This is the only part of
the argument in which the subsequence {tn} appears.

We claim that, for all multi-indices β for which aβ �= 0, β · γ = β1γ1 + · · · +
βd γd ≥ 1. Indeed, fix κ = min({β·γ : aβ �= 0}), set Iκ = {β : aβ �= 0 and β · γ = κ}
and define Bκ : Rd → C by

Bκ(ξ) =
∑
β∈Iκ

aβ ξ
β

for ξ ∈ Rd. The linear independence of the monomials {ξβ}β∈Iκ ensures that
Bκ(ξ

′) �= 0 for some ξ′ ∈ A−1Br. It follows from (8.18) that limt→∞ ρA(t, ξ
′) =

limt→∞ t1−κBκ(ξ
′) from which we conclude that κ = 1; the hypotheses that PA

has positive real part on A−1Sr rules out the possibility that κ > 1.
From the claim it is now evident that

(8.19) PA(ξ) =
∑

β·γ=1

aβ ξ
β

for ξ ∈ A−1Br and

(8.20) QA(ξ) =
∑

β·γ≥1

aβ ξ
β

for ξ ∈ Rd.
It is straightforward to see that the set A−1Sr intersects each coordinate axis at

exactly two antipodal points. That is, for each j = 1, 2, . . . d, there exists xj > 0 for
which {±xjej} = A−1Sr ∩ {xej : x ∈ R}. Upon evaluating Re(PA) at such points
and recalling that RePA > 0 on A−1Sr, one sees, by the same argument given in
Step 2 of the proof of Proposition 2.2, that 1/γj is an even natural number which
cannot be greater than m. Therefore, for each j = 1, 2, . . . , d, 1/γj = 2mj ≥ m for
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somemj ∈ N+. The representation (8.13) on A−1Br and the first equality in (8.15)

now follow from (8.19) (8.20) and the observation that β ·γ =
∑d

j=1 βj/2mj = |β :
2m|. Moreover,

(8.21) D = diag((2m1)
−1, (2m2)

−1, . . . , (2md)
−1).

Step 2. We define PA : Rd → C by the right hand side of (8.13). It is clear
that D ∈ Exp(PA) and so, to prove that PA is positive homogeneous, it suffices to
show that that RA(ξ) = RePA(ξ) > 0 whenever ξ �= 0. To this end, let ξ ∈ Rd be
non-zero and find t > 0 for which tDξ ∈ A−1Sr; this can be done because {tD} is
contracting in view of (8.21). From the previous step we know that (8.13) holds
on A−1Sr and thus by invoking (8.11), we find that RA(ξ) = t−1 RePA(t

Dξ) > 0
as claimed.

Step 3. We now show that F ∈ Exp(PA) and use it to conclude that N = 0.
As we will see, this assertion relies on PA being originally defined via a “scaling”
limit. Indeed, for any ξ ∈ Rd and t > 0, find u > 0 for which both u−Dξ and
u−DtF ξ belong to A−1Br; this can be done because A−1Br necessarily contains
an open neighborhood of 0. In view of (8.18),

tPA(ξ) = t u PA(u
−Dξ) = u t lim

s→∞ sρA(s, u
−Dξ) = u t lim

s→∞ sQA(s
−Fu−Dξ)

= u lim
s→∞ s tQA(s

−F t−F tFu−Dξ) = u lim
(st)→∞

(st)QA((st)
−Fu−DtF ξ)

= u lim
v→∞ ρA(v, u

−DtF ξ) = (uPA(u
−DtF ξ) = PA(t

F ξ),

where we have used Proposition 8.1 and the fact that D ∈ Exp(PA). Consequently
F ∈ Exp(PA) and since PA is a positive homogeneous polynomial, the same argu-
ment given in Step 3 of the proof of Proposition 2.2 ensures that N = 0.

Step 4. Let K ⊆ Rd be compact and note that t−FK ⊆ A−1Br for sufficiently
large t by virtue of Proposition 8.6. Thus by invoking (8.13), which we know to
be valid on A−1Br, we have

|ρA(t, ξ)− PA(ξ)| = |tQA(t
−F ξ)− tPA(t

−F ξ)| =
∣∣∣t ∑

|β:2m|>1

aβ(t
−F ξ)β

∣∣∣
≤

∑
|β:2m|>1

t1−|β:2m| |aβ ξβ ≤ tω
∑

|β:2m|>1

|aβ ξβ|

for all ξ ∈ K and sufficiently large t where ω < 0 is independent of K. The
assertion concerning the uniform limit follows at once because

∑
|β:2m|>1 |aβ ξβ | is

necessarily bounded on K. //

We shall henceforth abandon using the symbol D and write

F = A−1EA = diag((2m1)
−1, (2m2)

−1, . . . , (2md)
−1) ∈ Exp(PA).

Lemma 8.19. Under the hypotheses of Lemma 8.18, QA(ξ) − PA(ξ) = o(RA(ξ))
as ξ → 0.
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Proof of Lemma 8.19. In view of Lemma 8.18,

|QA(ξ)− PA(ξ)| ≤
∑

|β:2m|>1

|aβ ξβ |

for all ξ ∈ Rd. The desired result now follows directly from Lemma 8.9. //

We now define Pξ0 : R
d → C by Pξ0 = PA ◦ LA−1 . By virtue of our results

above, it is clear that Pξ0 is positive homogeneous with E ∈ Exp(Pξ0). We have

Υξ0(ξ) = Γξ0(ξ)− i αξ0 · ξ + Pξ0(ξ) = Pξ0(ξ) −Qm
ξ0(ξ) +O(|ξ|(m+1))

as ξ → 0. Because Rξ0 = RePξ0 = RA ◦ LA−1 , it follows from Lemma 8.19 that
Pξ0(ξ)−Qξ0(ξ) = o(Rξ0 (ξ)) as ξ → 0. Moreover, because E is diagonalizable and
m + 1 > 2mi ≥ (min(Spec(E)))−1, |ξ|(m+1) = o(Rξ0(ξ)) as ξ → 0 by virtue of
Proposition 8.8. Therefore

Γξ0(ξ) = i αξ0 − Pξ0(ξ) + Υξ0(ξ)

where Υξ0 = o(Rξ0) as ξ → 0, thus completing the proof of the implication (c ⇒ a).

To finish the proof of Proposition 3.3, it remains to prove that, for anym′ ≥ m,

Pξ0(ξ) = lim
t→∞ tQm′

ξ0 (t
−Eξ)

for all ξ ∈ Rd and this limit is uniform on all compact subsets of Rd. Indeed, Let
K ⊆ Rd be compact. By virtue of Lemma 8.18,

Pξ0(ξ) = PA(A
−1ξ) = lim

t→∞ ρA(t, A
−1ξ)

= lim
t→∞ tQA(A

−1t−Eξ) = lim
t→∞ tQm

ξ0(t
−Eξ)

(8.22)

uniformly for ξ ∈ K. Observe that for any m′ > m, there exists M > 0 for which∣∣tQm′
ξ0 (t

−Eξ)− tQm
ξ0(t

−Eξ)
∣∣ ≤ ∑

m<|β|≤m′
t
∣∣cβ(t−Eξ)β

∣∣ = ∑
m<|β|≤m′

t
∣∣cβ(At−FA−1ξ)β

∣∣
≤M

∑
m<|γ|≤m′

t
∣∣(t−FA−1ξ)γ

∣∣ = ∑
m<|γ|≤m′

t1−|γ:2m| ∣∣(A−1ξ)γ
∣∣

for all ξ ∈ Rd and t > 0. Noting that |γ : 2m| > 1 whenever m < |γ| ≤ m′, by
repeating the argument given in Step 4 of Lemma 8.18, we observe that

(8.23) lim
t→∞

(
tQm′

ξ0 (t
−Eξ)− tQm

ξ0(t
−Eξ)

)
= 0

uniformly for ξ ∈ K. The desired result follows by combining (8.22) and (8.23). �
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