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1. Introduction

This paper studies the stability of a Poiseuille-type flow for a viscoelastic fluid occupied in a two-
dimensional layer domain = R x (0, 1) with the adherence boundary condition. We describe the motion
of viscoelastic fluids in Euler’s coordinates as in [10]. We in particular consider the incompressible Hookean
model introduced by Lin et al. [9], where they construct a local-in-time smooth solution in two or three
dimensional bounded domains with smooth boundary as well as the whole space or periodic boxes. They
moreover prove global-in-time existence of solutions with small initial data in a two-dimensional peri-
odic box or the whole plane which also indicates some stability of the trivial steady motion (with zero
velocity).

In this paper we consider a Poiseuille-type flow of the form w(t,x) = (¥(t, x2),0), where x2 is the
vertical variable in (0,1). It turns out that the integral of ¢ in time solves the viscous wave equation.
We are interested in its stability as viscoelastic fluids. In fact, we prove that if both the Poiseuille-
type flow and the initial perturbations are small, then it is exponentially stable as the time tends to
infinity.

Our strategy to prove the stability is to use a stream function formulation due to [9] for a per-
turbed quantity from the Poiseuille flow, see (4.3). As in [9] the equation is parabolic for the veloc-
ity but not for the stream function. Moreover, since our basic flow is the Poiseuille flow, there is a
new linear term of a perturbed stream function whose coefficient is not small in the momentum equa-
tion which is an extra difficulty compared with the situation in [9]. As in [9] we introduce a new ve-
locity type variable generating dissipative effects and we fully take advantage of the structure of the
system to obtain energy estimates. Since there are extra linear terms with non-small coefficients, we
derive several energy estimates very carefully to cancel apparently uncontrollable terms. Except en-
ergy estimates, the way of construction is the Galerkin method which is the same as [9]. Thus we just
concentrate on deriving energy estimates. We also established a non-trivial behavior of the Poiseuille
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flow, especially for higher spatial derivatives since spatial derivatives do not fulfill the boundary condi-
tion.

There is also a foregoing research by Giga et al. [3], in which the authors established L? expo-
nential stability for a small Poiseuille-type flow as well as local-in-time existence for non-small initial
data if the layer is thin. Their method is completely different since they use LP theory instead of
L? theory developed in this paper. We do not assume that the thickness of the layer is small in this
paper.

There is a global estimate result for incompressible viscoelastic flow subject to not necessarily Hookean
elastic energy [8]. However, initial data is assumed to be close to a trivial solution. We wonder whether our
stability results extends to such a situation but we do not pursue this problem in this
paper.

The stability of the Poiseuille flow is an important topic in fluid mechanics. In fact, for the incompress-
ible Navier—Stokes flow the stability of the Couette flow in a half space under small periodic perturbation
is established even if the basic flow is large [4]; see also earlier work [11]. The compressible case is also
discussed in [5], where stability of a small Couette-type flow is discussed. Moreover, the stability of small
steady Poiseuille-type flows in a layer domain in R? is discussed in [6] under low Mach numbers. It is
actually unstable when the Mach number is not small as shown in a recent work by Kagei and Nishida
[7].

For the future research, it is worth noting that this sort of stability problem for the special solutions
of the viscoelastic model can be treated in the same way as in this paper. If an a priori estimate for
the special solutions, that correspond to Proposition 3.1 in this paper, is proved, one can use the same
estimates in this paper and obtain the stability of the perturbed flow.

In Sect. 2 we introduce the model of a viscoelastic fluid. In Sect. 3 we first introduce the Poiseuille-
type flow in two dimensions. We then observe that the Poiseuille-type flow in two-dimension is reduced
to the viscous wave equation in the (0,1) interval, and we investigate a priori estimates for the viscous
wave system and state our main existence and stability result. Section 4 is devoted to the introduction
of a system for the perturbed Poiseuille-type flow. In Sect. 5, we introduce our key notion of change of
variables and discuss that the system has hidden dissipative structure. Finally in Sect. 6, we prove energy
estimates and our main result. In Sect. 7, we state some basic properties of the Stokes operator that
are used in this paper. Section 8 is dedicated to prove a priori estimates of viscous wave equation i.e.
Proposition 3.1.

2. Deformation Tensor and Equations of Motion

Let © be a domain in R? with smooth boundary and 7' > 0 be fixed time. We consider the viscoelastic
fluid in € described by unknown variables:

F:(0,T) x Q — R?@R? is the deformation tensor,
7:(0,T) x Q@ — R is the pressure,

w: (0,T) x Q — R? is the velocity of the fluid,

4 > 0 is the kinematic viscosity of the fluid,

in Eulerian description. The deformation tensor F' in the Lagrangian coordinates is defined by Fj; =
0x;/0X, where X is the Lagrangian variables and = x(X, t) is the flow map. In the following we always
describe F' in the Eulerian coordinates. One should be careful to note our notation differs from that in
[9], where the transpose of our F is used.

We consider the following two dimensional viscoelastic fluid system of the Oldroyd model with Dirichlet
boundary condition of the form.
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O F +u-VF =FVu in (0,7) xQ,

divu =0 in (0,7) x €,
Ou—pAu+u-Vu+Vr=divFTF in (0,T) x Q, 2.1)
F|t:0 = F() on Q, '
uli—o = uo on (,

u=0 on (0,7) x 00

with the assumption det F|;—g = 1 and div F'|;—¢ = 0. In this paper, we use the following notation.

e 0, = (0/0t),0; = (0/0x;),
o (V’U,)U = 8jui7
[ (le G)l = Z?:l 6JG”

Stream Function Formulation. One can show that div F' is subject to advection with the flow, i.e.
O(div F') +u - V(div F') = 0.

Therefore div Fy = 0 implies div F' = 0 for all later times. Under this assumption, one can find an R2-
valued stream function (y such that Fy = V+(y as in [9]. Moreover, if one lets ¢ be the solution of the
transport equation for a divergence free function u of the form

{atg+u-vg=0,

Cli=0 = Co (22)

then one can find that for
—0¢t ot
ol _ 2 1
F=V C* (—82(2 61C2 ’

the equation F} +u - VF = FVu is fulfilled. It is much easier to consider the function  instead of F. In
order to rewrite system (2.1) with respect to ¢, one can calculate

1
div FTF = 5V|vg|2 — AV~ AV
Note that the first term is a gradient that can be absorbed in pressure term. Thus we introduce a new

variable # = m — 1|V(|? and denote that by m again. We end up with the following new system for two
dimensions with Dirichlet boundary condition.

O0(+u-V(=0 in (0,7) x Q,

divu =0 in (0,7) x €,

Ou — pAu+u-Vu+ Vr = —S7_ ACPVEE in (0,T) x 9, (2.3)
Clt=o0 = Co on 9, :
uli=0 = ug on £,

u=0 on (0,T) x 09.

The corresponding assumption to the incompressibility condition det F'|l;—g =1 is
0103 02C2 — 01C202¢C8 = 1. (2.4)
Note that div F'|;—¢ = 0 is satisfied by the construction of (.

Incompressibility. Considering fluids with a constant density, the incompressibility condition takes the
form divu = 0. It turns out that in terms of the deformation tensor, this means det F' = 1 if det F'|;—o =1
holds. Moreover, one can find that

O¢(det F) + u - V(det F) = 0.
Therefore if (2.4) holds, we have 9;(102¢? — 31¢?02¢! = 1 for all time.
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3. Poiseuille-Type Flow and Viscous Wave Equation

Let Q =R x (0,1) i.e. a two-dimensional layer. This section aims to construct a suitable Poiseuille-type
flow solution @ to (2.1) or equivalently (2.3), i.e. a solution with horizontal flow-profile that is completely
determined by the vertical component. Hence, we assume that u takes the form

alt, ) = (Wt(’)“))

with homogeneous Dirichlet boundary conditions. Then the divergence condition in (2.1) is trivially
fulfilled.

In order to adequately determine the corresponding deformation tensor F' or equivalently the corre-
sponding stream function 7, we introduce the flow map z(¢, X) = (ml(t,X),xg (t,X)), 0 <t<T with
T > 0, corresponding to Lagrangian coordinates X. These flow maps are given by the system of ordinary
differential equations

%Il(t,X) = ﬁl(t,llfl(t,X),lL'Q(t,X)) = 1/)(15,9:2(15,)()), Il(O) = Xl,

d
@IQ(taX) = ﬁz(tazl(taX)sz(t7X)) = 07 IQ(O) = X27

which can easily be solved by

t t

acl(t,X):Xl—l—/ w(s,xg(s,X))dSZXl—i—/ P(s, Xa)ds,
0 0

ZL’Q(t,X) :XQ,

as long as 1) is sufficiently regular. Let us abbreviate

t
o(t, x2) :/ U(s,z2)ds.
0
Then, we can calculate the deformation tensor and the resulting elastic force
=_(1 0 crm_ (14+(020)°  Oa¢ - mrm_ (050
F_<82¢ 1), FF—( Dy 1 and divF*F = K

Note here, that with x5(t, X) = X it is also (0/0X3) = (9/0x2) = Ja. Let us also remark at this point,
that div F' = 0.
The stream function 7 corresponding to F' may be chosen as

n(t, ) = (xl _7;(; xQ)) (3.1)

solving the system

on+u-Vn=0, in (0,7) x 9,
n(0,2) = (—xq,x1)T, for z €.

Inserting the elastic force into the balance of momentum for a, i.e.
Ot — pAt+ - Vi + Ve =divETF, in (0,T) x Q,
yields the equivalent formulation

b + O = pday + 930,

i 0,7 Q.
O = 0. } m (’ )X
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We conclude from the second equation that the pressure is a function depending only on the horizontal
variable & = 7(t,21). Since ¢ and ¢ depend only on t and x9, the first equation implies that 017 is a
function of time only, i.e. 917 (¢, 21) = —h(t) for some function h. Inserting this into the system yields

O — 93¢ = pdayp +h, in (0,T) x (0,1).
Finally, by the definition of ¢ it is ¥ (¢, z2) = 0r¢(t, z2) and moreover, the homogeneous Dirichlet bound-
ary conditions for 4 carry over to ¢, i.e. ¢(t,0) = ¢(¢,1) = 0. At initial time we have ¢(0,z2) =

fo (s,z2)ds = 0 and 0,¢(0, z2) = (0, z2) = 1pg(x2) for some function ¢y that will be given satisfying
homogeneous Dirichlet conditions.

With this, we end up with a viscous wave equation in one dimension
Gp—02p = nddi¢+h, in (0,T)x(0,1),
o(t,0) = o(t, 1) =0, for te (0,7), (3.2)
Pli=o =0,  OPli=0 = o, on (0,1).

for some h = h(t) and initial data 1. Note that we use 9, instead of J; since we consider ¢ is the function
with two variables (¢, x) here.

We state an a priori estimate for the Poiseuille-type flow in the following proposition. It enables us to
control the norms of higher spatial derivatives of ¢.

Proposition 3.1. Let T > 0 and p > 0. For ¢g € H3(0,1) N HE(0,1) and h € H*(0,T), there eists
the unique solution ¢ € C3([0,T); L*(0,1))NC?([0,T), H3(0,1))NC([0,T); H*(0,1)) of (3.2). Moreover,
there is a constant C such that the solution satisfies

10:d ()] 113 (0,1) + 1020 (t) | 113 0,1y + 107 S(E) | 10,1

4
< C( e o oo + D 1A M)

k=1
for 0 <t <T. The constant C' is independent of T' and p.

Proof. Combining Propositions 8.1 and 8.3 in Sect. 8, one can easily obtain the result. (]

Notation of Spaces. In this paper, we write || f|| for || f||z2() otherwise specified, and denote H*(U) by
Sobolev space W2*(U), equipped with the norm

I lmey = | D II0F 12
jal<k

for some domain U C R™. We also define H%(U) by the closure of C2°, the space of all smooth functions

with compact support with respect to || - || ;x7y; see [2, Section 5] for more detail.
Inserting the function ¢ = 9;¢ into the ansatz for u, we receive a solution (u,,n) of the system
on+u-Vn=0, in (0,7) xQ,
diva = 0, in (0,7) xQ,
Oyt — pAu+ 1 - Vi + Va = —An*VnF, in (0,T) x Q,
=0, on (0,T) x 0,
n(0,2) = (—x9,21)7, for z €9,

ﬂ‘t:o = ('@/J(),O)T,On Qv

where —An*Vn* is a short notation for Zi:l —An*Vn*. Note that we choose by (3.1) and due to the
homogeneous Dirichlet boundary conditions for ¢, it is (¢, z)|sq = (—xa, z1)T for any 0 < ¢ < T.
We are now in a position to state our main result.

Theorem 3.2. Let Q =R x (0,1), ug € H*(Q), ¢o € H*(Q), 1o € H?>(0,1) N H}(0,1), and h € H*(0, 00).
There exist numbers 0 < § <1, k > 0 such that if the following three conditions hold,
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1. the smallness condition for the Poiseuille-type flow

%ol 30,0y + 1Rl 51 (0,00) <

2. the smallness condition for the initial perturbation

luo — ol g3 () + 1o — Mol B30y < K,

3. the compatibility conditions for the initial data
divug =0,  (oloa = (;2) and  91y0a(F — D1(5D(y =1
then there exists a smooth global solution (u,(, ) of (2.3) with respect to initial data (ug, (o) satisfying
% (19c(u = @)[|* + 8]V (u — @) || + S A = n)|I* + S VA = m)|* +1|18:(¢ = m)]1?)
48 (107 = DI + 4w = )I? + IAC - DI+ IVAG - n)I?) <0
for all timest > 0. Here, A = —PA is the Stokes operator in ); see Sect. 7.
Integrating the last differential inequality over (0,¢) implies
8|1V (u — w)l[*(¢) + uo /Ot |A(u — @)|*(s) ds < Ci
with C);, which tends to zero as K — 0. By (7.1) we in particular obtain

IWW—WW@+ACMWW—@W@®SCK

which implies
IV (u—a)|*(t) < Cre™ M

by the Gronwall inequality. By the Poincaré inequality this implies that @ is exponentially stable in H*
sense. Similar stability holds for 7.

4. Perturbation of the Flow Through the Layer

We are interested in the solution (u,, () of the system (2.1) and its stability around the Poiseuille-type
flow (@, 7, n). Let (uo,p) satisfies the compatibility conditions,

divug =0, (olan = (_:Ugf) ,and  91¢02(5 — 01(30¢ = 1. (4.1)

The second condition together with the homogeneous Dirichlet boundary condition of u guarantees (|gg =
(—x9,71)T for all times. The third condition is a reformulation of the incompressibility condition as we
discussed in Sect. 2 and that holds for any ¢ > 0.
Now let us introduce the perturbation
(’U7pa Oé) = (U, T, C) - (’av ﬁ-a 77)
By a simple calculation one can show that the decomposition ( = a + 1 implies

820[1 - 81042 = 81&1826!2 — 8204181042 — 82¢81a1. (42)

This will be a crucial identity later on.
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Then for given (@, 7, n), (v,p, ) solves

da+v-Va+u-Va=—-v-Vn in (0,7) x Q,
dive =0 in (0,7) x £,
v —pAv+v-Vo+uv-Va+a-Vo+ Vp
= —AdkVaF — AnFVak — AakVn* in (0,7) x £, (4.3)
v =0, on (0,T) x 09,
a(0,2) = Go(x) = (—x2,21)" for € Q,
v|=0 = uo — (¢0,0)" in Q

Note that it is a|sq = 0 for all times since (|ga = njoq = (—x2,1).

The stream function of the Poiseuille-type flow is given by n(t,x) = (—z2, 21 — ¢(¢, z2)). We note
that derivatives of n contain constant parts which may not be small even if ¢ is small. Let us rewrite the
right-hand side of the momentum equation as

A2 2, 9
~Aa* Vit — At Vak = ( Aa’ A 01(8h¢a%) )

Aat + A(0ypa?) — B3a® — 03¢0x0>

2
—A ( aof ) 1 026Va? + VoAa?. (4.4)
Therefore the momentum equation is rewritten as follows.

v —pAv+v-Vo+v-Vu+u-Vu+ Vp
—«

= —Ad*Vor + A < ol

2
> + VoAa? + 05¢Va. (4.5)

5. Change of Variables and Dissipation

Observing the momentum equation in (4.5), one may notice that terms like v-Va or - Vo can be handled
through Proposition 3.1 if the Poiseuille-type flow is sufficiently small. On the other hand, A(—as, )
causes a problem. Although « seems to have no dissipative structure so far, this term produces linear
terms. That calls a particular method.

Taking a closer look at right-hand side in (4.5), one can find another dissipative structure. Let us
focus on the term A(—a?,a!)? in (4.4), and rewrite whole equation as follows

1 /—a?
Oyv — pA <U+M < aof )) +v-Vv+v-Vu+u-Vv+ Vp
= —Aa"Va* + VoAa? + 93pVa?. (5.1)

Now we will introduce a new dependent variable as in [9]:

w=uv+ % <_aof2> or equivalently, a=p <_01 (1)) (w —v).
Let us rewrite the transport equation of « in (4.3), i.e.
Oia+v-Va+u-Va=—v-Vn. (5.2)
In the right-hand side, one can find

’1}2 2
—v-Vn = )t V¢

2 1
:(w 1) - —a+v°Ve.
p

—w
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Therefore the transport equation can be rewritten as follows

1
8ta+lua+v-Va—|—u-Va:< )—i—ngqﬁ. (5.3)

w2
—wy
Hence we can see that « has dissipative structure. However, we must control the w term in the right-

hand side. The question is how to introduce estimates for w or v? The idea is that we regard (4.5) as a
perturbed Stokes system of w and p, i.e.

—pAw 4 Vp = -0 —v- Vo — v - Vu — AaFVa> + 92¢Va? + VoAa? (5.4)

and invoke a higher regularity estimates of the Stokes system (Lemma 7.2). For this purpose, we need to
calculate divw first.

Divergence of w and Higher Order Estimate. Let us note that w is not divergence free in general.
However, its divergence is quadratic in a and ¢ as the following calculation shows:

1 A2
divw = dive 4+ —div ( 0{ )
7 (67

1
= 7((920(1 — 810[2 + 62¢81a1 — 82¢61a1)
1
1
= ;(detG — Dapd10t)
1
= 7(810&162052 — (920[1(910[2 — 62¢81a1). (55)
1

Note that we used the incompressibility property (4.2).
Now let f and g be the right-hand sides of (5.4), (5.5) respectively. If w satisfies appropriate conditions,
we can invoke Lemma 7.2 and obtain

pllwll gs@) + IVolla o) < Clullgllaz@) + I1fla @) (5.6)

We can easily obtain the estimate for v by the definition of w. We will state the result of these estimates
in the next section as a proposition.

6. A Priori Estimate with Energy Method

The existence of approximate solutions to (4.3) may be proved using a Galerkin approximation scheme
similarly to [9]. Since compact embeddings are required for this approach in order to pass to the limit,
the problem then needs to be considered on a sequence of domains QM = (—M, M) x (0,1).

We impose v = 0 on the artificial left and right boundaries. For the stream function o no boundary
conditions may be imposed and it will in general not vanish on the artificial boundaries. It vanishes on
the lower and upper boundary however, since by definition &« = ( — 1 and the stream functions 1 and
¢ are transported by @ and u which vanish on the upper and lower boundary (but not on the artificial
boundaries). Hence, for v as well as « the Poincaré inequality is still applicable. Since all the estimates
do not depend on the horizontal size of the domain, one can let M tend to infinity to receive a solution
of (4.3).

The a priori estimates for the approximate solutions of the Galerkin-scheme are of the same structure
as for the original equations. Let us therefore concentrate on the formal a priori estimates for system
(4.3).

Let © be a layer domain R x (0,1) in this section.
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Notation. In order to simplify the notation, we now introduce variables corresponding to the data, the
time-derivative part and the dissipative part of the estimates respectively. We write
X(t) = 10:¢ll 0,1y + 1020 113 0,1) + 1076l 110,19,
Y (t) = [|10w]| + Vol + [Ac + VA«
1 1
Z(t) = 18,V + || Av][* + EHACMH2 + EHVAGII2~

With the definition of Y'(¢) and Z(t) as it is, by the Poincaré inequality we find
Y3(t) < C(1+pH)Z(1).

Here, A in Z(t) is the Stokes operator. We use Av instead of Av to annihilate the pressure term in some
energy estimates with aid of the regularity of the Stokes operator ||v[|yz(q) < C|[Av]|.

In this section, we derive five energy estimates. Then combining these results, we obtain the strong
stability inequality stated in Theorem 3.2. To begin with, we need to calculate (5.6) for higher order
estimates.

6.1. Spatial Estimate of the Artificial Variable w and v

It is difficult to estimate higher spatial derivatives directly. We cannot use integration by parts since
higher spatial derivatives would not vanish on the boundary in general. Therefore we consider a priori
estimates for higher order terms in time, and then transfer them into spatial estimates using the regularity
of the Stokes system Lemma 7.2.

Proposition 6.1. Let Q =R x (0,1), ug € H3(Q), (o € H*(Q), vo € H*>(0,1) N HE(0,1), h € H(0, 00),
and (u,m,() be a solution of (2.3). If (uo,(p) satisfies the compatibility conditions

divug =0, (olan = (_x?) and  91(y02(5 — 01(502¢) =1,

then there exists a numerical constant C > 0 such that for (v,p,a) = (u,7,¢) — (4, 7,n) and w =

v— ﬁ(—oﬂ, at)T'| the estimates

ol sy < C([10:Vo]l + (1 + 1) Z + X (|| Av[| + [[Aa]| +[[VAal]))
+ = (180l + |V Aal).
[wll s @) < C18:Voll + (1 + p*) Z + X (|| Av]| + [| Al + [V Aa]))
hold for all t > 0.
Proof. Inserting (5.4) and (5.5) to (5.6), we have
pllwll sy + VPl a1 ()
SC(H@tv—v'Vv—wVﬂ—ﬂ'Vv
— Aa*Va + VoAa® + 056V 1 o
+ |10 0202 — 20010 ~ Da60h0 | o )
< C (N9l @) + o+ Vol oy + 1o Vil o) + 7 Voll o)
+ 1A* V" | g1 (o) + [IVOAR? | 1) + 1056V | 11 ()
+ 010! 0207 || 2 () + 020 0107 | 2y + ||52¢31041||H2(sz))~
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We investigate these terms one by one, beginning with
0wl () < [10: Vo (6.1)
by the Poincaré inequality. We next observe that
v Vol < llo- Vol + V(0 - Vo)
< O(J[oll oo @) V0l + [[0ll L (2 IV 20l + V0l Faq) )
< Cllvll32(y
< O Av|”.

We have invoked embeddings in Lemma 7.5 and the regularity of the Stokes operator (7.1).
Similarly,

lo- Vallm @ < C(lvll o= oIVl + 10:al V2] + ] 2= o [0}
< )l Av|19:6] 120,

la- Vollm@ < Ol Vol + 10:al V2] + [l 2= oI 20]])
< O A 10l 220,

Here, we have invoked the 1D-2D product estimate Lemma 7.6. Note that @ is a function of one space
variable.

Finally, we have
1AV a¥ || gi(a) + [VOAQR |11 () + 1050V | 1)
<C(laalliVallLes) + VAl [Val L@
=+ ||Aa||L4(Q)Hv2a”L4(Q) + ||32¢HH3(0,1)||VCY||H3(Q))
< C(IVAa|? + [[Aal? + 11826 3 0.1y ([ VAal| + [|Aal])).
x 010t 020?20y + (0200102 52 () + [|02001 0 | 52 ()
< C(IVallm@lIVallLe@ + 1Aallig,
+ 11026l L (@ IVl 52 (0) + 10501 Lo (@) Vel 1) + 1056 Val| o («))
< C(IVAQ|? + [[Aall? + (1828l s 0,1y ([ VAl + (| Aal])).-
Combining these results, we obtain,
pllwll @) + [[Velm o)
< C(10:Vl* + | Av|* + [[Aal® + [[VAa|®
+ (10:¢l 20,1 + 1026l 5 0,1)) ([ Av| + | Aa]] + [[VAal]))

< C(1a:Voll + (1 + ) Z + X (|| Av]| + [|Aa] + [[VAa])) (6.2)
We immediately find a similar estimate for higher regularity of v with v = w — %(—aQ, ah)T ie.
[Vl 3@y < C(10:Voll + (1 + 1) Z + X (|| Av]| + |Aa] + [[VAa)
C
+ E(IIAOZII + [[VAal]). (6.3)

Later on, we will use these results to estimate higher derivatives in time as mentioned above.
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6.2. Summary of the Energy Estimates

Let us state the result of the energy estimates first:

Proposition 6.2. Under the same assumption as in Proposition 6.1, we have the following estimates:

2dtIIWIIQ +pl| Al < Al Av]| + C(1 + ) (X +Y)Z, (6.4)
—
thuath? + ool < —(av ( J¥i > AR
+CA+p(1+X+V(X+Y)Z, (6.5)

1d 5 1 5 1
- — < O=
5 g 18all” + MIIAaII <C IIEWvIIIIAaII
+O<M+1+u+u>(X+Y)Z, (6.6)

1
Aal* + Aal? < C= A
3 I VAl + IV Aal? < €870V Aal

1
+C<u+1+u+u2> (X +Y)Z, (6.7)
2
ZdtH@tVozH? (@V( O{ ) ,8,5Vv>
+C<M+1+u+u>(1+X+Y)3(1+Y)Z. (6.8)

Here, C > 0 is a numerical constant (independent of 11).

The estimate (6.4) is obtained by taking the inner product of momentum equation for v with Aw, for
short we write (v-momentum, Av). Let us summarize the estimates and corresponding inner products in
the table below.

Estimate Inner product Corresponding subsection
(6.4) (v-momentum, Av) 6.3
(6.5) (0¢ (v-momentum), Ov) 6.4
(6.6) (A(a-transport), Aa) 6.5
(6.7) (VA(a-transport), VAa) 6.6
(6.8) (8¢ V(a-transport), o) 6.7

In the following subsections, we shall show these estimates one by one. Before going into the detail,
let us note what are the aims of each estimate. The first estimate (6.4) is the core estimate, although
the estimate produces a linear term ||A«l|||AAv||. This problem will lead us to the energy estimates of
aie. (6.6) and (6.7). One can immediately notice that these estimates produce the term ||0;Vv| in the
right-hand side. In order to manage these terms, we derive the estimate (6.5) to absorb [|0;Vv]|| in the
right-hand side of (6.6) and (6.7). However, we receive another linear term again as one can see in (6.5).
Therefore we derive another estimate (6.8) to cancel out this linear term.

6.3. A Priori Estimate for the Velocity Gradient

For receiving an estimate for spatial derivatives, we want to test the equation with second derivatives
of v. A simple way would be using —Awv which, unfortunately, does not vanish on the boundary. Hence,
the pressure term would not vanish in the estimate and must be estimated explicitly. We will therefore
employ Av instead of —Aw in the estimate.
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Taking the inner product of the momentum equation in (4.5), i.e.

0w —pAv+v-Vo+v-Vu+u-Vu+ Vp

—a?

= —Ad"VoF + A < ol > + 029V’ + VoAa?,
with Av. We can use the boundary condition for 0;v to integrate by parts. Since the Helmholtz-projection
is self-adjoint, we have
(O, Av) = — (0w, PAv) = —(Pdyw, Av)
1d
—(aﬂ}, A’U) = (ath,Vv) = <

2
5 I,

and
(—pAv, Av) = pl| Av|)?.

For the convection terms we use the embedding H?(Q) — L°°(Q), the 1D-2D product estimates and
the usual Stokes regularity to estimate
(v T, 40)] < o]l IVOlAV] < C o]y V]| Av]
< OVl Av|* < CY Z,
(v Vi, Av)| < CIVolIValllAvl < Cladllm o Il 40]? < CX 2,

and
(@ Vv, Av)| < ||a]| Lo @ IVl [ Av]| < CllOw | 0,1 [ Av])* < CX Z.

Since the Stokes operator maps into L2 ({2), the L? closure of all smooth solenoidal vector fields with
compact support in €2, the pressure term Vp vanishes in the a priori estimate.
The quadratic form in « gives

[(—Aa*Va*, Av)| < [|Aa]|[|[Va Lo @l Av]
< CllAaf(|Aall + [VAal])|Av]|
<CupYZz,

and for the last terms it is

[(93¢Va® + VoAa®, —Av)| < C(|03¢]l|Val| + | 028]| L= () | Ac]]) | Av]|
< Cl920]1 11 (0,1) | Acr][[| Av]|
< CuXZ.

2
Linear Term. The term A ( aof ) contains linear parts with non-small coefficients. Due to the presence
of the Helmholtz-projection, it is not possible to cancel this term with a corresponding term (v, —v!)7
in the a-estimate. We have

(& (1) a0 < 1aal

Altogether we have for the estimate of Vv

1d
5 71Vl + plAv]® < flAal|Av] + C(1+ p)(X +Y)Z.
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6.4. A Priori Estimate for the Time Derivative of the Velocity

Here, we investigate higher derivatives in time, since we are able to transfer higher time regularity to
higher space regularity by using the Stokes regularity.

We apply 0; to equation (4.5) and take the inner product with d;v. Since v vanishes on the boundary,
so does 0;v and integration by parts gives the terms

1d
(020, 0pv) = iaHathQ and  (—pd;Av, dpw) = ul|0; Vol

With div d,v = 0 and d;v = 0 on the boundary, we find (v - VO,v, 9v) = 0 and therefore the Poincaré

inequality as well as the usual Stokes regularity give

(Or(v - V), 0pv) = (Opv - Vv, Opv)
< 0wl La@) [Vl 10|l
< Cllowll @) VUl (o) 10|
< Cll0:Vol[[| Av][|Opv]]
<CYZ.
Similarly, we have after employing the product estimates for one- and two-dimensional functions
(Op(T - Vv),0w) = (04 - Vv, dyv)
< 104l oo o) I V[ Opv]|
< C107 8|l 1 (0.1 [| Avl[[|0: V|
<CXZ
and
(Or(v - Vi), 0w) < (||0pv - Vil + [Jv - V) || 0]
< Clo:vollvall + [[Vollllorval|) |0, Vol
< C([10e¢ll s + 1078l ) (105 V0| + [| Av]) |0, Vo
<CXZ.

The pressure term vanishes due to divd,w = 0 and d;v = 0 on the boundary. In the linear term

2
(@A ( aolé ) ,8tv) we integrate by parts once, using d,v = 0 on the boundary:

(2.2 (‘(;}2> ) = - (a9 (‘(ﬁ?) L0, V).

This term is going to be absorbed in the estimate for the time derivative of the gradient of the stream
function a.. Considering the quadratic a-term, we note with Einstein’s sum convention

[Aa*Var]; = 01(01a"0;0%) — 9,05 0;0,0F = [div (Var @ Var)]; — [V(IVaF|?));
and therefore in the a priori estimate, the second part vanishes being a gradient and we have after
integrating by parts
(=0 (AakVaF), 0,v) = —(9,div (Va* @ Vak), dw) + (8;V(|VaF|?), o)

= (0,(Va* @ Var), 0, Vv)
< OVl [Val| =@ |8:Vo]
< Cloavall([[Aal + [VAal)[|0: Vol
< CplloVal Z.



30 M. Endo et al. JMFM

In the remaining term, we estimate after integrating by parts

(0:(056Va® + VopAa?), Ov)

- (a (difil ((Sifél)z)) o)
< C(|01(B3603)] + 0826V a®) )8V ]|
< (|2l Vol + 1636l 0.V ol
+ 10201111V + 10261 (0 1: V) 9V
< (|08 20,1 18al] + 926 112 0.1y |: Ve |0 70|

1 %
< bl (14017 + 51070l

+ Cll028 11 0,1y 10V al[|9: V|
< OuXZ + Cl|029| 50,1 10: Va|[|0; V.

For the estimation of the remaining terms including ||0; Va|| in the two foregoing estimates, we employ
the transport equation for the stream function « in (4.3). Note, that one can write —v-Vn = (v2, —v!)? +
(0, 02¢0%)T and hence

[0Vl <[[V(v-Va)|[+[[V(a-Va)| +[[V(v- Vn)]|
<VolllVal e + lvllLa@ Vel i) + IVal [Vl + l|all e @) |Vl
+ Vol + 1031V oll + (1020l Lo 0y | Vo
< Vol + C(|Aall + [[VAall + [[026] mr + (1000l ) (V]| + | Acl])
<COl+X+Y)Y. (6.9)
Applying this inequality yields

(=0, (A*VaF), 0v) < Cul|o,ValZ
<Cpu(l+X+Y)YZ
and with ||, Vv|Y < C(1 + u)Z, we have

(0:(036Va” + VoAa?), dv)
< CuXZ + C)|029| 101 l|0: Vo[ (1 + X + Y)Y
<CA+p)(l+X+Y)XZ

Summarizing the foregoing estimates, we receive

1d —a?
5 21100l + ul oVl + (9 v ( I ) V)

<CA+pI+X+Y)(X+Y)Z

6.5. A Priori Estimate for the Laplacian of the Stream Function

We aim to control the H?(Q2)-norm of o with an a priori estimate of the Laplacian (Lemma 7.4) and it
is therefore necessary to estimate A« as well as VAa. We will be able to produce a regularizing term
|Ac||? on the left-hand side. This, however, comes at the cost of linear error terms involving the artificial
variable w = v + i(—az, a')T. These error terms will later on be handled with higher estimates of w

(6.2).
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We apply A to the transport equation of the stream function (5.3), i.e.

1 _ w? 9
ata—&—;a—l—v-Va—&—u-Voz: _t) T V.

and take the inner product with Ac. Then the time derivative gives (9;Aa, Aa) = $4[|Ac?. The
second term gives (A, Aa) = ||Aal|?. For the third term we note (v VAa, Aa) = 0 and therefore with
Einstein’s sum convention
(A(v-Va),Aa) = (Av-Va + 20;v - VO,a, Acv)
< C([Aal[[Val o) + HV”HM(Q)||V204HL4(Q))||A04||
< CllAv|[([[Aall + [VAa]) | Aa
< c(laal + [vaal) (G102 + 5140l
<CuYZ.
Similarly the second advection term yields
(A(u-Va),Aa) = (Au - Va+ 20;u - Voo, Aa)
< C(1820,6]|[V2a] + 192916 L~ V2| 2]
< Cl0eoll 20,112 ?
< Op*Xz.
Let us take care of the right-hand side.

2 2
(— A( (“’wl) + U2V¢>,Aa) - —(A (“’wl) ,Aa) + (A(B200%), Aa?)
< |Awl[|[Aall 4 C||02¢ ]| 20,1 | Av]| | Acx]|
< law|Aal + CuxZ.

Now invoking the estimate in Proposition 6.1, we have

1
[Aw|[|Aall < CHAaH;(H@tWII + (1 +p)Z + X([|Av]| + [[Aa] + [VAal)
1 1 1
< ¢ lAallllg: ol + 61+ P Z + Ot WXz

1 1
< Collaallo:vo] + € (u i +u) (X 117,

The complete estimate is of the form
1d

1 1 1
|Aal? + = ||Aa* < C—]|0; V|| Aa|| + C ( +14+p+ ;ﬂ) (X+Y)Z
2dt jz p p

6.6. A Priori Estimate for Gradient of the Laplacian of the Stream Function

We now want to estimate terms ||VAa|| such that together with the foregoing estimate, we can control the
H?3(Q)-norm of a.. Once again, we receive error terms including higher space derivatives of the artificial
variable w.

For the corresponding estimate we apply VA to (5.3) and then take the L2-inner product with VAa.
Then the first two terms give us

1d
(VAa+ VAo, VAx) = §£||VA04||2 + VA«
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We employ the identity (v- VVAa, VAa) = 0 and estimate (using Einstein’s sum convention)

(VA(v-Va), VAa)

= (O(Av-Va+20;v - Vo,a+v - VAa), 0 Aa)

= (0jAv - Va+ Av - Vo + 20,0;v - VO + 20;v - V10,0 + Ojv - VA, O Acv)
(19 A0l Vol =) + 31Vl 3 0 IV 32 + 2Tl 222 0y [Vl [V Aa]
ClIVollaz @) IVal 2@l VA
ClI Vol ([Aal® + [[VAal?)
ClIVoll g2 @Y.

IN A IA

IN

This is the first place, where higher spacial derivatives of v are appearing as error terms.
Once again using (a2 - VVAaq, VAa) = 0 we obtain more easily

(VA(z - Va), VAa)
= (8[Aﬁ -Va+ Au - Voo + 20,0;u - Voo + 20;u - VI 0;c0 + Oy - VA« 81Aa)
< C([030:0 V2 arl| + [1050:0 || oo () V2 rl| + [[020: 0| L= (o [| V) [ VAa|
< ClOedl 13 0,1 IVAQ][([Aall + [[VAa])
< COu*Xz.

Linear Term. Now let us focus on the right-hand side. Once again, we receive higher spatial derivatives

of w and v.
( - VA( (“’:1) + v2V¢) : VAa)

—(va “’21 ,VAa) + (VA(d200), VAa)
(va () vaa)

< VAw|[[[VAall + Cl1020] 3 0,1) Vol 20 [ VA
< IVAw|[[[VAal| + Cl[ Vol 2 o) XY

Here again, we have invoked Proposition 6.1 for the first term
IVAw|[[[VAa]l
1
< CHVAOéIIE (10 Vu]| + 1+ p*)Z + X (|| Av] + [Aal| + [[VAal))

1 1
< CL VAo + ¢ (M ‘1 +u> X 11)Z

We deal with the second term in the same way.

VUl g2 )Y
< C([0:VollY + (1 +p?)Y Z + XY (|| Av|| + |Aal| + [|[VA«l]))

C
+ Z(IIAaII + [IVAal)Y

< c((1 YWZ+ 1+ pA)YZ+(1+ u)XZ)
<CA+p+pH1+X+Y)Z (6.10)
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We summarize the above estimates to obtain
L4 Aal + LV aal? < 2oVl VAl
el o -

T « = AVL) «

=

o]
1

+C(M+1+u+;ﬂ) 1+X+Y)(X+Y)Z

6.7. A Priori Estimate for the Time Derivative of the Gradient of the Stream Function

The following estimate has the role of absorbing the linear error term that appeared when estimating the
time-derivative of v. In contrast to the two foregoing estimates on Aa and VA« we will not produce a
stabilizing term on the left-hand side of the estimate since this would come at the cost of a linear error
term 0;Vw. For that term, the higher Stokes-regularity result in Proposition 6.1 is not applicable. The
result would not be easier to estimate than 0;Va itself. Therefore, the main goal of the following estimate
is simply to absorb the linear remainder from the O;v-estimate.

Application of 9;V to (5.2) and taking the inner product with 9;Va yields for the first term

1d

(97Va,0,0) = 5 =0,V al .

In the following, we need to estimate the term ||0; V|| several times. We remind, that as calculated
in (6.9), we have

|0:Val| <C(1+ X +Y)Y.

Similarly to the foregoing a priori estimates for a, the term (v - VO;V, V) vanishes. This way, it
is
(O V(v-Va),0,Va)
= (0;0;v - Va + 0;v - VO + Opv - Vv, 0, 0;x)
< Cl10:VolllVeall L) + VUl L@ |10V al + 18] s IVl i) 10: Val|
< C(l0:VollllVall gz 10:Vall + Vo]l 720 10:Val?)
< Cloavol([aal +[[VAal)(1 + X + Y)Y
+ OVl 2y (1+ X +Y)?Y?
<Oul+X+Y)WWZ+CA+pu+pHA+X+Y)YZ

Note that in the last line, the estimate of Vo (6.10) was invoked.
The second advection term can be estimated similarly with Y2 < C(1 + p?)Z

V(- Va),0Va)
= (0;0;u - Va + 0;u - VO + 04t - Vv, 0:0;x)
< C([0:0 01V arl| + 102000l o= @ 10V er]| + 107 6| oo () [ V2 ) [0, V |
< C167 ¢l 0,0y | Act][|0: V|| + [|0c0 || 112 0,1) 10 Ve[ |?)
< C(107 gl o, 1AL+ X + Y)Y
+ 10ebl 20,1y (1 + X + Y)ZYZ)
<CA+p)1+X+Y)’XZ
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Linear Term. We split the linear term into
2
v 0
=091~ (1) (o)
and estimate the second part by

(0:V (000?), 0, Va?)
= (0,03¢0? + 02 050> + 0,05V V? + D200; V2, 0,V ?)
< C([10edl 20,0 VOl + 1020 111 0,1) [0 V[ [) (1 + X + Y)Y
SO+ X+VXY24+ 01+ p(1+X+Y)XZ
<SCA4p+pHA+X+Y)XZ.

JMFM

The remaining linear term is used to cancel a corresponding term appearing in the estimate of the

time-derivative of v. It is

2
(atv< ) &Va) = (8, V02, 8,Val) — (8, V!, 8,V a?)

o2
(&V( ) 3th>
Hence, the combined estimate is

9
splowal = (av (1) o)

<Cl4p+p)1+X+Y)P(1+Y)Z

6.8. Combining the Estimates

In this subsection, we are going to combine all the estimates in Proposition 6.2 and derive the key estimate

for the stability argument.

With Eq. (6.4) we proceed using Young’s inequality to absorb the term ||Av|| in the right-hand side.

This yields
1
24 S Av|2 < —]lAal? +C(1 X+Y)Z
IV + SI400? < ool + O+ ) (X +7)
Applying Young’s inequality for (6.6) and (6.7) in a similar way, we receive

L4 sl + ||Aa||2<|atw||2+0(u+1+u+u)<X+Y>Z,

VAao|? + VAa2<—6Vv2
th” 1° + MH l _MHt [

1
+C(u+1+u+u2> I+ X+Y)(X+Y)Z

Now we can add these three inequalities above to find a combined estimate

N =
&‘Q‘

1 1
- (IVol? + [[Aal® + [IVAQ|P?) + IIAvII2 + @IIAGII2 + @IIVAQH2

||3th2+0(”+1+#+# > 1+X4+Y)(X+Y)Z

(6.11)

(6.12)

(6.13)
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We now turn to (6.5) and (6.8). Adding these inequalities leads to a cancellation of the remainders of
linear terms of the time-derivative estimates for v and «. The resulting estimate is

1d
5 77 (100 ]” + 18:Val|?) + pl|0y Vo]
<C(M+1+u+u)(1+X+Y)3(X+Y)Z. (6.14)

We aim to absorb the remaining quadratic term C||0;Vvl||?/p in the right-hand side of (6.13) with
the one on the left-hand side of (6.14). For that it is necessary to multiply (6.13) by a sufficiently small
constant § > 0.

The sum of (6.14) with 0x(6.13) gives

&‘Q‘v

14
1 2 2 2 2
53 0ewl® +3]IVo]* + ]| Aa] +5||VAa|| +||3Noz||)

C
+ (u - 5,u) [EA 4—6'“\\141)”2 +6 ||Aoz||2 —i—é ||VA0¢H2

<C(1+9) <M+1+u+;ﬂ) I+ X+Y)P(X+Y)Z
We choose 0 < § < 1 such that u— 4§ % > % and hence receive
% (I0e0® + 8 Vol* + 8 Aal® + 6 VA + [|0:Val|?)
0Tl + 5l vl + 5 Al + [V Aal?

1
<C(1+9) <u+1+u+u2> A+ X+Y)3X+Y)Z

Finally we modify the left-hand side so that Z appears, and put C,, s = C(1+6)(1/u+ 1+ p+ p?) to
simplify the estimate. We obtain

d
p (10:0]1* + 6[1Vo|1? + 8[| Aal® + 8|V Aal® + |0 Val?) + 2162
<Chs(1+ X +Y)P (X +Y)Z 6.15
1,

6.9. Stability Argument

In this subsection, we give a proof of the estimate in our main result Theorem 3.2 with the aid of estimate
(6.15). As we mentioned at the beginning of Sect. 6, the actual existence proof is by the Galerkin method
which we skipped in this paper. We also note that the solution is unique, which is similarly proved by
the estimate in this paper.

Proof. Tt is obvious that Proposition 6.2 applies under the assumption of Theorem 3.2. Thus we can
employ (6.15). Fix some a > 0 such that C, 5(1+ a)3a < pd. Note that as long as Y (), X () < a/2 hold
for such a, we have

d
7 U10e0]” + Vol + 8| Aal* + 8|V Aal* + [0, Va?) (t) + poZ(t) < 0.

Thus we can conclude corresponding norm of the solution is decreasing except the case where all
X, Y, Z equal zero which is a trivial case.

Therefore, the proof is reduced to show that Y(¢), X (¢) < a/2 hold for all t > 0 if we choose initial
data and flow data sufficiently small.
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We now invoke the a priori estimate for the Poiseuille flow Proposition 3.1 and obtain

X(t) < C(IIvollmsco,1) + 1Al (0,00))

for some C' = C),. Therefore if we choose initial data 19 and pressure data h sufficiently small, we have
X(t) < a/2 for all t > 0. In what follows, we may assume X (¢) < a/2 for all ¢t > 0.

Now let us focus on Y (¢). For this, we investigate the initial data Y'(0) first.
Y(0) = [[0e0(0)]| + [Vvoll + [ Aco|l + IV Aag]|.
Let us recall the momentum equation (4.5) and find

atU(O) = /LA’UO — U0 - V'U() — U9 - VfL(O) — ﬂ(O) . V’U() — Vp

)
+ A ( O%O) — AakVak + 020(0)Vad + Vo(0)Aad.

Applying the Helmholtz projection to remove the pressure term, we obtain
[0:v(0)[] < C(pl|Avoll + [[vo - Vo[ + [[vo - V|
+ |70 - Vool + [|Aag Vag || + [1856(0)Vag]|)

< Clp+ Vool + 1ol 2 0,1)) | Avoll
+ O+ [[Aaoll + [[VAao) [ Aao]-

Similarly, we recall the transport equation of « (5.2) for 9;Va(0).

[0V (0)]| < [[V (v - Vao)[| + [V (u(0) - Vao) || + [V (vo - Vo) |
< ||V26¥0||||U0HLM(Q) + Vvl sy [[Vaoll ao) + ||V20lo||||ﬂ(0)HLoo(Q)
+ [[Va(0) [ L4 [[ Vol L) + Vol Vol Lo (o)
< C([IVuoll + (1 Avoll + llvboll 1 0,1)) 1 Ao l)-

Therefore we choose vg, g and retake 1)y if necessary so small that

Y0). [ova(0)] < X2

holds. Then we define a time T, = inf{t > 0;Y (t) > a/2}. To prove T, = oo, suppose T, < oo and seek
a contradiction. Y (t) < a/2 for all ¢t € [0, T%] holds, since Y is continuous. Thus,

d
7 19e0]” + 8 Vol + 8l|Aal® + 8[| VAQ| + [8:Vall*) (1) + noZ(t) < 0

holds in the interval [0, T.]. Integrating over [0, T], we receive

10:0(T)II* + [ Vo(T) | + 8| Ac(T)|* + 8|V AT | + [[0: V(1) ||
< [0 (0)[I* + 8] Vol + 8[| Ac||* + 8[|V Aa||* + [|0; Vo |*.
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Now evaluating Y (T) with the above estimate yields,
2
(Y(T2))? = ([0ww(T)l + [Vo(T)ll + 1Aa(T)| + [V Ac(T2)]))

4

<53 (10:0(TO1? + 8| Vo(TI? + Sl A(T)|1* + 6 VAT |I?)
4

<5 (10:0(0) 1> + 8[|V woll* + 8[| Acxo|* + 8|V Aag [|* + [|0: Vexo|*)
4

<3 ((Y(0))* + [|0:Va(0)|1?)

2

4 (VoY

< = 2

A ) x

<Y

- 8

This leads to a contradiction to the definition of T, and therefore T, = oco. O

7. Basic Properties of the Stokes Operator

In this section, we recall some basic estimates for the Stokes and the Laplacian operator, which are
frequently used in this paper for the reader’s convenience.

Assume that Q is either the layer R x (0,1) or one of the approximations (—M, M) x (0,1) in this
section.

7.1. Stokes Operator

Definition 7.1. Let P be the Helmholtz projection on 2. The Stokes operator A is defined as a closed
linear operator in L2 () with domain D(A) = H2(2) N H}(Q) N L2(Q) such that Au = —PA.

Note that 0 € p(A) and D(A) = H?(Q) N H(Q) N LZ(Q) in either case that Q is layer domain or
bounded domain [12, II.2]. Therefore we have the estimate

ol 20y < C|| A (7.1)
for v € H?(Q) with v = 0 on the boundary and divv = 0.

7.2. Stokes System

We use the regularity of Stokes system to obtain higher spatial estimates.
Lemma 7.2. Let Q = R x (0,1) or Q = (=M, M) x (0,1) for M > 1. Let f € H(Q), g € H*(Q) and
(u,p) solve

—pAu+Vp=f, inQ,
divu = g, in €, (7.2)
u =0, on 082.

Then there holds
pllullas ) + 1Vellar @) < Clullgllaz@) + 1 flla1@)-
The constant C is independent of the assumption to §2.

Proof. See [12, Theorem 1.5.3]. O
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7.3. Elliptic Regularity and Implications

Lemma 7.3. Under the same assumptions for Q of Lemma 7.2, there exists a constant C' such that
[fllm2@) < CIAL] (7.3)

holds for all f € H*(Q) which vanish on both upper and lower boundaries.

Proof. Tt follows by the elliptic regularity. For more details, see [1, Cor 6.31]. O

Moreover, by standard elliptic regularity arguments, we can estimate the H?3(£2)-norm by only terms
of the Laplacian as stated below.

Lemma 7.4. Assume the same hypotheses of Lemma 7.2. Then there exists constant C' such that
C U fllscoy < AT+ IVAS] < Cllf oo (7.4)
holds for all f € H3(Q) which vanishes on the upper and lower boundary.
Proof. See [2, Section 6.3]. O
We will use some embeddings to deal with products of functions.
Lemma 7.5. Assume the same hypotheses of Lemma 7.2. The following embeddings hold:
H?*(Q) — L>=(Q), HY(Q) — L*(Q), and H(0,1) — L>(0,1). (7.5)
Proof. See [2, Section 5.6] O
The following lemma are used to control the order of estimates.

Lemma 7.6. Assume the same hypotheses of Lemma 7.2. Let g € H'(Q) vanish on the upper and lower
boundaries and f € L?(0,1), one can estimate using the embedding above,

1fgllz2@) < Cllfl20.0IVYll2@)- (7.6)

Proof. We invoke the embeddings Lemma 7.5 to conclude

I fgllz2) = (// y)|%g(z y)2dydx>
(/ 19, ) 2o o) /( 1)|f(y)l2dydw>

)

1
2
<z ([ ot o )
<Ol fllezlVall L2 - (7.7)

1
2

8. Viscous Wave Equation

This section is dedicated to a proof of Proposition 3.1. We split the initial-boundary value problem (3.2)
into two parts for sharper estimation. The first part is the homogeneous case, i.e.,

8t2¢1 - 83¢1 = ,U/atai(bl? in (07 1)7
¢1(t,0) = ¢1(t,1) =0, for te (0,7), (8.1)
d)l(o) = 07 8t¢1(0) = 1;[}05 in (Ov 1)
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The second one is the inhomogeneous case, i.e.,
02y — 029 = 01022 +h, in (0,1),
d2(t,0) = ¢a(t, 1) =0, for te(0,7), (8.2)
$2(0) =0, O:p2(0) =0, in (0,1).

Again, here h is some given function which depends only on ¢. We shall show a priori estimates for
each of them. Note that we only need estimates for

i, 00205, D20y i =1,2

in both cases by the Poincaré inequality.

8.1. Homogeneous Case

In this case, we can use the separation of variables method and derive the solution explicitly. For the
readability, let us denote the solution ¢, of (8.1) by ¢ in this subsection.

Separation of Variables. To begin with, we consider the simple ansatz with the form ¢(t,z) = T'(¢) X (x)
with the boundary condition X (0) = X (1) = 0. Then inserting this ansatz in the system (8.1) yields,

X()T"(t) — X" ()T (t) = uX"(z)T'(t), =€(0,1), t>0.
This leads to the following equation

T"(t) B X”(l‘) N
pT' () +T(t) X(z)
for some A € R unless X (z) and pT7(t) + T'(t) vanish.

Let us focus on X () first. The equation X" (z) = AX (¢) with initial condition X (0) = X (1) = 0 gives
us a solution X,,(z) = a, sin(nmx) and here A = —(nm)2. We simply regard a,, = 1 and take care of those
coefficients in T'(¢) side.

Now let us turn to T/ (t) + p(nm)?T.(t) + (n7)?T,(t) = 0. Solving the characteristic equation y? +
p(nm)?y + (nm)? = 0 yields

2
Y= —g(mr)2 +nw 'uz(mr)2 -1

We set B,, = nmy/ ’%Q(TMT)Q - 1‘ for simplicity. Then yF is written as

—L(nm)? £iB,, n< ;%77’
+
Yn = 7%(7”7)27 n:ltlﬂ—v
—b(nm)?+B,, n> #%T
Now we assume N := ;%w € N in the following. Otherwise, we just ignore the terms with respect to
y5 = —pu(N7)?/2. Hence the solution T,(t) is written as
e 5™t (g, sin(Byt) 4 by cos(Byt)), n < u%r’
Tn(t) = 6_%(nﬂ')2t(tan _‘_bn)’ n = Hlﬂ"
e—g(nw)zt(%eBnt + %B—Bnt), n > u%r

for some coefficients a.,, b,, € R.
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Determining the Coefficients. We now consider the solution ansatz for (8.1) of the form

N-1
o(t,x) = Z sin(nﬂx)e_%("”)zt(an sin(Bpt) + by, cos(Bpt))

n=1

+ sin(va)e_%(N”)zt(taN +bn)

oo
+ Z Sin(mrx)e*%(””)% (‘gleBnt + b2neBnt> '
n=N+1

We determine a,,, b, so that ¢(0,2) = 0 and ¢¢(0, x) = 1o are satisfied.

Decay in Time. At this point, we would like to remark, that each of the functions 7T;, decay exponentially
in time. This observation is directly clear in the cases n < ;%r and in the latter case, we note B,, < 4 (nm)?

for n > -2 In fact, it is
%3

—%(nﬂ')2 + B, = —=(nm)? +nn

Il

|

3

3
VR
«
~| 5,

=

3

Y

|
«
ISES

3

3

e

|

—_
S~

- m
2 2 1
Vi
< ™
2 “7271'2
1
=, (8.3)
7

Hence, the solution decays exponentially to zero at infinity at least as fast as e vl for n > #%T
We superpose these solutions for n € N receiving the solution ansatz for ¢ of the form
N—1

o(t,x) = Z sin(nﬂx)e_%("”)zt(an sin(Bpt) + by, cos(Bpt))

=1

sin(wa)e_%(N”)zt(taN +bn)

oo
+ Z sin(nmz)e & ()t (Cl;eB"t + bQ"eB"t> .
n=N+1

3

_|_

Determining the Coeflicients. Our next step is to exploit the initial conditions on ¢ to determine the
proper values for the coefficients a,, and b,,. It is

= n bn
sin(nmx)by, + sin(N7x)by + Z sin(nmz) (a ;_ )
n=1 n=N+1

- i sin(nmz) (bn X1, (1) (an ; bn)) '

n=1
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It is then easy to conclude that for n = 1,..., N we have b, =0 and forn =N +1,... it is b, = —a,
and therefore

2

—1
sin(nmz)e” 2 (nm)*t (an sin(Bpt))

(]

¢(t7 l‘) =

1
i (Nﬂx)e_%(N”)Qt(taN)

+ Y sin(nma)e EOMEL (Bt Bty

2
n=N+1

n

+
&z
jm}

The other initial condition ¢¢(0, ) = 1o(x) enables us to uniquely determine the remaining coefficients
via Fourier-series. We calculate the derivative in time

N-1
= n(nrx ( ( g(mr)z) e*%("”)zt(an sin(Bpt))

n=1

+ e*%(”’r)%(aan cos(Bnt)))

+ sin(N7z) ((—%(NTF)Q) e_%(N”)Qt(taN) + 6_%(Nﬂ)2ta1v> (8.4)
- . K 2\ —L(nm)*tin (B, —Bn

+ Z sm(mrx)((f§(mr) )e 5 (nm) t? (ePrt — e Pnt)

n=N+1

" 2, an B

1 e bnm) ta7l2 n (6Bnt n eant))'

At t = 0 then holds with By =0

N—-1 ]
Yo(z) = ¢+(0, ) Z sin(nmx)a, By, + sin(N7x)ay + Z sin(nmx)a, By,
n=1 n=N+1

= Z sin(nmx)(anBn + x{n}(n)an).

n=1

Now we will assume that 1o € H3(0,1) with tg(0) = 1o(1) = 0 and therefore we can write it as a
Fourier-series

Yo(x) = 520 + Z ay sin(2rkx) 4 By cos(2mka)

k=1

oo
E ay sin(2nkz),
k=1

where the coefficients 3, vanish due to the boundary conditions. Moreover, v» € H3(0,1) implies with
Plancherel’s identity, that the series ((2km)3au)ren is in 2. Comparing this representation with condition
(8.4), the uniqueness of the Fourier-series implies that asi+1 = 0 and

o — Byl = By, fol Yo () sin(2wkz) dz, 2k # N,
T ag = fol Yo (x) sin(2mkx) d, 2k =N
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Altogether, for N = % € N even, the solution ¢ of system (8.1) is given by

oz

1
o By, Sin(2kﬁ£)67%(2kw)2t sin(Bayt)
=1

o(t,x) =
k
+ax sin(wa)e_%(N”)Qt(taN)

o0
+ Y %B;,j sin(2k7rx)e*%(2k”>2f(eBwfe*B%t),
k=% 41

where ay = f01 Yo(x) sin(2wka) da. In the case, where N is odd, the second term vanishes, more precisely

N 1
7 2
ot Z By, sin(2kmz)e” > K7 sin(Byyt)
ke N+1

Continuity of the Solution. Looking at the coefficients, we see that (lm) < Boy, < 4(km)? for n such

that 1 < %(wn) . Therefore, the term Bsj, may absorb (27k)? coming from a time-derivative or two
derivatives in space. With ¢y € H?(0,1) we see that ¢, (t) is continuous in time (up to zero) as a
function taking values in L?(0,1) and we can estimate with Plancherel’s identity

||¢tx:z:x( )“2

N 1

2
< Z ‘asz_kl(Zkﬂ)?’e_%(Qk“)%(ng cos(Bayt) — g(2k71')2 sin(Bth))‘
k=1

+ Z %ng (2k‘7(')3 — & (2km)?t

2
=g
2
% <B2k(eB2kt + emect) _ g(2k7r)2(632’“t . 6732”))‘
N2—1 ,
2k 2
- ;; ’ak(%w)sf # 2R ((cos(Bart) — %(B;) Sin(ngt))’
o o .

+ Z ‘%(2]%‘(’)367%(2]”') ¢

k= N;l

2km)? 2
X ((BB%t + efngt) _ g(B:Z (engt _ efngt))’

i = 5|2 L e 5|2
,5(27T)2t Z ‘Oék(zkﬂ'>5’ + CB_Et Z ‘ak(Qkﬂ_)dl
k=1 k=1
— min n2, 1
< Cem M om0,y

Here we used the exponential decay in time for high frequency part n > M—Qﬂ calculated in (8.3)
With the same arguments we find similar estimates for the case where N is even as well as ¢,4qq and
1. We have now proved the following Proposition:
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Proposition 8.1. For vy € H?(0,1) N H}(0,1) there exists a unique solution ¢ € C*([0,00); H'(0,1)) N
C1([0,00), H3(0,1)) N C([0,00); H*(0,1)) of (8.1). The solution satisfies

— min n2, L
pe (@)l 73 0,1) + 1w (D)l r3(0,1) + P (D)l 1 (0,1) < Ce G138 4o s 0,1y -

fort > 0. The constant C > 0 is independent of t and p.

8.2. Inhomogeneous Case

Now let us consider inhomogeneous case (8.2) and its solution ¢. Note that for the readability, we denote
¢2 by ¢ again.

Instead of solving the equation explicitly, we take advantage of the structure of the equations. First,
we shall show the following point wise estimates in time.
Proposition 8.2 (A priori estimate in time). Let k € N, T > 0 and ¢ be the solution in C*+1([0,T);
H3(0,1))of system (8.2) with some given h € H5(0,T). Then for each t € [0,T] the following estimates
holds.

t
10F ¢e ()72 (0.1) + 10F b (B |72 (0.0 + u/o 10F b (5)[1 20,1 ds
< ||6F oF ! Fh
<05 d:(0)[ 20,1y + 105 D2 (0) || 2 0,1) + @H | 22 0,1)
and
t
10 61 (&) 2201y + 10 G (B)]220.1) + 1 / 105 Gz () 22 0.1, s
< ||8F pr (0 b (0 1 oFh
< 0F bt (0)[22(0,1) + [10F 2 (0)[| L2(0,1) + u” | L2 0,1)-

Proof. Let us focus on the first estimate. We take derivatives 97 of (8.2) and take inner products with
OF 1 p(s) in L?(0,1). Then we have,

1 1
/8tk+1¢t(8,$)3tk¢t(87$)dl‘_/ Of fua(5,2)0; (s, ) da
0

0

1 1
.y / OF 1o (5, 2)0F T (s, ) A + O h(s) / OF (s, ) da.
0 0

We can employ integration by parts in the second, third and fourth term since 9F¢(s,0) = 0F¢(s, 1) = 0,
and that gives us

d
= (1101 () 320 1) + 10502 (5)17200,1)

N =

1
— 10 6ea(5) 20,1y — OE(s) / 2 O (s, ) da.

We estimate the fourth term by means of the Cauchy-Schwarz inequality and Young’s inequality:

1 1 3
afh(s)/ 2 OFF g, (s, 2) dz < |9Fh(s)| </ xzdm> 10 e ()1 2201)
0

0

1 1%
< alat’“h(S)l2 + §||atk¢tr(5)“%2(o,1)'
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Absorbing the last term and integrating from 0 to some ¢ > 0 leads to the intended result:

t
10F &t () 172001y + 108 b2 ()1 Z2(0,1) + N/O 10F dea(5)[1720,1) s
1
<105 6:(0)[720,1) + 110F D2 (0|70, + @”atkh”%?(o,t)'

One can obtain the second estimate by taking inner products with 97 7'92¢ instead of 97 ¢ in the
above calculation. O

We somehow need to introduce a spatial a priori estimate. However, the same trick we used in the
proposition above doesn’t work since there is no boundary condition given for higher space-derivatives of
¢. Therefore we take advantage of the structure of the equation and eliminate temporal derivatives. Let
us introduce new variable z = ¢ 4+ u¢; for that purpose. Then z satisfies the following.

Orz = pd?z + z_¢ +ph, in (0,1),
T

2(t,0) = 2(t,1) = 0, for te (0,T), (8.5)

z(0) =0, in (0,1).
Additionally, by solving z = ¢ + u¢, for ¢, we have

1 [t
o0 = - /0 e~ 2(s) ds. (8.6)

Estimate of 8%¢. Taking derivatives 92 in (8.5), we have

2 2
(atazz_ % — aﬂﬂ(b) .

9tz =
¢ I I

1
1
Inserting this into (8.6) will produce

1 t s 82 62

Dto(t) = 7/ e (@852(5) _ %) ””(é(s)) ds
K Jo K K
1 t t—s 2 82 t
= —2/ e (—agz(s) - z¢(3)) ds + 022(t) — e ¥ 922(0).

1* Jo p I
Note that we used integration by parts for 9;02z to eliminate the derivative in time. Finally we take norm
in L2(0,1) in both sides.

1 C
1820 (t)] 2(0.1) SC<1+2> sup [|022(5)l|2(0.1) + —5 sup 026(s)ll20.1)
n= ) o<s<t M= 0<s<t

1
<o (1) (s 1002006 20 + s 266Nz )-
H 0<s<t 0<s<t
Finally, we invoke the a priori estimate in time above and obtain the intended result.

With the same arguments we find similar estimates for 8,03¢, 920,¢.

Proposition 8.3. Let T > 0. For h € H(0,T), there exists the unique solution ¢ € C*([0,00); H*(0,1)) N
C*([0,00), H3(0,1)) N C([0,00); H*(0,1)) of the system (8.2). The solution satisfies

10ed ()] 112 (0,1) + 1020 (t) 1113 0,1) + 107 (E) | 10,1

4
<C> pMIbll o
k=1

for 0 <t <T. The constant C' is independent of u and t.
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