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Moment bounds for SPDEs with non-Gaussian fields
and application to the Wong-Zakai problem
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Abstract

Upon its inception the theory of regularity structures [7] allowed for the treatment
for many semilinear perturbations of the stochastic heat equation driven by space-
time white noise. When the driving noise is non-Gaussian the machinery of the
theory can still be used but must be combined with an infinite number of stochastic
estimates in order to compensate for the loss of hypercontractivity, as was done in
[12]. In this paper we obtain a more streamlined and automatic set of criteria implying
these estimates which facilitates the treatment of some other problems including
non-Gaussian noise such as some general phase coexistence models [13], [16] - as an
example we prove here a generalization of the Wong-Zakai Theorem found in [10].

Keywords: stochastic partial differential equations; regularity structures.
AMS MSC 2010: 60H15 Stochastic Partial Differential Equations.
Submitted to EJP on May 1, 2016, final version accepted on July 18, 2017.
Supersedes arXiv:1605.05683v1.

Contents

1 Introduction 2
1.1 Moment estimates for SPDE with non-Gaussian fields . . . ... ... ... 5

2 Regularity Structures 6
2.1 The Wong-Zakai regularity structure . . . . . ... ... ... ... ..... 6
2.2 Admissible models and renormalized models . . . .. ... ... ...... 8
2.3 Modeled distributions and abstract fixed point problem . .. ... ... .. 9

3 Graphical Moment Bounds 11
3.1 Assumptions on kernels associated to hyper-edges . . . . . ... ... ... 11
3.2 The entire graph with hyper-edges . . . . . . ... ... ... ... ..... 12
3.3 The elementary graphs . . . . . . . . . . . . .. .. . . .. . 16

*University of Warwick, United Kingdom.
E-mail: ajay.chandra@gmail.com

TColumbia University, United States of America.
E-mail: pkushenhao@gmail.com



Moment bounds for SPDEs with non-Gaussian fields

4 Application: Wong-Zakai theorem for non-Gaussian noise 22
4.1 Renormalization . . . . . . . . . . . .. e 22
4.2 Momentbounds . . . . . . . . . . .. e 23
4.3 Proof of the maintheorem . . . . . .. ... ... .. ... .. ........ 28

A Cumulants and Wick products 30

References 31

1 Introduction

In the paper [10] the main focus was the convergence of smooth approximations .
to the solution of the SPDE

Oy = 0%u + H(u) + G(u)é. (1.1)

Here u(t,x) is a function from R, x S to R, H,G : R — R are respectively twice and
five-times continuously differentiable and ¢ denotes space-time white noise. One can
immediately obtain a solution u to (1.1) by viewing it as an infinite dimensional It6
integral equation in time.

The fundamental obstacle to interpreting (1.1) without stochastic calculus is the
irregularity of £. The smooth approximations u. satisfy the above equation with ¢
replaced by &, := £ x o where . is a mollifier converging to a space-time delta function
as ¢ | 0. More concretely the authors of [10] set

0:(t, ) == e Po(e*t, e ),

where o : R? — R is an even, smooth, compactly supported function which integrates to
1. Let u. denote the classical solution to the equation driven by &..

Unsurprisingly, the u. do not converge to u in general. One already sees this in finite
dimensions where the Wong-Zakai Theorem [19, 20] (for more recent progress c.f. [14]
and references therein) states that smooth approximations to an SDE converge to the
Stratonovich solution to the SDE which in general differs from the It6 solution. Of course
this discrepancy can be cured by “renormalizing” the SDE by inserting a Stratonovich-It6
correction term into the mollified SDEs. The main result of [10] is the corresponding
result for the SPDE setting.

Theorem 1.1. (Hairer-Pardoux [10]) Assume that H and G are of classes C? and C®
respectively, both with bounded first derivatives. Let ¢o and &. be as above. Let u denote
the It6 solution to (1.1) with some initial condition u(0,-) € C(S*). Then there exist finite
¢ independent constants Cél),cél), and c(;) such that the following holds: If u. is the
classical solution to the random PDE

(1)

O = . + H(u.) — 6/ (u)Glu) + Glu) . 12)
where
H(u) £ H(u) — VG (u)*G(u) — PG (u)G (w) G (u) . (1.3)

with initial condition u.(0,-) = u(0,-) then for any T > 0, one has

lim sup lu(t, ) —uc(t,z)] =0,
e70 (t,2)€[0,T]x 81

in probability. For any a € (0, 1) and t > 0, the restriction of u. to [t,T] x S* converges

to u in probability for the topology of C*/>*([t,T] x S') as ¢ | 0.
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We defer exact formulae for the renormalization constants; they can be explicitly
written as integrals involving the heat kernel and p. The é term in (1.2) is exactly the It6-
Stratonovich correction term which diverges as expected - there is no notion of infinite
dimensional analog of Stratonovich integration. The definition of H(u) also involves two
finite renormalizations which are chosen so that it is precisely the It6 solution to which
the u. are converging. In fact, along the proof [10] obtains a natural notion of solution
to (1.1) which is pathwise - an analogous situation as in [15] (on rough paths) and [5]
(on evolution equations).

In [10, Remark 1.7] Hairer and Pardoux ask if an analogous statement can be proven
if one replaces the mollified space-time white noise ¢. (¢, z) with e=%/2¢(¢72t,e~'2) where
( is a non-Gaussian random field which is supported on smooth functions and satisfies a
central limit theorem. They conjectured that in addition to the renormalization seen in
the Gaussian case one would see additional terms of order e~ z.

The question of [10, Remark 1.7] is our point of departure. Let ( be stationary,
centered, generically non-Gaussian random field on R? which is almost surely continuous
and for which all cumulants! exist and are exponentially decaying?. We also assume that
¢ is normalized [ ¢(0)((z)dz = 1. Let ((*) be a random field on R x [, -] whichis a
periodization of ¢ (see Remark 1.3). We then set

Co(t,z) = e 3/2¢E (e 2t e ). (1.4)

Our result is then the following, which is proved using the theory of regularity structures
developed in [7].

Theorem 1.2. Let ( be as above and H and G be as in Theorem 1.1 and as before u be
the It solution to (1.1) started from some initial condition u(0,-) € C(S'). Then there
exist constants {Céi)}le and {céj) 1_,, all of which are independent of the parameter ¢,
such that the following holds: Suppose that u. is the classical solution to the random
PDE

B oW
Opue = 0?uc+H(u.) — %G'(uE)G(uE)

O it - e o
- glﬁG (ue) G (ue) — glﬁG (ue)G*(ue) + Glue) ¢
where
() H(u) — écg”c:’"(u)a?’(u) — 6 (W) Glu) .
- (%cg?’) +e) 6" ()G ()G () ‘

and u. is started with the initial condition u(0, -) € C(S!).
Then for every T' > 0, the family of random functions u. converges in law to the It6
solution u as ¢ | 0, with initial data ug in the space C*/*([0,T] x S'), for any o € (0, 1).

We now explictly specify the renormalization constants of appearing in the above
theorem. We write

cW=c® ®=cb ®=c¥
UReS ST e I a7
C(C?’) = C’ng 624) = C'f@j + C';@j + C';'@j

1See Appendix A for definition of cumulants.
2See Definition A.1.
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where the new constants appearing above are defined by the diagrammatic formulae

S
Il
£ N
s
.90%0
Il

Q
I
T
&
)
N

These diagrams represent integrals of various kernels. The black vertices « represent
integrated variables in R? while the single green vertex ® represents 0 € R. A blue
arrow => corresponds to the heat kernel P evaluated at the difference of its terminal
vertex and initial vertex. The lightly blue shaded regions (e.g. @ ) should be thought
of as “hyperedges”, they represent a cumulant of ( evaluated at the positions of the
vertices within the region. (See Appendix A for definition of the n-th cumulants, which
will be written as ¢,,.) For example we have

% / / dzy dzg P(za — 21)P(0 — 25)€3(21, 2, 0).
R2 JR2

Finally, the notation www - stands for a renormalized kernel. If the variables correspond-
ing to its endpoints are z; and z; then it represents the kernel

P(Zl — 22)62(2:1 — 2’2) — CQO(S(Zl — 22).

Remark 1.3. In (1.4) the field () on R x [—5, 5] where [—3, 5] is identified with
the circle of length é is said to be a periodization of (, in the same sense as in [12,
Assumption 2.1], i.e. for every sufficiently small € > 0, there exists a coupling of ¢(*) and

¢ such that for every 7' > 0 and every 6 > 0,

sup sup lim e *E|¢(t,z) — (O (t,2)]> =0. (1.8)
[t|<Te=2 |z|<(1-6)/(2¢) €0

As an example, let ; be a Poisson point process on R? x [0,1] with uniform intensity
measure, let (¢, z,a) be a continuous function bounded by e~ I*I=I#|, and set

C(to) = / ot — 5,2 — g, a)u(ds, dy, da) — u(p) . (1.9)
R2x[0,1]
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Let u®) be the periodic extension to R? x [0,1] of a Poisson point process on R x
[—1/(2¢),1/(2¢)] x [0,1] with uniform intensity measure, and

go(a)(u z,a) 4 oty z,a)P—1/4(t, )

where (¢__1/4(t, ) is a continuous function that is equal to 1 when |z| < e~'/* and 0 when
|z| > 27174, and let ((*) be as in (1.9), with y replaced by ;(*) and ¢ replaced by (=),
Then one can verify that for € small enough, (1.8) is satisfied, where the natural coupling
between ¢ and ((¢) is such that ¢ = ¢(¢) on R x [7%5’1 +em1, %5*1 — s*i]. Note that the
cumulants of ¢((¢) are allowed to have infinite range (but exponential decaying) in ¢.
Remark 1.4. The same results as Corollaries 1.10, 1.11, 1.13 in [10] (on local continuity
of the solution with respect to the initial condition in pathwise sense, sharp regularity
result for the solution etc.) can also be proved. Since the proofs follow along the same
lines, we refrain from redoing them here.

1.1 Moment estimates for SPDE with non-Gaussian fields

Much of our paper is spent developing a set of criterion for estimating moments of
certain non-Gaussian random variables which will be written as (Ilo7)(}) and defined
in Section 2. These random variables can be represented as rooted trees. Each of these
random variables is a multilinear functional of the driving noise (. and the tree describes
how to write this functional as an integral - the edges correspond to kernels, at each
leaf we have an occurrence of the driving noise, and all variables other than the root
correspond to integrated space-time variables.

Roughly speaking?, the p-th moments of this random variable can be written as a
graphical sum where one takes p copies of this tree, identifies their roots, and then sums
over all the possible ways of grouping the leaves into cumulants. For Gaussian noise only
second cumulants appear but in general we have higher order cumulants which we view
as hyperedges (edges incident to more than two vertices). We refer to this graphical
sum as a cumulant expansion.

Estimates on moments are needed to establish regularity/homogeneity of certain
random space-time processes via a generalization of the Kolmogorov continuity criterion,
the random variable we are estimating is the analog of an “increment” of the process
with the size of the increment given by a parameter \. Our primary goal is, for each p, a
bound of the type

|E[(Io7)(93)P]| S AlIP (1.10)

uniform in A € (0,1] and ¢ small where |7| is determined by the structure of the tree.
Here, for any continuous function ¢ : R — R, z = (t,x) € R?, and A > 0,

P2 (,7) EXTCp(A (T~ 1), A7 (@ — ).

For the bound (1.10) we need to estimate, for each of the larger hypergraphs appearing
in the cumulant expansion of the given moment, a complicated convolution of kernels
and cumulants.

The paper [11] developed criteria for graphs which guarantee that they satisfy the
desired upper bound. Moreover by hypercontractivity (e.g. [7, Lemma 10.5]) one has

p/2
E[(To7)(129)"] < Cy|E[(Mor)(¢5)*] "

Thus in the Gaussian case one needs (1.10) only for p = 2 which is obtained by checking
a small number of graphs.

3See [9, Section 5] for a more in depth discussion.
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When hypercontractivity is not available establishing (1.10) for every p involves
estimating infinitely many hypergraphs*. This problem was tackled in [12] where a
criterion for individual trees was given which implies that any larger graph built by
merging p copies of this tree satisfies the necessary criterion in [11]. However the
criteria of [12] requires one to do some manipulation on the trees and the larger graphs
one got after the merging: (i) cumulants had to be replaced by collections of edges and
good factors had to be distributed according to “epsilon allocation rules” and (ii) so
called “positively - renormalized” edges had to be estimated by hand on a case by case
basis leading to more trees to check.

In this paper we provide streamlined criteria for these trees, proving the sufficiency
of these criterion will also be easier. By working with hyperedges issue (i) is avoided -
this makes proving very general results like [16] much easier. Handling the positively-
renormalized edges automatically deals with issue (ii) which makes the treatment of the
Wong-Zakai problem much easier.

In Section 2 we fix our regularity structures and formulate the abstract fixed point
problem for the Wong-Zakai equation in a space of modeled distributions. In Section 3
we prove Theorem 3.19 which states that certain criteria on the graphs yield the desired
moment bounds. In Section 4 we apply the results obtained in Section 3 to the Wong-
Zakai problem and prove Theorem 1.2.

2 Regularity Structures

The moment estimates we prove will be used as input for the theory of regularity
structures developed in [7] (see also [6]). This machinery allows us to go from these
estimates to the construction of an actual solution to the SPDE in question along with
convergence of regularized and renormalized solutions to this limiting solution.

We refer readers looking for a detailed exposition to [8], [3][Ch. 15], and [1]; our
description of the theory will be quite brief. The most basic object in the theory is a
regularity structure which consists of a triple (4, 7,G). The set A C R is a list of the
possible homogeneities we allow in our expansions; it is assumed to be locally finite and
bounded below. 7 is a graded vector space 7 = ®,ca 7T, where each 7, is a Banach space
with a distinguished basis. G is a group of continuous linear transformations on 7 with
the property that foralla € A, 7 € T,,and I' € G one has (I'T—7) € ®p<oTp. A regularity
structure is used to describe “jets of abstract Taylor expansions”; the vector space 7 is
the target space for the jets and the structure group G includes transformations on the
target space corresponding to change of base-point operations.

2.1 The Wong-Zakai regularity structure

The specific regularity structure we use for our Wong-Zakai type model is exactly the
same as the one used in [10]; in particular 7 is spanned by a set of indeterminants 7 € W,
each carrying a homogeneity |7|. We first define a a larger class of indeterminants and
then take W as an appropriate subset.

We start with the indeterminants 1, X, and X; which are the abstract counterparts
of 1, ¢, and z - since our scaling is parabolic we set |1| = 0, |X,| = 2, and | X;| = 1. Given
a multi-index & = (ko, k1) € N* we write X* as a shorthand for X;°X'*. For such k we
set |k|s = 2k + k1 so | X*| = |k|,. We also write T for the commutative algebra generated
by 1, Xy, and X1, the set of abstract polynomials.

This set also carries a commutative, multiplicative structure (for which 1 will act as a
unit). Given two indeterminants 7, 7 we enforce that |77| = |7| + |T|.

40ne actually only needs (1.10) bound for p large enough to facilitate a Borel-Cantelli argument - but if
p > 10 this is already daunting.

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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We also introduce the indeterminant = which represents the driving noise £, we set
|Z| = —3/2 — x where & is a fixed, small positive parameter °>. We also introduce an
operator Z(-) on indeterminants, enforcing that Z(X*) vanish for any multi-index k; if
Z(7) # 0 we enforce |Z(7)| = |7| + 2.

Define U to be the smallest collection of indeterminants which contains 1, X, and
X, and that satisfies the conditions (i) 7 e Y = Z(7) € U, (i) T e U = Z(=7) € U, and
(iii) 7,7 € U — 77 € U. Finally we set

W:{TEUU{TE:TGZ/{}:|T|§;}. (2.1)

A is given by the set of homogeneities that appear in VW which by [7, Lemma 8.10] is
bounded below and locally finite, also for each a € A the vector space 7, spanned by
indeterminants of homogeneity « in W is finite dimensional.

Often we write the elements of WV as blue symbolic trees with Z = 0. Each occurrence
of the abstract integration map 7 is then denoted by a downward straight line. The
product 7 and 7 is represented by attaching the trees for 7 and 7 at the root. For example,
we have Z72%(Z) = <. Note that we never see an expression of the form =2 in WW. We also
use the shorthand =X; = ®. The elements in V¥V with negative homogeneities are:

3 1
ol = =5 =k %l =—1-2x, | =[] =53,

ol=—5 - [BI=1%=1%

Having defined the 7 of the Wong-Zakai regularity structure, now we turn to defining
a structure group G. To do this we introduce another set of indeterminants denoted
W, and denote by 7, the commutative algebra they generate. The construction of the
structure group can be summarized as follows: there will be a single “abstract” matrix
of indeterminants from 7, which acts on 7 - all the individual elements of G arise by
specifying an appropriate map f € 7 where 7 is the set of algebra homomorphisms
from 7 to R.
Following [10] we set

(2.2)

ol = —dr, || =[%| = —2k.

Wi & {Xo, X1} U{Te(r) : 7€ W\ T, k € N* with [k]s < 7] +2}.

Here the operators J;(-) on W, are analogous to Z[-] on W. We use the convention that
Ji(r) Z 0if |7] < =2 + [k]s.
The abstract matrix described earlier will be map A : 7 — 7 ® 7. which we now

define recursively on 7. The base cases are given by

def

A1Z1®1, AZZEZ®1, and AX;ZX;®1+1®X;.
We then recursively set

def def Xl Xk
A(r7) ZA(r)-A(r) and  AZ(T) 2 (Z@I)AT+ Y Zo @ S Tigw(7)-

1,kEN?

The product on the RHS of the first definition is component-wise. Also note that the sum
in the second definition only has finitely many non-vanishing terms.
Given any f € 7" we define a linear transformation I'y : 7+ T by setting

7= (Id® f)AT. (2.3)

Sfixing x € (0,1/10) suffices

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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We then define G to be the set of all linear transformations of the above form. The only
non-trivial thing is to check is that G forms a group. This is done by equipping 75 with
a Hopf-algebra structure for which A serves as a comodule coproduct - we refer the
curious reader to [7, Section 8].

2.2 Admissible models and renormalized models

It is convenient to replace the heat kernel P with a truncation K : R? \ {0} — R with
the following properties: (i) K (z) vanishes for |z| > 1, (ii) for |z| < 1/2, K(2) = P(z), (iii)
K is smooth on R? \ {0}, and (iv) [p. dz K(2)2* = 0 for any multi-index & with |k|s < 3.

The existence of such a K is not hard to show, see [7, Section 5], and we consider
it fixed for the rest of the paper. We now have everything in place to define the set of
admissible models .# on the Wong-Zakai regularity structure.

A model is a pair of maps (I, T') with I : R® — £(7,S’(R%)) which we write z + II,
and T' : R? x R? G which we write (z,2) — T.;. Here £(T,S'(R?)) is the space of
linear maps from 7 into the space of tempered distributions S’(R?). These maps are
required to satisfy the algebraic conditions

I.T.: =I:; and TI.:[':s =T.. forany zz, 2 € R?. (2.4)

Let B be the set of all ¢ € S§’(R?) supported on the ball of radius 1 and with |D¥¢| < 1
where D denoted differentiation and k € N? with |k|, < 2. We also require that models
satisfy the analytic bounds

sup (Hﬂ)((pi‘)’ <A and  sup |Tasrle Sz — 21717 (2.5)
zZER zZ,ZER
2H#Z

for each compact set & C R?, uniformly over p € B, A € (0,1, 7 € W and « € A. In the
second bound ||7||, denotes the 7,-norm of the 7, component of 7.

The set of models can be equipped with a family of pseudometrics indexed by compact
sets & C R? - for two models Z = (TI,T') and Z = (II, T') one sets || Z; Z||  to the maximum
of two optimal constants for each of the the bounds of (2.5) where in the first and second
bound the individual objects are replaced by differences (II, — I1,) and (T.; — [.;),
respectively. Together the pseudometrics ||-; -]« make the space of models a non-linear
metric-space 6.

To formulate the condition of admissibility it is convenient to switch to parameterizing
models by pairs of maps (II, f) where II is as before and f : R? — T which we write
z+ f,. The correspondance between f’s and I['s is given by I',; = I‘;:Ffz, here we use
the notation of (2.3). It is straightforward to verify that (II, ') constructed in such a way
automatically satisfies condition (2.4).

The notion of admissibility can then be stated as follows.

Definition 2.1. A pair of maps (11, f) as above is said to be admissible on (7,G) if the
following conditions hold for all z,z € Rd, and for any multi-index k,

(IL1)(2) =1, (LX*7)(2) = (2 - 2)*(L7)(2), f(X*)=(-2)"
and for every T € W with Z(1) € W,

Jo(TkT) = = gl <|r|+2} X /R2 D*K(z — z)(Il.7)(d2),

5) — S ) / (2 — Z)k
(II,Z7)(2) K(z -2 (II,7)(d") + g 1 fo(Tie).
R2 © .

Sthe non-linearity coming from the constraint (2.4)

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
Page 8/32



Moment bounds for SPDEs with non-Gaussian fields

We remark that if the pair (II, f) is admissible and II satisfies the first bound of (2.5)
then the I'’s built from f satisfy the second and (TI, f) determines a model. We denote by
A the complete metric space of admissible models.

We now describe one way to lift a continuous space-time function 1 to a corresponding
admissible model Z,, = (II, f). The algebraic constraints placed on admissible models
are quite strong - if we define

(IL.= and (IL77)(2)  (IL7)(2) - (IL.7)(%) (2.6)

1
~
—
\_l

IIg
<
—

N3]
~—

then one can use the identities of Definition 2.1 to define the rest of the action of (I, f).
We call the model Z, built this way the canonical model built from ¢ - we use the
shorthand Z. = (IT¢, f*) = Z,. where (. is our rescaled random field.

A defect of the family of models Z. is that they do not converge to a limiting model
in ./ as ¢ | 0, the key difficulties coming from symbols 7 which correspond to products
of insufficiently regular space-time processes. We will have to modify this family to get
a new collection of renormalized models Z. = (IZIE7 fg) - in general these new models
will not satisfy the second identity of (2.6) - as an example we will have II% (Z[Z]=2)(2)

IE(Z[E) (Z2)IE(E)(2) — Ce=1, without this subtraction the RHS would not converge to a
meaningful object.

It is a fairly non-trivial task to determine how to deform the product property of a
canonical model and still be left with an admissible model. In the theory of regularity
structures this type of deformation of the product property is encoded via the action of a
linear map M : Ty — 7Ty for an appropriate subset 7; C 7. One then has the following
theorem, which is combination of Prop. 8.36, Def. 8.41, Theorem 8.44 in [7] and Theorem
B.1 of [11].

Theorem 2.2. Let 7y C T satisfy the properties that ®,<o7To C To and

ATy C To @ Alg(To)

where Alg(7y) is the subalgebra of T, spanned by terms of the form X* [[, J;,(r;) with
T; € 76

Let M : To — Ty be a linear map that commutes with both the application of Z[-| and
multiplication by X*. Then there exist a unique linear, multiplicative map M : To—=Ts
fixing abstract polynomials and a unique linear map AM : T +— T ® T, such that one has

MJy=MTr@ DAM and  (1© M)(A® )AM = (M & M)A.

Suppose furthermore that the map AM is upper triangular, that is for every o € A and
7 € T, one has AM7 € (©p>aTa) ® Ty. Then if (11, f) is an admissible model then so is
the renormalized model (ITM | fM) given by

HMd:ef(Hz(X)fz)A]VI and fg]d:#fzoM~

z

Furthemore, the family of M satisfying the above properties form a group R under
composition.

Later, we will prescribe renormalization maps M€, sketch how one checks the upper-
triangle condition for AM°, and set I1° = (115 @ f¢)AM" and f¢ = f. o M. Returning to
our previous example, one will have AM % = M% ® 1 and M% =% — %1,

2.3 Modeled distributions and abstract fixed point problem

Given an admissible model Z, one can then start formulating abstract fixed point
problems in spaces of modelled distributions D"

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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Definition 2.3. Given an admissible model Z € M and v,n € R we define the space of
modelled distributions D" to be the set of all functions U : R? — @a<~Ta such that for
every compact set & C R? one has

1U(2)lla [U(2) = T2:U(2)|la

—su su =+ su su ~
sen e [tz T 2 o ey (I A EN@72]z — 2]

Here R = {(z,z) € 82 |z — 2| < 1A LVE ATE])

One of the main theorems in [7] says that there exists a reconstruction operator R
mapping the elements of D' to actual functions or distributions. In the space D77 one
can define the notions of multiplication and composition with smooth functions. It is also
possible to construct a linear operator P on this space which represents the space-time
convolution by the heat kernel, namely one has RPU = P x« RU where x is space-time
convolution. These constructions allow us to formulate and solve abstract fixed point
problems in the space D", and then apply the operator R on the abstract solution,
which yields an actual function or distribution. For instance, regarding the equation
(1.1), the abstract fixed point problem in the space D77 is formulated as follows:

< Q. (2.7)

U =P((HU)+GU)ZE)1s0) + Pug , (2.8)

where Pug is understood as naturally lifted to the abstract polynomials 7. We actually
consider this fixed point problem in a subspace D}, C D" consisting of functions that
take values in the span of U/ rather than W (see (2.1)).

The functions H, G appearing in (2.8) are understood as follows. Given U € D,;"
with U(z) = u(z)1 + U(z) where U(z) takes values in @_., 7. and a smooth function
G: R — R, we write

a>0

k ul\z ~
(G = Gl + Y D gy 2.9

k>1

with the understanding that the product between any number of terms such that their
homogeneity adds up to v or more vanishes. Another property we will use is that
PU —ZU € T, so any solution U to (2.8) satisfies

Uz) - Z(H(U(2)) + GU(2))E) € T, (2.10)

for all points z = (t,z) with ¢t € (0,T).
It follows from (2.10) and (2.9) that if we consider it as an element of D" with ~

greater than, but sufficiently close to, 3 then U is of the form

U=ul+G(u )CK+G’ Glu) < +u' X, (2.11)
—I—Gl( %_i_ G//UGQ Q#D_"_G/ e

for some functions u and v’. The symbols appearing here are introduced in Subsection 2.1.
In D for ~" > 0 sufficiently close to 0 we have the identity

G(U)E = G(u)o+ G (u)G(u )%+G’( u) B+ G (u)
+ %G”(u)GQ(u) o + fG’”(u)G (u) o + G (u)*Glu) &
(2.12)
—l—%G”( QgO—I-GN )GZ( )@)
+ G (u)*u % + G"(u)G(u)u’ % .
This expansion is needed to derive the renormalized equations (1.5) and (1.6).
EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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3 Graphical Moment Bounds

As discussed earlier the moments we need to bound can be represented by sums of
graphs with hyperedges representing higher cumulants of the non-Gaussian noise. In
this section we prove Theorem 3.19 which states that Assumption 3.17 for a given tree
implies the desired bounds for every graph that appears in the aforementioned sum for
the moment of that tree. We do not specialize to (1.1) and instead work in the general
setting of d-dimensional space R? with fixed scaling s € N¢.

3.1 Assumptions on kernels associated to hyper-edges

We start by recalling the notion of labeled coalescence trees, which will be useful for
both the definition of norms on the kernels that are functions of more than two variables,
and the proof to Theorem 3.7. A labeled coalescence tree (7 ¢) is a rooted binary tree
with every inner node v associated with a natural number ¢, which respects the partial
order of the nodes, namely, ¢,, > ¢,, whenever v > w (i.e. w belongs to the shortest path
connecting v to the root).

We denote by 7, the set of labeled coalescence trees with precisely n leaves. Given
(T,0) € T, we define D(T, /) C (RY)" to be the set of all tuples (z,...,z,) such that for
any 1 <i < j <n one has |z; — z;| ~ 27 %virv; where v1,...,V, denote the leaves of T'.

Definition 3.1. For any a > 0 we define the following quantities and any function k,, of
n > 2 space-time points, we define

Ionlle 2 sup_ [27%% sup e ma)l]
(T)ET (1,...,20 ) ED(T,L)

Here ¢ denotes the root of the tree (T, ().
Definition 3.2. Given any a > 0 and p € N, and a function k5 : R\ {0} — R set

l52]] e & (/ dx \/«ig(x)\) Vv sup [2_(6““]“‘5)@@ sup |ka(zy — xg)\] .
R4 (Td,Z)eTg (z1,79))€D(T,L)
keEN?, |k|s<p

Remark 3.3. Note that the definition of | - ||, given by Definition 3.2 dominates that
given [7, Definition 10.12] for kernels of homogeneity a. The extra integral included in
Definition 3.1 is needed in order to handle renormalizations that arise when o > |s|.

Lemma 3.4. Suppose the family of cumulants {€, } ,en are exponentially decaying as in
Definition A.1. Then for each n € N one has

1€ )10 S 00 (3.1)

, where the {Q;(f)}neN are rescaled cumulants.

uniform ine € (0,1]) when o = n/2 X |s

Proof. Without loss of generality suppose (A.1) with § = e~!. Fix n, and suppose we are
given Z = (z1,...,2,) € (R?)™ - we can assume that diam(zy, ..., z,) = |21 — 22|. It follows
that we have

€Oz, 20| S gnlsl/2g=e 1zl

We want to show that if Z € D(T, ¢) then the RHS above is bounded by some constant
times 274(0)ls1/2_ 1f 9-4(0) < ¢ then this is immediate (just bound the exponential factor by
one), so suppose instead that 27¢(¢) > ¢, Then since |z; — 2| ~ 27¢(¢) we have

€ (21,0 2n)| S &IV g pmnlel/2 o (em1gm e nel/2
where we used the inequality e ¢ < t="Is1/2 for ¢ > 1. Thus the claim follows. O
EJP 22 (2017), paper 68. http://www.imstat.org/ejp/

Page 11/32



Moment bounds for SPDEs with non-Gaussian fields

3.2 The entire graph with hyper-edges

We now state a modified version of the bound on generalized convolutions found in
[11]. The difference here is that we allow for the presence of the hyperedges described
above. The proof of our version of the bound essentially follows in the same way as that
found in [11], so instead of giving a full proof here we only list the ways in which the
proof needs to be modified.

The basic setting for these proofs is encoding the key properties of our generalized
convolution as a (decorated) finite graph G = (V,£). V as before is the vertex set, which
includes a subset of distinguished vertices V,, one of which we call 0. The set £ can
be decomposed as &; LI &, (U meaning disjoint union) where &, is the set of normal
directed edges (denoted by ordered pairs (e_, e, ) with e_,e; € V) and &, is the set of
hyper-edges (subsets e C V with |e| > 3) 7.

We make further assumptions on the set £ which we list below.

» For any distinct e1,es € &, one has e; Nes = @.
» For any e € & one has |[eN (Uéesh é)\ <1
e Foralle € &, one hasenNV, = @.
The edges e € £ are also decorated with labels a.,r. where a. € R and r. € Z. We
now list assumptions we make on these labels.
(a) For every e € &, a. = |e||s|/2 and r. = 0.
(b) Ifec &, ec &, andene# @, thenr, <Oandenée={e_}. 8
The edges e € & are associated with kernels K, which are smooth functions on
R? x R?\ {0} and satisfy || K||s, , < oo for any p > 0. The edges e € &, are associated
with functions . on (R%)!¢l with ||s.|.., < co where ||.||4, is defined in Definition 3.1.

We will write k. (e) « Ke(1,...,2)e) if e = {®1,...,7),}. For edges e € & one also has
renormalized kernels K| . as follows. If r. < 0 then define the distribution

:/K@(x)@(x)f > ‘%TD’“ )dw+ > e.ka 0 32

|kla<|rel [kls <|rel

where {I 1} k|, <|r.| iS@ collection of real numbers, and the distributional “kernel” K, acts

def

on smooth ¢ on R? x RY by K. () = 1 [ #K.(p.)dz where ¢.(2) = ((2+2)/2, (2 — 2)/2).
For r. > 0, we define

~ LL’j .
Ke(te_ ,we,) = Ke(xe, —xe )= Y %D-ﬂKe(—xL) . (3.3)

3]s <re

To lighten notation we assume that the k. are always symmetric functions of their
arguments. With these notations the key quantity of interest is as follows.

I, K, 1) = /R Il Ke@esze,) [T rele) I er(@o)de, 34

O ects e€&y, veV,\{0}

where z, € R? is the point corresponding to the vertex v € V.

7We sometimes use the term edge to refer to any element of £, not just the elements of &s.
8This requirement allows us to ensure that we never need estimates on derivatives of the kernels associated
to our hyperedges.

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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Forany V C V, the subsets £7(V) and £+(V) of £ are defined in the same way as in [11],
namely, £T(V) ={ec & :enV=e_&r.>0}and &Y (V) ={e € & : enV =e; & 1. > 0},
in particular £T(V), £4(V) C & by our assumption on the label .. We also set

EWV)E{ecE:ecV),and EV)E{ec: enV #P}. (3.5)
We use the shorthands r} = (r. vV 0) and r; = —(r. A 0). We now state our main
assumptions on the labels (a., 7¢)ces-
Assumption 3.5. The labelled graph (V, £) satisfies the following properties.
1. For every edge e € &, one has a. —r, < |s|.

2. For every subset V C V), of cardinality at least 3, one has
> ac<ls|(IVI-1). (A.2)

ec& (V)

3. For every subset V C V containing 0 and of cardinality at least 2, one has

Sooact Y (aetre—1— > me<[s|(V|-1). (A.3)

e€& (V) ecET(V) e€EL(V)

4. For every non-empty subsetV C V' \ V,, one has the bounds

Z ae + Z Te — Z (re — 1) > |s| V] . (A.4)

e€E(WN\EH(V) e€ET(V) ecEL(V)
Remark 3.6. The second assumption above is automatic for V = e € &, since condition
(A.2) then asks that |s||V|/2 < |s| (]V| — 1) which follows from |e| = |V| > 3.
The main result in this subsection is the following.
Theorem 3.7. Under Assumption 3.5 we have the bound

|IG(50>\,K, k)| S A H [ Kella:p H [[Kella
ecésy eeéy,

(3.6)

e

where o = [s||[V\Vi| =" ¢ ae, A € (0,1], p = max{|r.| : e € £} +1, and the proportionality
constant only depends on the structure of G and the labels r,.

Multiscale expansion

The proof of Theorem 3.7 is by a multiscale analysis implemented by a scale decomposi-
tion of all kernels. For e € & the kernels Ke are decomposed into an infinite collection
of kernels R’é“) with n € N? justasin[11, Lemma A.4,A.5]. We remark that as in [11],
for an edge e € & without any kernel K, associated, the kernel K, én) is still defined and
we set (ae,r.) = (0,0).

We also implement a multiscale decomposition for the k. as follows.
Definition 3.8. Given ¢ = {v1,...,v|¢} € &, let me

n, = {n;;hicicj<pe € (N?)zlllel =D

where n; ; = ny,, ,,; € N°. We define k) as follows. We set k(™) = 0 unless n; ; =
(my,5,0,0) for every i < j; in the latter case, we set
K (@, Ty ) E Re(@oys s oy ) [[ O (0, = 2,) (3.7)
i#]

where N = |e], U(") js the cutoff function supported in the annulus of radius ~ 2~ with
k-th derivative bounded by 2¥s", and 3~ ¥ = 1.

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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We can then decompose our generalized convolution as

erkon) =3 [ TR e TE@ T erde

ec&s ecéy ’L)GV*\{(]}

Asin [11] for A € (0, 1], let Vy be the set of n such that 27/l < X for every e = (0, v)
with v € V, \ {0}. Since ¢, can be viewed as a kernel with a = 0 and norm being A%/, it
suffices for the proof of Theorem 3.7 to show

|I>C\:(Kv k)| S A H [ Kellacp H l[Kella. (3.8)
ecés ec&y
where a = |s|[Vo| — 3, ce ac and I$ (K, k) = Y cn, I ¢ (K, k) with
M9 (K, k) :/ IT &&= I &) da. (3.9)
(RH)Vo ecésy eely,

Multiscale clustering and coalescence trees

As in [11] one can associate a coalescence tree (7', ¢) € T (V) to any collection of vertex
positions {z, },ey, with z, € R? via a coalescing process. For any two nodes u, v of T,
u A v denotes the common ancestor of u,v. For any edge e € £ of the graph (may be
hyperedge), ey is the common ancestor of all the leaves for the points in e, and ey is the
immediate ancestor of e;.

Given a labelled tree (7,¢) € T(V) and a constant ¢ > 0, we define the set N (T, ()
of functions n : V? — N? as in [11] with the additional constraint that for every e € &,
and every {v,w} C e we enforce n(, ,,) = (m,0,0) with |m — lyn,| < c. If {v,w} ¢ & and
{v,w} ¢ efor all e € &, then the set (T, /) imposes no requirement on n,, ,,).

Lemma 3.9. There exists ¢ > 0 such that the following holds: for every n with the
property that integral in (3.9) is non-vanishing, there exists an element (T,¢) € T (V)
withn € N(T,?).

Proof. The only difference in our setting versus that of [11, Lemma A.9] are the additional
constraints imposed by the requiring the support of (™) to be non-empty for every
e € &,, however the argument remains exactly the same. O

Lemma 3.9 allows us to bound Z{ by a sum over labelled trees:

ZHE RS > IIOE, k)

(T, )ETA(V) neN(T,L)

) (3.10)

where 7,(V) C T(V) is the set of coalescence trees such that 27“» < X for any
v,w € V. As in [11], when one wants to implement negative renormalizations to get a
better (convergent) bound on the contribution from certain problematic labeled trees
(T, ¢) € TA(V) the procedure is to replace the integrand appearing in (3.9) with a cleverly
chosen function £ () (see below) which satisfies supp K* C D(T, /) and integrates to
the same value. We then write

|I)?(Kv ’i)| < Z ( H 2_6’”|5‘> sup Sup|l€“7T(x)

(T0)ETA(V) wveTe neN(Tt) =

’

where T° is the set of inner nodes of T'.

In [11] the key criterion used to get the bound (3.8) is the following lemma. The
distinguished node v, in this lemma will correspond to the internal node of 7" which is
first common ancestor of the leaves V..

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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Lemma 3.10. ([11, Lemma A.10]) Given a coalescence tree I’ with a fixed distinguished
node v,, and the set of labelings denoted by N (T) satisfying 2~%»~ < ), together with a
functionn : T° — R, we write

o= Y Iz

neN (T) veT?
Furthermore suppose that the two following conditions on n hold:

1. Foreveryu € T°, one has ), -, n(v) > 0.
2. For every u € T° such that u < v,, one has }_,, n(v) <0.

Then it follows that one has Ty (n) < A" uniform for X € (0, 1] where || > were N(V).

Since Lemma 3.10 is a result only about coalescence trees, and has nothing to do
with the graph (), &), we do not need to re-prove this lemma.

The goal is to show that Assumption 3.5 implies that for any labeled tree (7', ¢) € T, (V)
we can find an n : T° — R such that: (i) the bound

R 5 I 27
veT°
holds uniform in n € N(T,¢) and (ii) the above function 7 satisfies the two conditions in
Lemma 3.10.

Definition of n and proof of the theorem

As in [11] let A~ C & be the subset of edges e with 7. < 0 such that ey only has two
descendants e_ and e, in the tree 7. Given any edge ¢ = (e_,ey) and any r > 0, we
define an operator #." acting on sufficiently smooth functions V: R” — R by
, (Tey, — Te_ )k
(#V)(@) = V(@)= Y —=— = (DL V)(P.(a)

|kls<r

where D, is differentiation with respect to the coordinate z., and (Pe(:v))v = x, if
v# ey and (P.(z)), = x._ if v = e, (in other words it turns z., to z._).
We replace the integrand in (3.10) by

Ko@) = (2 o (TT &8 T ) @) [T K8 e e,

e€&\A~ e€&p e€c A~

where A~ = {e("), ... e}, By our assumption (see assumption (b) in the beginning of
this subsection), if e € A~ intersects a hyper-edge, then the intersection is the single
vertex e_. Therefore the operator %" leaves né"e) unchanged, which is very important
in the following proofs.

Define
i(v) = |s| + Y fie(v) , (3.11)
ec&
7e(v) = Ne(v) + [releca- (Le, (v) — 1, (v))
where

Ue(v) = _a€1€¢ ('U) +Te (1e+/\0(v) - ]-eT (v))]-re>0,e+/\0>e¢
+ (1 —Te — ae)<1e,/\0(v) - ]-eT (v))lre>0,e,/\0>eT .

Although the definition looks the same as in [11], the e € £ here may be a hyper-edge,

and in the case e € &, we have 7.(v) = —3]s||e|1, (v). In other words for a hyper-edge
e={v1,...,v,}, we add a weight of & = |s|n/2 to the first common ancestor of vy, ..., v,.
EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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Lemma 3.11. The functions K™ satisfy the bound

( H 2_1{"'5‘) sup Sup|/€(n)($)| N H 2~ tiv) (3.12)
veTo neN(T) = veT®

uniform inn € N (T, 0).

Proof. Since the operator %" leaves ffén“) unchanged, the functions K™ can be factored

as
) _ ( 1 &= ] Hgna) ey (3.13)

e€A— ecép

and the last factor here is

SRISERY /(W (TI 25 ) ( I1 &) T @<y @14

kE€OA- e€A- ed A- e€A-

We refer to [11, Lemma A.16] for the precise definition of the notations 9A~, x|y and
Qk-¢(dy,) appearing above, but only remark that 1€§“) and the first product on the right
hand side of (3.13) can both be bounded as in [11] by the right hand side of (3.12) if 7j(v)
were defined as in (3.11) with ) _. replaced by ) .. . By the multiplicative structure
of the second factor, it remains to show that for each e € &,

~ _ Lislle
sup |I€gne)(.’b)| 5 H 2—@”%(1)) _ 2745Tne(6¢) _ (QZET)leH | ]

" d
z€R veT°

This follows immediately from Definitions 3.1 and 3.8. Note that the cut-off functions
U(mij) in (3.7) impose that the tree (T, £) over the |e| vertices of e induced from the tree
(T, ¢) has precisely e4 as its root. O

The proof of Theorem 3.7 is finished with the following lemma.

Lemma 3.12. Foreach T € T (V) the map 7 : T° — R as given in (3.11) satisfies the two
conditions of Lemma 3.10 and one also has [ij| = |s| x (V] = 1) = X.ce(v) e

Proof. The proof of [11][Lemma A.19] applies to our situation verbatim so we just give a
sketch here. Fix v € T°, we write L, C V for the set of leaves which are descendants of
vinT.

When one calculates ) ., 7(v) the result takes three different forms. If L, = e for
some e with 7, < 0 then it takes the value |s| — a. + 7.. Otherwise, the value depends
on whether 0 ¢ L, or 0 € L, - in the former case the value of the sum is given by
the difference of the righthand and lefthand sides of (A.2) of Assumption 3.5 while in
the latter it is given by the difference of the righthand and lefthand sides of (A.3) of
Assumption 3.5 - in both cases one takes V = L.

On the other hand, if v < v, then }_ - 7(v) is given by the difference of the righthand
and lefthand sides of (A.4) with V =V \ L,. O

3.3 The elementary graphs

In this subsection we will show that Assumption 3.17 imposed on an “elementary
graph” will imply that Assumption 3.5 holds for any (much larger) graph constructed
from Wick contracting the elementary graph. Basically the graphs showing in the
pictures in Section 4 are all examples of elementary graphs.

Definition 3.13. An elementary graph H is a connected graph labelled with (a.,r.) for
each edge e as in Subsection 3.2 above, with only one special non-zero vertex v,, namely
H, = {0,v,}. Additionally there is a unique distinguished edge e, = {0,v,} attached

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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to 0 - other edges may also connect to 0 but they are not called distinguished edges.
The set Hy = H \ {0} can be decomposed as a union of two disjoint subsets of vertices
Hy = H., U H;,, which we call external and internal vertices, respectively.

We also enforce that deg(v) = 1 for every v € H., and deg(v) > 2 for every v € H;y,.
Any edge e with e N H., # ¢ will be called an“external edge”. Edges e¢ # e, which are
not external edges are called “internal edges”. The unique internal vertex connected to
an external vertex v will be denoted i(v). We require that v, € H;,, and that for every
external edge e one has a. = |s|. ® We also enforce that for all edges e with |e| = 2 one
has a. < 2|s|.

We can construct graphs V by Wick contracting several copies of H, similarly as in
[12], except that we now build hyper-edges over external vertices instead of identifying
them. For a set D we denote by P(D) the set of partitions of D.

Definition 3.14. Given a set A and an integerp > 1, let {A(i)}]i”:1 be p copies of A and
let D be their p-fold disjoint union - that is D = U?_ A®). For = € P(D) we say that

7 € Pyw(D; A,p) C P(D)

if for every B € w, one cannot find 1 < i < p such that B C AW In other words, we
enforce that every block of the partition m must contain elements from at least two
different copies of A. In particular, one must have |B| > 1.

Definition 3.15. Suppose that we are given an elementary graph H and an integer
p>1. Forl <i<plet H("') be a copy of the graph H. Suppose that we are also given a
partition w € Pw(uleHé;); H..,p). From H, p, and m we will construct a labeled graph
G = (U, &) which will be called a p-fold Wick contraction of H.

To define the vertex set U we first start with LI?ZIH(") and then identify all the p
copies of the distinguished vertex 0. The edge set is given by

EU) (U, Eo(H) LEW),  where &,U) <

As in the last section we have the decomposition E(U) = E(U) U EL(U).

Each edge e € £(U) is naturally associated with a label (a.,r.), which is (|s|, —1) if
ee€ & U)NEWU), or(le||s|/2,0) ife € E.(U)NEL(U), or otherwise inherits the label (a.,r.)
from H. We also set Uy = U \ {0} and U, C U to be given by the set I_IleH,Ei) with all the

copies of 0 identified.

While we have defined enough structure to formulate Assumption 3.5 for G, it turns
out that this labeled graph does not quite satisfy this assumption in general; the second
inequality will be violated whenever one has a block B = {u,v} in 7 of cardinality 2.
Pictorially one then has

i(u) i(v) (3.15)

where as before, for an external vertex w € He(;) we denote by i(w) the unique element
of Hi(:L) which is connected to w by an edge of &(H®). In this scenario a subset
V C {u,v,i(u),i(v)} with |[V| > 2 is called a bad chain for G.

The outer two edges of (3.15) each carry a label (|s|, —1). While they are divergent
by power counting we expect them to be integrable since they represent approximate

identities. The solution is to perform the integration of vertices u and v before we

91n practice one can always attach a new edge with label |s| representing the Dirac function to an external
vertex to ensure this assumption holds.

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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perform our multiscale analysis. Pictorially we replace (3.15) by

which carries a label (|s|, —1).

Definition 3.16. Given a a partition 7 € qu,(uleHé?; H..,p) we define a labeled graph
G = (V,&'(V)) which we call a reduced p-fold Wick contraction of H. Let G = (U,E(U))
denote the corresponding non-reduced p-fold Wick contraction as in Definition 3.15.
G’ represents the reduced graph obtained after we have integrated out the following
variables 1°

Uem= || B
BennN&(U)

The vertex set is given by V = U \ U,cm, while the edge set is given by
EV) = {e e W &(HD) s eNUpem = $} UELV),
where £/(V) %(m\ &) U {{i(w),i(v)} : {u.v} € TN EW)).

As before, we write £'(V) = E5(V) U &, (V). The edges of E/(V) N E5(V) are given the
label (|s|, —1). Since £'(V) \ [EL(V) N &E5(V)] C E(U) we can just let all the other edges
inherit their labeling from G.

Finally we let V, = V \ {0} and V. = U, and also define a retraction mapt:U — V
associated to G given by

«(a) der {z(a) ifa € Upem,

a otherwise .

We now state our counterpart of Assumption 3.5 for the elementary graphs H. For
various sets of edges we recall the notation (3.5).

Assumption 3.17. The labelled graph (H, £) satisfies the following properties.
1. For every edge e € &, one has a. —r, < |s| where r, = —(r. A0).
2. For every subset H C Hy of cardinality at least 3, one has

> e <ol (1Al + 5 (Heel =1 -1, )) - (H2)
e€&(H)

3. For every subset H C H containing 0 and of cardinality at least 2, one has

3 ac+t Z (ac+re—1)— > re<|5|(|Hm|+%|Hw|). (H.3)

e€&o(H) ecET(H ecEL(H)

4. For every non-empty subset H C H \ H,, one has the bounds

Z Ge + Z Te = Z <r5 - 1) > |5| ('Hln‘ + %‘Hemo . (H4)

e€E(H)\EY(H) ecET(H) ecEL(H)

Our goal is to show that Assumption 3.17 on an elementary graph H will imply
assumptions 3.5 for any reduced p-fold Wick contraction built from H. It is more
convenient to instead prove a weaker version of Assumption 3.5 for the corresponding
non-reduced Wick contraction. We have the following lemma which is a straightforward
consequence of our definitions.

101n plain words, Uyrem is the set of vertices like u and v in (3.15) for which we want to remove from the
vertex set.

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
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Lemma 3.18. Let H be an elementary graph, G = (U,E(U)) be a p-fold Wick contraction
of H, and G' = (V,&'(V)) be the corresponding reduced p-fold Wick contraction. Suppose
that G satisfies items 1,3, and 4 of Assumption 3.5 and that Eq. (A.2) holds for every
subset U C Uy of cardinality at least 3 which is not a bad chain. Then the graph G’
satisfies Assumption 3.5.

Proof. The fact that G’ will satisfy item 1 is quite clear so we focus on the other items.
The first key point is that for any of the conditions 2,3, and 4 of Assumption 3.5, given an
appropriate V C V the difference between the LHS and RHS'’s of the needed inequality
remains the same if one replaces V,&'(V), &,(V), and £4(V) by U £ = 1(V), EU), Eo(U),
and £+(U), respectively - one must have |I/| = 2n in which case making this switch
increases both the LHS and RHS by 2n|s|. The second point is that for |V| > 2 the set
t~1(V) will not be a bad chain. 0

We will denote the p copies of H by H) ... H®) and write Hl(i) and HY for the
sets of internal vertices and external vertices of these copies.

Theorem 3.19. Let H be an elementary graph satisfying Assumption 3.17. Letp > 2,
and let (V, E) be a reduced p-fold Wick contraction of H constructed as in Definition 3.16.
Then (V, £) satisfies Assumption 3.5. In particular, the conclusion (3.6) of Theorem 3.7
holds.

Proof. Let (U,E(U)) be as in Definition 3.15, namely, the p-fold Wick contraction from
which (V, £'(V)) is constructed. It suffices to prove that (i, £(U)) satisfies the assump-
tions of Lemma 3.18.

Item 1 of the assumption on (H, £), together with the definition of the labels for edges
in £.(U), obviously implies item 1 of the assumption on (U, &).

To prove item 2 let I C Uy be vertex set of cardinality at least 3 which is not a bad
chain. We aim to show (A.2). We first show that it is sufficient to treat the case where U
is connected. First we claim it suffices to treat the case where no connected component
of U{ is a bad chain - if there is such at least one such connected component it suffices to
prove (A.2) for the union of all the other connected components of /.

If U has connected components of size 1 then it suffices to check (A.2) for the smaller
vertex set where one drops these components; and the same holds for components of
size 2 (here one uses the assumption |a.| < 2|s| in Definition 3.13). If all the components
of U have cardinality at least 3, then if (A.2) holds for each of these components then
summing up these bounds yields an even stronger bound for {/. This covers all the
disconnected cases so we assume that ¢/ is connected.

Let HD =N H®Y, Let Jy, Jo, J>3 be three disjoint subsets of {1,...,p}, such that
|H®| =1 for each i € J;, and |H)| = 2 for each i € J,, and |[H?)| > 3 for each i € J>3.
The LHS of (A.2) is then

doae=) D aet) D ety D, act ) oa

e€Eo(Ul) i€T1 e€EQ(HM)  i€J2 e€Eg(HD)  1€T53 c€Eo(HD) e€Eo(U)NELU)

(i 1 =a |s| (i
< | olls|+ D sl [|H£n>|+2<|H§;—1—1H£;)_@>} +5 > D

ie]23 ie]lngujzg

(3.16)

For going to the bottom lines we use the following reasoning for each of the terms on
the first line: (i) the sum over J; is obviously zero, (ii) since |Z;{ | > 3 and is assumed to be
connected, the edges involved in the Jo-summation are all external with labels |s|, (iii)
one can apply (H.2) for the sum over J>3, and (iv) one has

> ac=ls/2 % Yo el <lsl/2x Y |[HY)|. (3.17)

ecE(U)NE(U) e€&(U)NE(U) 1€J1UJ2UT >3
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Observe that if J>35 # ¢ then by (H.2) the inequality in (3.16) is actually strict.
We now deal with the case where J; = Jo = ¢ and |J>3| =n > 1. If J>3 = {i} then
the last term on the first line of (3.16) must vanish so

ST ac<|sl (HD+ 5 (|H N —1-1,0_,)) (3.18)
e€&o(U)

with the RHS being bounded above by |s|(|i{| — 1), as desired. If n > 1 we must have
a%Y # ¢ for all i € J>3 and our claim follows from the fact that

Y ac<lslx ) [|Hfz)|+(1/2+1/2)lﬂex| = |s|(|/] —n/2). (3.19)

e€&o(U) i€J>3

Note that in all remaining cases one must have IL(;) # @ forie JyUJyUJ>3. The
case when |J>3| > 1 and J; U Jy # @ follows similarly to the two cases treated above: the
upper bounds in (3.18) and (3.19) will apply if we increase them by (|.J1] + 3|J2]) x |s|
but the quantity |s|(|1/| — 1) we compare them against goes up by (|J1] + 2|J2]) x |s]|.

Henceforth we assume J>3 = @. Suppose that (|.J1],|Jz2]) = (1,1) or (0,2). Since U
is not a bad chain it must be the case that & () N E.(U) = ¢. Then by (3.16) one has
2 eceo (@) de < |J2| x |s| which is strictly smaller than |s| x (|J1| +2[Jz — 1).

In the remaining scenarios J>3 = ¢ and (|J1],|J2]) # (1,1) or (0, 2) - (A.2) then follows
by observing that

3 1 _
S o<l x (5 x Jal + 311} < @l + 1] = 1) x o =l (] - ).
ec&oU)

We now turn to proving that (H.3) implies (A.3). Let U CV be of cardinality at least
two with I/ 5 0. Let .J be the set of j € {1,...,p} with the property that |/ N HU)| > 2.
We immediately have

S olactre-1- Y re=>( > (@tre-1)- Y r). (620
&1 () ceEL () i€ ecgT(HW) ccEL(HM)

Applying item 3 of Assumption 3.17 and the bound (3.17) with the summation set
replaced by J gives

Z ae + Z (e +1e—1)— Z Te

ec&y(U) ecET(U) ecEH(U)
SY at Y (a0 Y ot Haw)
1€J e€&(H®) ecET(H®) ecEL(H®)

<lsl x 2 (1AS) 1+ 1HD1) = Is| (4] - 1),

icJ
where for the last equality we note that 0 is neither internal nor external.
We now show (H.4) implies (A.4). Suppose U C U \ U,. Using the bound

> acz Z S,
e€EUNE(U)

a decomposition similar to (3.20), and applying (H.4) to each non-empty H®) gives

Z Qe + Z Te — Z (re —1)

ecEWU) ecET(U) ecEL(U)

EJP 22 (2017), paper 68. http://www.imstat.org/ejp/
Page 20/32



Moment bounds for SPDEs with non-Gaussian fields

2N Y e e X -+ Baw

i=1 “ec£(HMN\EH(AM) ec€M(AWD)  eccH(HW)

p
> s x 30 (1HS) |+ [HD)) = sl x .

i=1

O

We now state a lemma which is a partial converse to the above theorem in the case
of symmetric pairings of elementary graphs. A symmetric pairing of H is a special type
of Wick contraction - one has p = 2 and 7 = {{v"), v} : v € H,,} where for v € H we
write v(9) for v’s instantiation in H®.

Lemma 3.20. For a given elementary graph H, let (V,£’) be the reduced two-fold Wick

contraction corresponding to the symmetric pairing of H. Suppose that (V, ') satisfies
Assumption 3.5, then H satisfies Assumption 3.17.

Proof. Clearly H satisfies the first item of Assumption 3.17 as a consequence of (V,&’)
satisfying the first item of Assumption 3.5.
For the other items we first observe that V = Hf}b) L Hl(fl) L {0} and

& (&t LEHE)| = Ve, (i (), )} (3.21)

where i) (v) is the instantiation of i(v) in o).

For item 2 fix some H C Hy. If H N H,, = ¢ then (H.2) follows by applying (A.2) to
V = HD - the right hand side of (H.2) is equal to |s| (|H| — 1).

We claim that given appropriate H C H, the needed criteria for the other case of
item 2 (where H N H,, # ) or items 3 or 4 are equivalent to the corresponding items of
Assumption 3.5 for the set V C V, where V& AV UAP it A # 0and V & AV UAP L{0}
if H>0.

Since the arguments are so similar we only do the other case of item 2 here. Suppose
H C Hy with HN H,, # ¢. Defining V as described and then applying (A.2) together
with (3.21) to V gives

2 S e fol x [Hal = 3D < [sl(V]— 1) = [sl(2I ] 1),
ec&y(H) e€&o(V)

which is exactly the desired condition for H. O

Remark 3.21. The above lemma establishes a type of “hypercontractive” or “equiva-
lence of moments” bound in the non-Gaussian setting.

We state two lemmas and a remark before proceeding to the stochastic estimates.

Lemma 3.22. Suppose that the elementary graph H = (V, £) satisfies Assumption 3.17,
and that H' = (V,&') is another elementary graph which has the same vertex set V.
Assume that there exist internal edges e1,e; € £ with a.; = |ej[|s|/2 and r.; < 0 for
j = 1,2, and that &' = (£ \ {e1,e2}) Ue with e = e; Ueg and a. = |e||s|/2. In plain
words H' is formed by merging e1, e; into one hyper-edge e. Then, H' also satisfies
Assumption 3.17.

Proof. For items 1-3 of Assumption 3.17 and any allowable subset H C V, the LHS of
the bounds for H as a subgraph of H’ is always smaller or equal to the LHS for H as a
subgraph of H, while the RHS remains the same.
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For item 4 and any allowable subset H, the LHS of the bound for H as a subgraph of
H' is always larger or equal to the LHS for H as a subgraph of H, while the RHS again
remains the same.

Therefore if H satisfies Assumption 3.17, then after merging e, e; into one hyper-
edge the new graph also satisfies Assumption 3.17. O

Lemma 3.23. For graphs H such that H., = ¢, Assumption 3.17 for H is equivalent
with Assumption 3.5 forV = H.

Proof. Immediate upon comparing the two assumptions with the condition H., = ¢. O

Remark 3.24. When we do our stochastic estimates there are symbols 7 and self-
contractions 7 on 7 such that the elementary graph H; . will have a bad chain, failing
to abide Assumption 3.17. However, it is easy to see that the finite set of bad chains
of H, . can be eliminated by integrating a noise vertex in each one yielding an abiding
flmr. Below this is done implicitly whenever the scenario arises.

4 Application: Wong-Zakai theorem for non-Gaussian noise

We now apply the machinery of the preceding sections to prove Theorem 1.2.

4.1 Renormalization
We fix 7o C 7T to be the span of W, where

Wo £ {0,%, %, 4,0, 8, Y, 0.8, %, %, 1,20, £, §0

Our maps M : Ty — 7o will be of the form
7 .
M =exp(— Y _4LD) (4.1)
i=1

where {/;}7_, C R and the {L(W}]_, are nilpotent linear operators on 7 given as follows.
LM is defined in the same way as the map called in L in [10]: it iterates over all
occurrences of % as a “subsymbol” of 7 and “erases” it in the graphical notation:

LWe, =1, LG =1, LWep =27,
LWego — 3ap, IO =Lyar, LOP=L+<, (4.2)
LO¥ =apy28, LW =x,, LM% =X .

Note that there is no term % appearing in L(V<{ because Z(1) = 0, and similarly for the
other terms. We furthermore have L)1 = 0 for every r € W, which is not one of the
above nine elements. Regarding the other maps, one has

LOg=1, 1OF=a, [Ofp=9
and L®) 7 = 0 for every 7 € W, \ {, %, ap}, and
LOap=1, [P =3%, [Ofp=2
and L®) 7 = 0 for every 7 € Wy \ {&°,98°, €}, and
LWP=1, LOP=1, 1Og-1, O¥=1.
and L7 = 0 for every 7 € Wy \ {7} with (i,7) € {(47%), (5,%0), (6,°8°), (7, )}

Recall that R is the renormalization group introduced in Theorem 2.2.
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Theorem 4.1. For any choice of the constants ¢;, and M € A.

Proof. One can check that LO LW+ = 0 for for all 7 € W, and any 4, j - thus the
operators L(¥ all commute and one actually has M = I — Z::1 ¢;L%). Furthermore since
R is a group it suffices to check, for 1 < j < 7, the upper-triangularity of AM; where
M; © ¢~4Li . This can be checked by computation.

The j = 1 case requires the most work but the computations for this case are exactly
the same as those found in [10][Sec 4.2] for the operator called L.

For j > 2 we observe that one has, for all 7 € Ty, M;Jx(7) = Ji(M;7) and AMi =
M; ®1d. Clearly AMi is upper triangular. O

We then define, for each € € (0,1], a map M. € R by specifying the constants

6125_10%, 62:5_%(7%, 63:&——%00‘0’01

£4 = Céz) ; £5 = 024) B fﬁ = C(Cl) , 57 = Céd) .

(4.3)

Recall that the constants on the right hand side are defined in (1.7).

4.2 Moment bounds

In order to identify the limit of our sequence of models (II®), T'(®)) as the It6 model
we follow the approach in [12] and introduce another level of regularization (. - = gz * (,
with £ > 0 and g = £ 3p(672%t, 12), where g is smooth, compactly supported, even in
the space variable and integrating to one.

We then construct the renormalized model (I1(=:¥), T'(=:)) from (. . together with the
renormalization maps M, - with constants specified in the same way as in (4.3), except
that we replace every P by our truncation K, every ¢, by @5{5), and finally drop the

factors e~ and ¢~ 7 in (4.3). For example, the constant e~1c%in (4.3) is replaced by

Oz
Kl ey
Qs

One may find that for a fixed € > 0, sending ¢ to zero does not exactly recover the
renormalization constants for (f[(s), f(f)) ; for instance in the latter model the renormal-
ization constants are defined via P. This does not matter for two reasons: (i) we will only
consider the situation that ¢ is much less than &; (ii) when we bound the moments for
(f[g(f)T)(go‘f;) below, we will actually replace the constants for I1(*) by the ones defined via
K and ng) here, with an error that goes to zero as ¢ — 0. More precisely, for the con-
stants 5*10%, 5*%0%, £~3C", by exponential decay of ¢,, and the fact that P(z) = K(2)
for |z| < 1, one can easily see by a scaling argument that this error is bounded by 0: with
6 € (0,1); thus even though these errors are multiplied by “graphs” which may diverge
as € — 0 they still vanish in that limit. For the other constants one can also argue as in
[10] that the error of such replacement vanishes as ¢ — 0.

Proposition 4.2. Let (II'®), T'®)) and (I1(*¥), T'(=:9)) be defined as above. There exist
r,1 > 0 such that for every T € {0,%,%, %, %, %, %, e, ng, o} and every p > 0, one has

E|[(ITI 7 — TS 7) ()P < emarlirlstn) (4.4)

uniformly in all £ € (0,1] and all ¢ € (0, 1] sufficiently small depending on &, all A € (0,1],
all test functions ¢ € B, and all = € R,
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Remark 4.3. We will actually mainly focus on a weaker bound
E|(I)7) (@) $ AU (4.5)

and (4.4) will turn out to follow in the same way.

We introduce more graphical notation. We denote by =—> a generic test function
©x rescaled to scale A and label it by (0,0). An arrow —— labeled by (1,0) represents
the kernel K. A barred arrow —— labeled by (1,1) represents a function K(t —
s,y —x) — K(—s,—x), where (s, x) and (¢,y) are the coordinates of the starting and end
point respectively. A double barred arrow —+— labeled by (1, 2) represents a function
K(t—s,y—z)— K(—s,—z) — y K'(—s, —z). The dotted lines - represent the Dirac

distributions and are labeled by (3, —1). A polygon with n points inside @ (n = 4 here)
represents the cumulant Qisf)(zl, .-+, zy,) and is labeled by (—3n/2,0).

We also draw an arrow ----- > with label (2,0) for the kernel K’ = 9, K and =—#—>
for the test function (¢, z) — z¢* (¢, z). Note that ¢(¢,z) = zp(t, r) is again an admissible
test function and one has zp*(¢, ) = MA@ (¢, ). As a consequence, when a test function
o is replaced with test function ¢, one gains an additional power of .

4.2.1 The symbols %, %, and %

We start with the simplest object % after the noise. By translation invariance we take
the point x in (4.5) to be 0. Using Definition A.3 which allows us to represent a product
of the noises as Wick products, one has

..... 0 o . o0 @
(1157%) () = ko + i\"‘@ et ] - k@ - \ /+E o

where E. here and below is an error which arises from the difference between 5‘10%
and Cjb and goes to zero.

Now if we compare the above graphs with the corresponding ones in [10, Eq. (5.2)]
in the Gaussian noise case, we realize that they are essentially the same graphs. Since
in [10] it is checked that the symmetric pairing of the first graph, as well as the last
graph above, satisfy Assumption 3.5, our Lemma 3.20 and Lemma 3.23 immediately yield
Assumption 3.17 for the two graphs on the RHS of (4.6), and therefore by Theorem 3.19
one concludes the desired bounds for (I1{”'%)(¢)).

The other two symbols % and % are bounded in the same way. In these cases, graphs
appearing in the expansions are the same with those in the Gaussian case. However, in
general, for other symbols below, there will be new terms due to the nontrivial higher
cumulants of our non-Gaussian noise (we sometimes refer to them as just “new terms”).
The discussion here shows that we only need to treat with these new terms.

4.2.2 The symbol ¢

Besides the terms appearing in [10], we have the following new terms in the expression
for (Héa)ﬁ)(gm):

e T i + E.
([ [ [
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It is straightforward to check that Assumption 3.17 is satisfied for the two graphs on the
RHS, which yields the desired bounds E|(TT{"€) (p2)|P < AP(—3+m),

4.2.3 The symbol &

We now turn to &°. In this case, besides the terms shown in [10], we have the following
new terms in the expression for (I1{”%°) (py):

\\T/ SRS Tou-a I = 2\1/ + \I/ + E.

One can also check that Assumption 3.17 holds for these two graphs.

4.2.4 The symbol

CUT
b
+ 1 """ %ﬂf{zd@ J‘[\ + i® C?%iJrEs
\ ° X\

The sum of the last two terms can be written as a sum of 11 graphs (expanding the terms
represented by the barred arrows yield 12 terms, and the renormalization constant
cancels one of them); each of them has a fourth order hyper-edge which can be split

into two edges as @ = @@ After this split all the graphs satisfy Assumption 3.5 as
checked in [10] so they satisfy Assumption 3.17 by Lemmas 3.23 and 3.22.

After cancellations with renormalization constant we only need to check the assump-
tion for the following graphs

o ——o

N E R
o i ...... e o i ...... e + +
t t \ \
(] [ [ J [ J
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where MVWAWW- represents the kernel

- o)

I—>e—>@

understood as a function of z, with label (3%, —1). It can be checked that these eight
graphs all satisfy the conditions in Assumption 3.17.

4.2.5 The symbol <

The new terms are

P
™
N

S
<
N
:
e
AN
“%o

For the last two terms, after cancellation with C?%, there are seven terms, each having
a hyper-edge that can be split into two edges representing a cumulant of the top and
bottom noises and a cumulant of the left and right noises. These terms all satisfy
Assumption 3.5 as checked in [10].

So we are left with
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where 11111 represents the kernel

> @i
labeled by (3%, —1). It can be checked that these seven graphs all satisfy the conditions
in Assumption 3.17.
4.2.6 The symbol °g°

The new terms are

The sum of the 2nd and the 3rd terms is

R X
el W 4

N N

Therefore, for this symbol, six graphs remain to be checked. Indeed, they all satisfy
Assumption 3.17.

The sum of the last two terms is

4.2.7 The symbol ng

The new terms are
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where mv_ is

—>7—>@

o 5(2)

labeled by (31, -1).
The 4th term is equal to (noting that the heat kernels in —+— annihilate constants)

-
.—)qf—H—o

The first two graphs above have a fourth order hyper-edge, by splitting it into two
edges and using Lemma 3.22 they become the graphs checked in [10].

Therefore, for this symbol, there are still nine graphs to be checked. It is straightfor-
ward (though a bit tedious) to check that they all satisfy Assumption 3.17.

of Proposition 4.2. Collecting all the results of this section, we obtain the weaker bound
(4.5). The bound (4.4), follows in essentially the same way as the first bound, by the
argument in [12] (see also the verification of the second bound in [7, Theorem 10.7]).
Indeed, as we consider the difference between ﬂﬁf% and ﬁﬁff)f for any 7 # =, we obtain
the same graphs as above, and in each graph some of the instances of § are replaced by
0= and exactly one instance is replaced by § — gz. By the bound ||§ — gz||-3-x < & one

obtains the same bound as (4.5) with an extra factor €7, which is exactly required by the
bound (4.4). The case 7 = = can be also proved as in [12]. O

4.3 Proof of the main theorem

It was shown in [10] that if we replace (. by &, with £, = p. x£ where £ is the Gaussian
space-time white noise, the renormalised models built from £. converge to the limit
Z = (12[7 f‘) called the It6 model, which satisfies the following property. For every 7 € U
and every (t,z), the process s — (ﬁ(t’w)r)(s, -) is F,-adapted for s > t and, for every
smooth test function ¢ supported in the future {(s,y) : s > t}, one has the identity

(s, E7) () = /too<(ﬂ(t,a:)7)(57 (s, ), dW (s)) , (4.7)

where the integral on the right is the Ito integral.

The goal of this section is to show that our renormalised models (I1®), I'®)) built from
(. defined above converge to the same limit. We prove this by applying a “diagonal
argument” as in [12].
Theorem 4.4. Let Z. = (1), ') be the renormalised model built from (. defined in
the previous sections (with the choice of renormalisation constants given by (1.7)). Let
Z = (11,T) be the Ité random model. Then, as ¢ — 0, one has Z. — Z in distribution in
the space .# of admissible models for 7 .
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Proof. Since the topology on .# is generated by the pseudometrics defined in Section 2.2,
it is sufficient to show that
IimE||Z.,Z|| =0, (4.8)
e—0

where the compact domain that the pseudometric depends on is omitted in the notation
since it does not matter much in the sequel. We have

E|Z., 2| < ElZ., 2.\l + El 2z, Zoell + Ell Zoe, Z

’

which is valid for any fixed € > 0 and for any coupling between £ and (., where ZA&E— is
the previously defined “intermediate” model, and the model ZAO’E— is obtained again in the
same way as ZA&E— but built from the noise (g ¢ = & * pz, with renormalization constants
defined in the same way as those for ZAE,E— except that every ps is replaced by a delta
function. Therefore,

lim BJ|Z., Z|l < lim lim (B} Zz, Ze cl| + Bl Zee, Zo gl + ElZos ZIl) . (4.9)
e—0 £—=0e—0

For the last term, lim._o E||Zo ¢, Z||P = 0 for every p was already shown in [10]. Note
that since ¢ is Gaussian, all the renormalization constants associated with the model ZAO7§
containing cumulants of order higher than two vanish; the other constants slightly differ
from the corresponding ones in [10] because our constants for ZAO,E— are defined via the
kernel K, but this error vanishes as € — 0.

Regarding the first term, by [7, Thm 10.7] and the second bound in Theorem 4.2, we
obtain the bound E||Z., Z. .|| < " uniformly over ¢ sufficiently small, so that this term
also vanishes.

It therefore remains to bound the second term. This follows from the same argument
as in [12]. Firstly, one has a central limit theorem for the noise (., namely for every
a < —% the field (. converges in law to space-time white noise ¢ in C*(R x S!), see [12,
Prop. 6.1]. Therefore

lim E[¢o.c — Coe[Biq = 0. (4.10)

for any bounded domain K. Also, the map from the space of stationary and almost surely
periodic noise equipped with L? of C! norm to the space of random admissible models is
continuous. Therefore one has

lim E||Z. 2, Zos|| =0,
e—0

for every fixed (sufficiently small) € > 0, so that the second term in (4.9) also vanishes,
thus concluding the proof. O

We finally collect all our results and prove the main theorem.

of Theorem 1.2. By [10, Thm 3.9] or [7, Sec. 7] one has for every € > 0 a unique maximal
solution U¢ to the fixed point problem (2.8) in D7:° with respect to the renormalized
model fl(s), and solution U respect to the It6 model ﬂ, and by [10, Thm 4.7] we have
lim. 0 P(||U; U?||50 > €”) = 0 for every 6 < /2.
Using the identity
(7)) (2) = (I M.7)(2) ,

with M. defined above (4.3), together with (1.7), (4.2), we see that this expression is
non-zero for the symbols 1, o, %, ai P, % ge, ng and @D where one has
(191)(z) =1, (1P0)(2) =&(2), (ME%)(2) =-CM e,
(IEE)(2) = = /Ve, (1998) () = ~CF Ve,
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2 ~ 1
( gs)%)(z) = —c(C ), (Hf)o%")(z) = _C(C ),
(3) o 4
(E)ng CC , (H§5>a§3) (2) = —cé ).
Write R. as the reconstruction map with respect to the renormalized model 11,
Combining the above identities with (2.12) it follows that one has the identity

~ 0(1)
R=(G(U)E) (2) = Clu(2)ée() — ——GC'(u(=))G(u(2)
C(2) C(3)
- 1—/2G’< u(2))*G(u(2)) = 73 G (u(2))G2(u(2))

— 206" (=) G w(2) — D () Clu(z)

(3 4 )6 ()6 () G ()

By Theorem 4.4, the limiting model is the It6 model; it is proved in [10, Corollary 6.3]
that © = RU constructed with respect to the It6 model is indeed the classical weak
solution interpreted in the It6 sense ([18, 2]) which concludes the proof. O

A Cumulants and Wick products

We define joint cumulant functions ¢, (z1, ..., z,) of a space-time centered random
field ¢. Given any subset A of space-time points we will define a joint cumulant function
€(A) of ¢. The definition operates recursively in

ZE([[¢@)- >, [ (A.1)

zEA neP(A) Benm
A LAY

where P(A) denotes the set of all partitions of A. The key cumulant identity comes from
moving all the cumulants of (A.1) to the LHS.
We write €, for the n-th joint cumulant function of the field ¢ at n space-time points

A={z,...,z,}:
Co(z1, .y 2n) = Q:(A) . (A.2)

)

Note that €; = 0 since ( is assumed to be centered. We write Q,(f for the n-th cumulant

function of (.

Definition A.1. We say that ( has exponentially decaying cumulants if there exists
0 € (0,1) such that for each n € N one has the bound

€0 (21, 20)| S OB Lm0 (A.3)

uniform in zy, ..., z, € R? where we set diam(zy, ..., 2,) = SUP<; j<n |2 — 2]
We give an example of a random field ( satisfying the above property.

Example A.2. Let 1 be a finite positive measure on C(R?) such that for every ¢ € supp(u)

and p > 1 one has
P
[ (s @ o(]) () < o

z€R4

Denote by /i a realisation of the Poisson point process on C (Rd) x R¢ with intensity pLRdz

and set
C(z):/ o(z—2") i(de @ dz") // ) dzu(dy) .

Then ( satisfies Definition A.1.
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We now give the definition of the Wick product of a generically non-Gaussian random
field evaluated at a collection of points.

Definition A.3. Given a collection of space-time points A, the Wick product : ], , ((2):
is defined recursively in |A| by setting :1: = 1 and then setting

JIEEES | KEED SRS | OB ([N | I©)) (A.4)

z€EA z€EA BCA zeB z€A\B
=11 ->Y:1[¢: > Jle®d
z€EA BCA z2€B T€P(A\B) Ben

Note that :J],.5((2): is understood as an operation on {((z)}.cp, not the product.
The second line of (A.4) follows from the first by applying (A.1). Note that any non-empty
Wick product is always mean zero.

The key Wick product identity comes from moving all the subtracted terms of on the
RHS of the second line of (A.4) to the first line of the RHS.

We close with a lemma which is sometimes called “diagram formula” in the literature

! and generalizes (A.1). It states that moments of Wick products can be calculated by
summing over partitions without “self-contractions”.

Lemma A.4. For every p > 1 and m > 1, one has

(H o) @™ ) = Y T es) (A.5)

TEPMm (M X P) Bem

where M = {i : 1 < i <m}, PZ {k:1<k < p}, and Pyy(M x P) denotes the
set of all partitions m € P(M x P) with the property that for every B € w there exist
(i,k), (i',k") € B such that k # k' (in particular |B| > 1).
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