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Convolution powers of complex functions on Z¢

Evan Randles and Laurent Saloff-Coste

Abstract. The study of convolution powers of a finitely supported prob-
ability distribution ¢ on the d-dimensional square lattice is central to ran-
dom walk theory. For instance, the nth convolution power ¢ is the dis-
tribution of the nth step of the associated random walk and is described
by the classical local limit theorem. Following previous work of P. Diaco-
nis and the authors, we explore the more general setting in which ¢ takes
on complex values. This problem, originally motivated by the problem
of Erastus L. De Forest in data smoothing, has found applications to the
theory of stability of numerical difference schemes in partial differential
equations. For a complex valued function ¢ on Z¢, we ask and address
four basic and fundamental questions about the convolution powers <Z>(")
which concern sup-norm estimates, generalized local limit theorems, point-
wise estimates, and stability. This work extends one-dimensional results
of 1. J. Schoenberg, T.N.E. Greville, P. Diaconis and the second author
and, in the context of stability theory, results by V. Thomée and M. V. Fe-
doryuk.

1. Introduction

We denote by £!(Z?) the space of complex valued functions ¢: Z¢ — C such that

gl = lo()] < oo

r€Z9

For ¢, ¢ € £*(Z), the convolution product v * ¢ € £1(Z?) is defined by

brp(x) =Y vz —y) oy)

yezd

for x € Z%. Given ¢ € (}(Z?), we are interested in the convolution powers
#" € £1(Z4) defined iteratively by ¢ = ¢~ x ¢(V) for n € Ny =: {1,2,...},
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where ¢(!) = ¢. This study was originally motivated by problems in data smooth-
ing, namely De Forest’s problem, and it was later found essential to the theory of
approximate difference schemes for partial differential equations [9], [21], [27], [26];
the recent article [4] gives background and pointers to the literature.

In random walk theory, the study of convolution powers is of central im-
portance: given an independent sequence of random vectors Xi, Xo,... € Z%,
all with distribution ¢ (here, ¢ > 0), ¢(™ is the distribution of the random
vector S, = X1 + Xo + --- + X,,. Equivalently, a probability distribution ¢
on Z% gives rise to a random walk whose nth-step transition kernel k,, is given
by kn(z,y) = ¢ (y — x) for x,y € Z%. For an account of this theory, we encour-
age the reader to see the wonderful and classic book of F. Spitzer [24] and, for a
more modern treatment, the recent book of G. Lawler and V. Limic [15] (see also
Subsection 7.6). In the more general case that ¢ takes on complex values (or just
simply takes on both positive and negative values), its convolution powers (") are
seen to exhibit rich and disparate behavior, much of which never appears in the
probabilistic setting. Given ¢ € ¢!(Z%), we are interested in the most basic and
fundamental questions that can be asked about its convolution powers. Here are
four such questions:

(i) What can be said about the decay of
16" lloo = sup 6" (x)]

T €L

asn — 0o?

(ii) Is there a simple pointwise description of ¢(™)(z), analogous to the local
(central) limit theorem, that can be made for large n?

(iii) Are global space-time pointwise estimates obtainable for |¢(™)|?

(iv) Under what conditions is ¢ stable in the sense that

(L.1) sup ¢y < oo?
neNy

The above questions have well-known answers in random walk theory. For
simplicity we discuss the case in which ¢ is a probability distribution on Z¢ whose
associated random walk is symmetric, aperiodic, irreducible and of finite range. In
this case, it is known that n/2¢(") (0) converges to a non-zero constant as n — 0o
and this helps to provide an answer to Question (i) in the form of the following
two-sided estimate: for positive constants C' and C”,

Cn~ 2 < sup o™ (z) < C'n=9/?
reZd

for all n € N;. Concerning the somewhat finer Question (ii), the classical local
limit theorem states that

o) () = n2 Gy (n™"22) + o(n~/?)
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uniformly for x € Z¢, where Gy is the generalized Gaussian density

1

Go(w) = gz [ o0 (&~ Co) e

i

1 x - C’qflx
1.2 e — _
(1-2) (2m)4/2/det C P ( 2 )

here, C'4 is the positive definite covariance matrix associated to ¢ and - denotes
the dot product. As an application of this local limit theorem, one can easily
settle the question of recurrence/transience for random walks on Z? which was
originally answered by G. Pélya in the context of simple random walk [16]. For
general complex valued functions ¢ € ¢1(Z%), Question (ii) is a question about the
validity of (generalized) local limit theorems and can be restated as follows: under
what conditions can the convolution powers ¢(™) be approximated pointwise by
a combination (perhaps a sum) of appropriately scaled smooth functions —called
attractors? The answer for Question (iii) for a finite range, symmetric, irreducible
and aperiodic random walk is provided in terms of the so-called Gaussian estimate:
For positive constants C' and M,

¢ (z) < Cn~ Y2 exp(—M|z|*/n)

for allz € Z? and n € N, ; here, |-| is the standard Euclidean norm. Such estimates,
with matching lower bounds on appropriate space-time regions, are in fact valid in a
much wider context, see [11]. Finally, the conservation of mass provides an obvious
positive answer to Question (iv) in the case that ¢ is a probability distribution.

Beyond the probabilistic setting, the study of convolution powers for com-
plex valued functions has centered mainly around two applications, statistical data
smoothing procedures and finite difference schemes for numerical solutions to par-
tial differential equations; the vast majority of the existing theory pertains only to
one dimension. In the context of data smoothing, the earliest (known) study was
motivated by a problem of Erastus L. De Forest. De Forest’s problem, analogous
to Question (ii), concerns the behavior of convolution powers of symmetric real
valued and finitely supported functions on Z and was addressed by I.J. Schoen-
berg [21] and T.N.E. Greville [9]. In the context of numerical solutions in partial
differential equations, the stability of convolution powers (Question (iv)) saw ex-
tensive investigation following World War II spurred by advancements in numerical
computing. For an approximate difference scheme to an initial value problem, the
property (1.1) is necessary and sufficient for convergence to a classical solution;
this is the so-called Lax equivalence theorem [19] (see Section 6). Property (1.1) is
also called power boundedness and can be seen in the context of Banach algebras
where ¢ is an element of the Banach algebra (¢1(Z%), || - ||1) equipped with the
convolution product [22], [14].

In one dimension, Questions (i-iv) were recently addressed in the articles [4]
and [17]. For the general class of finitely supported complex valued functions on Z,
[17] completely settles Questions (i) and (ii). For instance, consider the following
theorem of [17].
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Theorem 1.1 (Theorem 1.1 of [17]). Let ¢: Z — C have finite support consisting
of more than one point. Then there is a positive constant A and a natural number
m > 2 for which

C«n—l/m < An||¢(n)||oo < C«/n—l/m

or alln € Ny, where C and C' are positive constants.
+

In settling Question (ii), the article [17] gives an exhaustive account of local
limit theorems in which the set of possible attractors includes the Airy function and
the heat kernel evaluated at purely imaginary time. In addressing Question (iii),
the article [4] contains a number of results concerning global space-time estimates
for ¢(™) for a finitely supported function ¢ —our results recapture (and extend in
the case of Theorem 1.8) these results of [4]. The question of stability for finitely
supported functions on Z was answered completely in 1965 by V. Thomée [26] (see
Theorem 6.1 below). In fact, Thomée’s characterization is, in some sense, the light
in the dark that gives the correct framework for the study of local limit theorems
in one dimension and we take it as a starting point for our study in Z<.

Moving beyond one dimension, the situation becomes more interesting still, the
theory harder and much remains open. As we illustrate, convolution powers exhibit
a significantly wider range of behaviors in Z¢ than is seen in Z (see Remark 1.5).
The focus of this article is to address Questions (i-iv) under some strong hypotheses
on the Fourier transform — specifically, we work under the assumption that, near
its extrema, the Fourier transform of ¢ is “nice” in a sense we will shortly make
precise. To this end, we follow the article [4] and generalize the results therein.
A complete theory for finitely supported functions on Z?, in which the results
of [17] will fit, is not presently known. Not surprisingly, our results recapture the
well-known results of random walk theory on Z? (see Subsection 7.6).

As a first motivating example, consider ¢: Z? — C defined by

0),
+1,0),
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The graphs of Re(¢™) for (z,y) € Z? for —20 < x,y < 20 are displayed in
Figures 1a and 1b for n = 10 and n = 100 respectively. By inspection, one observes
that Re(¢™) decays in absolute value as n increases and, when n = 100, there is
an apparent oscillation of Re(¢(™) in the y-direction. Our results explain these
observations.

For ¢ € (1(Z%), its Fourier transform ¢ : R¢ — C is defined by

=) dla)es

reZd
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(a) Re(¢™) for n = 10. (b) Re(¢™) for n = 100.

FiGURE 1: The graphs of Re(¢(™) for n = 10, 100.

for ¢ € R%; this series is absolutely convergent. The standard Fourier inversion
formula holds for all ¢ € ¢!(Z%) and moreover, for each n € N,

(13) 6 @) = g [ T de ae

for all z € Z% where T? = (—m,7]¢. Like the classical local limit theorem, our ar-
guments are based on local approximations of q@ and such approximations require g?)
to have a certain amount of smoothness. In our setting the order of smoothness
needed in each case is not known a priori. For our purposes, it is sufficient (but
not necessary) to consider only those ¢ € £}(Z¢) with finite moments of all orders.
That is, we consider the subspace of ¢/1(Z%), denoted by Sy, consisting of those ¢
for which

lz?¢(@)l = Y la’d(@)| = Y |2} ah® -2 d(x)] < oo

€74 €74

for all multi-indices 8 = (B, Ba,...,B4) € N It is straightforward to see that
(;B € C*(R%) whenever ¢ € S;. We note that Sy contains all finitely supported
functions mapping Z¢ into C; of course, when ¢ is finitely supported, é extends
holomorphically to C?.

Before we begin to formulate our hypotheses, let us introduce some important
objects by taking motivation from probability. The quadratic form & — & - Cyp&
which appears in (1.2) is a positive definite polynomial in  and is homogeneous
in the following sense. For all ¢t > 0 and ¢ € R?,

(t/2€) - Cy(tY/26) = t € - Cyé.

The map (0,00) 3 t + t'/2T € Gl4(R) is a continuous (Lie group) homomorphism
from the multiplicative group of positive real numbers into Gl4(R); here I is the
identity matrix in the set of d x d real matrices My(R) and Glz(R) € My(R) denotes
the group of invertible matrices. For any such continuous homomorphism ¢ — T,
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{T:}1>0 is a Lie subgroup of Glg(R), that is, a continuous one-parameter group;
the Hille-Yosida construction guarantees that all such groups are of the form

T, = t¥ = exp((logt)E) = i (lozt)"
t = = exp((log = 7l
k=0

for t > 0 for some E € M4(R). The Appendix (Section 8) amasses some basic
properties of continuous one-parameter groups.

Definition 1.2. For a continuous function P: R — C and a continuous one-
parameter group {7T;} C Gli(R), we say that P is homogeneous with respect to
tP(§) = P(T:8)
for all t > 0 and ¢ € R?. In this case F is a member of the exponent set of P,

Exp(P).

We say that P is positive homogeneous if the real part of P, R = Re P, is
positive definite (that is, R(§) > 0 and R(§) = 0 only when & = 0) and if Exp(P)
contains a matrix £ € Mg(R) whose spectrum is real.

Throughout this article, we concern ourselves with positive homogeneous mul-
tivariate polynomials P: R? — C; their appearance is seen to be natural, although
not exhaustive, when considering local approximations of ¢ for ¢ € Sy. A given
positive homogeneous polynomial P need not be homogeneous with respect to a
unique continuous one-parameter group. For example, for each m € N, £ ~ |¢[*™
is a positive homogeneous polynomial and it can be shown directly that

Exp(| - [*") = (2m) "1 + o(d),

where o(d) € Mg(R) is the set of anti-symmetric matrices (these arise as the Lie
algebra of the orthogonal group O4(R) C Gl4(R)). It will be shown however that,
for a positive homogeneous polynomial P, tr E = tr E' whenever E, E’ € Exp(P);
this is Corollary 2.4. To a given positive homogeneous polynomial P, the corollary
allows us to uniquely define the number

(1.4) up =trE

for any E € Exp(P). This number appears in many of our results; in particu-
lar, it arises in addressing the Question (i) in which it plays the role of 1/m in
Theorem 1.1.

We now begin to discuss the framework and hypotheses under which our the-
orems are stated. Let ¢ € Sq be such that supgcga [¢(§)] = 1; this can always be
arranged by multiplying ¢ by an appropriate constant. Set

Q) = {6 €T |(¢)| = 1}
and, for & € Q(¢), define T¢, : U C R? — C by

Le, (5) = log (¢(§(—;—0§0))7
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where U is a convex open neighborhood of 0 which is small enough to ensure that
log, the principal branch of logarithm, is defined and continuous on (2)(5 +&)/ é(go)
for £ € U. Because ¢ is smooth, I'¢, € C°(U) and so we can use Taylor’s theorem
to approximate I'¢, near 0. In this article, we focus on the case in which the Taylor
expansion yields a positive homogeneous polynomial. The following definition,
motivated by Thomée [26], captures this notion.

Definition 1.3. Let ¢ € Sy be such that sup |$(€)| = 1 and let & € Q(¢). We

say that &y is of positive homogeneous type for ¢ if the Taylor expansion for I'g,
about 0 is of the form

(1'5) FEO(&) =1i0g, '£7PEO(£)+T§0(£)7

where ag, € RY, P, is a positive homogeneous polynomial and Y¢, (§) = o(Rg, (£))
as £ = 0; here R¢, = Re P¢,. We say that ag, is the drift associated to &g.

Though not obvious at first glance, g, and P, of the above definition are
necessarily unique. When looking at any given Taylor polynomial, it will not
always be apparent when the conditions of the above definition are satisfied. In
Section 3, there is a discussion concerning this, and therein, necessary and sufficient
conditions are given for & € Q(¢) to be of positive homogeneous type for ¢A>

Our theorems are stated under the assumption that for ¢ € Sy, sup |¢A>(§)| =1
and each & € Q(¢) is of positive homogeneous type for 6. As we show in Section 3,
these hypotheses ensure that the set Q(¢) is finite and in this case we set

1.6 = min .
(16) 1o laln M
This is admittedly a slight abuse of notation. We are ready to state our first main
result.

Theorem 1.4. Let ¢ € Sy be such that Sup|45(§)| = 1 and suppose that each
& € Q) is of positive homogeneous type for ¢. Then

(1.7) C'n e < [[¢!||oo < Cm e
for all n € Ny, where C and C" are positive constants.

The theorem above is a partial answer to Question (i) and nicely complements
Theorem 1.1 and the results of [4]. We note however that, in view of the wider
generality of Theorem 1.1, Theorem 1.4 is obviously not the final result in Z? on
this matter (see the discussion of tensor products in Subsection 7.4).

Returning to our motivating example and with the aim of applying Theo-
rem 1.4, we analyze the Fourier transform of ¢. We have

¢(n,¢) = —2cos(21) + (5 + V/3) cos(1) + 2(cos(¢) +sin(¢))

1
11+3 (4
+ (2V/3 + 2) cos(n) sin(¢))
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for (n,¢) € R2. One easily sees that sup|¢| = 1 and that |¢| is maximized in T2
at only one point (0,7/3) and here, ¢(0,7/3) = 1. As is readily computed,

r,0) = tog (ML) = toa(btn, € +7/3)

-1 4+745\/5 2
iv3! TTis T T I

as (n,¢) — 0. Let us study the polynomial

- ¢+ O0(n°) + O(l*¢)) + O(|n¢*) + O(I¢ )

P(n,¢) = (20" + (V3= 1)n*C +4¢?),

1
22 +2V3
which leads this expansion. It is easily verified that P = Re P is positive definite
and

P(tE(mC)) — P(t1/4?7»t1/24) =tP(n,¢) with E= (164 132)

for all t > 0 and (1,¢) € R? and therefore P is a positive homogeneous polynomial
with E' € Exp(P). Upon rewriting the error in the Taylor expansion, we have

where T(n,¢) = o(P(n,¢)) as (n,¢) — (0,0) and so it follows that (0,7/3) is of
positive homogeneous type for QAS with corresponding a = (0,0) € R? and positive
homogeneous polynomial P. Consequently, ¢ satisfies the hypotheses of Theo-
rem 1.4 with py = pup = tr E = 3/4 and so

C/’I”L73/4 < ||¢(n)||oo < Cn73/4

for all n € Ny, where C' and C are positive constants. With the help of a local
limit theorem, we will shortly describe the pointwise behavior of ¢.

Coming back to the general setting, we now introduce the attractors which
appear in our main local limit theorem. For a positive homogeneous polynomial P,
define H' : (0,00) x RY — C by

1 )
(1.8) Hb(z) = _/ e~ tPO) =i € ge
Rd

(2m)9
for t > 0 and z € R?; we write Hp(z) = Hh(z). As we show in Section 2, for
each t > 0, H5(-) belongs to the Schwartz space, S(R?), and moreover, for any
E € Exp(P),
1

L (tF2)=—Hpt Fx)

(1.9) Hp(z) = g Hp i

for all ¢t > 0 and = € R%; here E* is the adjoint of E. These function arise naturally
in the study of partial differential equations. For instance, consider the partial
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differential operator 9; + Ap, where Ap := P(D), called a positive homogeneous
operator, is defined by replacing the d-tuple & = (&1,&2,...,&4) in P(£) by the
d-tuple of partial derivatives D = (i0y,,904,,...,10;,). The associated Cauchy
problem for this operator can be stated thus: given initial data f (from a suitable
class of functions), find u(z,t) satisfying

(1.10) { (0: + Ap)u(z,t) =0, zeR, >0,

u(0,7) = f(z), x€R%

In this context, HI(;) is a fundamental solution to (1.10) in the sense that the
representation

(111) (e t) =)o) = [ HP @) ) dy

satisfies (0; + Ap)u = 0 and has u(t,-) — f as t — 0 in an appropriate topology.
Equivalently, H;;) is the integral kernel of the semigroup e *** with infinitesimal
generator Ap. The Cauchy problem for the setting in which Ap is replaced by an
operator H which depends on z and is uniformly comparable to (—A)™ = Aj.j2m
is the subject of (higher order) parabolic partial differential equations and its
treatment can be found in the classic texts [6] and [8] (see also [1] and [2]). The
recent article [18] considers the more general setting in which a partial differential
operators H, with sufficiently regular coefficients, is uniformly comparable to a
positive homogeneous operator. In the present article, we shall only need a few
basic facts concerning H ft;).

Remark 1.5. When d = 1, every positive homogeneous polynomial is of the form
P(§) = BE™ where Re 8 > 0 and m is an even natural number. In this case, Hp
is equal to the function HZ of [17]. We note that the simplicity of the dilation
structure in one dimension is in complete contrast with the natural complexity of
the multi-dimensional analogue seen in this article.

For our next main theorem which addresses Question (ii), we restrict our at-
tention to the set of points {&1,&2,...,84a} € Q(¢) for which pp., = o for
q = 1,2,..., A; the points { € Q(¢) for which up, > pg (if there are any) are
not seen in local limits. Finally for each &, for ¢ = 1,2,..., A, we set oy = ag,
and P, = P¢,. The following local limit theorem addresses Question (ii).

Theorem 1.6. Let ¢ € Sy be such that sup |¢A)(£)| = 1 and suppose that every point
£ € Qo) is of positive homogeneous type for ¢. Let g be defined by (1.6) and let

&1,89,...,84, a1, a0,...,a4, and Py, Py, ..., Ps be as in the previous paragraph.
Then
A . ~
(1.12) oM () = e G(&,)" Hp (x — nayg) + o(n ")
qg=1

uniformly for x € 74.
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Let us make a few remarks about this theorem. First, the attractors H};q ap-
pearing in (1.12) are rescaled versions of Hp, = H },q in view of (1.9), and all decay
in absolute value on the order n=#¢ —this is consistent with Theorem 1.4. Second,
the attractors Hp, () often exhibit slowly varying oscillations as |z| increases (see
Subsection (7.1)), however, the main oscillatory behavior, which is present in Fig-
ure 1b, is a result of the prefactor e’"f‘?é(gq). This is, of course, a consequence
of (2) being maximized away from the origin. In Subsection 7.6, we will see that
when ¢ is a probability distribution, all of the attractors in (1.12) are identical and
the prefactors collapse into a single function, ©, which nicely describes the sup-
port of (™ and hence periodicity of the associated random walk (see Theorems 7.6
and 7.7).

Taking another look at our motivating example, we note that the hypotheses
of Theorem 1.4 are precisely the hypotheses of Theorem 1.6 and so an application
of the local limit theorem is justified, where, because €2(¢) is a singleton, the sum
in (1.12) consists only of one term. We have

O (z,y) = e~ @ OTIDG(0,m/3)) HP (2, ) + ofn )
= e TR, y) + o(n )

uniformly for (z,y) € Z?. To illustrate this result, the graphs of Re(e=""%/3 H}) for
(x,y) € Z? for —20 < 2,y < 20 are displayed in Figures 2a and 2b for n = 10 and
n = 100 respectively for comparison against Figures la and 1b. The oscillation in
the y-direction is now explained by the appearance of the multiplier e~*7%/3 and
is independent of n.

0.1 0.02
0.05 0 0.01
°$ 0
-0.05 -0.01
B - a0 M 3 %20
I o 0 ¢ - T 00 10 ° -
(a) Re(e " /3 H2) for n = 10. (b) Re(e™™¥/3H}) for n = 100.

FiGURE 2: The graphs of Re(e™"™¥/3H%) for n = 10, 100.

To address Question (iii) and obtain pointwise estimates for the &™), we re-
strict our attention to those ¢: Z¢ — C with finite support. In this article, we
present two theorems concerning pointwise estimates for |¢(™ (x)|. The most gen-
eral result, in addition to requiring finite support for ¢, assumes the hypotheses
of Theorem 1.6; this is Theorem 5.12. The other result, Theorem 1.8, additionally
assumes that all £ € Q(¢) have the same corresponding drift o = o € R? and
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positive homogeneous polynomial P = P¢ —a condition which is seen to be quite
natural by taking a look at Subsections 7.3 and 7.6, although not necessary, see
Remark 5.3. Theorem 1.8 extends the corresponding 1-dimensional result, Theo-
rem 3.1 of [4], to d-dimensions and, even in 1-dimension, is seen to be an improve-
ment. In addition to global pointwise estimates for ¢("), in Section 5 we present a
variety of results which give global pointwise estimates for discrete space and time
derivatives of ¢(™). In what follows, we describe the statement of Theorem 1.8 as
it is the simplest.

For simplicity, assume that ¢: Z¢ — C is finitely supported, satisfies supy |q§| =1

and Q(¢) consists of only one point &, which is of positive homogeneous type for .
In this case, we use Theorem 1.6 to motivate the correct form for pointwise esti-
mated for ¢(™. The theorem gives the approximation

(1.13) ™ (z) = e7 % §(&)" Hp(x — na) + o(n™")

uniformly for z € Z?, where P = P, is positive homogeneous and o = ag, € R4,
Pointwise estimates for the attractor Hp can be deduced with the help of the
Legendre-Fenchel transform, a central object in convex analysis [20], [28]. The
Legendre-Fenchel transform of R = Re P is the function R#: RY — R defined by

R#(z) = sup {z - £ — R(£)}.
gerd

It is evident that R* (z) > 0 and, for E € Exp(P),
tR*(z) = sup {tz - — R(tP¢)} = R#(t(I—E)*m)
£ER?

for all t > 0 and = € R%, ie., (I — E)* € Exp(R#). It turns out that R¥ is
necessarily continuous and positive definite (Proposition 8.15). In Section 2, we
establish the following pointwise estimates for Hp. There exist positive constants C'
and M such that

(1.14) |Hb(2)| < tt%exp(—MR#(fE*x)) = t% exp(—tMR¥ (z/t))

for all z € R and ¢t > 0.

Remark 1.7. In the special case that P(¢) = [£|*™, E = (2m)~'I € Exp(P) and
one can directly compute R¥ (x) = C,, |x|>™/ 2"~ where C,, = (2m)~1/m=1) _
(2m)~2m/(2m=1) > (. Here, the estimate (1.14) takes the form
H‘t,‘mn(lﬂ) < td%m exp ( _ M|x|2m/(2mfl)/t1/(2mfl))

for t > 0 and = € R? and so we recapture the well-known off-diagonal estimate for
the semigroup e~ *=2)" [8], [6], [1], [2]. In the context of local limit theorems,
H\.|2m is seen to be the attractor of the convolution powers of k,, = 6o — (60— Ii)(m)
where k is the probability distribution assigning 1/2 probability to 0 and 1/(4d)
probability to +e; for j = 1,2,...,d; here and in what follows, ey, ea, ..., eq denote
the standard Euclidean basis vectors of R9.
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In view of (1.13) and the preceding discussion, one expects an estimate of
the form (1.14) to hold for ™ although, we note that no such estimate can be
established on these grounds (this is due to the error term in (1.13)). This however
motivates the correct form and we are able to establish the following result which
captures, as a special case, the situation described above in which Q(¢) = {&}.

Theorem 1.8. Let ¢: Z¢ — C be finitely supported and such that supgcra |p(€)|=1.

Suppose that every point of £ € Q(@) is of positive homogeneous type for ¢ and ev-
ery & € Q@) has the same drift o« = a¢ € R? and positive homogeneous polynomial
P = P. Also let iy = pp be defined by (1.4) and let R* be the Legendre—Fenchel
transform of R = Re P. Then there exists C;, M > 0 for which

(1.15) lp(™ (2)| < n% exp ( anR#<$ *nna>>

for alln € Ny and x € Z2.

Revisiting, for a final time, our motivating example, we note that ¢ also satisfies
the hypotheses of Theorem 1.8. An appeal to the theorem gives constants C, M > 0
for which

(1.16) 60 )| < 57 05 (- MEH((z,)/m)

for all n € N and for all (x,y) € Z2, where R* is the Legendre-Fenchel transform
of R = Re P = P. Instead of finding a closed-form expression for R#, which is not
particularly illuminating, we simply remark that

(1.17) R¥ (2, y) = |2|** + |y ?,

where =< means that the ratio of the functions is bounded above and below by
positive constants ((1.17) is straightforward to establish and can be seen as conse-
quence of Corollary 8.16). Upon combining (1.16) and (1.17), we obtain constants
C, M > 0 for which

4/3 2 4/3 2
900012 e (- (] 27)) < e (- (2 )
for all n € Ny and for all (z,y) € Z2 This result illustrates the anisotropic
exponential decay of n?/%|¢(™ (z,y)| for each n € N,

Back within the general setting and continuing under the assumption that
¢: Z* — C is finitely supported, we come to the final question posed at the be-
ginning of this introduction, Question (iv). The following result extends the (af-
firmative) results of V. Thomée [26] and M. V. Fedoryuk [7] (see also Theorem 7.5
of [22]).

Theorem 1.9. Let ¢: Z¢ — C be finitely supported and such that sup; (€)= 1.
Suppose additionally that each & € Q(¢) is of positive homogeneous type for <£
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Then, there exists a positive constant C' for which

o™ =Y le™ (@) < C

T€Z

for allmn € N

This article is organized as follows. Section 2 outlines the basic theory of
positive homogeneous polynomials and their corresponding attractors. Section 3
focuses on the local behavior of é wherein necessary and sufficient condition are
given to ensure that a given & € Q(¢) is of positive homogeneous type for (ﬁ In
Section 4, we prove the main local limit theorem, Theorem 1.6, and deduce from
it Theorem 1.4. Section 5 focuses on global space-time bounds for ¢ in the
case that ¢ is finitely supported. In addition to the proof of Theorem 1.8, Sub-
section 5.1 contains a number of results concerning global exponential estimates
for discrete space and time differences of ¢(™. In Subsection 5.2, we prove global
sub-exponential estimates for ¢(™) in the general case that ¢, in addition to being
finitely supported, satisfies the hypotheses of Theorem 1.9; this is Theorem 5.12.
In Section 6, after a short discussion on stability of numerical difference schemes
in partial differential equations, we present Theorem 1.9 as a consequence of The-
orem 5.12. Section 7 contains a number of concrete examples, mostly in Z2, to
which we apply our results; the reader is encouraged to skip ahead to this section
as it can be read at any time. We end Section 7 by showing, from our perspective,
some results on the classical theory of random walks on Z?. The Appendix, Sec-
tion 8, contains a number of linear-algebraic results which highlight the interplay
between one-parameter contracting groups and positive homogeneous functions.

Notation. For y € Z%, §,: Z — {0,1} is the standard delta function defined
by d,(y) = 1 and d,(z) = 0 for = # y. For any subset A of R, A4 denotes the
subset of positive elements of A. Given M € My(R), its corresponding linear
transformation on R? is denoted by Lj;. For any r > 0, we denote the open unit
ball with center z € R? by B,.(z) and the closed unit ball by B,.(r). When z = 0,
we write B, = B,.(0) and denote by S, = 0B, the sphere of radius r. Further, when
r =1, we write B = By and S = S;. We define a d-dimensional floor function by
|| :RY = Z2 by |z] = (|z1], [22], ..., [2a]) for © € R? where |z | is the integer
part of zy for k = 1,2, ...d; this is admittedly a slight abuse of notation. Given
n=(ni,ns,...,ng) € (Ny) = N4 and a multi-index 8 € N¢, put

d
Br
nl=3 L

this is consistent with Hormander’s notation for semi-elliptic operators and poly-
nomials [12]. For any two real functions f, g on a set X, we write f < g when there
are positive constants C' and C” for which Cg(z) < f(x) < C'g(z) for all z € X.
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2. Positive homogeneous polynomials and attractors

In this section, we study positive homogeneous polynomials and their correspond-
ing attractors; let us first give some background. In Hormander’s treatise [12],
polynomials of the form

Q) = Y asé’

|B:m|<1

for m € Ni are called semi-elliptic provided their principal part,

Q)= > asé’

|B:m=1

is non-degenerate, that is, Q,(§) # 0 whenever ¢ # 0. For a semi-elliptic poly-
nomial @, its corresponding partial differential operator Ag = Q(D), called a
semi-elliptic operator, is hypoelliptic in the sense that all Ag-harmonic distribu-
tions are smooth. What appears to be the most desirable property of semi-elliptic
polynomials is the way that they scale in the sense that

Q;D(tl/mlgl, tl/m2£27 cee 7t1/md£d)

d
- Y
J

|8:m=1

(gt = 3 s eP = 10, (e)
1

|B:m=1

for all t > 0 and ¢ € R%. This property, used explicitly by Hérmander, is precisely
the statement that E = diag(1/mq,1/ma,...,1/mg) € Exp(Q,), in view of Defini-
tion 1.2. Further, the associated one-parameter group {7;} = {t¥} has the useful
property that it dilates and contracts space. The following definition captures this
behavior in general (see Section 1.1. of [10]).

Definition 2.1. Let {T;}+~0 € Gls(R) be a continuous one-parameter group. We
say that {T}} is contracting if

lim |73 = 0.
Here and in what follows, || - || denotes the operator norm on Glz(R).

To keep in mind, the canonical example of a contracting group is {t”} where
D = diag(y1,7v2,---,74) € Mag(R) with ~; > 0 for ¢ = 1,2,...,d and here, it is
easily seen that tP = diag(t"*,t72,...,t7) for t > 0. Some basic results concern-
ing contracting groups are given in the Appendix and are used throughout this
article. As we will see shortly, for any positive homogeneous polynomial P, t¥ is
a contracting group for any F € Exp(P).

Of interest for us is the subclass of semi-elliptic polynomials of the form

(2.1) PE) = Y agc’= > apc’

|B:2m|=1 |B:m|=2
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where m € Nﬂlr, {ag} € C and Re P is positive definite. For these polynomials, it
is easy to see that the corresponding partial differential operator 9; + Ap is semi-
elliptic in the sense of Hormander and hence hypoelliptic. By a slight abuse of
language, any reference to a semi-elliptic polynomial is a reference to a polynomial
of the form (2.1). It is straightforward to see that all such semi-elliptic polynomials
are positive homogeneous and have D = diag((2my)~!, (2m2)~1, ..., (2mg)~ 1) €
Exp(P). However, not all positive homogeneous polynomials are semi-elliptic as
the example of Subsection 7.3 illustrates. As our first result of this section shows,
every positive homogeneous polynomial has a coordinate system in which it is
semi-elliptic.

Proposition 2.2. Let P be a positive homogeneous polynomial and let E € Exp(P)

have real spectrum. There exist A € Glg(R) and {m1,ma,...,mq} C Ny for which
(2.2) ATIEA = diag((2m1) 7Y, (2me) ™1, ..., (2mg) ™Y
and
(2.3) (PoLa)(€) = Y as&® for&eR™
|B:m|=2

Proof. In light of the fact that the spectrum of FE is real, the characteristic poly-
nomial for F factors completely over R and so we may apply the Jordan—Chevally
decomposition. This gives A € Glg(R) for which F := A='FA = D + N where D
is a diagonal matrix, N is a nilpotent matrix and ND = DN. It is evident that
Q := (P o Ly) is a polynomial and so we can write

(2.4) Q) => ag¢’
8

for all ¢ € R?. In fact, our hypothesis guarantees that @ is positive homogeneous
and F € Exp(Q). Our proof proceeds in three steps, first we show that D €
Exp(Q). Second, we determine the spectrum of D. In the final step we show
that N = 0.

Step 1. We have

(2.5) tQ(E) = Q") = QPN = Q(tVtP¢)

for all t > 0 and ¢ € RY where D = diag(y1,72,--.,74) for v1,72,...74 € R.
Because N is nilpotent,

logt (logt)*
N e —_— P —_— k
=1+ 1 N+ + ol N

where k + 1 is the index of N. Thus by (2.5), for all ¢ > 0 and ¢ € R?,

o k
(26) Q18 = Q(&+ (togt)NE + - + LB Nke) = e) + Sw(e o),
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where Sy is a polynomial on R x R with no constant term. Consequently, for
each ¢ € R? we may write

(2.7) Sn(&x) =) bi(&)al,

where b;(§) € C for each j.
Let us now fix a non-zero ¢ € R%. Combining (2.4), (2.6) and (2.7) yields

l

D aptI=FN P = Q) + > b;(€) (log t)?
B

Jj=1

for all t > 0, where 8-+v = 171 + Bay2 + -+ + Baya and necessarily Q(§) # 0.
Since distinct real powers of ¢t and logt are linearly independent as C*° functions
for ¢ > 0, it follows that b;(§) = 0 for each j, and more importantly,

(2:8) Q)= D ast’.

By=1
Since ¢ was arbitrary, (2.8) must hold for all ¢ € R? and from this we see that
(2.9) QUPE) = Y apte)’ = ) ast™ (&) =1Q(¢)

By=1 By=1
for all t+ > 0 and & € RY; hence D € Exp(Q).
Step 2. Writing Rg = Re @, it follows from (2.8) that
(2.10) Ro(&)= ) cs¢”
By=1

for all ¢ € R¢ where cg = Reag for each multi-index 3. Now foreachi =1,2,...,4d,
ze; is an eigenvector of D with eigenvalue ~; for all non-zero = € R; here e; is that
of the standard Euclidean basis. Using the positive definiteness of Rg, for all £ > 0
and x # 0, we have

tRo(we;) = Ro(tP (ze;)) = Ro(t7we;) = t1P1) gzl > 0

where 3 is the only surviving multi-index from the sum in (2.10) and necessarily
is an integer multiple of e;. From this we see that |5| must be even for otherwise
positivity would be violated and also that 1/+; = |5| =: 2m; as claimed.

Step 3. In view of the previous step,
(2.11) tP = diag (t(2ml)_l,t(2m2)_l7 o 7t(2md)—1)

for all t > 0 and so {tP};~0 is a one-parameter contracting group. Using the
positive definiteness of Rg, it follows from Proposition 8.5 that

2.12 li > lim inf Ro(tPn) > lim t inf = 0.
(2.12) mganQ(é“)_tggo;gSRQ( n) = Jim ¢ inf Ro(n) = oo
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Now because D commutes with F' and D € Exp(Rg),
Rq(€) =t Ro(&) = Ro(t"t™ 7€) = Ro(tV¢)

for t > 0 and ¢ € R%. Our goal is to show that N = 0. For suppose that N # 0,
then for some & € R?, v = N¢ # 0 but Nv = 0. Then,

(logt)?
2

Rq(§) = Ro(t"¢) = Rq (5 + (log ) N¢ + (N)%€ + - ) = Rq (& + (logt)v)
for all ¢ > 0. This however cannot hold for its validity would contradict (2.12),
and so N = 0 as desired. O

Proposition 2.3. If P is a positive homogeneous polynomial then Sym(P) :=
{0 € My(R) : P(O€) = P(&) for all ¢ € R4} is a compact subgroup of Glg(R) and
hence a subgroup of the orthogonal group, Oq(R).

Proof. Tt is clear that I € Sym(P) and that for any O1,02 € Sym(P), 0105 €
Sym(P). If O € Sym(P), R(O¢) = R(£) for all £ € R? where R = ReP. The
positive definiteness of R implies that KerO is trivial and hence O € Gl4(R).
Consequently, P(O~1¢) = P(OO~1¢) = P(¢) for all £ € R? and hence O~ €
Sym(P).

It remains to show that Sym(P) is compact and so, in view of the Heine-Borel
theorem, we show that Sym(P) is closed and bounded. To see that Sym(P) is
closed, let {O,} € Sym(P) be such that O,, = O € My(R). Then the continuity
of P implies that for all £ € R,

P(0€) = lim P(0,€) = P(¢)

and so O € Sym(P).
To show that Sym(P) is bounded, we first make an observation from the proof
of Proposition 2.2. Assuming the notation therein, we conclude from (2.12) that

(2.13) lim R(§) = o0

€] —o00

because R(§) = Rg(A7%¢) for all ¢ € R Finally, to reach a contradiction, we
assume that Sym(P) is not bounded. Then there exist sequences {O,,} C Sym(P)
and {&,} C S for which lim,, |0,,¢,| = co. Observe however that

R(Onén) = R(&n) < sup R(£) < o0
¢es

for all n; in view of (2.13) we have obtained our desired contradiction. O

Corollary 2.4. Let P be a positive homogeneous polynomial. Then for any E, E' €
Exp(P),
tr(E) = tr(E").
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Proof. For E,E' € Exp(P), it follows immediately that t¥t~F € Sym(P) for all
t > 0. In view of Proposition 2.3,

Bt B gt By B | det(17) det(t™ )| = [ det(tPt )| = 1

for all £ > 0; here we have used the fact that the trace of a real matrix is real
and that the determinant maps O4(R) into the unit circle. The corollary follows
immediately. O

Lemma 2.5. Let P be a positive homogeneous polynomial. For any E € Exp(P),
the continuous one-parameter group {tE}t>0 18 contracting.

Proof. First let Ey € Exp(P) have real spectrum. In view of Proposition 2.2,
ATHEOA = diag(t, 102, ... 10?)

for all t > 0 where 0 < 7; < 1/2 for ¢ = 1,2,...,d. By inspection, we can
immediately conclude that {t¥°},~ is contracting. Now for any E € Exp(P),
tEt=Eo ¢ Sym(P) C Oq(R) for all t > 0 by virtue of Proposition 2.3; from this it
follows immediately that {¢¥} is contracting. O

We now turn to the study of the attractors appearing in Theorem 1.6; these are
of the form HJ(;), defined by (1.8), where P is a positive homogeneous polynomial.

Proposition 2.6. Let P be a positive homogeneous polynomial with R = Re P.
The following is true:

i) For anyt > 0, Hl(gt)(-) € S(RY).

it) If E € Exp(P) then, for allt >0 and x € RY,

; 1 . 1 .
Hy)(2) = g Hp(t™ " 0) = - Hp (7 ),
where E* is the adjoint of E.

iii) There exist constants C, M > 0 such that

|HY (2)] < t% exp(—tMR#(z/t))

for all t >0 and x € R,

Proof. To prove items i) and ii), it suffices only to show that Hp = HL € S(RY).
Indeed, if Hp € S(R?) then, in particular, e~ € L'(R?) and so the change-of-
variables formula guarantees that, for any ¢ > 0 and z € R?,

1 ) 1 E .
H () = —UP(§) i€ g — / —PUPE) —iv€ g
P) = Gy [ ol R
1 tftrE'

~P(€) =12t~ 8) qet(+~F) df — / —P©) it a)E g
/Rde e et(t™") d¢ o) Rde e 3

(2m)?
=t " Hp(t 1)

whenever E' € Exp(P). From this the validity of item ii) is clear but moreover, the
formula ensures that that HE € S(R?) for all ¢t > 0.
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In view of (1.8), Hp € S(R?) if and only if e~ € S(R?) because the Fourier
transform is an isomorphism of S(R?). Also, for any A € Gl4(R), it is clear that
e~F € S(R?) if and only if e~P°F4. Hence, to show that Hp € S(R?) it suffices
to show that e~F°L4 € S(R?) for some A € Gly(R). This is precisely what we do
now: let E € Exp(P) have real spectrum and correspondingly, take A € Gl;(R)
as guaranteed by Proposition 2.2. As in the proof of the proposition, we write
Q = PoLa, Rg = ReQ and D = diag((2m1)~1, (2ma2)~ 1, ..., (2mg)"1). It is
clear that e=? € C*°(R?). Let y and 3 be multi-indices and observe that

le=@|lup == sup [€"DPe 9] = sup |Q,.5(&) exp(—Q(€))],
£eRE ¢eRd

where @), 3 is a polynomial. Using Proposition 8.5 and the continuity of Q#ﬂe’Q,
it follows that

le™®lws = sup |Qust”v)exp(=Q(t"v))| = sup [Qup(t"v) exp(—tQ(v))].
veS,;t>0 veS,;t>0

Now because @) is positive homogeneous, (), 3 is a polynomial and tP has the
form (2.11),

|Qus(tP)e™ W < My (14 4m) et
for all t > 0 and v € S, where m, My and M are positive constants. We immedi-

ately see that
HeiQHuﬁ < sule(l + tm) eitM? <0
>0

and therefore e=% € S(R?).

The key to the proof of iii) is a complex change-of-variables. For each x € RY,
function z — e~ F(#)e=%# i5 holomorphic on C? and, in view of Proposition 8.13,
satisfies

(214) |67P(§7iu) efix-(gfiu)| _ efa:~u|efP(57iu)| < 67I~U+MR(V) e*ER(E)

for all z = & —iv € C¢, where M, e are positive constants. By virtue of (2.13),
(2.14) ensures that the integration in the definition of Hp can be shifted to any
any complex plane in C? parallel to R%. In other words, for any z,v € RY,

/ e~ P(&) p—ix-€ d¢ = e~ P(e—iv) j—iz(6~iv) de,
R4 £€Rd

and therefore
1

H < —x-v+MR(v)
|Hp(x)] <e o)’

/Rd e~ = Cexp(—(z- v — MR(v))),

where C' > 0. The natural appearance of the Legendre—Fenchel transform is now
seen by infimizing over v € R?. We have

|Hp(x)| < Cuien]lgd exp(—(z-v— MR(v))) = Cexp ( — s;lﬂgd{m - MR(V)})

= Cexp (—(MR)#(z)) < Cexp (—MR*(x))
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for all z € R?, where we have made use of Corollary 8.17 to adjust the constant M.
Finally, an appeal to ii) and Proposition 8.15, gives

Hp (2)] < WQ exp (~ MR*(t™F'z)) = tug exp (= ME#(t~5)" (/1))

_ 1w%exp (= tMR*(2/t)

for all t > 0 and = € R%. O

3. Properties of q?)

Lemma 3.1. Let ¢ € Sy be such that sup |¢3| = 1 and suppose that & € Qo) is
of positive homogeneous type for ¢. Then the expansion (1.5), with ag, € R? and
positive homogeneous polynomial P, , is unique.

Proof. The fact that [¢(£)| < 1 ensures that the linear term in the Taylor expansion
for I'¢, is purely imaginary. This determines ag, uniquely. We assume that

Peo(§) = iag, - & = Pi(&) + T1(§) = iag, - & — Pa(§) + Ta(¢)

for & € U where P; and P, are positive homogeneous polynomials with Re P, = Ry,
ReP, = Ry and T; = o(R;) as £ — 0 for ¢ = 1,2. We shall prove that P, = P».

Let € > 0 and, for a fixed non-zero ¢ € RY, set §; = ¢/2R;(¢) for i = 1,2. Also,
take F; € Exp(P;) for i = 1,2. Because T; = o(R;) as £ — 0 for i = 1,2 there is a
neighborhood O of 0 for which |Y;(¢)| < 6;R;(§) whenever £ € O for i = 1,2. By
virtue of Lemma 2.5, t=1(, t=#2( € O for some t > 0 and therefore

[PL(¢) = P2(O)] = t|PL(t="10) = Po(t=2Q)| < | 01(tF1 Q)| + ¢ [To(t~F2¢)|
<161 Ry(t7P1¢) + 18y Ro(t772¢) < 61 R1(C) + 62Ra(() < €

as required. O

Lemma 3.2. Let ¢ € Sy be such that sup |¢3| =1 and suppose that & € Q(¢) is of
positive homogeneous type for ¢ with associated positive homogeneous polynomial
P = P, and remainder T = Y¢,. Then for any E € Exp(P),

lim ¢Y(t~F¢) = 0.

t—o0

for each & € R4,

Proof. The assertion is clear when ¢ = 0. When ¢ € R? is non-zero, we note that
t=F¢ — 0 ast — 0 by virtue of Lemma 2.5; in particular, t=F¢ € U for sufficiently
large t. Consequently,

T "¢

S T
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because Y (n) = o(R(n)) as n — 0 and so it follows that

_E —-FE
Jim £ (7€) = lim R(§)1f<f7R(§)) = R() fim, %

as desired. O

=0

Given & € Q(¢) and considering the Taylor expansion for I'g,, to recognize
whether or not & is of positive homogeneous type for ¢ is not always straightfor-
ward, e.g., Subsection 7.3). Nonetheless, it is useful to have a method based on the
Taylor expansion for I'¢, through which we can determine if £y is of positive homo-
geneous type for d; and, when it is, pick out the associated positive homogeneous
polynomial P¢,. The remainder of this section is dedicated to doing just this.

Given any integer m > 2, the mth order Taylor expansion for I'¢, is necessarily
of the form

(3.1) Te,(§) = iag, - & — QL (€) + O™ )
for ¢ € U where ag, € R? and Qg (€) is a polynomial given by

Q) = > cal”

1<|a|<m

for ¢ € R, where {c,} C C. No constant term appears in the expansion for T,
because I'¢, (0) = 0. Moreover the fact that

D + o) = Dl&o) "0
for all £ € U and the condition that sup [¢(£)| = 1 ensure that
)=

|
Re(iag, - £ — ng( ) Rngo(f) <0

for ¢ sufficiently close to 0 (in fact, this is precisely why ag, € R?). Our final
result of this section, Proposition 3.3, provides necessary and sufficient conditions
for & to be of positive homogeneous type for d; in terms of Qf'. We remark
that the proposition, although quite useful for examples, is not used anywhere else
in this work. As the proof is lengthy and in many ways parallels the proof of
Proposition 2.2, we have placed it in the Appendix, Subsection 8.4.

Proposition 3.3. Let ¢ € Sy, suppose that sup |¢3(§)| =1 andlet & € Q(@). Then
the following are equivalent:

a) The point & is of positive homogeneous type for QAS with corresponding positive
homogeneous polynomial P, .

b) There exist m > 2 and a positive homogeneous polynomial P such that, for
some Cyr > 0,
C7'R(§) <Re Qg (€) < CR(€)
and
[Im Qg} (§)] < CR(E)
for all ¢ € B,., where R = Re P.
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c) There exist m > 2 and E € My(R) with real spectrum such that, for some r >0
and sequence of positive real numbers {t,} such that t,, — 0o as n — oo, the
sequence {pn} of polynomials defined by

(3.2) pn(§) =tn Qg (tr_LEg)

converges for all ¢ € B, as n — oo, and its limit has positive real part for
all £ € S,.

When the above equivalent conditions are satisfied, for any m’ > m,
o '—EB
Pe,(€) = lim Q! (t75)

for all € € R and this convergence is uniform on all compact subsets of R?.

4. Local limit theorems and £°° estimates

In this section we prove Theorems 1.4 and 1.6. Our first result ensures that, under
the hypotheses of Theorem 1.6, we can approximate the convolution powers of ¢
by a finite sum of attractors.

Proposition 4.1. Let ¢ € Sy be such that sup |¢(€)| = 1. If each € € Q) is of
positive homogeneous type for ¢ then Q(¢@) is discrete (and hence finite).

Proof. Let & € Q(¢) be of positive homogeneous type for ¢3; it suffices to show
that & is an isolated point of Q(¢). In view of Definitions 1.2 and 1.3, let I'¢,,
R¢, = Re P, and T¢, be associated to §. Because R¢, is positive definite and
Te,(n) = o(Re,(n)) as n — 0, there is a neighborhood of 0 on which T'¢,(§) = 0
only when £ = 0. Since ¢(€ + &) = d(&) exp(T'e, (€)) for all € € U, there is a
neighborhood of &, on which |¢A>(§)| < 1 for all £ # &. Hence &y is an isolated point
of Q(o). O

Remark 4.2. For any ¢ which satisfied the hypotheses of Proposition 4.1, we fix
Tg = (—m, 7% + & where £, € RY makes Q(¢) live in the interior of Tg (as a
subspace of R?); this can always be done in view of the proposition. We do this
only to avoid non-essential technical issues arising from the difference between the
topology of R? and the topology of T? inherited as a subspace.

Lemma 4.3. Let ¢ € Sg be such that sup |¢3(£)| =1 and suppose that & € Q(¢)
is of positive homogeneous type for ¢. Let o = o, and P = P, be associated
to ¢ in view of Definition 1.3 and let pup and HI(;) be defined by (1.4) and (1.8)
respectively. Then there exists an open neighborhood Ug, of &y such that, for any
open sub-neighborhood O, C U, containing &y, the following limit holds. For all
€ > 0 there exists N € Ny such that

nhtp ~ X . ~

o [ b e e — e 0 Go) Hp (@ — na)| < e

(27) O¢,

for all natural numbers n > N and for all z € R?.
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Proof. Given that &, € Q(¢) is of positive homogeneous type for QAS,

(4.1) $(& + &) = d(&o) 7

for & € U, where

[(§) = ia- € = P(§) + T(£)
and where Y(§) = o(R(§)) and R = Re P. If necessary, we restrict ¢ further so
that

(4.2) X (O] = eRelioet=POFT(O) < ¢RI/

for all £ € U and put Ue, = {o+U. Now, let Og, C Ug, be an open set containing &.
It is clear that O := Og, — & is open and is such that 0 € O C Y. Of course, (4.1)
and (4.2) hold for all £ € O.
Observe that, for all x € R? and n € N,
nHiP . _ P
g | &) dE — e G(&) T Hp(x — na)
(2m) O¢,

= —(Z:;d /O G(E+ &o)e () dg
)

(4.3
ntr / e—nP(E)e—i(x—na){ d§
R4

-

2

_ e—ix~£o¢(§0)” (nup/ enl'(§) p—iw-€ d¢ — nup/ e~ P& —i(z—na)-€ df)
(2m)4 o Rd

Now for E € Exp(P),
N / e—nP(f)e—i(x—noe)f df — phP / e—P(nEg)e—i(x—noc)f df
Rd Rd

_ nup/ e~ P(O) gmile—na) n=EE qog (= P) g — [ o PO)gmilamna)nFe ¢
nE(Rd) Rd

for all x € R? and n € N where, in view of Corollary 2.4, we have used the fact
that det(n=F) = n~ ¥ = n=#P_ Noting the adjoint relation (n=")* = n=F" and
upon putting y(n,r) = n~F (z — na), we have

(4.4) i / =P —ile—na)€ ge — [ =P©) —ivtna)€ g
R4 R4

for all » € R? and n € N,
Let € > 0 and observe that, in view of Proposition 2.6, e=7/2 € L'(R?) because

P(&)/2 is a positive homogeneous polynomial. We can therefore choose a compact
set K for which

(4.5) / |e’P|d§§/ e o) dgg/ e 02 < ¢/3.
RI\K RI\K RI\K
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By virtue of Proposition 8.6 and Lemma 2.5, there is N; € N, such that
~E(K) C O for all n > Ny. Thus

enl'(§) p—im-¢ d¢

/ enl—‘(g)efimf df +/ enl—‘(g)efimf df
n—F(K) O\n—E(K)

S~

(4.6) - . .
_ / ¢~ PO +nT(€) —ila—na)€ ge | / O i€ ¢
n—E(K) O\n=E(K)
_ L[ o P@nT( e —iy(na) € d€+/ (O i€ g
nHte J e O\n—F(K)

for all n > N; and = € RY; here we have again used the fact that det(n=F) = n=#r.
Combining (4.3),(4.4) and (4.6) yields

np R
’(g—w D) e dg — e G(8) n” Hp (@ = ma)|
™
‘ / +nT(n~F¢) _ 67P<5>> o—iv(n,a) df‘
| P(&)efzy(n z f| dé' + phP / enF(E)e*imf df
(4.7) RI\K O\n—E(K)

|67P<5>+nr<n—E5> — e PO ag

+ e~ R(©) dern“P/ \er(§)|ndf
R\ K O\n—E(K)

=:I1(n) + Iy(n) + I3(n)

for all n > N; and = € R?.
It is clear that Io(n) < ¢/3 for all n > Ny by virtue of (4.5). Now, in view
of (4.2) and (4.5),

Iy(n) < nir /

e~nRO/2 ge < / RO ge < ¢/3
O\n—E(K) - Jri\K

for all n > Nj; here we have used that facts that £ € Exp(P) C Exp(R),
det(n=F) =n=#?_ and

nP(O\n"F(K)) =n"(O)\ K CR?\ K.

To estimate 1, we recall that n=F(K) C O for all n > N; and so the estimate (4.2)
ensures that the integrand of I7(n) is bounded by 2 for all n > N;. In view
of Lemma 3.2, an appeal to the Bounded Convergence Theorem gives a natural
number N > N for which I1(n) < €/3 for all n > N. The desired result follows
by combining our estimates for Iy, Iy and I3 with (4.7). O
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The next lemma follows directly from Lemma 4.3 by upon recalling that n*” H}
=HpolL, e € S(RY) for all n € N.

Lemma 4.4. Let ¢, & and P be as in the statement of Lemma 4.3. Under the
same hypotheses of the lemma, there exists an open neighborhood Ug, of & such
that, for any open sub-neighborhood Of, C Ue, containing &, there exists C > 0
and a natural number N such that

1 n_ —ix-§ ¢
‘(2’/T)d ¢(§) d§ < TL?

for alln > N and xz € R?,

Proof of Theorem 1.6. Under the hypotheses of the theorem, Proposition 4.1 en-
sures that Q(¢) is finite. In line with the paragraph preceding the statement of
the theorem, we label

Qo) = {€1,6,...,€a,€a41, ..., B} C TY,

where pp, = pg for ¢ =1,2,... Aand pp, > pg forg=A+1,A+2,...B. Also,
we assume all additional notation from the paragraph preceding the statement of
the theorem and take Tg as in Remark 4.2.

Let {O¢, }q=1,2.....B be a collection of disjoint open subsets of Tg for which the
conclusions of Lemmas 4.3 and 4.4 hold forg = 1,2,...Aand ¢ = A+1,4A+2,...B

respectively. Set
B
K =T\ (Joe,)
qg=1

and observe that .
s i= sup |3(6)] < L.
£EK

Now, in view of the Fourier inversion formula,

6 (z) = — /é(&)” —i€ g

2m)d T2
- 1

n 71935 Te\n —iz-€
->5 /OE (&)ne ¢ de + ﬂ)d/K¢>(£)e ¢

=1 a

(4.8)

Q

forallz € Z¢ and n € N,. Appealing to Lemma 4.3 ensures that forq = 1,2, ..., 4,

1

¢(£)" TS dE = T G(E,) HE, (v — nag) +o(nTH)

uniformly for z € R?. Now, for each g = A+1, A+2,..., B, Lemma 4.4 guarantees
that

1

(4.10) @ Jo,

$(&) e de = O(n” ") = o(n™H7)
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uniformly for 2 € R? because WP, > t¢- Finally, we note that

1 " n_—ix- _ — g
(4.11) G [ dterremi= g = ofnre)

uniformly for z € R? because s” = o(n"#¢). The desired result is obtained by
combining (4.8), (4.9), (4.10) and (4.11). O

As an application to Theorem 1.6, we are now in a position to prove £°°(Z%)
estimates for ¢(™) and thus give a partial answer to Question (i). We first treat a
basic lemma whose proof makes use of the famous theorem of R. Dedekind (gener-
alized by E. Artin) concerning the linear independence of characters. Interestingly
enough, the statement of the lemma below mirrors a result of Dedekind appearing
in the Vorlesungen [5] where the characters e~%¢ are replaced by field isomor-
phisms (see p. 6 of [3]).

Lemma 4.5. For any distinct &1,&,...,&a € TY, there exists x1,22,... 14 € Z%
such that _ _ _
efwcl-fl efwcl-fg . e*lwl'EA
e*iCEQ-El e*iCEQ-EQ .. e*iCEQ-EA
V fr—
e~ was  p—iwals .. p—iwada

1s invertible.

Proof. The statement is obviously true when A = 1 and so we use induction on A.
Let &1,&2,...,6a41 € T? be distinct and take 1, 29,...,24 € Z% as guaranteed
by the inductive hypotheses. For any (1, Ca, ..., 4 € T?, we define

677;171'(1 677;171'(2 e efiajl'CA

677;172'(1 677;172'(2 e efiIZ'CA
F(Cl»c% cee ,CA) = det

e—a Gl pmiraCe .. p=izaCa

In this notation, our inductive hypothesis is the condition F'(&1,&1,...,8a) # 0.
Let G: Z% — C be defined by

677;171'51 677;171'52 e efiajl'gA eiixl'EA‘Fl

677;172'51 677;172'52 e efiajz'gA eiixl'EA‘Fl
G(z) = det )

e—wall  pmiwale .. pmiwafa piracfata

ef’iajfl ef’iajfz .. 6*7;93'514 e*i:v-EA+1

for x € Z%. Our job is to conclude that G(z441) # 0 for some x4.; € Z%. We
assume to reach a contradiction that this is not the case, that is, for all z € Z<,
G(x) = 0. Upon expanding by cofactors, we have

A+1

G(x) = Z(*l)A+1+kF(f1,§2,. .. ,5@,. .. ,§A+1)67ix'5k =0

k=1



CONVOLUTION POWERS OF COMPLEX FUNCTIONS ON Z¢ 1071

for all z € Z%; here {f;; means that we have omitted & from the list &1,&s,...,8a41-
Given that &1,&,... €441 are all distinct, the characters x — e~ for k =
1,2,..., A+ 1 are distinct and so by Dedekind’s independence theorem it follows
that F(&1,8, ..., &, ...,&ar1) =0forallk =1,2,..., A+1. This however contra-

dicts our inductive hypotheses for F(&1,&o,. .. ,fA,a;) =F(&,8,...,84) #£0.
O

Proof of Theorem 1.4. By virtue of Theorem 1.6 and (1.9), we have

(4.12) nts ¢ (z Ze w8k b(g)" Hp, (n™F% (z — nay) ) + o(1)
k=1

uniformly for x € Z¢ where Ej, € Exp(Py) for k = 1,2,... A. Upon recalling that
the attractors Hp, € S(RY), the upper estimate of (1.7) follows directly from (4.12)
and the triangle inequality. Showing the lower estimate of (1.7) is trickier, for we
must ensure that the sum in (4.12) does not collapse at all z € Z? — this is precisely
where Lemma 4.5 comes in.

For the distinct collection &1,&s,...,6a € TY, let @1, 22,...,24 € Z% be as
guaranteed by Lemma 4.5 and, by focusing on z’s near nay, we consider the A x A
systems

(4.13) f(n,z;) Zexp +na1]) - &) ¢(&)"Hp, (n™Fr (24| nay | —naw))
and
(4.14) gi(n) = ZQXP(*WJ' “&k)hi(n)

k=1

for j=1,2,..., A, where

e (’I’L) _ G*iLnaljkaAﬁ(fk)"Hpk (0) if o :.OZJC,
0 otherwise,

for k =1,2,..., A. By virtue of Lemma 8.3 and Propositions 2.2 and 2.3, it follows
that
0 if ap = o

n—»00 oo  otherwise.

lim |n=Fk (z; + |nay | —now)| = {

for all j,k =1,2,..., A. Again using the fact that each Hp, € S(R?), the above
limit ensures that, for all € > 0, there exists N, € N for which

(4.15) [f(n,25) = gj(n)] <

forall j =1,2,...A and n > N.. The system (4.14) can be rewritten in the form
g1 (n) e*iﬂil-fl e*ixl-@ . e*ixl'EA hl(n)
g2 (n) e~ 21 pir2le L. p—im2la R (n)

gA(n) eiix.A'él e*“”’A'gZ - efia;A'éA hA.(n)
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or equivalently
(4.16) g(n) =Vh(n)

for n € N, where V is that of Lemma 4.5. Taking C* to be equipped with the
maximum norm, the matrix V determines a linear operator Ly : C* — C4 which
is bounded below by virtue of the lemma. So, in view of (4.17), there is a constant
0 > 0 for which

. i > i > =:
(4.17) _max lgj(n)| 20 max  |h;(n)] = d|Hp, (0)] =:3C >0
for all n € Ny. Upon combining (4.12), (4.15) and (4.17), we obtain N € N, for
which

W0 > max g™ (@ + [nan])] = C

L4y

for all n > N. The theorem now follows by, if necessary, adjusting the constant C'
for n < N. O

5. Pointwise bounds for ¢

Throughout this section, we assume that ¢: 74 — C is finitely supported. In
this case, ¢(z) is a trigonometric polynomial on C¢. As usual, we assume that

SUP¢erd |é(§)| = SUDP¢cRrd |‘£(§ +0i)[ = 1.

5.1. Generalized exponential bounds

In this subsection, we prove Theorem 1.8 and present a variety of results concerning
discrete space and time differences of convolution powers. The estimate of the
following lemma, Lemma 5.1, is crucial to our arguments to follow; its analogue
when d = 1 can be found the proof of Theorem 3.1 of [4]. We note that in [4],
the analogue of Lemma 5.1 is used to deduce Gevrey-type estimates from which
the desired estimates follow in one dimension. Such arguments are troublesome
when the decay is anisotropic for d > 1. By contrast, our off-diagonal estimates
are found by applying Lemma 5.1 following a complex change-of-variables.

Lemma 5.1. Let ¢: Z% — C be finitely supported and such that SUPgea (€)= 1.

Suppose that &y € Q@) is of positive homogeneous type forqg with associated a € RY
and positive homogeneous polynomial P. Define fe, : C* — C by

(5.1) feo(2) = d(&0) TLem > Iz + &)

for z € C1. For any compact set K C R? containing an open neighborhood of 0
for which |p(€ + &) < 1 for all non-zero & € K, there exist e, M > 0 for which

[feo(2)| < exp(—€R(§) + MR(v))
for all z =& —iv such that € € K and v € R?.
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Proof. Write f = f¢, and denote by m, the canonical projection from C? onto R.
We first estimate f(z) on a neighborhood of 0 in C¢.

Our assumption that & € Q(¢) ensures that the expansion (1.5) is valid on an
open set U € C? such that 0 € 7,.(U) € K. By virtue of Proposition 8.13, we can
further restrict U to ensure that, for some ¢ > 0 and M > 0,

(5.2) |f(2)] < em¢ REOTME)

forz=¢—ivel.

We now estimate f(z) on a cylinder of K in C?. Since |¢(€)| < 1 for all non-
zero £ € K, the compactness K \ m.(U) ensures that, for some 0 < ¢ < €, the
continuous function h: C* — C, defined by

h(z) = e f(2) = exp(—e(R o m,)(2)) f(2)

for z = ¢ —iv € C%, is such that |h(¢)| < 1 for all € € K \ 7,.(U). Because h is
continuous, there exists 6 > 0 for which |h(z)] < 1 for all z = £ — v such that
e K\ 7m-(U) and |v| < 4. Consequently,

(5.3) |h(2)] < e™<R(O) < o=eREO+MER)

for all z = £ — v such that £ € K \ 7.(U) and |v| < 6. Upon possibly further
restricting § > 0, a combination of the estimates (5.2) and (5.3) ensures that

(5.4) |f(z)| < e REO+MEW)

for all z = ¢ —iv € C such that £ € K and |v| <.

Finally, we estimate f(z) = f(£ — iv) for unbounded v. Because b is a
trigonometric polynomial, f(z) has exponential growth on the order of |v| for
2z =¢ —iv € C% when € is restricted to K. Therefore,

(5.5) |f(2)] < e~ RO+IFC

for all z = ¢ —iv such that ¢ € K and v € R, Because |v|+C is dominated by R(v)
by virtue of Corollary 8.12, the lemma follows immediately from the estimates (5.4)
and (5.5). O

Lemma 5.2. Let ¢: Z* — C be finitely supported and such that supgcra |p(€)] = 1.
Assume additionally that Q(¢) = {&0} and & is of positive homogeneous type for ¢
with corresponding o € R and positive homogeneous polynomial P and let Ti be
as in Remark 4.2. Define gy : N x C? — C by gi(z) = 1 — fe,(2)! for 1 € Ny
and z € C? where fe, is given by (5.1). There exist positive constants C and M
for which

9:(2)] < IC(R(v) + R(€)) M7

for alll € N and z =€ —iv such thatfe']l‘g and v € R?,
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Proof. By making similar arguments to those in the preceding lemma’s proof, we
obtain positive constants C' and M for which |1 — fe,(2)| < C(R(€) + R(v))eME®)
for all z = & —iv such that £ € Tg and v € R?. The desired estimate now follows
from Lemma 5.1 (where K = Tg) by writing ¢; = (1 — fe,) 22;10 fgk0 and making
use of the triangle inequality. O

We are now in a position to prove Theorem 1.8.

Proof of Theorem 1.8. In view of the hypotheses, there exist & € R? and a pos-
itive homogeneous polynomial P such that each £ € §(¢) is of positive homo-
geneous type for d; with corresponding a¢ = o and Py = P. We write Q(¢) =
{&1, &2, ...,&q} in view of Proposition 4.1 and take Tg as in Remark 4.2. Because

Q(¢) is finite and lives on the interior of Tg, there exits a collection of mutually
disjoint and relatively compact sets {Kq}qQ:1 such that 'JI“j) = Ut?:qu and, for
each ¢ = 1,2,...,Q, K, contains an open neighborhood of {,. We now establish
two important uniform estimates. First, upon noting that |¢(& + &,)| < 1 for all
e Kyg—¢ for each ¢ = 1,2,...,Q, by virtue of Lemma 5.1 there are positive
constants M and e such that, for each ¢ = 1,2,...,0Q,

(5.6) |fe, (€ — iv)| < exp(—€R(§) — MR(v))

for all ¢ € K, — &, and v € R%. Also, by a similar argument to those given in the
proof of Lemma 4.3, we observe that

nHp / e—enk(€) d¢ = ntr / e—ER(nfEE) d¢
Kq_fq K(I_Eq

/ e~ gg < / e O de = 0 < 0
nF(Kq—£&q) R4

foralln e Ny and ¢ =1,2,...,Q. R
Now, let v € R? be arbitrary but fixed. Because ¢ is a trigonometric polynomial
(and so periodic on C%), it follows that

0" (z) = (2i)d /T e T —iv)" de

4
Q
1 , o
(2m)d Zl /K e~ ETI G — i)™ de
q= q

for all x € Z? and n € Ny. Our aim is to uniformly estimate the integrals over K,,.
To this end, for each ¢ = 1,2,---,Q, we observe that

e i ag
K,

q

(5.7)

(5.8)

_ / e Cate=) g ynemineCoe=iv) £ (¢ jy)" de
Kq—&q

—emr [ (0" (¢~ o
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for allz € Z4 and n € N, where y,,(7) := (z—na)/n. In view of the estimates (5.6)
and (5.7), we have

‘ /K o~z (E—iv) (ﬁ(f — i) dg| < e~ Yn (@) /K 5 | fe, (& —iv)|™ dE
(5.9) e o

< n% exp(—n(yn(z) - v — MR(v)))

for all z € Z% n € Ny and ¢ = 1,2,...,Q where the constants M and C are
independent of v. Upon setting C' = (27)¢/Q and combining (5.8) and (5.9), we
obtain the estimate

!

O exp(nlyn(x) v~ MAW))

o™ (2)] <

which holds uniformly for = € Z¢ and n € N, and v € R%. Consequently,

!

67 (@) < inf = exp(=n(yn(a) - v~ ME()))

! /

< S exp (= nswplyn(e) v~ MR@) = o exp (~n(MR)* (4 (+))

= e

for all z € Z¢ and n € N;. The desired result follows upon noting that (M R)# <
R# in view of Corollary 8.17. O

Remark 5.3. The essential hypothesis of Theorem 1.8 (essential for a global
exponential bound) is that each £ € Q(¢) has the same drift «; this can be seen
by looking at the example of Subsection 7.2 wherein the convolution powers ¢(™
exhibit two “drift packets” which drift away from one another. The hypothesis
that all of the corresponding positive homogeneous polynomials are the same can
be weakened to include, at least, the condition that B¢ = ReP: =< R for all
¢ € Q(¢), where R is some fixed real valued positive homogeneous polynomial.
In any case, the theorem’s hypotheses are seen to be natural when ¢ has some
form of “periodicity” as can be seen in the example of Subsection 7.3. Also,
the hypotheses are satisfied for all finitely supported and genuinely d-dimensional
probability distributions on Z?, see Subsection 7.6.

For the remainder of this subsection, we restrict our attention further to finitely
supported functions ¢: Z¢ — C which satisfy supy |<£| = 1 and where this supre-
mum is attained at only one point in T, i.e., Q(¢) = {£}. In this setting, we
obtain global estimates for discrete space and time derivatives of convolution pow-
ers. Our first result concerns only discrete spatial derivatives of ¢(™ and is a useful
complement to Theorem 1.8. For related results, see Theorem 3.1 of [4] and The-
orem 8.2 of [27], the latter being due to O.B. Widlund [30], [31]. For w € Z%¢ and
W Z% — C, define Dyv: Z¢ — C by

Dytp(z) = ¢ (2 +w) — ()

for « € 7.
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Theorem 5.4. Let ¢p: Z% —C be finitely supported and such that SUPgea |p(€)|=1.
Additionally assume that Q(¢) = {&o} and that & is of positive homogeneous type
for d; with corresponding o = og, € R? and positive homogeneous polynomial
P = Pg,. Also let ug be defined by (1.6) (or equivalently (1.4)), let R¥ be the
Legendre-Fenchel transform of R = ReP and take E € Exp(P). There exists
M > 0 such that, for any B > 0 and m € N, there exists Cy,, > 0 such that, for
any Wi, Wa, ..., Wy, € VAS

| Doy Dy <+~ D, (6(€0) "™ 506 (2) |

(5.10) < %(ﬁMEw]D eXp(—nMR#(m*na>>
=

n

for all x € Z% and n € Ny such that [n=F w;| < B for j =1,2,...,m.

We remark that all constants in the statement of the theorem are indepen-
dent of E € Exp(P) in view of Proposition 2.3. The appearance of the prefactor
(5(50)_”6“”'50 in the left hand side of the estimate is used to remove the highly
oscillatory behavior which appears, for instance, in the example outlined in the
introduction. That which remains of ¢(") is well-behaved when this oscillatory
prefactor is removed and this is loosely what the theorem asserts. Let us further
note that, in contrast to Theorem 1.8, Theorem 5.4 does not apply to the example
illustrated in Subsection 7.3 (where Q(¢) consists of two points) and, in fact, the
latter theorem’s conclusion does not hold for this ¢. See Subsection 7.3 for further
discussion.

Lemma 5.5. Given A > 0, € >0 and m € N, there exists C > 0 such that the
function

Q’W1,ulz,...7wm (Z) = H(eiwj.z o 1)
i=1
satisfies
m
o Qurin (6 =1 € (H =" wi')en(ER(§)+R(v))
i=1
forall z = €& —iv € C4, n € Ny and wy,wa, ..., wy € Z4 for which [n=F w;| < A

foralli=1,2,...,m.

Proof. We observe that, for M = m(B + 1),
m

m
|Qur s ()] < [ s - 2le™2) < T 107 wy|[n® 2 eI
j=1 j=1

(5.12)

m

< (TL1n ™ wyl) X"
j=1

for all z € C% n € Ny and wy,ws,...,w, € Z* for which |n‘E*wj| < B for all
i=1,2,....m.
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Given € > 0, an appeal to Proposition 8.11 ensures that, for some M’ > 0,
(5.13) MnFz| < M’ + eR(nF&) + R(nFv) = M’ + n(eR(€) + R(v))

for all z = ¢ —iv € C? and n € N,. The desired estimate is obtained by combin-
ing (5.12) and (5.13). O

Proof of Theorem 5.4. By replacing ¢(x) by ¢(&)~ el €0 ¢(x), we assume without
loss of generality that & = 0 and ¢(&y) = 1. For any x, w1, ws, ..., w, € Z¢ and
v € R?, we invoke the periodicity of ¢ to see that

Dy, Do, "'Dwm¢(”) (z)

1 ) . ~
=Dy, Dy, -+ Dy —— —ix-(§—iv) N\
(514) 1 2 m (27_(_)d /’H‘d € (¢(§ ZV)) d§
efnyn(z)-u —inyn(x)- - AN )
= /T L Qu o (€ — ) (€ — )" d,

where y,(z) = (z — na)/n and f(2) = fe,(2) = e~i*Zg(z) is that of Lemma 5.1.
An appeal to the lemma shows that, for some € > 0 and M > 1,

(5.15) |F (€ —iv)| < e 2REOFTA-1R()

for all £ € T? and v € R%; note that these constants are independent of m. By
combining the estimates (5.7), (5.11), (5.14) and (5.15) we obtain, for v € R% and
W1, W2, ..., Wy, € Zd,

| Dy Do, "'Dwm¢(n) (z)] < e myn(@)v /d |Qw1,w27m,wm (& —av)||f(§ —iv)|" dE
T
m

< Cr/n(H |n—E*wj|) exp(—nyh(m) v+ nMR(V))/ e~ nel(€) d¢

i=1 .

cay,
<

(ﬁ [ w;1) exp(—n(yn(a) - v ~ MR(¥))

nte

for all z € Z? and n € N for which |n’E*wj| < Bforall j=1,2,...,m. As all
constants are independent of v, the desired estimate is obtained by repeating the
same line of reasoning of the proof of Theorem 1.8. O

For a collection v = {v1,...,v4} € Z% and a multi-index 3, consider the discrete
spatial operator

(5-16) DE = (D'Ul)ﬁl (sz)ﬁ2 T (Dvd)ﬁd-

Our next result, a corollary to Theorem 5.4, gives estimates for DZ¢(™) in the
case that n=F" acts diagonally on v; for j = 1,2,...,d and, in this case, the term
involving w’s in (5.10) simplifies considerably. We first give a definition.
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Definition 5.6. Let P: R? — C be a positive homogeneous polynomial and let
A € Gly(R) and m = (mq,ma,...,my) € Ni be as given by Proposition 2.2. An
ordered collection v = {v1,va,...,v4} C Z% is said to be P-fitted if A*v; € span(e;)
for 7 =1,2,...,d. In this case we say that m is the weight of v.

Let us make a few remarks about the above definition. First, for a P-fitted
collection v = {vy,va, ..., vq} of weight m, by virtue of Proposition 2.2, t=# v; =
t=1/@miy; for all t > 0 and j = 1,2,...d, where E = ADA™! € Exp(P). Our
definition does not require the v;-s to be non-zero and, in fact, it is possible that
the only P-fitted collection to a given positive homogeneous polynomial P is the
zero collection. We note however that every positive homogeneous polynomial P
seen in this article admits a P-fitted collection v which is also a basis of R? and,
in fact, whenever P is semi-elliptic, every P-fitted collection is of the form v =
{zter,x%eq, ..., 0%4} where 2!, 22,... 2% € Z

Corollary 5.7. Let ¢: Z% — C be finitely supported and such that SUpgea |p(€)|=1.
Additionally assume that Q(¢) = {&0} and that & is of positive homogeneous type
for d; with corresponding o = og, € R? and positive homogeneous polynomial
P = Pg,. Define 14 by (1.6) (or equivalently (1.4)), let m (and A) be as in Propo-
sition 2.2, and denote by R¥ the Legendre—Fenchel transform of R = Re P. There
exists M > 0 such that, for any B > 0 and multi-index 3, there is a positive
constant Cg such that, for any P-fitted collection v = {v1,va,...,vq} of weight m,

| DS ($(&0) e 0 g™ (2))|

(5.17) Cs T2, |v;]%
Bllj=1 v _ 4 (% —na
< i flFam] exp ( nMR ( " ))

for all x € Z% and n € Ny such that |v;| < Bn'/(?™3) for j =1,2,....d.
Proof. As we previously remarked,
07 05] = lag| n ™7 (A) "lej| = lay| [(A%) "I Pey| = n7 /M) |y

for j =1,2,...,d and n € Ny, where D = diag ((2m1)~", (2m2)~",..., (2mq) ')
and E = ADA™'. Considering the operator D?, the term involving w’s appearing
in the right hand side of (5.10) is, in our case,

d d d
(5.18) T (n 2 wi)™ = T luy|® nP/ i) = =152l TT oy
Jj=1 j=1 j=1

for all n € N1. The desired estimate now follows by inserting (5.18) into (5.10). O

Our next theorem concerns discrete time estimates for convolution powers.
Given ¢: Z¢ — C which satisfies the hypotheses of Theorem 5.4 with corresponding
a € R% For any | € N, the theorem provides pointwise estimates for ¢ —
#*+) and analogous higher-order differences. Because, in general, the peak of
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the convolution powers drifts according to «, to compare ¢ and ¢+ one
needs to account for this drift by re-centering ¢(*™) but, in doing this, a possible
complication arises: if lov € Z¢, one cannot re-center ¢‘t™) in a way that keeps it
on the lattice. For this reason, the theorem requires lav € Z¢ and in this case

(0—ta * 81) x 0™ (2) = ¢ (2 + la),

which can then be compared to ¢(™ (). Assuming that ¢ satisfies the hypotheses
of Theorem 5.4 (with & € T¢ and a € Z%), for any | € N such that la € Z¢, we
define the discrete time difference operator 9; = 9;(¢, &, ) by

(519) A = (5= $&0) ™ (9ota ¥ 0)) # ¥ =1 = 3(&0) ™ (010 x 0V) 5 ¥

for ¢ € £1(2).

Theorem 5.8. Let ¢: Z% —C be finitely supported and such that SUPgea |p(€)|=1.
Additionally assume that Q(¢) = {&o} and that & is of positive homogeneous
type for ¢3 with corresponding o = g, € R? and positive homogeneous polyno-
mial P = Pe,. Define gy by (1.6) (or equivalently (1.4)), and denote by R¥
the Legendre—Fenchel transform of R = Re P. There are positive constants C
and M such that, for any li,l2, ..., ) € Ny such that lso € 74 forq=1,2,...,k
(assume k > 1),

CEENTTE_, 1
(n) Z o=l e
(520) |8llal2 8l1€¢ ($)| S nu(i,—i-k
B MR x — no
xexp( (n+h+la+---+x)MR (n+l1+l2+-~~+lk))

for all x € Z¢ and n € N, .

Proof. As in the proofs of Theorems 1.8 and 5.4, we fix v € R? and invoke the
periodicity of ¢ to see that

1,0, - ~3zk¢(") (x)

N Lo—a-(S0+2) g N o iz-(Eat2)
(2m)d /gar(b e — (&(%0)~ P& + 2))" )é(&o + 2)"e ds
~ n n,—i(z—na) (§o+2) d
(2m)d /E€T¢ ql_[lglq(z)d)(ﬁo) f(2)"e ¢

for all z € Z¢ and n € N, where z = £ — iv; here, f = f¢, is defined by (5.1) and
91,91y - - - g1, are those of Lemma 5.2. Put s, =11 +1la+-- -+, take ¢, M and C
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as guaranteed by Lemmas 5.1 and 5.2 and set Cy = (2C/¢). Observe that

|@1@2”.@k¢mnxﬂ
kL TTF
< Crk! I—£Q=1 lq e~ (w—na)v
n

></§ : (%(R@)m(é)))kewmw exp(—neR(&) + nMR(v)) d¢

. k!
€Ty

k
_ CiRTT 1y

—(z—na)-v
(&
nk

x / exp(ne(R(€) + R(v))/2) exp((n + sk) MR(v) — neR(€)) de
£€Td

for € Z¢ and n € N;. Upon setting y, s, (z) = (x — na)/(n + s;) and replacing
M by M + ¢/2, we can write

|al18l2 e alk ¢(n) ($)}
k
- C{“k!r{cqzl ly

exp(—(n + 52) (Yo, (2) - v — MR()) / exp(—neR(€)/2) d

d
¢eTd

for € Z% and n € N,. Now, as we observed in the proof of Theorem 1.8, the
integral over ¢ is bounded above by Con™#¢ < Ckn=Hé for some constant Cy > 1
and so we obtain the estimate

(C1Co)* k! T, L

nﬂ(p"rk

|allal2 e alk ¢(n) (1’)| < exp(f(n + Sk)(yn,sk (m) V= MR(V)))

for all z € Z? and n € N. Once again, the desired result is obtained by infimizing
over v € R%, O

Remark 5.9. If one allows the constant M to depend on Iy, 12, ..., [, then (5.20)
can be written

CHENTE_, 1 T —na
q=1"9q
|@1@2”.3M¢00@ﬂ|§'_7;EIF——eXp(——nﬂﬁhbWJkR#( ” ))

forallz € Z% and n € N, . Indeed, set sy = {1 + 12 + - -- + [ and observe that

7(n+8k)R#<mfna> = —n sup {(mfna> V- nJrSkR(l/)}

n+ Sk vER n n

< —nsup{(

= —n((1+sp)R)* (

r — no

) . (1+kS)R(V)}

r — no

) < —nMS,CR#Ccina),

n

where we have used Corollary 8.17 to obtain My, = M, 1,....1,-
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In view the remark above, the following corollary is a special case of Theo-
rem 5.8 when a = 0, ¢(&) = 1 and we only consider one discrete time derivative;
it applies to the example in the introduction and the examples of Subsections 7.1
and 7.5.

Corollary 5.10. Let ¢: Z% — C be finitely supported and such that sup |¢A>(§)| =1.
Suppose that Qo) = {&o} is of positive homogeneous type for ¢ with corresponding
a € RY and positive homogeneous polynomial P. Also let e be defined by (1.6)
(or equivalently (1.4)) and let R* be the Legendre—Fenchel transform of R = Re P.
Additionally assume that « = 0 and dg(fo) = 1. There exists a positive constant C
and, to each | € N, a positive constant M; such that

Cl
|¢(n) (z) — ¢(l+n) (x)} < Py exp(—anR#(x/n))
for all x € Z% and n € N,..

Our final theorem of this subsection concerns both time and space differences
for convolution powers.

Theorem 5.11. Let ¢: Z¢ —C be finitely supported and such that SUPgerd |p(€)|
= 1. Additionally assume that Q(¢) = {&o} and that &y is of positive homogeneous
type for ¢3 with corresponding o = o, € R? and positive homogeneous polynomial
P = P¢,. Define g by (1.6) (or equivalently (1.4)), let m (and A) be as guaranteed
by Proposition 2.2, and denote by R¥ the Legendre—Fenchel transform of R = Re P.
There are positive constants M and Cqy and, to each B > 0 and multi-index 3, a
positive constant Cg such that, for any P-fitted collection v = {vy,va,...,vq} of
weight m and ly,ls, ... Iy € Ny such that lya € Z2 for ¢ =1,2,...k,

Cﬁcé“k'Hq 1lq H] 1|Uj|ﬁj
nﬂ¢+|ﬁ 2m|+k

(01,01, -+ 01, D} (d(60) e g ()] <

xexp(—(n-l—ll+lz+"'+lk)MR#(n+lligZa.”+lk))

for all x € Z¢ and n € Ny such that |vy,| < Bn'/@™) for k =1,2,...,d.

Proof. By replacing ¢(z) by ¢(&) e ¢(x) we can assume without loss of gen-
erality that §o = 0 and ¢(§) = 1. Assuming the notation of Lemma 5.1 (with
f = fe,) and Lemma 5.2, we fix v € R? and observe that

1,0, - Dﬁ¢ n) 27T / H gl )ne*i(n+8k)ysk,n(m)~z d¢

for all z € Z% and n € Ny, where 2 = & —iv, s = l1 +la+ - + I, Ys, n(x) =
(x—na)/(n+sk) and Q(z) = H;l_l(e“’f'z —1)% is the subject of Lemma 5.5. The
desired estimate is now established by virtually repeating the arguments in the
proof of Theorems 5.4 and 5.8 while making use of Lemmas 5.1, 5.2 and 5.5 and
noting, as was done in the proof of Corollary 5.7, that [n=F v;| = n=1/(2mi)|y,|
forj=1,2,....d. O
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5.2. Sub-exponential bounds

In this subsection, we again consider a finitely supported function ¢: Z¢ — C such
that supgcra |6(€)| = 1 and each € € Q(¢) is of positive homogeneous type for ¢.
In contrast to the previous subsection, we do not require any relationship between
the drifts a¢ and positive homogeneous polynomials P¢ for those & € Q(¢); a
glimpse into Subsections 7.2 and 7.4 shows this situation to be a natural one. As
was noted in [4], the optimization procedure which yielded the exponential-type
estimates of the previous subsection is no longer of use. Here we have the following
result concerning sub-exponential estimates.

Theorem 5.12. Let ¢:Z¢ — C be finitely supported and such that SUPgeTa |p(€)]|

= 1. Suppose additionally each & € Q) is of positive homogeneous type for ¢ and
hence Q@) = {&1,8&a,...,E0}. Let ag € R and positive homogeneous polynomial
P, be those associated to &, for ¢ =1,2,...,Q. Moreover, for each q=1,2,...,Q,
set pg = pp, and let B, € Exp(Py). Then, for any N > 0, there is a positive
constant C'n such that

1 . _
(14 InPi (@ — nay) )N

Q
(521) 6 @) < Cx Y
g=1

n

for all x € Z% and n € N,. The constant Cy is independent of E, € Exp(P,) for
q q
q=1,2,...Q.

Proof. In view of Proposition 4.1 and Remark 4.2, there exist relatively open sub-
sets B, Ba, ..., Bg of ']I‘jb satisfying the following properties:

1. For each ¢ =1,2,...Q, B, contains &,.
2. B contains the boundary of Tg (as a subset of RY).

3. The closed sets {Bi, Ba,...,Bg} are mutually disjoint.
For g =1,2,...Q), define

o=\ ()

r#q

and observe that each Oy is an open neighborhood of &, (in the relative topology).
Let {uq}é@:1 be a smooth partition of unity subordinate to {(’)q}(?zl. By construc-
tion, u; = 1 on the boundary of ’]I‘g and, for each ¢ = 1,2,...Q, u, is compactly
supported in O,. We note that, for each ¢ # 1, Supp(u,) is also a compact subset
of R? because the boundary of Ti is contained in B; (the relative topology of Tg
is only seen in Supp(uy)). Set

ming—1 2, ..g dist(Supp(ug), 00,)

(5:
2V/d

> 0.
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Observe that, for any x € Z¢ and n € N,

Q
(n) 1 —ix-€ ]
@) = G / e as=3

em fq

/ €ITED(E) g (€) d

I
M@

(5.22) /u EE L (g (€) dE

q,m

“” Eq

;
Z 1, (),

“Ei(x — nay), Uyn = nPa(O0,) — &, defined
Ugn(§) = uq(niqu)v

where we have set y, ,(2) =n

and . A
Fam(€) = (B(Eg) Te™ @ G (nPug 4 g,))"
for £ € Uy, and put

IQ,n(m) _/Z/{ el Efq, (g)uq,n(g) dg.

q,n

Of course, for each n and ¢, f,, extends to an entire function on C%; we make
no distinction between this function and f,, ,. We will soon obtain the desired
estimates by integrating 7, , by parts. For this purpose, it is useful to esti-
mate the derivatives of f;, and this is done in the lemma below. The idea
behind the lemma’s proof is to look at f,, on small neighborhoods in C? of
¢ € Supp(ug,) € RY. On such complex neighborhoods, Lemma 5.1 gives tractable
estimates for f,,, to which Cauchy’s d-dimensional integral formula can be applied
to estimate D f, ,,(¢).

Lemma 5.13. For each q = 1,2,...,Q, there exist positive constants Cy and €,
such that, for each multi-index (3,

1D fn(O) < Oy i expl—ey Ry(0))
for alln € N1 and ¢ € Supp(ug.n)-

Proof of Lemma 5.13. Our choice of the open cover {O,} guarantees that lp(n +
&) < 1 for all non-zero 7 in the compact set O, — &,. An appeal to Lemma 5.1
gives e M > 0 such that

| fam(2)] < exp (= €,Ry(n~Pen) + MR, (n~ Fov))"

(5.23) < exp(—¢, Ra(n) + M. Ry(v)

for all n € N} and 2z = n — iv € C¢ for which 1 € Uy ,.
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We claim that there are constants ¢,, M, > 0 for which
(5.24) = €q Rq(n) + My Rq(v) < —€q Ry () + M,

for all z = n —iv € C? and ¢ € R? such that |z; — (| = 6 for i = 1,2,...d.
Indeed, it is clear that R,(v) is bounded for all possible values of v. An appeal to
Proposition 8.10 ensures that, there are Mé, €q > 0 for which

—e, Ry(n) = =€, Ry(C+ (1 —¢)) < —€g Ry(C) + M,

for all n,¢ € R? provided |n; — ¢;| < |z; — (| = 6 for all i = 1,2,...d. This proves
the claim.

By combining (5.23) and (5.24), we deduce that, for all n € Ny, ¢ € R¢, and
z=mn—iv € C? for which n € Uy n,

(5.25) | fan(2)] < exp(—eq Rq(C) + M,y)
whenever |z; — ;| = 0 for all ¢ = 1,2,...d. Our aim is to combine Cauchy’s
d-dimensional integral formula,
3 fon(2)dz1dzs ... dzq
(526) D fq n 27” /Cl /C2 /Cd (61+1 Ba+1,....,84+1) "

with (5.25) to obtain our desired bound for ¢ € Supp(u,); here, C; = {z :
|zi — (| =6} for i =1,2,...,d. To do this, we must verify that z = n — iv is such
that n € Uy n whenever |zl — (| =6 fori=1,2,...,d. This is easy to see, for if
¢ € Supp(ugq,n) and z is such that |z, — ;| =d for i =1,2,....d,

|z — ¢| = Vo < dist(Supp(uy), 00,) < dist(Supp(n.q), Wp.q)

for all n € N (the distance only increases with n because {tF¢} is contracting).
Consequently, a combination of (5.25) and (5.26) shows that, for any multi-index S,

5 p!
D9 0(O)] < o expl e, Ry() + M)

for all n € Ny and ¢ € Supp(uq,,) and thus the desired result holds. /

We now finish the proof of Theorem 5.12. We assert that, for each ¢ =
1,2,...,Q and multi-index 3, there exists Cg > 0 such that

(5.27) |yq,n(x)ﬂzq,n(m)| <Cp

for all z € Z? and n € N,. By inspecting (5.22), we see that the desired esti-
mate, (5.21), follows directly from (5.27) and so we prove (5.27).
We have, for any multi-index f3,

(g ()T, / DE (=€) £y (E)utgon (€) de

= (-1)17 /u @ EDP(fo 0 (E)ug.n(€)) dE

q,n
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for all n € Ny and = € Z¢ where we have integrated by parts and made explicit
use of our partition of unity {us} to ensure that all boundary terms vanished.
To see the absence of boundary contributions, note that when ¢ # 1, u4, and
its derivatives are identically zero on a neighborhood of 0U,,. When ¢ = 1,
Supp(u1.,)NOU; ,, = O(nFT?) and because uy ,, = 1 on a neighborhood of 5‘(nE']I‘g),
the periodicity of f,, and its derivatives (which are directly inherited form the
periodicity of dg(f)) ensure that the integral over the ol ,, is zero. Consequently,

|yq,n(m))ﬁIq,n(m)| < /S . |Dﬂ(fq,n(£)uq,n(§))| d¢

for, ¢ = 1,2,...Q, n € Ny and = € Z% Once it is observed that derivatives
of ug, are well-behaved as n increases, the estimate (5.27) follows immediately
from Lemma 5.13. The fact that C is independent of E, € Exp(F,) for ¢ =
1,2,...,Q follows by a direct application of Proposition 2.3. O

6. Stability theory

We now turn to the stability of convolution operators. In this brief section, we
show that Theorem 1.9 is a consequence of of estimates of the preceding section.
Let ¢: Z% — C be finitely supported and define the operator A4 on LP = LP(RY)
for 1 <p<oo by

(6.1) (Apf)(@) =D oy

yEZ?

Such operators arise in the theory of finite difference schemes for partial differential
equations in which they produce extremely accurate numerical approximations to
solutions for initial value problems, e.g., (1.10). We encourage the reader to see [19]
and [29] for readable introductions to this theory; Thomée’s survey [27] is also an
excellent reference. In this framework, the operator Ay is known as an explicit
constant-coefficient difference operator. General explicit difference operators are
produced by allowing ¢ to depend on a real parameter h > 0 which is usually the
grid size of an associated spatial discretization for the initial value problem.

The operator A, is said to be stable in L? if the collection of successive powers
of Ay is uniformly bounded on LP, i.e., there is a positive constant C' for which

[Agf e < CfllL,

for all f € LP and n € N; this property has profound consequences for differ-
ence schemes of partial differential equations as we discussed in the introduction.
For example, the Lax equivalence theorem states that a consistent approximate
difference scheme for (1.10) is stable in L? if and only if the difference scheme
converges to the true solution (1.11) [27], [29]. In the L? setting, checking stability
is straightforward. Using the Fourier transform, one finds that A, is stable in L? if
and only if sup, |(€)] < 1; this is a special case of the von Neumann condition [26].
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When p # 2, the question of stability for Ay is more subtle. It follows directly
from the definition (6.1) that A} = A,m) for all n € Ny and so by Minkowski’s
inequality we see that

(6.2) 1AG Fllze = 1 Agem 2o < 6™ N1111F ]|

for all f € LP and n € N4. This allows us to formulate a sufficient condition for
stability in LP for 1 < p < oo in terms of the convolution powers of ¢ (which is
consistent with Question (iv) of Section 1) as follows: A, is stable in LP whenever
there is a positive constant C' for which

(6.3) l6™ = 6™ () <C

T €L

for all n € N4. The condition (6.3) is also necessary when p = oo and so it is
called the condition of max-norm stability. Originally investigated by John [13]
and Strang [25], this theory for difference schemes has been further developed by
many authors, see for example [27], [26], [7], and [23]. In one dimension (d = 1), the
question of stability in the max-norm was completely sorted out by Thomée [26].
Thomée showed that a sufficient condition of Strang was also necessary; this is
summarized in the following theorem.

Theorem 6.1 (Thomée 1965). The operator Ay is stable in L>°(R) if and only if
one of the following conditions is satisfied:

(a) ¢(€) = ce™™ for some x € Z and || = 1.

(b) |¢A>(§)| < 1 except for at most a finite number of points &1,&a, ..., Eq in T where

|¢A>(§)| =1. Forq=1,2,...Q, there are constants aq,q, Mg, where ag € R,
Revy > 0 and where my € N, such that

(6.4) G(E+ &) = D(&y) expliag€ — v 2™ + o(E2™))
as & — 0.

Thomée’s characterization makes use of the fact that the level sets of non-
constant holomorphic functions on C have no accumulation points —a fact that
breaks down in all other dimensions, e.g., f(z) = f(z1,22) = cos(z1 — z2). When
¢: Z — C is finitely supported and such that sup, |¢A>(§)| = 1, the reader should
note that the condition (b) of Theorem 6.1 is equivalent to the hypotheses of
Theorem 5.12 for, in one dimension, every positive homogeneous polynomial is
necessarily of the form P(¢) = v¢2™ where Rey > 0 and m € N, In Z¢, we have
the following result.

Corollary 6.2. Let ¢: Z¢ — C satisfy the hypotheses of Theorem 5.12 and de-
fine Ay by (6.1). Then Ay is stable in L™ and hence stable in LP(R?) for all
1<p< oo

Proof. An application of Theorem 5.12 with N > d + 1 yields the uniform esti-
mate (6.3) after summing over = € Z%. O
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Proof of Theorem 1.9. This is simply Corollary 6.2 translated into the language of
Section 1. O

In [26], Thomée also showed that when sup || = 1 but the leading non-linear
term in the expansion (6.4) was purely imaginary, the corresponding difference
scheme was unstable. As was discussed in [4] and [17], such expansions give rise
to local limit theorems in which the corresponding attractors are bounded but
not in L? and hence not in S(R); for instance, the Airy function. In the spirit
of [26], M. V. Fedoryuk explored stability and instability in higher dimensions [7].
Fedoryuk’s affirmative result assumes that, for £y € Q(¢), the leading quadratic
polynomial in the expansion for I'¢, has positive definite real part. Because any
quadratic polynomial P with positive definite real part is positive homogeneous
(271 € Exp(P)), Corollary 6.2 (equivalently, Theorem 1.9) extends the affirmative
result of [7].

7. Examples

7.1. A well-behaved real valued function on Z2

This example illustrates the case in which d; is maximized only at 0 which is of

positive homogeneous type for é with corresponding P. In this case, the local

limit theorem for ¢ yields one attractor with no oscillatory prefactor. The positive

homogeneous polynomial P is a semi-elliptic polynomial of the form (2.1) and the

corresponding attractor exhibits small oscillations and decays anisotropically.
Consider ¢: Z? — R defined by ¢ = (¢1 + ¢2)/512, where

76 (z,y)=(1,0),
326  (x,y) = (0,0), 52 (x,y) = (—1,0),
20 (z,y) = (£2,0), F4  (z,y) = (£3,0),
1 (z,y) = (£4,0), F6 (z,y) = (£1,1),
PED N6 g =z, PO T 56 0y = (21,1,
—16  (z,y) = (0,+£2), +2  (x,y) = (£3,1),
0 otherwise, +2  (x,y) = (£3,-1),
0 otherwise.

The graphs of ¢(™ on the domain [—50,50] x [—50,50] for n = 100, n = 1000 and
n = 10000 are shown in Figure 3; in particular, the figure illustrates the decay
in |0 . Figure 4 depicts ¢(™ (z,y) when n = 10000 from various angles and
clearly illustrates its non-Gaussian anisotropic nature.

Given that ¢ is supported on 21 points, it is clear that ¢ € S;. An easy
computation shows that sup|¢(€)] = 1 and this supremum is only attained at
&= (n,¢) = (0,0), where ¢(0,0) = 1, and hence Q(¢) = {(0,0)}. Expanding the
logarithm of ¢(n, ¢)/#(0,0) about (0,0) we find that, as (n,¢) — (0,0),

1
L0 =-5; (n° +2¢* = 2in®C?) + O(In"| + || + In*C* + [n° P + [n°¢P)).
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0.06 0.06

0.04 0.04

0.02 0.02

-0.02+ -0.02+
-50 -50
50 50 50 50

(a) n = 100. (b) n = 1000.

0.06
0.04

0.02

-0.02+
-50

50 50

(c) n = 10000.

FI1GURE 3: The graphs of ¢(™ for n = 100, n = 1000 and n = 10000.

It is easy to see that the polynomial which leads the expansion,

P1,Q) = o (1 +2¢ — 2ir°C?)

has positive definite real part,

R(n,{) =Re P(n,¢) = 6%1 (n® +2¢%).
Moreover

P(P(1,0)) = P00, 1/9) = tP(1.)  with  E= (166 134) € Exp(P)

for all t > 0 and (1,¢) € R? and therefore P is a positive homogeneous polynomial
(it is also semi-elliptic). Further, we can rewrite the error to see that

where Y(n,¢) = o(R(n,¢)) as (n,{) — (0,0) and so we conclude that (0,0) is of
positive homogeneous type for ¢ with corresponding o = (0,0) € R? and positive
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5

10

— 0 o 0
50 50 -50

x 10

-50
0 50 0

(a) ™ for n = 10000.

(b) Hp for n = 10000.

FIcURE 5: The graphs of ¢(® and Hp for n = 10000.

homogeneous polynomial P. Clearly, py = pp = tr E = 5/12 and so Theorem 1.4
gives positive constants C' and C’ for which

Cln—5/12 < ||¢(n)||oo < C’n_5/12
for all n € N;. An appeal to Theorem 1.6 shows that

(7.1) ¢ (2,y) = Hp(w.y) + o(n~>/1?)
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uniformly for (z,y) € Z* where,

1 )
HE(w9) = o /R e @) P e, d, =

1

nb/12 Hp(n_l/ﬁm, n_1/4y)

for n € Ny and (z,y) € R?. The local limit (7.1) is illustrated in Figure 5 when
n = 10000. We also make an appeal to Theorem 1.8 to deduce pointwise estimates
for ¢(™ (in fact, all results of Section 5 are valid for this ¢). Upon noting that

1 ) y4/3

)
R*(x,y) = —= 2%/° + (172—5

~36/5

for (x,y) € R?, the theorem gives positive constants C' and M for which

600 < o e (—nr(2)7+ (1))

for all n € N} and (x,y) € Z2.

7.2. Two drifting packets

In this example, we study a complex valued function on Z? whose convolution
powers ¢(™ exhibit two packets which drift apart as n increases. This behavior is
easily described by applying Theorem 1.6 in which two distinct a’s appear.

Consider ¢: Z? — C defined by
i (ﬁt,y) = (71’:&1),

4a
—LE (a,y) = (1,4),

o 4a
oe,y) = £t (2,y) = (0,£1),

otherwise,

where a = /2 + /2. The graphs of Re(¢>(”)) for n = 30, 60 are shown in Figures 6a
and 6b respectively; observe the appearance of the drifting packets.

In computing the Fourier transform of ¢, we find that sup |¢| = 1 and

Q¢) = {&1,62,&3, 8} = {(n/2,37/4), (7/2, =7 /4), (=7 /2, =3m/4), (=7/2, 7 [4)},

where R R R R

(&) = d(&s) = ()*" and  4(&) = d(&a) = —()*/".
Set v = V2 —1 and

1+ay
Pn,Q) = ——n +~¢.

As in the previous example, we expand the logarithm of ¢ near & forj=1,2,3,4.
We find that each element of Q(¢) is of positive homogeneous type for ¢ with
ag, = ag, = (0,7), agy, = ag, = (0,—v) and Pe, = Pe, = Pz, = Py, = P. Note
that P is obviously positive homogeneous with £ = (1/2)] € Exp(P) and hence

(72) I’L¢:MP51:H'P52:MP€3:H’P54:MP:1'
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0.005
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0.015
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-0.005
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0
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(¢) Re(fyn) for n = 30. (d) Re(fn) for n = 60.

FIGURE 6: The graphs of Re(¢(™) and Re(f,,) for n = 30, 60.

An appeal to Theorem 1.4 gives positive constants C and C” for which
Cn~' < [[6™]lo < C'n7

for all n € Ny. In view of (7.2), let us note that the contribution from all points
£1,82,€3,84 € Qo) appear in the local limit given by Theorem 1.6. An application
of the theorem gives
¢ (w,y) = (i)>"* (e PV S HE (2, y — ny) + (—1)"e' "V HE (2, y — ny)
e @ 2,y + 1) + (—1)"e DG H (0, y 4+ 7)) + o(n )
= (-1 + (~1)") (7T 2 A H R,y — ym)
+ eiwz/26i37ry/4le;($’y + ’Yn)) + 0(,’171)

which holds uniformly for (x,y) € Z2. In this special case that P is of second
order, we can write

5 1 —i (zy)—
HP(:E,y) = (27)2 /]R2 e (1,¢)(z,y)—P(n,0) d'f}dC

2

1 ( x? y )
= exp(-— -2
2mn/y(1 +iv) PAT 0 +) ~ any
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for (z,y) € R? and from this, it is easily seen that 6™ is approximated by two
generalized Gaussian packets respectively centered at 4(0,yn) for n € Ny. For
comparison, Figures 6a and 6b illustrate the approximation

Falw,y) = @) (1) + (=1)")
% (e—imc/Qeiwy/4Hg(x’y _ ,yn) + eiwx/26i3wy/4Hg(m)y + ,yn))

to ¢(™ for n = 30 and 60.

7.3. A supporting lattice misaligned with Z2

In this example, we study a real valued function ¢ whose support is not well-aligned
with the principal coordinate axes. Here, the points at which ngS is maximized are
of positive homogeneous type for é but the corresponding positive homogeneous
polynomials are not semi-elliptic. In this way, we have a concrete example to
illustrate the conclusion of Proposition 2.2. In writing out the local limit theorem
for ¢, we also see the appearance of a multiplicative prefactor which gives us
information concerning the support of ¢(™). Finally, the validity of global space-
time exponential-type estimates is discussed.

Consider ¢: Z? — R defined by

3/8  (z,y) =(0,0),
/8 (z,y) =*(1,1),

olz,y) =S 1/4 (2,y) =£(1,-1),
—1/16  (z,y) = +£(2,-2),
0 otherwise.

Figures 7a and 7b illustrate the graph and heat map of ¢(™ respectively when
n = 100.

We compute the Fourier transform of ¢ and find by a routine calculation that
sup |q§| = 1 and this maximum is attained at only two points in T2, (0,0) and
(m, 7). We write this as

Q((b) = {51,52} = {(0»0)7 (W»W)}v
and note that ¢(&§1) = ¢(&2) = 1. For & = (0,0), we have

B o€ +&1)
n? 23t nC | 26m3C 2 23nPC2 | 25p¢3 23¢* s
8 "3 27 96 8 61 T o6 381 Tl

as (n,{) — (0,0). In seeking a positive homogeneous polynomial to lead the
expansion, we first note the appearance of the second order polynomial 7%/8 +
n¢/4 + ¢?/8. We might be tempted to choose this as our candidate, however, it is
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ﬁ10
3
2
1
0
-1
20 2
FIGURE 7: ¢(™ for n = 100.
not positive definite because it vanishes on the line n = —(. Upon closer study, we
write
1 5 23 4 4
L0, ¢) = =2 +Q)" = o7 =0 +o(|(n, Q") = =P(n,¢) + o(P(n,())

8 384
as (n,¢) — (0,0), where the polynomial
1 23
P(,¢) = - 2. 22— o).
(n:Q) = g+ 0"+ 221 =0)

is positive definite. Fortunately, it is also a positive homogeneous polynomial as
can be seen by observing that, for

5= (2 1)

P(t%(n,Q)) = P(t'2(n+ Q) /2 + " (= O)/2,8"*(n+ () /2 = t"/*(n = ¢)/2)
1 23

§(720 Q)+ (0 - Q) = P00

for all t > 0 and (1,¢) € R% In contrast to the previous examples, P is not
semi-elliptic. However, observe that

A-LEA = ( 1/v/2 1/\/5) (3/8 1/8) (1/\/5 —1/\/§> B (1/2 0 )

-1/v2 1/v2)\1/8 3/8)\1/v2 1/v2 0 1/4
and

which is semi-elliptic; this illustrates the conclusion of Proposition 2.2.

We have shown that &; is of positive homogeneous type for (Z) with corresponding
ag, = (0,0) and positive homogeneous polynomial P = P¢,. By expanding the
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logarithm of d; near &z, a similar argument shows that & is also of positive ho-
mogeneous type for ¢ with corresponding e, = (0,0) and the same positive ho-
mogeneous polynomial P = Pe,. It then follows immediately that ¢ meets they
hypotheses of Theorems 1.4 and 1.6 where
pe = pp =tr E=3/4.
An appeal to Theorem 1.4 gives positive constants C and C’ for which
C/’I”L73/4 < ||¢(n)||oo < Cn73/4

for all n € N;. By an appeal to Theorem 1.6, we also have

¢ (,y) = $(&1)" eV Hp (2, y) + 9(&) e W) HB (2, y) + o(n™*/*)
(7.3) = (L+ e Hp (2, ) + o(n=*)
= (1+ cos(n(z + ) Hp (2, y) + o(n~/*)

uniformly for (x,y) € Z2. Upon closely inspecting the prefactor 1 + cos(w(x + y),
it is reasonable to assert that

Supp (¢'™) C {(z,y) € Z* :xty € 2Z} = L

for all n € N (Figure 7b also gives evidence for this when n = 100). The assertion
is indeed true, for it is easily verified that Supp(¢) C £ and, because £ is an additive
group, induction shows that

Supp(¢" V) = Supp(¢™ * ¢) C Supp(¢™) + Supp(¢) C L+ L =L

for all n € N. Thus, the prefactor (1+cos(m(xz+y)) gives us information about the
support of the convolution powers. In Section 7.6, we will see that this situation
is commonplace when ¢ is a probability distribution.

Let us finally note that, because ag, = a¢, = (0,0) and P, = P, = P, ¢
satisfies the hypotheses of Theorem 1.8. A straightforward computation shows
that R*(z,y) =< |z + y|® + |z — y|*/? where R = Re P and so, by an appeal to
Theorem 1.8, there are positive constants C' and M for which

- 2 |y |43
") (2, y)| < & eXp(fM<| J;yl + nf//l, ))
for all (z,y) € Z* and n € N;. We note however that because Q(¢) = {£1,&}, ¢
does not satisfy the hypotheses of Theorem 5.4 and, by closely inspecting Figure 7a,
this should come at no surprise. In fact, by a direct application of (7.3), it is easily
shown that |¢(™(0,0)] > en=3/* for some € > 0 whereas ¢(™(0,1) = 0 for all
n € Ny. Consequently, |D 1)¢(™ (0,0)| > en=3/* for all n € N from which it is
evident that the conclusion to Theorem 5.4, (5.10), does not hold.

7.4. Contribution from non-minimal decay exponent

In the present example, we study a real valued function ¢ on Z? with Q(¢) =
{&1,&}. Although both & and & are of positive homogeneous type for ¢ with cor-
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responding positive homogeneous polynomials P, and Fg,, we find that ps =
ppe, < pp,, which is in contrast to the preceding examples. Consequently, only
the contribution from & appears in the local limit.

Consider ¢: Z? — R be defined by

19/128 (z,y) = (0,0),
19/256  (x,y) = (0,+£1),
4 (@) = (£1,0)
1/8 (z,y) = (£1, 1)

(7.4) oe,y) = { ~5/64  (a,) = (£2,0),
—5/128 (x,y) = (£2,+£1),
1256 (2,y) = (+4,0),
1/512  (z,y) = (4, £1),
0 otherwise.

-100

0 0
100 50 0 50 100 100 -100 -50 0 50 100 100
X X

(b) Hp,  for n=100.

9 100 100 50 0 -50 -100 g 100 100 50 0 -50 -100
(c) qﬁ(") for n = 100. (d) HPEl for n = 100.

Ficure 8: The graphs of ¢(™ and Hﬁfl for n = 100.
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-100 -100
-1 0 -1 0
-100 -50 0 50 100 100 -100 -50 0 50 100 100

(b) Hp,  for n.=1000.

1= b
-100 . -100 o .
100 100 50 0 -50 -100 100 100 50 0 -50 -100

(C) qﬁ(") for n = 1000. (d) ngﬁl for n = 1000.

FI1GURE 9: The graphs of ¢(™ and Hﬁgl for n = 1000.

The graphs of ¢(™) for (x,y) € Z? such that —100 < z,y < 100 are displayed
in Figures 8a and 8c for n = 100 and Figures 9a and 9c¢ for n = 1000. Upon
considering the Fourier transform of ¢, we find that sup |¢A)| = 1 and this maximum
is attained at exactly two points in T2. Specifically,

Q((b) = {51762} = {(Oa 0)7 (7T, 0)}7
where gZA)(fl) =1 and d)(fg) = —1. In expanding the logarithm of ¢3(§ + 51)/423(51)
0

about (0,0), we ﬁnd that & = (0,0) is of positive homogeneous type for ¢ with
= (0,0) an
C2
Pe,(n,¢) = 1_6 t

Clearly P, is positive homogeneous with E; = diag(1/6,1/2) € Exp(P,) thus
pp,, = tr By = 2/3. Now, upon expanding the logarithm of ¢(§ + &2)/6(€2) we
find that & = (7,0) is also of positive homogeneous type for ¢ with ag, = (0,0)
and positive homogeneous polynomial

¢2

sz(n C)_n +Z
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here, Fy = (1/2)I € Exp(P,) and thus up,, = tr B> = 1. In this case

po = min pp = pp, = 2/3,
and so, in light of the paragraph preceding the statement of Theorem 1.6, we
restrict our attention to &;, in which case the theorem describes the approximation
of (") by a single attractor H pe, - This is the local limit
(7.5) ) (@,y) = HE, (2,y) +o(n2?)
which holds uniformly for (x,y) € Z2. Figures 8b, 8d, 9b and 9d illustrate this
result. It should be noted that the approximations shown in Figures 8 and 9 appear
more coarse than those of the previous examples. For instance, Figure 8c depicts
minor oscillations in the graph of ¢(™) which do not appear in the approximation
illustrated in Figure 8d. These oscillations are due to the influence on ¢(™) by QAS
near £ which for n = 1000 is not yet sufficiently scaled out. As demonstrated in the
proof of Theorem 1.6, this influence dies out on the relative order of n!=2/3 = n~=1/3
and thus the influence is not negligible when n = 1000.

As a final remark, we note that ¢ is the tensor product of two functions map-
ping Z into C. Specifically, ¢ = ¢1 ® ¢o where,

19/64 «x =0,

12z =+l 1/2 y=0,
d1(z) = ¢ —-5/32 =z =42 and ¢o(y) =1 1/4 y=+1,

1/128 o = +4, 0 otherwise.

0 otherwise,

In fact, had we studied the functions ¢, and ¢o separately, we would have found
that

(@) = Hl% j1(x) +o(n™ %) and  ¢{"(y) = H 4(y) + o(n~1/?)

uniformly for z,y € Z and from this deduced the local limit (7.5) because o) =
d)in) ®¢§”) and Hp, = H,j/16® H¢z 4 (note also that pg = 1/6+1/2 = pg, +p14,)-
In general, tensor products can be used to create a wealth of examples in any
dimension to which the results of lower dimensions can be applied. For instance,
by applying the much stronger theory of one dimension (in light of [17]), one
can deduce stronger results than are given here for the class of finitely supported
functions on Z? of the form

P=P1 QP2 ® - @ Pq

where ¢ : Z +— C is finitely supported for £k = 1,2,...,d. How to place these

examples in a d-dimensional theory is an open question.
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7.5. A simple class of real valued functions

In this subsection we consider a class of real valued and finitely supported func-
tions ¢m,» determined by two multi-parameters m € N and A € R4, cf. Subsec-
tion 2.4 of [4]. Here, Q(¢m 1) contains only 0 € T¢ which is of positive homogeneous
type for ngSm, A with no drift and whose associated positive homogeneous polynomial
is a semi-elliptic polynomial with no “mixed” terms. In this setting, our methods
yield easily ¢*°-asymptotics and local limit theorems for ¢£ﬁ,),\ = (¢m.)™. More-
over, all of the results of Section 5 concerning global space-estimates for ¢fﬁ,)>\ and
its discrete differences are valid and we apply them.

Let m = (my,ma,...,mq) € Ni and A = (A1, A2,..., \g) be such that \; €
(0,2'=m3 /d] for j = 1,2,...,d with at least one \; < 217 /d. Define

(76) (bm A =00 — Z)\ 50 — )(mJ)

7j=1

where p; = (1/2)(dc; +_c;) is the Bernoulli walk on the jth coordinate axis. By
a straightforward computation, we have

d
P (§) =1 = A (1—cos(§;))™
7j=1

for &€ = (£1,&,...,&4) € R? and from this it is easily seen that sup; |ngSm,)\(§)| =1
which is attained only at 0 € T?, i.e., Q(dm.n) = {0}. Here, ¢m (0) = 1 and it is
easily seen that

L(€) = 1og($m,A () = —Pma () + o(Pm(€))

as & — 0, where
d

)\J 2my
Pm,/\(g)_ZQmJ 5 !
7j=1
for £ = (&1,62,...,&4) € RE Note that Py 2(€) is a semi-elliptic polynomial of
the form (2.1) with Dy, = diag((2m1)~%, (2ma) 1, ..., (2ma) ") € Exp(Pm,) and

hence

L = Py = (2m1) ™"+ (2m2) ™+ + (2mg) ™" = [1: 2m],

where 1 = (1,1,...,1) € N4
For any [ € N, recall from Section 5 the discrete time difference operator
01 = 01(¢m,x, &0, @) which, in this case, is given by

b = (8 — Pl ) *

for 1 € ¢%(Z%). For any multi-index B € N9 consider the difference operator
DP = D? defined for any v € £*(Z%) by

Dﬂw = (Del)ﬁl (Dez)ﬁz T (Ded)ﬁdw
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where D, i(z) = ¢(z + e;) — ¢(x) for z € Z% and (D,,)? is the identity. We
note that e = {ey, ea,...,eq} is Pm a-fitted of weight m in view of the discussion
preceding Corollary 5.7. Finally, define

d
& 2l = 3 [y Fme/ i)
j=1
for x = (1,2, ...,74) € R? and observe that, for z € R? and n € N,
d
|n_D"‘m|m _ Z |.Z‘j|2mj/(2mj_1)/n1/(2mj_1).
j=1

Proposition 7.1. Let ¢m  be defined by (7.6), assume the notation above and

write (¢m )™ = ¢$?A for n € No. There are positive constants C and C" for
which

(7.8) Cn 12l <o loo < Ot
for alln € Ny. We have

o (x) = 2mIHp (0= Pma) 4 o(n~ 12
X1 X9 Tq
nl/2my)’ p1/@m2) " 1/ (2ma)

(9)  =nrigp ) + o(n~12m)

uniformly for x = (x1,22,...,24) € Z, where Hp,, , is defined by (1.8). There
are positive constants Cy, C1, My and My for which

Co _
(7.10) 6\ (2)] < i P (Mo [n~Pma, )
and
1 1 —
(7.11) oo i (2) = oy (2)] < Tz P (M [ el )

for all x € Z¢ and n € Ny. Further, there are positive constants Co and M and,
to each multi-index 3, a positive constant Cg such that, for any ly,ls,... 1, € N‘i,

CsCERITTE_ 1
(7.12) |311312-~-6ljD%fﬁ?A(x)|< 5 C k! [0 lg

< s P (CM [+ s Pmal,,)

foralleZd and n € Ny, where s, =11 +1lo+ -+ 1.

Remark 7.2. For simplicity, we have not treated the critical case in which \; =

21=mi /d for j = 1,2,...,d in the proposition above, however, our methods handle
this easily. In this case, the local limit (7.9) instead contains the prefactor 1 +
exp(im(n —xy — x3 — -+ — x4)). The estimate (7.11) is also valid here but (7.12)

and (7.10) fail to hold (for reasons similar to those of Subsection 7.3).
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Proof. In view of the discussion proceeding the proposition, straightforward ap-
plications of Theorems 1.4 and 1.6 yield (7.8) and (7.9) respectively. To see the
global space-time estimates, we first observe that

}iiA($1,$2w..,xd)
- (( 1 >1/<2mj—1) ( 1 >2mj/<2mj—1>> <2mf|xj|2mj>1/<2mj—1)
A—j:1 2”%‘ QWH Aj
for x = (x1,22,...,24). From this it is easily checked that | - |m =< Pﬁ)\ (this

can also be seen with the help of Corollary 8.16). Using the fact 0 € Q(¢m ») has
corresponding ag = 0 and Py = P ) which is semi-elliptic, ¢m » meets hypotheses
of Theorem 1.8, Corollary 5.10 and Theorem 5.8. The estimates (7.10) follows
immediately from Theorem 1.8. Upon noting that ;15+1 = |1 : 2m|+[2m : 2m| =
|1+ 2m : 2m|, (7.11) follows from Corollary 5.10. Finally, the estimate (7.12)
follows from Theorem 5.11 once it is observed that pg+|5 : 2m|+k = |14+ 8+2km :
2m|, e = {eq, €2,. .., €q} is P -fitted with weight m and [],_, e = 1. O

7.6. Random walks on Z%: a look at the classical theory

In this short subsection, we revisit the classical theory of random walks on Z%. We
denote by M}, the set functions ¢: Z¢ — [0, 1] satisfying

ol =Y é(z) =1,

€7D

i.e., M} is the set of probability distributions on Z4. As discussed in the introduc-
tion, each ¢ € M} drives a random walk on Z¢ whose nth-step transition kernel k,,
is given by k,(z,y) = ¢(™ (y — ) for z,y € Z?. Taking our terminology from p. 72
of [24], we say that ¢ € M}, is genuinely d-dimensional if Supp(¢) is not contained
in any (d — 1)-dimensional affine subspace of R¢; in this case, we also say that the
associated random walk is genuinely d-dimensional. Our main focus throughout
this subsection is on subset of ¢ € M} which are genuinely d-dimensional with
finite second moments. In contrast to the standard literature, we make no as-
sumptions concerning periodicity /aperiodicity /irreducibility, cf. [24], [15]. In this
generality, our formulation of the (classical) local limit theorem, Theorem 7.6, nat-
urally contains a prefactor © which nicely describes the support of ¢(™ and hence
the random walk’s periodic structure.

Our first two results, Lemma 7.3 and Proposition 7.4 are stated for the general
class of ¢ € MJ; one should note that both results fail to hold in the case that ¢
is generally complex valued. The lemma and proposition highlight the importance
of the set Q(¢) and, in particular, its inherent group structure. This intrinsic
structure (and much more) was also recognized by B. Schreiber in his study of
(complex valued) measure algebras on locally compact abelian groups [22]. In fact,
Schreiber’s results can be used to prove Lemma 7.3 and Proposition 7.4; although,
in our context, the proofs are straightforward and so we proceed directly.



CONVOLUTION POWERS OF COMPLEX FUNCTIONS ON Z¢ 1101

Lemma 7.3. Let ¢ € M. Then Q(¢) depends only on Supp(¢) in the sense that,

if Supp(¢1) = Supp(¢2) for ¢1,¢2 € Mé, then Q(¢1) = Q(¢2). Furthermore, for
each & € QU(o), there exists w(&) € (—m, m| such that

3(e) = e1© — i
for all x € Supp(o).

Proof. We shall use the following property of complex numbers. If {z1,29,...} C C

satisfy
oo oo
k

k=1

)

then, for some w € (—m, 7|, 2. = rxe™ for all k. Thus, whenever £ € Q(¢), i.e.,

O =| Y ola) e

FIYA

there exists w = w(§) € (—m, ] for which
(7.13) e = ()

for all z € Supp(¢). In particular, this shows that Q(¢) depends only on Supp(¢).
Further, observe that

(7.14) b(€) = Z o(z) €€ = iw(©) Z o(z) = e@®

YA YA

and so the result follows upon combining (7.13) and (7.14). O

Proposition 7.4. Let ¢ € MY. Then Q(¢) is a subgroup of T¢ and
. . .
Hlag : AP =S

is a homomorphism of groups; here, T? is taken to have the canonical group struc-
ture and S* = {z € C: |z| = 1}.

Proof. Tt is obvious that 0 € Q(¢); hence Q(¢) is non-empty. Let &1,& € Q(¢)
and, in view of Lemma 7.3,

H&—&)= > da)em @ = N 4(@)d(&)0(6) T = d() (&)

zE€Supp(¢p) zESupp(¢)

and thus & — & € () because [$(&2 —&1)| = |6(&2)H(&1) | = 1. As Q(¢) is non-

empty and closed under subtraction, we conclude at once that Q(¢) is a subgroup
of T? and the restriction of ¢ to Q(¢) is a homomorphism. O
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We now begin to develop what is needed to recapture and reformulate the
classical local limit theorem in the general case that ¢ € /\/l(li is genuinely d-
dimensional and has finite second moments. In this case, the mean a, € R? and
covariance Cy € Mg(R) of ¢ are defined respectively by

{aptr = Z xpd(x) for k=1,2,...,d

z€Z

and

{Cotua = (zx —{oghs) (w1 — {agh) dlx) for k,1=1,2,....d.

€74

Proposition 7.5. Let ¢ € M} be genuinely d-dimensional with finite second mo-
ments and let ag and Cy be the mean and covariance of ¢ as defined above. Set

Pyl€) = 56 Cy

for € € R, Then each & is of positive homogeneous type forq@ with oy, = oy and
positive homogeneous polynomial P, = Py. In particular, pg = pp, = d/2.

Proof. When ¢ is genuinely d-dimensional, it is well known that the covariance
form

£ Cov(9)(§) =& Cp&
is positive definite (when ay = 0, Supp(¢) contains a basis of R? and when
ag # 0, an appropriate shift does the trick). Upon noting that 2711 € Exp(P,),
we conclude that Py is a positive homogeneous polynomial. Observe that, for

T(¢) = log((& + &) /d(%)),

R 1 - i€

o (0) = 2280 _ g
HO =) ) xes;m)(@mw(x)e

iw(€o)

1 ; e
= - izpp(z) e ) = — izpd(x) = i{agts
¢(%o) $€s§p:p(¢) (&) reS%):p(@

for all £k = 1,2...d, where we have used Lemma 7.3. By analogous reasoning,
which again makes use of the lemma, 0 ;I'(0) = —{Cy}x, for k,1 = 1,2,...,d.
Consequently,

d d
PE) =Y AT &+ > 5 0(0)&& +ofl€?)
k=1

(7.15) o

=iag & Py(€) +o(l€*),

as & — 0, where we have used the positive definiteness P, to rewrite the error.
From this it follows immediately that & is of positive homogeneous type for ¢ with
ag, = o and positive homogeneous polynomial P, = Py. O
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We now present the classical local limit theorem in a new form. Assuming the
notation of the previous proposition, the attractor G4 = Hp, which appears below
is the generalized Gaussian density given by (1.2) (see p. 25 of [15]). Let us also
note that, in view of the previous proposition and Proposition 4.1, Q(¢) is finite.

Theorem 7.6. Let ¢ € M} be genuinely d-dimensional with finite second mo-
ments. Then there exists positive constants C' and C' for which

(7.16) Cn~4? < sup ¢ (z) < C'n~%?
z €24

for all m € Ny. Furthermore,
— Nag

(7.17) 6™ (z) = n~Y2 0(n, ) G¢(x =

uniformly for x € Z%, where ©: Ny x Z% is dependent only on Supp(¢) in the sense
of Lemma 7.3 and is given (equivalently) by

(7.18) O(n,z) = Z elnw(®=2-8) — Z cos(nw(§) —x - &);
£eQ(e) £eQ(¢)

) + o(n=4?)

here, w(§) € (—m, x| is that given by Lemma 7.3 for each & € Q(¢).

Proof. The hypotheses of the present theorem are weaker than those of Theo-
rems 1.4 and 1.6, as the latter theorems require ¢ to have finite moments of all
orders. However, what is really used in the proof of the Theorem 1.6 is the condi-
tion that, for each {y € Q(¢), I'¢, can be written in the form (7.15) where Pe, = P,
is positive definite (in the general case that ¢ is complex valued, it is not known
a priori how many terms in the Taylor expansion for I'¢, are needed for this to be
true). Under the present hypotheses and in view of Proposition 7.5, the proof of
Theorem 1.6 pushes through with no modification and so we apply it (or simply its
conclusion). As an immediate consequence, we obtain (7.16) because Theorem 1.4
follows directly from Theorem 1.6. It remains to show that the local limit yielded
by Theorem 1.6 can be written in the form (7.17).

By virtue of Proposition 7.5, we have ag = ay, P = P, for all £ € Q(¢)
and, moreover py, = pp = d/2. Noting that all £ € Q(¢) have corresponding
positive homogeneous polynomials of the same order (because the polynomials are
identical), all appear in the local limit. Consequently,

¢ (x) = Y )" Hp, (& — nag) + o(n™?)

£€Q(e)
B ( Z e_mf(é(@)n) n_d/2HP¢> (n_1/2(36 —nag)) + o(n=?)
£€Q(¢)
- n_d/Q( Z ei(nw(f)_xf)) Gy(n™*(x — nay)) + o(n=?)

§€Q(¢)

— p—d/2 O(n,z) Gy (%) + O(n—d/z)
n
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uniformly for 2 € Z%. In view of Lemma 7.3, it is clear that © depends only on
Supp(¢) and so to complete the proof, we need only to verify the second equality
in (7.18). Using the fact that Q(¢) is a subgroup of T? in view of Proposition 7.4,
for each & € Q(¢), =€ € Q(¢) and therefore

@(n,w):%( 3 eitw©-eo 4 3 ei(nw@e)fx-(fe)))

£€Q(e) §€Q(¢)
= D cos(nw(§) —2-9),
£eQ(¢)
where we have noted that w(—¢) = —w(§) for each £ € Q(¢). O

By close inspection of the theorem, one expects that in general ©® can help us
describe the support of ¢(™ and hence the periodicity of the associated random
walk. This turns out to be the case as our next theorem shows.

Theorem 7.7. Let ¢ € M}, be genuinely d-dimensional with finite second moments
and define ©: Ny x Z% — R by (7.18). Then

(7.19) Supp(¢™) € Supp(O(n,-))
for allm € No. Further, if
limsup |©(n,z + |nag])| >0

for x € 74, then
limsup n#¢ ¢™ (z + [nag)) > 0.

n

Proof. In view of Lemma 7.3, for any x¢ € Supp(¢), w(§) = o - & for all £ € Q(¢).
Therefore, for any xy € Supp(¢),

O(n,x) = Z cos((nxg — x) - §)
£eQ(¢)
for all n € N, and x € Z% and, in particular,
O(Lzo) = Y cos(0) = #(A)) > 0
£€Q(e)

whence Supp(¢) C Supp(©(1,-)). The inclusion (7.19) follows straightforwardly
by induction. For the second conclusion, an appeal to Theorem 7.6 shows that, for
sufficiently large n,

n2¢( (x + [nay]) 2 |0(n, @ + [nag))Ge(n™? (@ + [nag) — nag))|/2
for all z € R%. Of course, for any fixed x,
lim |Gy(n™"2(z + |nag) — nag))| = G(0) > 0,

and from this the assertion follows without trouble. O
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To illustrate the utility of the function ©, we consider a class of examples which
generalizes simple random walk. For a fixed m = (mq, ma,...,ma) € Ni define
®Om € M(lj by
1
2d
for j =1,2,...,d and set ¢m(x) = 0 otherwise; here, {e1,ea,...,eq4} is the stan-
dard Euclidean basis in R?. This generates the random walk with statespace
{(kimu, kama, ..., kgmg) : k; € Z for j =1,2,...,d}. We have:

¢m(mjej) = ¢m(_mjej) =

Proposition 7.8. Let O, : Ny x Z4 — R be that associated to ¢m by (7.18).
Then

2(1_[?:1 mj) if mjlz; for all j=1,2,...d and n — |z : m| is even,

0 otherwise.

Om(n,x) = {

Proof. For notatlonal convenience, we write ¢ = ¢y, and © = Op,. Observe
that ¢(&) = (1/d) Z _, cos(m;&;) for € = (&1,&,...,&q4) € T? and so by a direct
computation,

Q(8) = Qe UQo
:{w(%%:li) keze}U{ﬂ(%,%,...,%) ke Zo},
where
:{k€Zd:fmj<kj < mj and k;j is even for j =1,2,...,d}
and
Zo=1{kecZ: —m; < k;j <kj and m; is odd for j = 1,2,...,d}.

With this decomposition, we immediately observe that

- 0 lff S Qe,
w(€) = {w if ¢ € Qo

In the case that mj’mj for j=1,2,....d,

@(nvx)zz i(0n— zf+z i(mrn—xz-§)

€. £€Q,
Iy ' koas
—kgeexp(mz:l 7;—?)+k§ exp (m(njz:l ;ZJ))

= #(Ze) + exp (m( zd:;,%))

Jj=1
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where we have used (7.18). Now #(Ze) = #(Zo) = H?Zl m; and so it follows that

d d N e
On,z) = (1 +em(n_‘x:m|)) Hmj _ {Q(szl mj) if n— |z :m]|is even,

- 0 if n — |z : m| is odd.
j=1
In the case that my /{ml for some [ =1,2,...,d, observe that
_ Z 67i§~x+ Z ei(ﬂ'nféa:)
£€Qe £€Q,
d ik rik;
7.20) = (- —) e (-im™).
(7.20) H Z exp i H Z exp i oy
J=1m;<k;<m; J=1m;<k;<m;
k?j even k? odd

Focusing on the [th multiplicand in the first term, it is straightforward to see that

(e—Qﬂixl/ml _ 1) Z exp ( _ Zﬂ-ml_kl)

my
ml<kj <my
kj even
—xy (k4 2) xiky
= E exp| —tm———= ) —exp| —ir— | =0,
my my
my<kj<my
kj even

and since my )(:cl, we can immediately conclude that

Z T — Z exp ( — mg) H Z exp ( — ’iﬂ'#) =0.
£ my<kj;<my J#L my<kj<m; mj

ki even k) even

An analogous argument shows that > . '™ =&2) — () and so, in view of (7.20),
it follows that ©(n,z) = 0 as desired. O

Simple random walk is, of course, the random walk defined by ¢y, where m =
(1,1,...,1). In this case, the proposition yields

2 ifn—xy —ax9—---— 1418 even,
9(1,1,...,1)(71,@ = . .
0 ifn—xy —a9—---— 2418 odd;

this captures the walk’s well-known periodicity.

We end this section by showing that Theorem 1.8 provides a Gaussian (upper)
bound in the case that ¢ € M} is finitely supported and genuinely d-dimensional.
To obtain a matching lower bound, it is necessary to make some assumptions
concerning aperiodicity.

Theorem 7.9. Let ¢ € M} be finitely supported and genuinely d-dimensional with
mean g € R?. Then, there exist positive constants C and M for which

c
(b(”)( ) < —73 OXP ( M|z — na¢|2/n)

for alln € Ny and x € Z°.
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Proof. In view of Proposition 7.5, our hypotheses guarantee that every £ € Q(¢)
is of positive homogeneous type with corresponding a¢ = o and positive homo-
geneous polynomial Pz = Py; here ug = pp, = d/2 and Ry = Re Py = P;. An
appeal to Theorem 1.8 gives positive constants C' and M for which

67(@) = 6 @)] <~ exp (= nMPE (e = nag) /)

for all n € Ny and = € Z?. Upon noting that Pf is necessarily quadratic and

positive definite by virtue of Proposition 8.15, we conclude that Pf = |-|? and
the theorem follows at once. O

8. Appendix

8.1. Properties of contracting one-parameter groups

The following proposition is standard [10].

Proposition 8.1. Let E,G € My(R) and A € Gli(R). Also, let E* € My(R)
denote the adjoint of E. Then for all t,s > 0, the following statements hold:

o 1P =1 o tF7 = (tF)* o If EG = GE then tFtC = tF+C

o (st)F = sEtE o AtEA-1 = AEAT" o det(tB) = ¢ F

Lemma 8.2. Let {T;} C Gli(R) be a continuous one-parameter contracting group.
Then, for some E € Glg(R), Ty = t¥ for allt > 0. Moreover, there exists a positive
constant C' for which

T < C +¢l”]

for allt > 0.

Proof. The representation T; = t£ for some E € My4(R) follows from the Hille—
Yosida construction. If for some non-zero vector 1, En = 0, then t¥n = n for
all t > 0, and this would contradict our assumption that {7}} is contracting. Hence
E € Gly(R) and, in particular, || E|| > 0. From the representation T; = t¥ it follows
immediately that ||T;|| < tIZl for all t > 1 and so it remains to estimate ||T%]|
for t < 1. Given that {T;} is continuous and contracting, the map t — |[|T| is
continuous and approaches 0 as t — 0 and so it is necessarily bounded for 0 < ¢ < 1.

O

Lemma 8.3. Let E € Gly(R) be diagonalizable with strictly positive spectrum.
Then {tE} s a continuous one-parameter contracting group. Moreover, there is a
positive constant C' such that

HtEH <C t/\xnax
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for allt > 1 and
I£7) < € ¢

for all 0 < t <1, where Amax = max(Spec(F)) and Apmin = min(Spec(FE)).

Proof. Let A € Gl4(R) be such that A='EFA = D = diag(\1, A2, ..., \q) where
necessarily Spec(E) = Spec(D) = {1, A2,..., ¢} € (0,00). It follows from the
spectral mapping theorem that Spec(t?) = {t* t*2 ...  t*} for all ¢ > 0 and
moreover, because t” is symmetric,

tAmax if ¢ > 1,

tP|| < max({tM 1?2, ... the)) =
7] < ({t™, 72,17 )) Pt iff < 1,

By virtue of Proposition 8.1, we have

tAmax if ¢ > 1

|70 = AP AT < JANEPIIAT < Pl =C x4y
trminif < 1

for t > 0, where C = ||A||[|[A7Y; in particular, {t¥} is contracting because
)\min > 0. O

Proposition 8.4. Let {T;};~0 C Gla(R) be a continuous one-parameter contract-
ing group. Then, for all non-zero £ € RY,

lim T3¢ =0 and lim |T3¢| = cc.
t—0 t—o00

Proof. The validity of the first limit is clear. Upon noting that |{| = [T/, T;{| <
|74 ¢ || T+¢| for all £ > 0, the second limit follows at once. O

Proposition 8.5. Let {T;}i~0 C Gla(R) be a continuous one-parameter contract-
ing group. There holds the following:

a) For each non-zero & € R?, there exists t > 0 and n € S for which Tyn = €.
FEquivalently,
R\ {0} = {Tyn : t > 0 and n € S}.

b) For each sequence {&,} € R? such that lim,, |€,| = oo, &, = Ty, mn for each n,
where {n,} C S and t,, — o0 as n — 0.

c) For each sequence {&,} C RY such that lim, [£,| = 0, &, = Ty, mn for each n,
where {n,} C S and t, — 0 as n — co.

Proof. In view of Proposition 8.4, the assertion a) is a straightforward application
of the intermediate value theorem. For b), suppose that {£,} C R? is such that
|€n] — 00 as n — oo. In view of a), take {n,} C S and {t,} C (0,00) for which
&, =Ty, ny for each n. In view of Lemma 8.2,

oo = liminf |§,| < liminf (C + t}7) [n,| < C + liminf £},
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where C, M > 0, and therefore ¢,, — oo. If instead lim,, &, = 0,

|77n| — 1 |T1/t”§n|

oo = lim m ———"—— <limsup||T} /. || < limsup(C + (1/t M,
Jim (= g S sup [Ty 1, | < limsup(C+ (1/2,))
from which we see that t,, — 0, thus proving c). O

Proposition 8.6. Let {Ti} be a continuous contracting one-parameter group.
Then for any open neighborhood O C R® of the origin and any compact set K C RY,
K CTy(0) for sufficiently large t.

Proof. Assume, to reach a contradiction, that there are sequences {£,} C K and
t, — oo for which &, ¢ Ti, (O) for all n. Because K is compact, {£,} has a
subsequential limit and so by relabeling, let us take sequences {(;} C K and
{rt} C (0,00) for which (;, — ¢, ry — oo and (; ¢ T, (O) for all k. Setting
s = 1/r), and using the fact that {T}} is a one-parameter group, we have Ts, ¢, ¢ O
for all k and so liminfy |Ts, x| > 0, where s, — 0. This is however impossible
because {T}} is contracting and so

im [Ty, G| < lim [T, (G — Q) + lim [Ty, ¢] < C lim |G —¢|+0=0
k—o0 k—o00 k—o00 k—o00
in view of Lemma 8.2. O

8.2. Properties of homogeneous functions on R?¢

Proposition 8.7. Let {T;} C Gla(R) be a contracting one-parameter group and
let R,Q: R — R be continuous and homogeneous with respect to {T;}. If R is
positive definite, then there exists C' > 0 such that

(8.1) Q)] < CR(E)
for all € € R, If both Q and R are positive definite, then
(8.2) Q=R

Proof. Upon reversing the roles of R and @, it is clear that the (8.2) follows
from (8.1) and so it suffices to prove (8.1). Because R is continuous and positive
definite, it is strictly positive on S and so, given that @ is also continuous,

For any non-zero & € R?, let t > 0 be such that £ = Tyv for v € S in view of
Proposition 8.5 and observe that

Q)| = [Q(Tin)| = t|Q(n)| < tCR(n) = CR(Tin) = CR(S).

By invoking the continuity of R and @, the above estimate must also hold for
£=0. O
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Proposition 8.8. Let E € Gl4(R) be diagonalizable with strictly positive spectrum
and suppose that R: R? — R is continuous, positive definite, and homogeneous with

respect to {tF}. Then, for any v > (min(Spec(E)))~ !,

lE1" = o(R(¢)) as & — 0.

Proof. By virtue of Lemma 8.3, we know that {t¥} is contracting and |t¥| < C ¢}
for allt < 1 where A = min(Spec(F)) and C' > 0. Let {&,} be such that lim,, &, — 0
and, in view of Proposition 8.5, let {n,} C S and t, — 0 be such that &, = tZy,.
Then

+E A
limnsup E&lz) = limnsup tl RZ:’L) < limfup 7(3;4(777;;';7 < Mliyrln A1 =0,
where
M := sup Cnl”
nes R(n)
is finite because R is continuous and positive definite. O
Lemma 8.9. Let m = (my,ma,...,mq) € N4, D = diag(my ', myt,...,m ") €

Glg(R) and suppose that R: R® — R is continuous, positive definite and homoge-
neous with respect to {tP}. Then for any multi-index B such that |3 : m| > 1,

% =o(R(€)) as&—0.

Proof. Put v = |8 :m|—1 > 0 observe that

sup 1L
nes R(n)
because R is continuous and non-zero on S. Let {£,} € R? be such that |£,] — 0
as n — oo. By virtue of Proposition 8.5, there are sequences {1n,} C S and
{tn} C (0,0) for which ¢, — 0 and &, = tPn,, for all n. We see that
my) "t B ma) "t B ma) "t B m
& = (t)mn)? = (4™ )7 () ) () ) = Pl

n

=M < o0

for each n. Therefore

(S ¢lAml ||
R fhmnsup TR(n)

as desired. O

lim sup < limsup Mt} =0,
n

For the remainder of this appendix, P is a positive homogeneous polynomial
and R = Re P.

Proposition 8.10. For any compact set K, there are positive constants M and M’
such that
MR(§) < R(E+ () + M

for all ¢ € R and ¢ € K.
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Proof. Set U = B3o \ Byja = {u € R*:1/2 < |u| < 3/2} and

M = inf M;
nes.uet R(n)
M is necessarily positive because R is continuous and positive definite. For E €
Exp(P), {t¥} is contracting and so it follows that for some 7' > 0, (77 + thC) eU
forallm € S, ¢ € Kandt > T. Consider theset V = {¢ =tFnpe R :t > T ,ne S}
and observe that for any ¢ € V and ¢ € K, t F(¢ + () =n+t"F( € U for some
t > T and consequently

RE+Q) R+t _

R(¢) tR(n)  —

We have shown that MR(§) < R(§+ () for all £ € V and ¢ € K. To complete
the proof, it remains to show that R is bounded on V¢ = R?\ V' however, given
the continuity of R, we need only verify that the set V¢ is bounded. By virtue of
Proposition 8.5, we can write

Ve={oyu{e=tn:t<T,neS}.

and so, by an appeal to Lemma 8.2, we see that |£| < C+TIEI forall ¢ € VE. O

Our final three results in this subsection concern estimates for P and R regarded
as functions on C¢. In what follows, | - | denotes the standard Euclidean norm on
C? = R?? and S denotes the 2d-sphere.
Proposition 8.11. For any M, M' > 0, there exists C > 0, for which

|z] < C+ MR(§) + M'R(v)

for all z =& —iv € C2.
Proof. Define Q(¢,v) = MR(¢) + M'R(v) for (&,v) = z € R?? and observe that @

is positive definite. It suffices to show that there exists a set V with bounded
complement V¢ = R??\ V such that

(8.3) |2l = (&, )] <Q(E,v)

for all (¢,v) € V. To this end, set

(1, ¢)]
N =
ks Q,C)

spectrum and recall that F is diagonalizable with A := max(Spec(E)) < 1 in view

which is finite because @ is strictly positive on S. Let E € Exp(P) have real
of Proposition 2.2. An appeal to Lemma 8.3 gives C' > 0 for which [[tZ| < C't* for



1112 E. RANDLES AND L. SALOFF-COSTE

all ¢ > 1; the lemma also guarantees that {t¥*®F} C Glyy(R) is contracting. Set
T = max({1, (CN)1=*1) and consider the set

V={(r)=t"F(,) e R* ¢ > T,(n,¢) € S},
For any (§,v) € V, we have

|(€7V)| — |(tE777tEC)| < Ct)\|(777g)| < CtA—lN < N—lN:1

Q&v)  QEFFE(m, Q) — tQ(n, ()

and therefore (8.3) is satisfied. To see that V¢ is bounded, one simply repeats the
argument given in the proof of Proposition 8.11 where, in this case, Proposition 8.5
and Lemma 8.2 are applied to the one-parameter contracting group {t?®F}. O

By considering only real arguments ¢ € R?, Proposition 8.11 ensures that, for
some constant C; > 0, |¢| < C1+R(€) for all ¢ € RY. Upon noting that R is strictly
positive on any sphere of radius J, one easily obtains the following corollary.

Corollary 8.12. For each C,§ > 0, there exists M > 0 for which
gl +C < MR(S)
for all |&] > 6.

Proposition 8.13. Let P be a positive homogeneous polynomial with R = Re P.
There exist € > 0 and M > 0 such that

(8.4) —ReP(z) < —eR(§) + MR(v)
and
(8.5) [P(2)] < M(R(£) + R(v))

for all z =& —iv € C%.

Proof. Let E € Exp(P) have strictly real spectrum and, by virtue of Proposi-
tion 2.2, let A be such that D = A"'EA = diag((2m1)~!, (2ma) 71, ..., (2ma) ™)
and

Pa(§):=(PoLa)§)= Y aal

|a:m|=2

where m = (my,ma,...,mq) € Ni. Because A € Gl;(R) C Gly(C), it suffices to
verify the estimates (8.4) and (8.5) for P4 and R4 = Re P4. As in the proof of
the previous proposition, we identify C? = R2? by z = (£, v), and observe that
{tP®PY C Glgg(R) is contracting. Consequently, by considering Ty = tP®P | the
estimate (8.5) follows directly from Proposition 8.7.

An appeal to the multivariate binomial theorem shows that for all z=¢ — iv € C?

(8.6) Pa(§ —iv) = Pa(§) + Q(&,v),
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where
a Cae _
Qe = 3wy ( )ew—ww T Y b €
|o:m|=2 y<a v |a:m|=2
y<a
here, {ba,} € C. We claim that for each ¢ > 0, there exists M > 0 such that
(8.7) Q& V)| < ORA(E) + MRa(v)

for all £&,v € R? For the moment, let us accept the validity of the claim. By
choosing § < 1, a combination of (8.6) and (8.7) yields

—Re(Pa(§ — i) + Ra(§) < 6RA(§) + MRa(v)

for all ¢, € R? and from this we see that (8.4) is satisfied with e = 1 —§. Tt
therefore suffices to prove (8.7).

For any multi-indices S and ~ for which |5 : m| = 2 and v < 3, it is straight-
forward to see that

(th)v(tDy)ﬂfv — ¢ly2m[ 4|f—v:2m| VP = ¢18:2m| VP =7 P
for all £&,v € R? and so the map (£,v) — &7v%~7 is homogeneous with respect

to the contracting group {tP?®P} C Glyy(R). Consequently, an application of
Proposition 8.7 gives C' > 0 for which

€777 < C(Ra(€) + Ra(v))

for all ¢£,v € R%. By invoking the homogeneity of ¢ and R4 (¢) with respect to
{tP} C Gl4(R), the above estimate ensures that, for all ¢ > 0,

VP77 = [l (= Pey T < 2O (Ra(E7PE) + Ra(v)
= Cth2mI=t R (&) + Ot 2™ R, (v)
for all ¢&,v € R?. Noting that |y : 2m| — 1 < 0 because v < 3, we can make the

coefficient of R4 (&) in the above estimate arbitrarily small by choosing ¢ sufficiently
large. Consequently, for any 6 > 0 there exists M > 0 for which

€077 < §RA(€) + MRa(v)

for all ¢, v € R?. The claim (8.7) now follows by a simple application of the triangle
inequality. O

8.3. Properties of the Legendre—Fenchel transform of a positive homo-
geneous polynomial

Lemma 8.14. Let P be a positive homogeneous polynomial and let R = Re P. For
E € Exp(P) with real spectrum let Amax = max(Spec(E)) and Amin = min(Spec(E))
(note that 0 < Amin, Amax < 1/2 by Proposition 2.2) and set

ey = 0] 21,
" |/ A= Amin) if |2 < 1,
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for x € R, There are positive constants M, M' for which
(8.8) || — M < R#(x) < M'Ng(z)
for all z € R?,

Proof. Set M = supgcg R(§) and observe that, for any non-zero z € R4,

R (z) = sup a-¢ = RO} 2 - o~ Bly) 2 el -

The lower estimate in (8.8) now follows from the observation that R#(0) = 0 which
is true because R is positive definite. We now focus on the upper estimate. In
view of Lemma 8.3 and Proposition 2.2, let C' > 1 be such that ||tF|| < C t*max for
t > 1 and |[tP| < Ct*win for t < 1. An appeal to Proposition 8.11 gives M’ > 0
for which C|¢| < R(&) + M’ for all ¢ € R%. In the case that |z| > 1, we set
t = |z|Y/ (1= max) and observe that

o€ < [al [£74 ] < [al [17)][£7€] < fal £ (REE) + M)
= [o] Pt R(E) + M[a] 0 = R(E) + M'[a]!/ 1o

for all ¢ € R, and therefore

R¥(z) = sup o€~ RO} < M|/ Ama) = M A ().

When |z| < 1, we repeat the argument above to find that
R#(z) < M'|z|Y/0=2min) = M/ N ()
as desired. .

Proposition 8.15. Let P be a positive homogeneous polynomial with R = Re P.
Then R¥ is continuous, positive definite, and for any E € Exp(P), F = (I—-E)* €
Exp(R*).

Proof. Since R* is the Legendre-Fenchel transform of R: R? — R it is convex (and
lower semi-continuous). Furthermore, the upper estimate in Lemma 8.14 guaran-
tees that R* is finite on R? and therefore continuous in view of Corollary 10.1.1
of [20].

Given that R is positive definite and homogeneous with respect to {t¥}, it
follows directly from the definition of the Legendre Fenchel transform that R#
is non-negative, homogeneous with respect to {t’'} where F = (I — E)* and has
R#(0) = 0. To complete the proof, it remains to show that R¥(x) # 0 for all
non-zero x € R?. Using the lower estimate in Lemma 8.14, we have

(8.9) lim R*(x) = oco.

r—00
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By virtue of Proposition 2.2, F'is diagonalizable with Spec(F') C [1/2,1); in partic-
ular, {tI'} is contracting in view of Lemma 8.3. Now if for some non-zero x € R%,
R#(x) =0,
0= lim tR*(z) = lim R¥(t"z),
t—o0 t—o0

which is impossible in view of Proposition 8.4 and (8.9). O

Corollary 8.16. Let P be a positive homogeneous polynomial of the form (2.1)
form = (my,ma,...,mq) € N‘j_ and {ag} C C. That is, the conclusion of Propo-
sition 2.2 holds where A = I € Glg(R). Let R = Re P, let R* be the Legendre—
Fenchel transform of R and define | - |m : R — [0,00) by (7.7) for x € R%. Then

R*(z) < |Z|m.

Proof. Let us first note that | - |y is continuous, positive definite and homo-
geneous with respect to the one-parameter contracting group {t/'} where F =
diag((2m1 — 1)/(2ma), (2ma — 1)/(2ms2), ..., (2mg — 1)/(2mg)). Because E =
diag ((2m1)~1, (2m2)~%, ..., (2ma)~"') € Exp(R), Proposition 8.15 ensures that R#
is continuous, positive definite and has F = (I — E)* € Exp(R*). The desired
result follows directly by an appeal to Proposition 8.7. O

Another application of Proposition 8.15 and 8.7 yields the following corollary.

Corollary 8.17. Let P be a positive homogeneous polynomial with R = Re P. For
any constant M > 0, (M R)# =< R¥.

8.4. The proof of Proposition 3.3

Proof of Proposition 3.3. (a = b) Let P = P, take E € Exp(FPg,) with strictly
real spectrum and set m = max;—; 2. q2m; in view of Proposition 2.2. Noting
that E is diagonalizable, m + 1 > (min(Spec(E)))~! and Qg () + o(j¢|™*1) =
Pey(§)+Tey (&) for € sufficiently close to 0, our result follows from Proposition 8.8.

(b = ¢) Let E € Exp(P) have real spectrum and observe that, for all n € N,
(8.10) CT'R(§) <nReQf(n” 7€) < CR(E) and |[nImQf(n~PE)| < CR(()

for ¢ € B,. Tt follows that the sequence {p,} C C(B,) of degree m polynomials,
defined by p,(§) = nQZ’Z(n‘E@ for all n € Ny and ¢ € B,, is bounded. As
the subspace of degree m polynomials is a finite dimensional subspace of C(B,.),
{pn} must have a convergent subsequence. Moreover, because R(§) is positive
definite, (8.10) ensures that the subsequential limit has positive real part on .S;..

(¢ = a) The proof of this implication is lengthy and will be shown using a
sequence of lemmas. We fix E € My(R) with real spectrum and for which the
condition (3.2) is satisfied. As the characteristic polynomial of E completely factors
over R, the Jordan—Chevally decomposition for E gives A € Glg(R) for which
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F:= A"'EA = D+ N where D is diagonal, N is nilpotent and DN = ND. Upon
setting Q4 = Qf; o La, it follows that

Qi)=Y age’
1<|B|<m

for ¢ € R? where {ag} C C. Define pa : (0,00) x RY — C by pa(t,§) = tQa(tF¢)
for t > 0 and ¢ € R?. The hypotheses (3.2) ensures that, for each ¢ € A~ B,

(8.11) Pa(§) := lim pa(tn,&)
n—oo
exists and is such that Re P4(¢) > 0 whenever £ € A71S,..

Lemma 8.18. Under the hypotheses (3.2), limy_so pa(t, &) exists for all ¢ € R?
and the convergence is uniform on all compact sets of R:. In particular, Pa extends
uniquely to R (which we also denote by Pa) by

(8.12) Pa(§) = lim pa(t,§) = lim pa(ts,§)

for all € € R?. Moreover, Py: RY — C is a positive homogeneous polynomial with
the representation

(8.13) Pa&)= Y azé’
|B:m]=2

for some m = (mqy,ma,...,my) € Ni where m > 2m; fori1=1,2,...d and
(8.14) F =D = diag((2m1) ™", (2m2) ™", ..., (2ma)~") € Exp(Pa).
Furthermore,
(8.15) Qa©) = D agt’=Pa©+ Y ast’

|B:2m|>1 |B:2m|>1
for € € RY.

Proof of Lemma 8.18. Our proof is broken into three steps. In the first step we
show that the representation (8.13) is valid on A~! B, and the first equality in (8.15)
holds on R?. The first step also ensures the validity of the second equality in (8.14).
In the second step, we define Ps: R? — C by the right hand side of (8.13) and
check that P4 is a positive homogeneous polynomial with D € Exp(P4). In the
third step we show that NV = 0 and hence F = D and in the fourth step we show
that the limit (8.12) converges uniformly on any compact set K C R%. The second
inequality in (8.15) follows directly by combining the results.

Step 1. Write D = diag(v1,72,..-,7a) and put v = (v1,72,---,%) € R?. We
fix £ € A71B, and observe that
log t)* B
palt, )= aﬁt(t*D(IﬂogtNﬁ et %N’%))
1<|B|<m '

!
= Z agtlfw'ﬁfﬁJerjt“’j(logt)j

1<[Bl<m Jj=1

(8.16)
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for all ¢ > 0 where, by invoking the multinomial theorem, we have simplified
the expression so that wi,ws,...,w; € R are distinct and b; = b;(§; N) € C for
j=1,2,...1 = km. Considering the sum

l
(8.17) > bt (logt)!
j=1

we see that, as t — oo, the summands must either converge to 0 or diverge to co
in absolute value. Moreover, the distinctness of the collection {wy, wa,...,w;} and
the presence of positive powers of logt ensure that this convergence or divergence
happens at distinct rates. Consequently, as ¢, — oo the divergence of even a
single summand would force the non-existence of the limit (8.11). Consequently,
the expression (8.17) converges to 0 as t — oo and so

— — 1 — 1 1=7-B ¢
(8.18) PA(f)—T}LH;OPA(tmf)—tgrfolopA(t’§)—t1i>rfolol<%:< agt' =Pl

Since ¢ was arbitrary, (8.18) must hold for all ¢ € A~ B,.. This is the only part of
the argument in which the subsequence {t,} appears.

We claim that, for all multi-indices 3 for which ag # 0, -v = Biy1 +--- +
Ba~va > 1. Indeed, fix ks = min({-y : ag # 0}),set Z, = {f : ag #0 and -y = Kk}
and define B, : RY — C by

By(&) =D asé’

BEL.

for ¢ € R% The linear independence of the monomials {¢°} ez, ensures that
B,.(¢') # 0 for some & € A71B,. Tt follows from (8.18) that lim; . pa(t, &) =
limy o0 17" B, (¢’) from which we conclude that x = 1; the hypotheses that P
has positive real part on A~1S, rules out the possibility that x > 1.

From the claim it is now evident that

(8.19) Pa) =Y agé’

By=1

for ¢ € A7'B, and

(8.20) Qa©) = > az¢’

By>1

for £ € R

It is straightforward to see that the set A~1S, intersects each coordinate axis at
exactly two antipodal points. That is, for each j = 1,2, ...d, there exists x; > 0 for
which {£+zje;} = A71S, N {ze; : z € R}. Upon evaluating Re(P4) at such points
and recalling that Re P4 > 0 on A~1S,., one sees, by the same argument given in
Step 2 of the proof of Proposition 2.2, that 1/v; is an even natural number which
cannot be greater than m. Therefore, for each j =1,2,...,d, 1/v; = 2m; > m for
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some m; € Nj. The representation (8.13) on A~! B, and the first equality in (8.15)

now follow from (8.19) (8.20) and the observation that 8-y = Z?Zl Bi/2m; =B :
2m|. Moreover,

(8.21) D = diag((2m1)7Y, (2ma2) "%, ..., (2ma)h).

Step 2. We define P4: R? — C by the right hand side of (8.13). It is clear
that D € Exp(P4) and so, to prove that Py is positive homogeneous, it suffices to
show that that R4 (&) = Re Pa(£) > 0 whenever £ # 0. To this end, let £ € RY be
non-zero and find ¢ > 0 for which tP¢ € A71S,; this can be done because {tP} is
contracting in view of (8.21). From the previous step we know that (8.13) holds
on A™1S, and thus by invoking (8.11), we find that Ra(¢) =t~ Re P4(tP¢) > 0
as claimed.

Step 3. We now show that F' € Exp(P4) and use it to conclude that N = 0.
As we will see, this assertion relies on P being originally defined via a “scaling”
limit. Indeed, for any ¢ € R? and ¢t > 0, find u > 0 for which both u=P¢ and
u~PtF¢ belong to A~'B,; this can be done because A~!'B, necessarily contains
an open neighborhood of 0. In view of (8.18),

tP4(€) = tuPa(u=P¢) = utslingo spa(s,uPg) = utslirgosQA(s_Fu_Df)

=u lim stQa(s Tt FtruPe) =u lim (st)Qa((st) Fu=Ptl¢)

§—00 (st)—

= uvli_glopA(v,u_Dth) = (uPa(u=PtFe) = Po(tF¢),

where we have used Proposition 8.1 and the fact that D € Exp(P4). Consequently
F € Exp(P4) and since P4 is a positive homogeneous polynomial, the same argu-
ment given in Step 3 of the proof of Proposition 2.2 ensures that NV = 0.

Step 4. Let K C R? be compact and note that t =K C A~ B, for sufficiently
large ¢ by virtue of Proposition 8.6. Thus by invoking (8.13), which we know to
be valid on A~'B,., we have

pa(1:€) = Pa(€)] = 1Qa(e ") ~tPat O = |t 3" aa(T)"

|B:2m|>1
< X Pt <0 3T Jage”]
[B:2m|>1 [B:2m|>1

for all ¢ € K and sufficiently large ¢ where w < 0 is independent of K. The
assertion concerning the uniform limit follows at once because ZI B:2m|>1 lag €°| is
necessarily bounded on K. /

We shall henceforth abandon using the symbol D and write
F = A7 'EBA = diag((2m1) ™", (2ma) ™Y, ..., (2mg) ") € Exp(Pa).

Lemma 8.19. Under the hypotheses of Lemma 8.18, Qa(§) — Pa(§) = o(RA())
as &€ — 0.
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Proof of Lemma 8.19. In view of Lemma 8.18,

1Qa() = Pa(©)l < > lag?|

|B:2m|>1
for all £ € R%. The desired result now follows directly from Lemma 8.9. /

We now define Pg,: RY — C by Py, = P4 o Ly-1. By virtue of our results
above, it is clear that P, is positive homogeneous with E € Exp(FP,). We have

Teo(€) =T, (&) —iag, - &+ Pey(§) = Pe, (&) — QL (€) + 0(J¢| ™)

as £ — 0. Because R¢, = Re P;; = Ra 0 L -1, it follows from Lemma 8.19 that
Pey(§) — Qey(§) = 0(Re, (€)) as & — 0. Moreover, because E is diagonalizable and
m+1 > 2m; > (min(Spec(E)))~t, [¢]mFD = o(Rg, (€)) as & — 0 by virtue of
Proposition 8.8. Therefore

PEO (5) =i, — PEO (5) + TEO (5)

where T¢, = o(Ryg,) as & — 0, thus completing the proof of the implication (¢ = a).

To finish the proof of Proposition 3.3, it remains to prove that, for any m’ > m,
% "—E
Pe,(€) = lim tQE (177¢)

for all ¢ € R? and this limit is uniform on all compact subsets of R%. Indeed, Let
K C R% be compact. By virtue of Lemma 8.18,
Pe,(€) = Pa(AT1€) = lim pa(t, A7'€)
t—o00
(8.22) = lim tQa(A™17F¢) = lim t Q™ (t~F¢)
t—00 t—o00 %o

uniformly for £ € K. Observe that for any m’ > m, there exists M > 0 for which

QT (778 —tQutF) < D tleat™ )P = D t]ea(AtF AT

m<|B|<m/’ m<|B|<m/’

D D A D DR (Gl

m<|y|<m’ m<|y|<m’

for all ¢ € R? and t > 0. Noting that |y : 2m| > 1 whenever m < |y| < m’, by
repeating the argument given in Step 4 of Lemma 8.18, we observe that

(8.23) Jim (1QF (776 — Qg (1)) =0
uniformly for £ € K. The desired result follows by combining (8.22) and (8.23). O
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