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Abstract. We prove existence of weak solutions to an evolutionary model derived for mag-
netoelastic materials. The model is phrased in Eulerian coordinates and consists in particular of
(i) a Navier—Stokes equation that involves magnetic and elastic terms in the stress tensor, of (ii) a
regularized transport equation for the deformation gradient, and of (iii) the Landau—Lifshitz—Gilbert
equation for the dynamics of the magnetization. The proof is built on a Galerkin method and a fixed-
point argument. It is based on ideas from Lin and the third author for systems modeling the flow
of liquid crystals as well as on methods by Carbou and Fabrie for solutions of the Landau—Lifshitz
equation.
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1. Introduction. Magnetoelastic (or magnetostrictive) materials respond me-
chanically to applied magnetic fields (magnetostriction) and/or react with a change
of magnetization to mechanical stresses (magnetoelastic effect). Because of their re-
markable response to external stimuli, they are attractive not only from the point of
view of mathematical modeling but also for applications. Magnetoelastic materials
are, among others, used in sensors to measure force or torque (cf., e.g., [6, 7, 30]) as
well as magnetic actuators (cf., e.g., [48]) or generators for ultrasonic sound (cf., e.g.,
[9).

Modeling of magnetoelastic materials goes back to Brown [8] as well as Tiersten
[51, 52]. Later, many works appeared studying magnetoelasticity particularly in the
static case relying on energy minimization; see, e.g., [17, 18, 33]. Let us point out that
the magnetoelastic models investigated there can be seen as generalizations of models
for micromagnetics that are also studied for their own right; cf., e.g., the reviews
[19, 26, 35]. Based on the analysis in the static case, rate-independent evolution
models were studied in [34] using the concept of energetic solutions; cf. [43]. However,
in micromagnetics the dynamics is usually governed by the Landau—Lifshitz—Gilbert
(LLG) equation [27, 28, 36], which has been extensively studied analytically; see,
e.g., [1, 11, 41, 42]. Nevertheless, if the LLG equation is coupled with elasticity, the
available works confine themselves to the small strain setting; cf., e.g., [10, 14].

The prominent difficulty in analyzing magnetoelastic models lies in the fact that
elasticity is commonly formulated in the reference configuration, while micromag-
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netics is modeled in the current or deformed configuration. To overcome this issue,
one might transform the magnetic part back into the reference configuration as in
[17, 18, 34]. However, this is only possible if one can assure, by suitable modelling
assumptions, that the deformation is invertible. In the static case, this can be en-
forced by suitable coercivity of the elastic energy; in particular, the energy has to
blow up as the determinant of the deformation gradient tends to 0. The dynamic case
is more involved, though, because the balance law for the deformation also features
the inertia term. We refer to [45], where a magneto-elastic model is formulated in the
fully Lagrangian setting; however, mathematical analysis of such a model could only
be performed under several simplifying assumptions (cf. [45] for details). Another
possibility is to work in the small-strain setting in which the difference between the
actual and the reference configuration is neglected; cf., e.g., [10, 14].

In this article, we shall take a different approach and formulate the fully nonlinear
problem of magnetoelasticity completely in Eulerian coordinates in the current con-
figuration. In the Eulerian setting, the main state variable is the velocity and not the
deformation. This poses an obstacle from the point of view of elasticity since then the
deformation gradient is not readily available. To overcome this difficulty, we follow
the approach of Liu and Walkington [40], where this issue has been resolved by find-
ing a differential equation—a transport equation for the deformation gradient—that
allows one to obtain the deformation gradient (in the current configuration) from the
velocity gradient. Therefore, we will not need to care about the invertibility of the de-
formation. Moreover, the model is perfectly fitted to be used in modeling of so-called
magnetorheological fluids; cf., e.g., [53]. Those are so-called smart fluids containing
magnetoelastic particles in a carrier fluid. Indeed, it seems feasible that the system
of partial differential equations under consideration (1)—(4) can be extended to fluid
models via a phase field approach (cf. also [40]).

As for the magnetic part, we model the evolution of magnetization by the Landau—
Lifshitz—Gilbert equation with, however, the time derivative replaced by the convec-
tive one. This is in order to take into account that changes of the magnetization also
occur due to transport by the underlying viscoelastic material. We refer to section
2 for a detailed description of the model; see also [24]. In this work, we prove the
existence of weak solutions in the case where we regularize the evolution equation for
the deformation gradient. Our proof is based on a Galerkin method discretizing the
velocity in the balance of momentum and a fixed point argument. It borrows ideas
from the work of Lin and Liu [38], beyond which our system is further coupled to the
evolution of the deformation gradient and the LLG equation. For the treatment of
the LLG equation we further utilize methods from Carbou and Fabrie [11] in order to
pass to the limit in the Galerkin approximation; see also [4] for a sketch of the proof
and an announcement of this work, and cf. [24].

We point out that the system we are considering in this article indeed has the
Navier—Stokes equations as a subsystem. The Galerkin method utilized here is also
applied in the Navier—Stokes context; see, e.g., [20, 50]. For a broad insight into
the Navier—Stokes equations, we further refer to, e.g., [16], and to [25] for a steady-
state analysis; see also, e.g., [37, 13] for recent contributions in the context of the
Navier—Stokes equations coupled to Maxwell’s equations for charged systems, which
yields the magnetohydrodynamic equations. Further, we would like to mention that
also viscoelastic flows, even without magnetism as considered here, are of ongoing
interest; cf., e.g, [2, 21, 31, 32].

The paper is structured as follows: we start with a presentation of the considered
model for magnetoelastic materials in section 2. There, we list the model equations
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and give a brief derivation. In section 3, we state the main result of this article, viz.,
the existence of weak solutions to the evolutionary model for magnetoelasticity in
Theorem 3.2. The proof of this theorem is presented in section 4. In section 5, we
prove two auxiliary lemmas used in the proof of Theorem 3.2.

2. Presentation of the model. Let Q C R% d = 2,3, represent the current
configuration. Then we consider the following model for magnetoelastic solids:

(1) w+ (v-Vv—divl = f (balance of momentum),

(2) V-v=0 (incompressibility),

(3) OF+ (v-V)F —VuF = kAF (evolution of deformation
gradient),

(4) M+ (v- V)M = —yM X Heg — AM X M x Heg (LLG equation),

closed by boundary conditions (14)—(16) and initial conditions (17)-(19) below. Here,
(1) is the balance of momentum in Eulerian coordinates with v : 2 x (0, T') — R% being
the velocity mapping, T the stress tensor, and f the applied body forces. Similarly, (4)
is a variant of the LLG evolution equation for the magnetization M : Q x (0,T) — R3,
in which we replaced the time-derivatives in the LLG equation by the convective one
in order to take changes of the magnetization through transport into account—see
also Remark 2.1 for a detailed discussion regrading the transport dynamics of the
magnetization. In this equation, Heg is the effective magnetic field (cf. (8) below),
~v > 0 is the electron gyromagnetic ratio, and A > 0 is a phenomenological damping
parameter. Here and in the following, we impose the standard constraint

(5) |M| =1 almost everywhere in Q x (0,7,

which corresponds to the existence of a saturation magnetization. Equation (3) is
an evolution equation for F which, in our modeling, is an approximation for the
deformation gradient in Eulerian coordinates. Indeed, if k = 0, (3) is obtained by
taking a time derivative of the deformation gradient and rephrasing it in Eulerian
coordinates; cf. [40, equation (5)]. In this case, (3) is an evolution equation for the
deformation gradient, but taking x = 0 would not allow us to pass to the limit in
the stress tensor in the presented Galerkin approximation. Therefore, we include a
regularization term (cf., e.g., [39, p. 1461]) with s presumably small.

The stress-tensor 7 as well as the effective field Heg are constitutive quantities.
In this work, we assume the decomposition

T = —p]I—I— v (V’U + (V'U)T) + 7;eva

where —pll represents the pressure (which, however, shall not appear in our work since
we will consider weak solutions only) and v(Vov + (Vo)) is the viscous stress cor-
responding to the frame indifferent dissipation functional [, |} (Vv + (Vo)) [2dz.
Due to the assumed incompressibility and the zero boundary condition (15), this yields
the term vAw in the balance of momentum (11). Finally, 7. is the magnetoelastic
part of the stress tensor that, similarly as the effective magnetic field Heg, will be
deduced from the Helmholtz free energy.
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For the Helmholtz free energy in magnetoelasticity we have the following general
form

B(F, M) = A / VMP do+ / S(F, M) do+ / 80, do
Q Q Q

exchange energy anisotropy energy stray field energy

+/ W(F) dx—po/M-Hextdm
Q Q

~
elastic energy Zeeman energy

where ws(fr)ay equals %7 (M - e3)? with eg being a unit vector orthogonal to  if d = 2,
and —"? M - H if d = 3. The stray field H : R* — R? is obtained from (possibly a
reduced set) of the Maxwell equations; cf., e.g., [18, 17] or [35] for the micromagnetic
part and [29] for the case d = 2. Moreover, Hex denotes the external magnetic field.
Notice that the whole energy, including its elastic part, is formulated in the current
configuration. From the Helmholtz free energy we obtain the effective field Heg by
taking the negative variational derivative of ¥ with respect to M. In order to obtain
Trev We use that the elastic stress is a variational derivative of the Helmholtz free
energy with respect to the deformation gradient F'; similarly, in order to determine
the applied force f we need to take a variational derivative with respect to the defor-
mation. However, care is needed during this procedure since the free energy has to be
transferred back to the reference configuration and then the derivative with respect
to the deformation gradient as well as the deformation is taken in order to obtain the
Piola—Kirchhoff stress tensor and the Langrangian volume force, respectively. This
stress tensor and this force are subsequently again transformed into the current config-
uration to obtain the Cauchy stress tensor and the Eulerian volume force. We present
the derivation only for the simplified case presented below considered in this article
and refer to [24] for a detailed derivation of the simplified as well as the general model,
which is based on taking variations of the action functional while carefully taking into
account changes between the Eulerian and Lagrangian coordinates.

Here, we study a simplified situation of isotropic magnetic particles (which allows
us to set the anisotropy energy to zero), with the stray field energy neglected; cf.
Remark 3.9. Thus, we are left with

(7) Y(F, M) = A/ |VM|? dx +/ W(F) dx — uo/ M - Heyidx,
Q Q Q

and so the effective magnetic field, which equals the negative variational derivative of
1 with respect to M, is given by
(8) Heg = 2AAM + 19 Hox-

To obtain Trey, we need to transform ¢ from (7) to the reference configuration
Q. To this end, we denote by X € €2 material points in the reference configuration
(Lagrangian coordinates) and by x €  spatial points in the current configuration

(Eulerian coordinates). Further, we assume that the deformation from the reference
to the current configuration is governed by the smooth bijective flow map

z:Q0x[0,T] = Q thatis (X,t)— z(X,1).

With the flow map, the velocity is defined by v(X,t) = aatx(X, t), which, in
Eulerian coordinates, is denoted by v : Qx [0, T] — R¢ chosen such that v(z(X,t),t) =
v(X,t).
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Moreover, we define M : Qx [0, T] — R? to be the magnetization in the reference
configuration by setting

(9) M(X,t) = M(x(X,1),1),

and F : Qx [0, T] — R?*9 t0 be the deformation gradient in the reference configuration
satisfying B
F(X,t) = F(z(X,t),1).

Remark 2.1. Let us remark that by defining the magnetization in the reference
configuration by (9), we actually assume that, by the movement of the flow, the
magnetization vector in each particular material point can neither be stretched nor
rotated but it can be transported to a different position. In other words, we treat
the magnetization as a 3-scalar function with respect to the transformation from the
reference to the deformed configuration. This approach is, for example, used in [17].
Let us note that taking the material time derivative in (9) translates to taking the
convective derivative in the deformed configuration, i.e., the time derivative that we
used in the LLG equation (4).

However, more complicated transformation rules for the magnetization vector
could be assumed. For example, even in the incompressible case treated here, the
modeling assumption could be that the magnetization may rotate or stretch by the
flow of the underlying medium, which would lead to the idea that

M(X.t) = F"YU(X. t)M(2(X, 1), t);

in other words, the magnetization would transform as a one-form. Under such more
general kinematic assumptions also the unit vector constraint (5) is relaxed; on the
other hand, under the rule (9) it can be maintained. Finally, let us stress that the
material derivative under the more general kinematic assumptions is more complicated
than the convective one, so that, in this case, also the form of the LLG had to be
changed for consistency.

Next, we obtain for the Helmholtz free energy in Lagrangian coordinates, denoted
by ¢ (x, F', M),

D, B, ) = /ﬁ AV N (X, ) F (X, )2 — o M(X, t) How (2(X, 1), £)

+ W(F(X,t)) dX.

Notice that, due to incompressibility (2), the Jacobian of the transformation is one.
Moreover, notice that through the external magnetic field, the Helmholtz free energy
in the reference configuration also depends on the deformation x (X, t) itself. Thus, the
term F(z) = — I5 HOM(X) -Hext(2(X,t),t) dX can be understood as the potential of
an applied volume force to the mechanical system (cf. forces with generalized poten-
tials in, e.g., [15]), whence the volume force fis obtained as the negative variational
derivative of F with respect to x. Transforming back to the current configuration, we
have that
f=uVHL M.

Moreover, taking the variational derivative of 7,2 with respect to F and transform-
ing back to the current configuration, we obtain for the elastic stress tensor

Tev = —2AVM O VM + W/(F)FT  with (VM O VM) =Y ViMyV;M;.
k
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Altogether, we are left with the following system of partial differential equations,

10) s + (v-V)v + Vp+ V-(2AVM & VM — W/ (F)F ") — vAv = po(VHeyy) T M,

(

(11) Vow =0,
(12) O.F + (v-V)F — VuF = KAF,
(

2
13) 0 M + (v-V)M = —yM x (2AAM + pioHexs) — AM x M x (2AAM + 119 Heyt)

in Q x (0,T), accompanied by the following boundary/initial conditions,

(14) v=0 on 99 x (0,T),
(15) F = Fiin on 90 x (0,T),
(16) %]g —(VM)n=0  ondQx (0,7),
(17) v(z,0) =wvo(z), V- uvo(z)=0,
(18) F(z,0) = Fo(),

(19) M(I,O) = MO(:U)v |MO| =1,

where n denotes the outer normal to the boundary of Q. Here, F;, C R¥*? is a
matrix for which W’ (Fin) = 0. Moreover, let us note that the boundary condition
(15) is needed only due to the regularizing term <AF in (13), which brings in higher
derivatives of F.

3. Main result. As the main result of this contribution, we prove existence of
weak solutions to the system (10)—(13). We start by defining the notion of weak
solutions we shall work with. Here and in the following we set A = %, wo = 1, and
v = A = 1 since constants are irrelevant for this mathematical analysis.

Moreover, we shall restrict our scope to 2 C R?; in this setting we may obtain
a weak solution globally in time. If ) C R3, the presented proof remains valid up to
small modifications but only to obtain short-time existence of solutions; cf. Remark 3.6
below.

Let us start the discussion by giving the notion of weak solution that we shall use
in this work.

DEFINITION 3.1. Let Q C R? be a C>-domain and let T > 0 be the final time of
the evolution. Then, we call (v, F, M) enjoying the regularity

ve L® (0,13 L, (%R2)) N L2 (0. T;Wo3, (%R?)),
F e L™ (0,T; L (G R>?)) N L (0, T; WH2 ((; R**?))
M e L™ (0,T; W2 (Q;R®)) N L? (0,T; W22 (; R?))

a weak solution of the system (10)—(13) accompanied with initial/boundary conditions
(14)—(19) if it satisfies (15)—(16) in the sense of traces as well as the initial conditions
(17)—(19) in the sense

L3(9) L*(Q) wh?
L R

v(-,t) w(),  F(1) Fo(),  Mt) 2D M) ast— 07,
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and if it fulfills the system

T
// ~v-0p+ (v-V)v-¢p— (VM OVM - W (F)F' —vVov) - Vé
(20) 0.JQ
— (VHI M) - ¢ dz dt = / vo(z)b(2,0)dx,
Q

(21)
T
//—F-8t§—|—(v-V)F-§—(VUF)-§+/$VF~V§da:dt:/Fo(x)-ﬁ(x,O) dz,
0JQ Q
(22)
T
//—M-Btg“+(v-V)M-C+(M><(AM+Hext))-C—|VM|2M-§
0Ja

T
—AM ¢ dv dt = / / (= M - Ho M + Hoy)Cdadt +/ My(z) - C(2,0) dz
0JQ Q

for all ¢(z,t) = ¢1(t)pa(x) with ¢ € WE>(0,T) satisfying ¢1(T) = 0 and ¢o €
Wolﬁiv(Q;Rz), all £(x,t) = & (H)é2(x) with & € WHe(0,T) satisfying &(T) = 0
and & € Wy 2 (5 R2¥?), and all C(x,t) = ¢i(H)Ca () with & € WH(0,T) satisfying
¢ (T) =0 and (3 € L?(O; R?).

Above and throughout the paper, Bochner spaces are denoted by LP(O; V) and
WkP(0O; V) for functions mapping O C R™ to a Banach space V whose norm in V
belongs to the appropriate Lebesgue or Sobolev space. In the special case in which
V is R™, we denote by L, (O;R"), Wol”fiv(O;R") those subsets of the appropriate
Lebesgue or Sobolev space on which the distributional divergence vanishes; in the
Sobolev space, also the boundary values (in the sense of traces) are 0. We will use the
notation W~12(0;R™) for the dual space of W *(O;R™); moreover, we shall denote
the duality pairing between W~12(0;R") and Wol"z(O; R™) by {-,-)-

In the weak formulation of (10) and (12) we used integration by parts to trans-
fer the highest derivatives in the Laplacian to the test function, which is standard.
Moreover, we used that, as long as |[M| =1, (13) is equivalent to (see, e.g., [5, 11])

(23) O M+ (v-V)M = —M x (AM + Hex) + | VM|2M + AM — M(M - Hoxt) + Hexs.

Before formulating our main result, let us summarize the assumptions on the
data in the model that we shall need: Let us start with the elastic energy W, which
must be independent of the observer; that is, it has to satisfy W(RA) = W(A) for
all R € SO(2) (and thus W/(RA) = RW'(A); see also [40]) for all A € R?*2. We
assume that W € C?(R%*?) is of 2-growth, i.e., there exists a constant C; > 0 such
that

(24) CilAP <W(A) <Cy (JAP +1) VA € R?*2,

Further, notice that due to the differentiability of W this implies that W’(-) is of
1-growth, that is,

(25) W'(A)] < Co(|A|+1) VA € R**?
and likewise W/ (-) is bounded, i.e.,

(26) W"(A)| < C3 VA eR?**2
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Finally, we assume that W is strictly convex, that is,
(27) Ja>0  (W'(E)A)-A>a|AP?  VE AecR¥™Z

and let the matrix Fyi, € R?*?2 be such that W’ (Fpi,) = 0.
Our main result is the existence of weak solutions to (10)—(13) in the sense of
Definition 3.1.

THEOREM 3.2. Let Q C R? be a C*°-domain and let T > 0 be the final time of
the evolution. Let W € C?(R**%;R) satisfy (24)—(27). In addition, assume that

(28) Hexe € C°(0,T; L7 (4 R?)) N L% (0,T; L™ (4 R?)) N L3 (0, T; WH* (5 R?))

(29)
O Hexe € L' (0,T; L' (4 R?))

and vo € L3, (3 R?), Fy € L*(R**2) and My € W22(Q;R?). Moreover, let the
initial data and the external field satisfy the smallness condition

1 1
IED := / 9 |vo|* + 2|VM0|2 + W(Fy) dz + 2| Hext| Lo (0,711 (%))
(30) ? )
+ |0¢ Hoxt | 21 0,7: 21 (2r3)) < o

for a suitably large constant C>0 depending just on Q. Then there exists a weak
solution of the system (10)—(13) accompanied with initial/boundary conditions (14)—
(19) in the sense of Definition 3.1.

Let us note that we can specify the C in (30) explicitly. Namely, it corresponds
to the constant in the well-known Ladyzhenskaya inequality

1513 sty < € (17122 qumty + IV F 12 gy 1 2agg)

which holds for all functions in L*(Q; R?) since  C R?; this inequality is applied in
(57) below.

Tt is interesting to note that the smallness constant in (30) would also depend on
A, appearing in (13), if we did not set A to be one. Nevertheless, C depends neither
on v nor on k, appearing in (10) and (12), respectively. This shows that the smallness
of the initial data is required because of the complicated rheology and not of the
Navier—Stokes equations.

We prove Theorem 3.2 in section 4 below. The proof is based on a Galerkin
approximation of the system (10)—(13). As is standard in the context of the Navier—
Stokes equation, we approximate the velocity in terms of basis functions of the Stokes
operator. We leave (12) as well as the LLG equation (13) undiscretized but insert the
discretized velocity into these equations. A similar approach has already been used
in [38], [49] but here the partial discretization of the system is crucial also in order to
keep the constraint |M| = 1 satisfied in the Galerkin scheme.

We deduce energy estimates that are, in turn, used for the convergence of the
Galerkin scheme. However, the energetic a priori estimates do not yield enough regu-
larity of M for proving convergence of the solutions to a solution of the system because
we get VM bounded only in L>(0,T'; L?(2; R3*2)). Thus, we need to adapt parts of
the regularity analysis for the LLG equation (cf., e.g., [11, 41, 42]) to the case of our
system. Our argument here is based on the technique from [11].

A further peculiarity is brought into the proof by the fact that an adaptation of
the technique of [11] to our case is fully possible only on the level of the Galerkin
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approximation since then v is smooth. Nevertheless, we obtain a bound on AM in
L2(0,T; L?(2;R?)) that is uniform in the Galerkin index. This is all that we need
to make the limiting process of the nonlinear terms in the stress tensor involving the
magnetization work.

Before embarking onto the proof of Theorem 3.2, let us consider some remarks
about the assumptions of this theorem as well as possible extensions.

Remark 3.3 (Heisenberg constraint). Let us note that the Heisenberg constraint
(5) is automatically included in the LLG equation, i.e., any weak solution in the
sense of Definition 3.1 will fulfill this constraint. This is the most standard setting
in micromagnetics, even though there exist also variants of the LLG that do not
enforce this constraint and allow to relax it; see, e.g., [44]. From the mathematical
point of view, such variants could allow for stronger results than the one presented
in Theorem 3.2. Indeed, enforcing the constraint |M| = 1 relates the LLG to the
harmonic-map heat-flow for which finite time blow-up under large initial data has
been proved. (See also Remark 3.8 below.)

Remark 3.4 (weak formulation of the LLG equation). Let us note that our weak
formulation of the LLG equation (22) is actually stronger than the standardly used
weak formulation as proposed in [1]. Notice that we keep the highest derivatives (i.e.,
the Laplacian) in (22) and, in fact, since no partial integration in space has been
used, we can deduce from (22) that the LLG equation actually holds a.c. in Q. We
can afford to require this stronger formulation since we anyway need to prove a bound
on AM in L%(0,T; L?(€;R?)) in order to be able to pass to the limit in the Galerkin
approximation in the stress tensor.

Remark 3.5 (convexity of W). The convexity assumption (27) makes sure that the
energy is lower semicontinuous, which we will need in order to pass to the limit in the
energy inequality. Nevertheless, this assumption is not optimal from the physical point
of view since elastic energies in the large strain setting are not convex. However, if
the material is incompressible, that is, we assure that det F' = 1, even a convex energy
is acceptable since interpenetration of matter is not possible under this assumption.
Yet, even if we assume incompressibility here, we cannot make sure that det FF = 1
due to the regularization in (3). In order to relax the convexity assumption, it would
be necessary to change the used mathematical methods; in particular the assumption
(27) enters in Step 2 of the proof of Theorem 3.2.

Remark 3.6 (Q C R?). The fact that Q C R? enters at several places in the proof
of Theorem 3.2 but most crucially in Step 2, where higher order a priori estimates for
the magnetization are derived and the Ladyzhenskaya inequality is used. Nevertheless,
the proof could be easily adapted by using techniques from [11], to hold also for Q C R?
but with a sufficiently short final time of the evolution.

Remark 3.7 (positive ). In the system studied in this contribution, it is essential
that we keep x > 0. In fact, the possibility of sending x — 0 in related system is
discussed in [39], where it is shown that while the limit passage in the weak formulation
of (12) seems feasible a limit passage in the stress tensor in (10) leads to a defect
measure (cf. also [22] in the context of the Navier—Stokes equation) that can be proved
to vanish if the velocity is Lipschitz.

Remark 3.8 (smallness of the initial data). The smallness condition (30) on the
initial data is quite limiting but a condition of this type seems to be necessary in order
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to prove existence of weak solutions to (10)—(13). In fact, in order to pass to the limit
in the stress tensor in the balance of momentum, we need sufficient integrability of
VM from which we employ the higher regularity of M. However, if the initial data
are not small, higher regularity cannot be expected. Indeed, blowup in finite time
for the LLG equation from smooth but not small initial data has been numerically
reported in [3]. An analytical proof of this phenomenon seems to be missing for the
LLG equation in two dimensions but has been given in the related harmonic-map
heat-flow equation in [12].

Remark 3.9 (stray-field energy). In the analysis of this work we neglect the stray-
field energy. However, recall that in d = 2 the stray-field energy reads ) (M - e3)?,
which is a lower order term compared to the exchange energy. Therefore, it seems
feasible to include the stray-field energy in the presented analysis in d = 2.

Remark 3.10 (gradient flow). We remark that a system corresponding to (10)—
(13) but equipped with a gradient flow for the magnetization M instead of the LLG
equation is studied in [24]. Moreover, in [47] weak-strong uniqueness is shown under
the assumption that strong solutions exist. A proof of higher regularity of weak so-
lutions is an open topic in the case of the gradient flow dynamics as well as in the
LLG setting. The system with gradient flow has the advantage of being closer to the
system studied in [38] in terms of the magnetization. The gradient flow type dynamics
are less involved than the LLG equation, which makes the treatment of the equation
for the magnetization M a lot easier. However, in the context of micromagnetics, the
LLG equation is the established description of the dynamics of the magnetization.
For the gradient flow case, existence of weak solutions is proved by a Galerkin ap-
proximation and a fixed-point argument similar to the proofs of this paper; however,
for that proof there is not as much regularity needed for the magnetization as in the
LLG case.

4. Proof of Theorem 3.2. Let us now give a detailed proof of Theorem 3.2.
Everywhere in the proof, we use C as a generic constant that may change from
expression to expression. It may only depend on the problem parameters that are
fixed throughout the proof such as €2, but dependence on other data, in particular
on the initial conditions or the Galerkin index, is specified explicitly. Moreover, note
that we do not always display the dependence of v on x and t; instead of v(x,t)
we may also write v(t) if we want to stress the dependence on time, or just v, and
correspondingly for F' and M.

Proof of Theorem 3.2. We start by constructing suitable approximate solutions:

Step 1: Discrete formulation and existence of discrete solutions. Let us construct
Galerkin approximations of the velocity via eigenfunctions of the Stokes operator, i.e.,
let {&}22, € C*°(Q:R?) be an orthogonal basis of W%, (2;R?) and an orthonormal
basis of L3, (€2; R?) satisfying

(31) A&+ Vpi = —N\i&

in 2 and vanishing on the boundary. Here, 0 < A} < Ay < -+ < A\, < -+ with
Am —=2, 0. Notice that € is a C*-domain so the assumed regularity of the

eigenfunctions can indeed be guaranteed. Further, let us denote
Pt Wy 5 (0 R?) = Hy, o= span{&1,&, ... m }-

We start by defining the notion of a weak solution to the approximate problem.
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DEFINITION 4.1. We call (vyn, Finy My,) a weak discrete solution of the system
(10)—(13) on some time interval (0,t) C (0,T) provided that the pair (Fm, My,) enjoys
the reqularity
(32)

Fon € W2 (0,522 (QiRP2) 1L (0,8 LA RZ)) 1 L2 (0,6 W * (B RZ2)),
(33)
My, € WH (0,8 L% (;R?)) N L™ (0,4 W2 (;R?)) N L* (0,6 W? (4 R?))
and solves
(34)
(0:Fm,E) +/ (Um - V)F - E = (Vo Fp) -E+ kVE, - VEde =0 in (0,1),
Q
(35)
Ot My + (U - VYMyy = [N My |* My, + AM,y, — My, X (AM,y, + Hext)

- Mm(Mm . Hext) + Hext in Q x (0 t)
forall= € Wol’Q(Q; R2%2) | together with the initial conditions (18)—(19) and boundary
conditions (15)—(16).

Moreover, vy, (z,8) = Yivy gt (s)&(z) with g, : (0,t) — R being the Lipschitz
continuous solution of

(36)
d ‘ m _ ‘ ‘ .
1 9n(8) = =VXigin(s) + D Ghn(8)9m () Afye + Dy (5. Frn, My), i=1,...,m,

Jk=1

with the initial condition g),(0) = [, vo - & da and
= —/Q(ﬁj V) - & d,

BT Di (5, Fy, Myy) = /Q (VM (5) © VMo (5) — W(En(5)) Fn(5)T) - VE:

+ (VHey (8)Min (5)) - &ida
for any s € (0,t), 4,4,k =1,...,m and any (F, M) in the function spaces mentioned
in (32) and (33).
For further convenience, let us denote

IN := ([[W(Fo)llve), | Mollw22(ors)) -

We prove existence of discrete solutions to (10)—(13) in the sense of Definition 4.1
by a fixed point argument. To this end, we define for all 0 < tg < 7" and for L :=
lvol|L2(q;r2) + 1 the set

vm<to>={v(z,wzzgiﬂ(w@(z) in 9 [0,10) : sup (Z |g:‘n<t>|2> <z,

t€[0,t0) \ ;=1

9 (0) = /Qvo(:ﬂ) -&i(x) d:c}.

Notice that Vi, (o) is a closed and convex subset of C([0,t0]; H,,), which itself is a
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subset of C([0, to]; L?(£2;R?)). With some v € V,, (o) fixed we may find weak solutions
0 (12)—(13) by means of the following lemma.

LEMMA 4.2. For v € Vy,(to) fivzed and Hexy satisfying (28) there is 0 < t1 < tg

that only depends on L, m, IN, and the external field Hqxy, such that we can find
unique (F, M) with

(38) Fe W2 (0,t;; W12 (Q;R**?)) n L2 (o,tl; Wy (Q;RM)) ,
(39) M e W™ (0,t; L (% R?)) N L* (0,81, W™? (4 R?))
satisfying

(40)

(o F,E) +/(v “V)F-Z— (VuF) - Z+kVF-VE2dr =0 a.e. in (0,t1),
Q

(41)
M + (v- V)M = [VM2M + AM — M % (AM + Huxy) — M(M - Hox) + Hext
a.e. in Q x (0,t1)

for all = € W) 2(Q; R**?), together with the initial conditions (18)—(19) and boundary
conditions (15)—(16). Moreover, the pair (F, M) satisfies the following bounds:

(42)
1F | Lo (0,01:L2(r2x2)) < C(L,my IN), - [[M][ o (0,6,w2 2 (r3)) < C(Lym, IN, Hext).
In addition, we have that | M| =1 a.e. in Q x (0,¢) and the estimate

(43)

IAM ()72 (0m9)
< NAM |72 (qps)

t
+ C(L,m, Hext) /0 (1 + ”VMH%?(Q;R?'X?) + ||VM||%2(Q;R3><2)HAM”%Z(Q;RL")) ds

for any t for which (41) is satisfied.

The proof of Lemma 4.2 is based on a Galerkin approximation within which
the estimates (42) and (43) can be obtained by following the reasoning of [11]. We
postpone it, for the sake of clarity, to section 5 and rather continue with the proof of
Theorem 3.2 at this point.

By Lemma 4.2, we have now found, for some fixed v € V,, (), functions (F, M)
that solve (40)—(41) and are such that

Dy, (t; F, M) € L>(0,t)

with the L>-norm of D, (¢; F, M) depending only on L and m, the initial data through
IN and the external magnetic field.
Thus, we can apply Carathéodory’s existence theorem to obtain existence of

unique Lipschitz continuous solutions g¢,(¢) of

(44)
d 5 (t) = —v\igl, (t) + ZL: G2, () gk (1) AL, + Di (t; F, M) =1
dfgm - i9m 9m 9m ik m\t 4 ’ vt=1,...,m,

Jik=1

with the initial condition g}, (0) = [, vo - & daz = g/,(0), at least on a time interval
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(0,t2) with to < ;. Notice that, for ¢ € [0,#1] and for |G, — gm(0)] < b, b > 0, where
Gm = (GL,,-..,g™), we can bound the right-hand side of (44) by the constant

m

R =—vXi(2b 4 |gm (0)]) + (2b+ |gm(0))* D [A%| + 1D (t: F, M)l < (0.1,)-
jik=1

Thus, it follows from [23, Chapter 1, Theorem 1] that ¢o has to be chosen in such a
way that Rty < b; in other words t2 depends just on the L>-norm of Di (t; F, M)
(that in turn only depends on L and m, the initial data through IN and the external
magnetic field).

Choosing 0 < t* < t9 small enough (but, as we shall see, only dependent on L and
m, the initial data through IN and the external magnetic field), we can assure that

(45) 00 = 3 i 0&()

is in V;,,(t*). To prove this, note that we can deduce from (44) and (37) that o satisfies
(46)

/ X0+ (@ V)¢~ (VMOVM —W/(F)FT —vVd) -V~ (VH (M) ¢ dz =0
Q
for all ¢ € H,,. Choosing ¢ = ¢ in (46) yields

1d, .

2dt”v(t)”%2(9?R2)

=— / (7 V)5 -9 dz+v ||V 22y + / (VM ®&VM -W'(F)F")-Vi dx
Q Q
=0

+ / (VHL M) o dx
Q

< Clm, Hoa) 50 20 (H [ 1va e var - wiE)ET) a
Q

+1
LOC(O,tz)

+ v[|5(0)172 0.m2)-
Further, we have that

130l z2me) < D NG Ol z2ume) = D 1T (0] < C(m, L),

i=1 i=1

because everywhere on the interval [0, t2] we have the bound |G, — g, (0))| < b from

Carathéodory’s existence theorem. Thus, we obtain that , 7, [|9(t) |72 qg2) is bounded
by C(m, L,IN, Heyt). Hence

1817 20sm2) < 190117 2(0sr2) + C(m, L, IN, Hext)t.
Now, we can define an operator

(47) L:Vp(t") = Vi (t*), ve— 71,

with ¥ defined as in (45). Notice that the range of £ is precompact in C([0,t*]; H,y,).
This can be seen from the Arzela—Ascoli theorem since any v in the range of £ is ob-
tained from (44) and thus is uniformly Lipschitz continuous in time with a Lipschitz

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/20/18 to 216.47.154.105. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

WEAK SOLUTIONS TO A MODEL FOR MAGNETOELASTICITY 1213

constant depending just on L and m, the initial data through IN and the external
magnetic field.

Moreover, we will prove in the following lemma (the proof of which is technical
but straightforward and thus postponed to section 5) that £ is continuous.

LEMMA 4.3. The operator L defined in (47) is continuous on Vy,(t*) in the topol-
ogy of C(0,t": Hp,).

Thus, Schauder’s fixed point theorem assures the existence of a
U € Vi (1)

such that L(vy,) = Up,. In turn, v, together with the associated pair (F,, M,,) is a
discrete weak solution in the sense of Definition 4.1 of the system (10)—(13) on the
time interval [0, t*].

Step 2: A priori estimates. Let us now deduce the a priori estimates, i.e., in
particular (1) and (58) below. To this end, let us first multiply (4.1) by —Heg =
—AM,, — Heyt to get that

(48)
(OeMyy, 4 (v, - V)Myy,) - (—Hegt) = (M, X Hegt) - Hegp + (Mo, X My, X Hegr) - Heg
= |Mm . Heff|2 - |HeH|2 < Oa
since |M,,,| = 1 by Lemma 4.2. After plugging the definition of the effective field into

this equation, we obtain

(49)

d 1

& / 5 |V M |* = My Hexeda+ / My, Oy Hexydz— / (V) M )-(AMpm+Hext) < 0.
Q Q Q

Note that for any smooth M the following identity holds, V- (VM VM) =V |V12\f1|2 +

(VM)TAM, and thus V- (VM @V M) v, = V |v12\4|2 “Vm+ (U - V)M AM. Therefore,
using integration by parts and the fact that vy, is divergence free together with the
vanishing boundary conditions, we obtain the identity

— /(VM ® VM) Vo, de = /(’Um -VIMAM dx,
Ja JQ

which holds by approximation also for M,, for almost all ¢ € [0,¢*). Moreover, by
integration by parts we get that

—/(vm-V]\fil'm)-HeXt:/V-vam-HeXt—i—(VH;tMm)-vm dw:/(VH;tMm)-vm dz.
Q Q Q

Plugging this into (49) leads to
(50)
d 1
/ VM |> — My, - Hexed + / My, - Oy Howdx + / (VM © VM) - Vo,
dt Jo 2 Q Q
+ (VHL M) - vm dz < 0.

Let us now test (34) with W'(F,,). Notice that this is an admissible test func-
tion since for almost all ¢ € [0,t*) we have that W/(F,,) is in W12(Q;R?*2). In-
deed, due to growth condition (25), W’(F,,) is in L2(€;R?*?) if F,,, € L?(;R?*?),
which is guaranteed by Lemma 4.2. Moreover, since W”(-) is bounded by (26),
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VW'(F,,) = W"(F,,)VFE,, is in L*(Q;R?*2%2) for almost all t € [0,t*) if VF,, €
L2(Q; R?%2%2) which is again guaranteed by Lemma 4.2, where a bound on F,, in
L2(0,t*; W2(Q;R?*?)) is obtained. Finally, due to the continuity of the trace oper-
ator and W'(Fin) = 0, we know that W’(F,,,) = 0 on 99. Plugging in the test, we
obtain

dt/W dT—l—/HVF VW' (Fn) + (0 - V) — Vo Fp )W/ (B do

= 4 / W(F, dcc—i—/ EV Fy- (W (Fu)VER) + (Ui - VYW (Fy)
Fn)ET) - Vo, de = 0.
Using that v,, is divergence free and exploiting condition (27), we get that

d

dt/ W(Fp, )dwr/ ka|V F|> — (W' (Ep)E)) - Vo, dz <0.
Q

Last, we deduce from (36) and (37) that v, = > ., g, ()& () satisfies

i=19m

. T_V .
51) /atum C+ (Um - Vo - ¢ = (VM @ VM, — W (F)E,), — vV - V(

— (Ve

m) Cdl’ =0

for all ¢ € H,,. Testing this equality with v,, itself yields

5 dt / |V |2 d + / V|V ? = (VM © VM) - Vo, + (W (E,)E)) - Vo,

— (VH M,

ext

)-vmdmz(),

because fQ(vm - Vum) - vmdx = 0. Summing the three expressions above, we get the
overall energy inequality for any ¢ € [0,t*) as follows:

(52)
.1' 2, 1 2 . 4 T .t‘lia 2dxds
[ Slem 0 4 I VMA O = Mint) Hosa0) + W (Fn(0) i+ | [ el T, P

t
—I—// V|V, |? dz ds
o/

dissipation

1 2 1 2
S/ﬂ2|vm(0)| +, [VM(0)]° = M (0) - Hoxt(0) + W (F (0)) dev

energy at time t regularization

approximate initial energy

ot
—//M7n'atHextdl'dS
0/

work of external forces

t
g/ ;|v0|2+;|VM0|2—Mo-Hext(0)+W(F0)dx—// M,, - 8y Hey dz: ds,
Q 0JQ

initial energy work of external forces
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where in the last line we exploited that F},, and M, already satisfy the initial condi-
tions exactly. From (1), we obtain the following estimate for any ¢ € [0, *):

1 1 ¢
(53) / 2|vm(t)|2 + 2|VMm(t)|2 + W (F(t)) da + // ka|V Ep|? + v|Vun,|? de ds
Q 0JQ

1 1
< / 100l [V Mof? + W (Fo) o + 2] Hosell e 0.1:2 0120
Q
+ 10 Hextl| 1 (0,711 (sm3)) = IED;

plugging in additionally (24) we obtain that

1 1
(54) sup / o O + LIV Mo (0)2 + [F (1) da
te[0,t*) JQ 2 2

T
+ // ka|V F | 4 v| Vo, | do ds
0/Q
< C(IED).
The above estimate is based on the inequality in (48), i.c., on |M-Heg|? — |Heg |* <

0, cf. (49). We can refine the a priori estimate in (50) by working with the following
expression obtained with Heg = AM,, + Hext:

|Mm : Heff|2 - |Heff|2 = (Mm : AMm)Q + 2(Mm : AMm)(Mm ) Hext) + (Mm ’ HeXt)z
- |Aj\'fm|2 + 2AMm : Hext + |Hext|2'

For any t € [0,t*) we get by the same procedure as above that
1 2, 1 2
9 [V (8) ] + 9 |VMm(t)| + W (F,(t)) dz
Q
t
+// ka|V F |2 4 0|V |2 + [AM,p, > 4 |Hex|? dz ds
0/
1 1
< / 00l L [VAMoP? Mo - e (0) + My (#) - Hosa (1) + W (Fo)
Q
t t
- // My, - Oy Hexy dz ds + // IV Mo |* + 2(Myy - AM) (My, - Heer)
0/ 0/

+ (My, - Heyt)? — 2AM,, - Hoyt dxds,

where in the last term, we used that —M,, - AM,, = |VM,,|? since the modulus of
M, is equal to one. By Young’s and Holder’s inequalities, this leads to

1 1

[ Slen(F + [V M0 + W(F, 0)ds

Q
t
+ // Ka|V Fp)? + V|V |? + (1 — ) [AM,,|* dz ds
0JQ
¢ 4 1 2
<IED + |V Mp,|* + 2 | Hoxt|” dads,
0JQ

where € > 0 can be arbitrarily small.
Now, we exploit an observation from [11]: the term fg Jo VM, |* daeds on the
right-hand side of the above expression can actually be absorbed into the Laplacian
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on the left-hand side, which yields a bound on the second gradient of M,,. To this
end, observe that for any t € [0,t*)

(55) ||A]\4m(t)”L2(Q:R3) = ||V2Mm(t) ||L2(Q;]R3><2x2)

due to the Neumann boundary conditions for M,,. Further, by Ladyzhenskaya’s in-
equality, it holds for any f € W12(Q;R?) that

1/2 1/2
(56) ”f”yl(g;mi) <cC (Hf”w(n;mi) + ”Vf”L/Q(Q;]RJX2)||f||L/2(Q;R&))
for some C' > 0 depending on 2 only. Hence,
(7 VM Loz
S C (”v-]\'-/[m”%Z(Sl;RfiXZ) + ||v2Mm||%2(Q;R3X2X2)||VMm||%2(Q;R3X2))

for some C > 0 depending on €2 only. Thus, we have for any ¢ € [0,¢*) that
1 2 1 2
2|’Um(t)| + 2|VJ\/Im(7‘,)| + W(F,(t))dx
Q
t
+ // ka|VFy ()] + v|Vog > + (1 = €2) [V?My,|? dx ds
0/Q

t
~ 2
S IED + C/ ||va||%2(S'Z;R3X2) + ||V2Mm“L2(Sl;R3X2X2 ||VMm||%2(SZ;]R3X2) dS
0

b
+ / / ) | Hoxt|? deds
0 JO¢€

t
~ ~ 9 1
< (1 + CT)IED +C IED/ ”szm”Lz(Q‘]Rsxma) ds + e2 ||H9Xt||%2(0,T;L2(S'2;]R3))’
0 5

where we applied that ||VMm||%2(Q,]R3X2 y < IED uniformly in the time by (1). There-
fore, if CIED <1— e2, we get, additionally to (1), the a priori estimate:

(58) ||v2]\/[m||i,2(07t* < C(Tv IED,Hext)-

;L?(Q;RBXZ’X?))

Notice that, owing to estimate (43), we can strengthen (58) albeit not uniformly
in the Galerkin variable m. Indeed, since ||V M, (t)| 12 (o;r3x2) is bounded uniformly
by IED on (0,t*), we may rewrite (43) as

[AM (1)1 L2 (%)
< ||AM0||2L2(Q;1R3) + C(L,m,1IED, Heyxt) /Ot (1 + ||AMm(S)||iZ(Q;R3)) ds,
whence we obtain by the Gronwall lemma that for all ¢ € [0,t%)
(59) |AM, (1)1 L2 ) < C(Lym, IED, Hoxt) (|| AMol| L2 (0m3) + T),

where we also used that f(f [AM;(5)]I72(qps)ds < IED.

Step 3: Dual a priori estimates. Notice that the a priori estimates obtained in Step
2 do not give any information on the time derivatives of the quantities v,,, Fy,, M,,.
However, these will be needed since without a uniform bound on time derivatives we
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cannot expect strong convergence in Bochner spaces, which in turn is crucial to pass
to the limit in the nonlinearities in the system. We deduce these estimates directly
from the discrete system (34), (4.1), and (51) itself on a time interval (0,t) C (0,T)
such that (v, Fin, My,) is a weak solution on (0,¢) in the sense of Definition 4.1.
Indeed, for the velocity and for any € € L*(0,t) and any ¢ € W, 3, (2 R?) with

€20y <1 and  [[{l|wrzre) <1

we get that

/O/Q Oyom, - (£€) da ds
- /Of/ﬂ Oy, (EPC) da ds

t
= /o/ﬂ — (i * V)um (EPnC) + vVuy, - (EVPLC)
+ (VM © VMo = W (Fn)F) - (€7 Pn€) + (VHi Myn) - (€PnC) da ds

t
= /O/Q(vm ® vm) * (EVPr() + vV - (EV ()
+ (VM © VMo + W/ (ER)E) - (§VPnC) + (VHL M) - (€Pn() da ds

t
< [ PPl + 1Vl P
0
+ (VM © VM| + W (E) Eg D ENV Prn] + [V Ho My €] P | d ds

t
< /||”m||%4(ﬂ;R2)|€|||VPm<||L2(Q7R2X2)+V”VUm”L?(Q;]R?“)|€|||VPmC“L2(Q;R2X2) ds
JO

+ /Ot (IVM,, © VM, || 12 ir222)
+ W/ (Fo) Fy |2z x2)) €IV PGl 2 g2y ds
t
+/O IV Hext || L2 (rax2) [ Min || oo (050) [ PmCll L2 (0:r2) ds
< llvmllTago,r0m2)) + VIV 20.622@) + IV Ml Fag0,0:04(0srx2)
+c (1 + ||Fm||%4(0,t;L4(Q;szz)))

+ [V Hext || 20,7522 (232 ) | Mo || Loe (0,: Lo (2:3))

where we used that ||Pmc||wgv2(sz;uz<2) < |I¢llwr2rey < 1 and exploited the growth
condition (25); we recall also that the velocity is, albeit not uniformly in m, Lipschitz-
continuous in time, which makes the time integration feasible. Notice that the terms
appearing on the right-hand side of this expression are bounded by interpolation of
the energetic estimate that we already obtained in the previous step. Indeed, ap-
plying Ladyzhenskaya’s inequality (56) to v,,, VM,,, and F,,, we get the asserted
Bochner-space regularities.
Thus, taking a supremum over all £ and ¢ as above, we see that

(60) ”atvm”LZ(O,t;W—LQ(Q;Rz)) < C(T,IED, Heyt).

In the same spirit, we deduce also estimates on the time derivatives of the magne-
tization M, and the deformation gradient F,. Let us start with the magnetization,
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multiply (4.1) by some arbitrary & € L?(0,t) and any ¢ € L?(Q; R?) satisfying

1€l 20,y <1 and <l L2 mey < 1,

and integrate over Q and (0,¢). We obtain

/ t/ 8 M., - (€¢) dz ds
// (0 - V) My - (€0)|

+ [(My, X (AMy, + Hext)) - (§0)] + [(Mim X My X (AMy + Hext)) - (€€)|dzds

< / L2 g0 |V Mo sy € 2y
0

+ 2([|AM | L2 (@ps) + [ Hexsll L2 (ams) ) IE]IC ]| 22 irs) ds
< vmllza,sce@ir2) IV M|l L3 0,404 (23 %2))

+ 2(|AMm | L2 (0,t:22(r3)) + [ Hext | L2(0,7:22(2;r3)) )-
We again employ (55) and the Ladyzhenskaya inequality (56) and obtain
(61) [0¢ M| L2(0,6:02(:r2)) < C(T,1IED, Hexy),
which implies that
(62) 106V M| L2(0,6;w - 12 (urex2y) < C(T,TED, Hext).
Let us make one more observation on 9;VM,,. To this end set
Wh? (G R??) := {X e Wh2 (Q;R**?)) : Xn =0 a.e. on 90} ;

here, recall that n denotes the outer normal to the boundary of 2. Notice that
VM, € Wh2(Q;R3%?)), and hence, in order to form the Gelfand triple
w2 (Q;R3X2) o L2 (Q;R3X2) N (Wﬁ’z (Q;Rsxz))’7

n

we would like to assert that 8,V M,, € L?(0,t; (W,}12(;R3*2))"); this can be seen us-
ing (61). Indeed, for any g € L?(Q;R?) we have that Vg € (W,12(Q; R3*2))’ because
for any smooth g and any arbitrary ® € W,12(Q; R**2) we obtain

[ Vo wdo == [ 59 9)do < lallirazo ]z soes
so that the claim follows by approximation. This calculation also shows that
(63) ”atVAIm“Lz(o_’t;(win’(Q;Raxz))/) < C(T, IED, Hext)-

Finally, we consider 9, F,,. To this end, let us take any arbitrary ¢ € L*(0,t) and
¢ € WH2(Q;R?*2) such that

”§||L4(O,t) <1 and ||C||W1,2(Q;R2x2) <1
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and estimate

/0, <<atF1n»<>>€ dS
< / / (0 V) P (€O + (Vo Fon) - (€0)] + 5[V Fr - (€VC)| da ds
0JQ

t
S/ [omll L3 @m2) [V Ein |l L2 (@maxaxa) [ElICl Lo (max2)
0

+ I Vom| L2(oumexa) [ Fml| L3 @urex2) [€]1|Cll Loomex2)
+ ||V 2 (ir2x2x2) [€] | V] L2 (or2x2x2) ds
< Nlvmll 10,628 :r2) IV Finll 2 0,622 (sr2 %20 2))

+ IVvmll 20,522 22 |1 Em | La(0,45 13 (im2x2)) + KV Emll 4 (0.6:L2 (QuR2X2x2))?
where again all terms are bounded by the energetic estimates (1) when taking also in-
terpolation inequalities, analogous to those that we used in the balance of momentum,
into account. In total, we obtain that

(64) (|0 o | < C(IED).

L5 (0,6;W-1:2(Q;R2x2)) =
Notice that the dual estimate (64) that we obtain for F), is slightly worse than those
that we got for M,, and v, in (63) and (60), respectively, hence, proving that F,,
attains the right initial data will be slightly more difficult; see Step 6.

Step 4: Extending the approximate solution. The approximate solution and the
a priori estimates that we obtained so far only hold on a short interval [0,¢*). Nev-
ertheless, they can be extended to the interval [0,7") with T as in Theorem 3.2.
Indeed, we may find a time instant ¢, such that ¢, is arbitrarily close to t* and
(Vi (ts), Fon(ts), My (ts)) are well defined and bounded in L2(;R?) x L2(£; R?*2) x
Wh2(Q; R?) by IED; cf. (1)—(1). Moreover, due to (59), we can assure that M, (t.) is
bounded in the W?22-norm by a constant that only depends on m, L (which in fact is
only dependent on IED) and IED. Thus, as long as m is fixed, and in particular in this
step, we can assure that the magnetization is bounded in the W?22-norm uniformly
in time, which is needed in Step 1.

Thus, we may regard (v, (t), Fm (t«), Mm(t.)) as new initial datum and repeat
the procedure from Step 1. This allows us to find a solution (v, F},,, M,,) of the sys-
tem (34)—(36) on Q X [t.,t. +0) coinciding with the earlier solution (vy,, Fin, M) (tx)
in t,. Notice also that the procedure in Step 1 allows us to choose the length of
the solution interval ¢ only depending on m, L (which is controlled by IED), the
initial data through IN and global-in-time properties of the external magnetic field.
In particular, we see that & > |t. — t*| since the latter can be made arbitrarily small.

Gluing the two solutions together, we thus obtain a solution on a time interval
[0,t +0). Repeating the procedure in Steps 2 and 3 then gives that the same a priori
estimates hold for the prolonged solution on the solution interval [0, ¢, + §). Notice
that repeating this procedure on the whole interval [0, ¢, +6) and not just on [t t.+3)
allows us to bound (vy, (t), Fy (t), Moy (t)) in L2(;R?) x L2(Q; R?*?) x WH2(Q; R?)
for almost all ¢t € [0, ¢, + §) by IED, i.e., by the initial data and the external field, and
not just by the norms of (vy,, Fin, M) () and the external field.

Thus, we can continue the extension on another time instant of length § which is
the same as above. This is due to the fact that the initial data for this extension will
again be bounded by IED. Finally, we obtain a solution (v, Fin, My,) on Q x (0,7T).
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Step 5: Convergence of the approzimate system. From the a priori estimates
(1) and (58) obtained in Step 2 as well as the dual a priori estimates (60), (63),
and (64) from Step 3, we conclude by the Aubin—Lions lemma (cf., e.g., [46]) that,
up to a nonrelabeled subsequence, there exist (v, F, M) € L?(0,T; Wolﬁiv(ﬂ; R?)) x
L2(0, T; WH2(Q; R?%2)) x L2(0,T; W22(Q;R?)) such that

(65) vm v in L*(0,T;L* (;R?)),
(66) Vo, = Vo in L?(0,T; L (O R**?))
(67) Fn,—F  inL*(0,T;L* (O R**?))
(68) VE, = VF in L*(0,T; L? (Q; R**2%2))
(69) VM,, = VM in L*(0,T;L* (Q;R**?)),
(70) AM,, =AM in L* (0,T;L* (;R?)).

Moreover, due to the continuous embedding of W1 4(;R3) — L>(;R?), we also
have that

(71) My — M in L? (0,75 L% (O R?)) .

At this point, we are ready to pass to the limit in (51), (34), and (4.1) that together
form the discrete system. Let us start with the balance of momentum (51). To this
end, let us choose some arbitrary ¢ € Wol”dziv (;R?) and use G, := Pn(¢) € Hy, as
a test function in (51). Moreover, multiply this equation by ¢ € W1*(0,T) with
&(T) = 0 and integrate over [0,7) to obtain

T
L =0+ (0 (€6 + 090 (€V6,)
- (VMm @ VAIm - V[//(Fm)Fy—,l;) '(§v<77l) - ((VHext)TMm) : (§<m) dl‘ dt

(72) =Awm%wmmm7

where we used integration by parts with respect to time.

Due to the continuity of the Nemytskﬁ mapping induced by W'(-) (cf., e.g., [46]),
we get that W/(F,,) — W/(F) in L?(0,7; L*(Q;R?*2)). Therefore, by standard
weak-strong convergence arguments we get that (72) converges to

T
/O /Q —0CE 4 (0-V)v - (EQ) + vVu - (EVC) — (VM O VM — W/(F)FT) (¢V() de dt

(73)
— (VHey) " M) - (£C) dx dt = / vo - (€(0)¢) dx

Q

as m — 00.
Further, multiply (34) by £ € W1°°(0,T) with £(T') = 0 and integrate over [0, T)
to get

(74) /079 —Fp - (§'5) + (vm - V) Fop = Vo Fy) - (§2) + £V Eyy - (EVE) da dt
74
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where we used that F,,,(0) = Fy and that, due to Lemma 4.2, we have O,F,, €
L2(0,T; W—12(Q; R?*2)) and simultaneously F,, € L*(0,T; Wol‘z(Q;R“Q)) whence
F,, € C(0,T; L*(Q; R?*2) and the integration by-parts formula holds; cf., e.g., [46,
Lemma 7.3]. Then, after integrating by parts in time, the duality pairing between
WH2(Q; R2%2) and W, *(Q; R?*?) reduces to a scalar product on L?(£; R?*2).
Standard weak-strong convergence arguments allow us to identify the limit as

// + ((v-V)F =VoF) - (EE) 4+ kVF - (EVE) dx dt = /Fo £(0)E) dr

as m — 00.

Finally, we pass to the limit in the LLG. By multiplying (4.1) by ¢ € L(Q;R3)
and & € WH°(0,T) with £(T') = 0 and integrating over space and time, we obtain
with M,,(0) = My that

(76)
// ~ My, (€0 + ((vm - V)M + (Myy X (AM, + Hext) — AM,y,) - (€€) do dt

-/ / (VM "My, = M (Mo Hoss) + Hess) - (<) ot + [ Mo (€(0)0) do
0JQ Q
As m — oo, this equation converges to
(77)
T
// —M - (515) + ((Um : V)M + (M x (AM + Hext) - AM) : (55) dx di
0/

- /OT/Q (IVMPM —~ M(M-Hext) + Hext) - (€0) dxdt—i—/ Mo - (€(0)C) da.

Q

Indeed, for the term jOT Jo VM, 2 M, - (€€) dzdt this is obtained by the following
calculation:

T
// (VM |* My, — VM [*M) - (€€) dadt
0/Q

= ‘ / T/ (VM |? = VM) My + [V M P (My, = M)) - (£0) dax dt
0/

T
/ ((VMy, — VM) -(VM,y, + VMM, + |[VM[?(M,, — M)) - (¢0) dx dt
Q

< ||V]\ffm + VM||L2(07T;L4(Q;]R3X2))||V]\{m - VM||L2(O7T;L4(Q;]R3><2))

X | Ml L= 0,7;2 @) €] L (0,7) ¢ 2 (2R2))

+ ||VM||%2(O,T;L2(Q;]R3X2))||Mm - M||L2(O,T;L°C(Q))||£||L°°(0,T)”C”L?(Q;RB))’
where the second term on the right-hand side tends to zero owing to (71) while the
first term on the right-hand side vanishes thanks to (69).

All other terms converge by a combination of weak and strong convergences in

(65)—(71). Hence, the discrete solution that we constructed in Step 1 and extended
in Step 4 converges in the sense of (65)—(71) to a solution of (20)—(22).
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Moreover, the L*>-in-time regularities in Definition 3.1 hold by the lower semi-
continuity of norms, and since the estimate (1) is uniform in m and is obtained for
the entire time interval (0, 7).

Step 6: Attainment of the initial data. Finally, we are left to prove that the initial
data is actually attained by the solution in the sense of Definition 3.1. As for v and
M this is fairly easy because the a priori estimates (1), (58), (60), (63), and (64)
translate by weak lower semicontinuity to the limit so that by

ve L (O,T; w2 (Q;RQ)) and A € L2 (0, T; W12 (0 R?))
M e L*(0,T;L* (% R*)) and O.M € L* (0,T; L* (4 R%)),
VM € L? (0,T;W,? (R**?)) and 9,VM € L? (O,T; (w2 (Q;R:””))/) ,

and by, e.g., [46, Lemma 7.3] we have that v € C(0,T; L*(Q;R?)) and that M €
C(0,T; WH2(Q;R?)). Moreover, we can see directly from (20) that v(0) = vy a.e. in
2. Indeed, for some € > 0 take ¢(z,t) = ¢1(t)p2(x) in such a way that ¢;(0) = 1,
¢1(t) linear on (0,¢) and ¢1(¢) = 0 for all ¢ € [, T] while ¢, € IV()lﬁiv(Q;Rz) is arbi-
trary. Then, as € — 0 we have ¢(-, 1) — 0 a.e. in Q while 9;¢p(t) — —dp in measures,
where §y denotes the Dirac measure centered at 0. Thus,

/(U(O) ~ v9) - adz = 0
JQ

for all ¢ € W(}ﬁiv(ﬂ; R?), which shows the claim. The situation is analogous for M.

For F, the situation is slightly more complicated since the obtained integrability
of the time derivative does not allow us to immediately form a Gelfand triple since
L*/3 (in-time integrability of the time derivative of F) is not dual to L? (in-time
integrability of VF'). Nevertheless, we conclude from the a priori estimates (1) and
(64) that (notice that we actually get from (1) that F € L°°(0, T’; L*(2; R**?)), which
yields the first statement)

FeLl'(0,T; W12 (;R¥?))  and §,F € L (0,T; W12 (% R**?)),
which implies that (see, e.g., [46, Lemma 7.3]) F € C(0,T; W~12(; R?*2)); com-
bining this with the fact that F € L>(0,T; L*(Q;R?*?2)), we have (see, e.g., [50,
Chapter ITI, Lemma 1.4]) that

FeC(0,T;L2 (;R>?)),

where L2 (Q; R?*?) is the space of L?-functions whose values are 2 x 2-matrices and
which are equipped with the weak topology. Moreover, by the same procedure as
above, we may identify that F(0) = F whence

(78) F(t) = F, in L? ((GR**?) ast— 0.

By the convexity of W this translates to

t—>04

/W(Fo)dx Sliminf/ W(F(t))dz.
Q Q

On the other hand, the energy estimate (1) also translates to the limit by weak*
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lower semicontinuity of the energy with respect to the convergence of (v, Fy,, My,) €
L>(0,7T; L?(;R?)) x L=(0,T; L*(Q;R?*2)) x L>(0,T; WH2(Q; R?)). Hence

1 1 K
/ 2|v(t)|2 + 2|VM(t)|2 — M(t) - Hex(t) + W(F) dx + // ka|VF[* 4+ v|Vo|? dz dt
Q 0JQ

1 1 !
g/ 2|v0|2+2|VM0|2—MO.Hext(oHW(FO)dx—//M.atHextdxdt
Q 0JQ

for almost all ¢ € (0,7"). By continuity, we may extend the estimate to hold even for
all ¢ € (0,7). Thus, taking the limsup,_,o+ and using the already proved attainment
of initial data (as well as the continuity of the external field in time) we get that

Jim sup /Q W (F(t))dz < /Q W (Fo)dz,

t—0+

so that altogether [, W (F(t))dz — [, W(Fy)dz. By the strict convexity and growth
of W this means that

Jm [E@)] 22 @mexzy = [[Foll L2 @mexz),

which combined with the already obtained weak convergence of F(t) to Fy in (78)
means that the initial data are attained in the strong sense as claimed. O

5. Proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Recall that for a fixed v € V,,(t9), we aim to construct
(F, M) satisfying

(79) (0:F.E) + / (v-V)F-ZE—(VoF)-Z4+kVF-VE2dr=0  ae. in (0,t1),
Q

(80) OyM + (v-V)M = |VM*M + AM — M x (AM + Hey)
— M(M . Hext) + Hext a.e. in Q x (O,fl)

for all Z € Wy*(€; R?*2), together with the initial conditions (18)~(19) and boundary
conditions (15)—(16).

Notice that the two equations (79) and (2) are decoupled. Consequently, we can
prove existence of solutions to each of the equations separately. To prove the existence,
we rely on similar methods as in the proof of Theorem 3.2, i.e., we use a Galerkin
approximation and standard ODE theory to prove existence of approximate solutions.
Thus, the existence of solutions is proved at first on some short time interval [0, #) for
some 0 < # < ¢, but we can extend the solution later to the entire interval [0,¢;] due
to the a priori estimates obtained.

Existence of weak solution to (79). As for the Galerkin approximation,
we project F' and (79) on finite dimensional subspaces of the eigenfunctions of the
Laplace-operator that form an orthonormal basis of L?(£; R2%2?) and an orthogonal
basis of W12(Q; R?%2). Let Py : L*(Q;R?*?) — {Z1,Zs,...,Z} be this orthonormal
projection.
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For a fixed k € N, we look for a function Fj, of the form

k
(81) Fk(ma t) = Z dZ(t)EL(ﬁ) + Enin
=1
solving the projection of (79) on the span{=;, Zs,...,Ex}, i.e., we solve the ODE
k
82 4 i) = di(t dl(t)AL(t) + Bi(t =1,...,k
(82) ) = —mmdi () + Y B OAD F B0, =1k,
j=1

where

(83)  Aj(t) = —/Q(U(w,t)-V)Ej(m) Ei(@) — (Vo(z, )55 (2)) - Bi(z) d,
(84) Bi(t) = /9 Vo(2,t) Fin - Zi(2) da.

The initial condition becomes

(85) 40) = [ Fila)-Eife) do

fori=1,..., k. We apply Carathéodory’s existence theorem (see, e.g., [23, Chapter 1,
Theorem 1]) to obtain absolutely continuous solution di (¢) of (82) on the interval [0, ).
Notice that the solution interval will thus depend only on Fi;y, the initial condition,
and the L>(0,t1; W1H°°(£2;R?))-norm of v, i.e., on m and L. Notice also that, since
the right-hand side of (82) is locally Lipschitz, the obtained solution is unique.

We now prove all the needed a priori estimates. To this end, let us first sum (82)
overalli=1...k to get

(36) / (3 Fy, + (v-V)Fy, — VoFy)) - Sda + / KV Fy - VEdz =0
Q Q

for all E € span{Z1,Za,...,Zk}.
Let us now test (86) by Fj — Fuin and integrate over [0, ] for ¢ <t to find

2
/|F;c (t)|? dx — // O0¢F), - Frin dx ds‘—l—// v - | k| — (v V)Fg - Frin dx ds

// Vo - Fka) VuF}, - mm—KlVFk|2 dx ds

1 1
= /|Pk(F0)|2d:r,§ /|F0|2da:.
2 Q 2 Q

As the third integral term vanishes because v is divergence free, we get, by integrating
the second expression by parts with respect to time, and rearranging,

/|Fk (t)|? dm+// K|V E|? dx ds

// V0 - (FoFD) | + Vol | Fe [ Fo| dee ds+/ | P |? dx—i—/ Fo? da
Q

< [l agses + CLum, Fo) (14 [ /Q A dads )
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where in the last line we used that ||Vo|| e (0,1 (;r2)) < C(L,m) since v € Vi, (to).
Applying Gronwall’s inequality yields that

(88) N1kl (0, L2(smex2ynr2 (0w 2 mexzy < C(Lym, T)(1+ || FollZzomex2))-

Notice that we drop the dependence of F,;, in the notation of the constant here and
in the following. Moreover, from this estimate it follows that we may extend the
approximate solution onto the interval [0,%y) by the same procedure as in Step 4 of
the proof of Theorem 3.2. Next, we derive an estimate on the time derivative 0; F} in
L2(0, to; W—12(Q; R2%2)). To this end, let us choose some arbitrary ¢ € L?(0,tq) and
Z € Wy (% R?¥?) satistying

<l r2(0,60) <1 and ||E||VV01’2(Q;]R2><2) <1

and calculate

to
O Fy, - (PKE)C dt
0
o

— | 8,F,-=Cdt
0~t() .

— / / (v V)Ey : (CE) + (VoF,) : (CE) — kVF, | ((VE) da di
0JQ
to

< [ (ol a1V Pz
+ V0|l oo (r2x2) | Fll L2 r2x2) ) | Bl L2 (ir2x2)
+ KV Fe | 2(ameas) I VE] p2maraass) ) IC] dt
< C(L, m)|[Fill L2 (0,00 w1 2 (k2% 2)5
and since for || Fi||12(0,t0;w1.2(0;r2x2)) We already got an estimate in (87), we see that
(89) 106 Frll 20,005 12 (r2x2)) < C(L,m) + || Foll L2(ur2x2)-

From the preceding estimates, we see that we may extract a subsequence (not rela-
beled) from (F})nen such that

(90) F, —~F in L2 (O,to;LQ (Q;R2x2)) 7
(91) OuFy, — O,F in L? ((),to; w12 (Q;RQXQ)) ’
(92) VF, =~ VF in L? (07t0;L2 (Q;R2X2X2)) .

As, by fixing v, (86) is a linear equation, we may pass with k to co to get that F
solves (79). Owing to the linearity once again, this is the unique solution of (79).

Existence of weak solutions to (2). Let us now prove the existence of so-
lutions as well as suitable a priori estimates for (2). The procedure to obtain these
is inspired by [11]. As above, we perform a Galerkin approximation; to this end, let
{ni}ee, € C(2;R?) be an orthonormal basis of L*(Q;R?) and an orthogonal basis
of W22(Q; R3), where

W2 R = {X e W22 (GR?) : VXn =0 ae. on 90} .
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For example, this basis may be composed of eigenfunctions of the operator A% +
id subject to vanishing Neumann boundary condition for the eigenfunction and its
Laplacian. Let Py : L2(€;R3) — span{ni,n2, ..., } be the orthonormal projection
onto finite dimensional subspaces formed by this basis. For a fixed k € N, we look for
a function M}, of the form

k
(93) My(z,t) = Y hip(Omi(x)
i=1
that satisfies the projection of (2) onto span{ni,nsz,...,nx}; this amounts to solving

the following ODE:

k
(94) h’ = rl()Ai(t) + Z i (t)hk (1) Z B ()Rl ()R (£) Cl
Jj=1 j,i=1 j,l,m=1
fori=1,...,k, where

(95) Al(t) = —/Q ((v(z,t) - V)ni(z) + (n;(x) X Hext(w, 1)) — Anj(x) — Hexs (2, 1))
n;(x) dz,

96) Bl == [ (o) x Sue) + (o) - o) ()
01 Ciu= [ (V) : V) (a) - m(a)

The initial condition becomes

(98) h;;(O):/QMO(x)-m(x) de, i=1,...,n.

Existence of unique Lipschitz continuous solutions hf (t) is also here obatined by
Carathéodory’s existence theorem on a time interval [0,¢**). Notice that the length
of the solution interval depends just on the L?(Q; R?) norm of Hey (which is controlled
by assumption uniformly on [0, 7]) and the L>°(Q; R?) norm of v (which is controlled
uniformly by C'(m, L) on [0, to] since v € V,, (to)).

In order to deduce suitable a priori estimates, we first rewrite (94) as

(99) /Q ({)th + (v- V)Mk — |VMk|2Mk — AMy + My x (AMk + Hext)

+ Mk(]\/[k : Hext) - Hext)nd:l: =0

for all n € span{n1,n2,...,nk}. Let us first test (99) by My to obtain
d1 ,
(100) | M| dx + |V My| dx
dt2 Jo Q
— [ VML ~ MMy - Host) + M- Ho do
Q
< 2(“Mk”%w(g;W)||VMk||2LQ(Q;R3x2)

+ (I M]|7 (omsy + 1)||Mk||L°°(Q;R3)”Hext”Ll(Q;]R3))-
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Next, we test (99) by A2M), and obtain for all ¢ € [0,t**)

1d

. AM;,|? da AM;,|? dx
iy 1AM do [ (VAN o

< / |(’U . V)Mk ~A2Mk|dl’+/ |(]\/[k X (AMn +Hext)) . AQMk|dl‘
JQ JQ

=1 =1
(101) +/ ||VMk|2Mk-A2Mk|dac+/ |(M}, - Hey) My - A2 M| dx
Q Q
::13 =Iy

+/ | Hexi - A2 M| da .
Q

Z:I5

We will estimate the integrals I;—I5 separately. To do so, we will utilize the following
estimates, which hold for all smooth M : Q — R? (Q C R?) with zero Neumann
boundary conditions:

1
1 2
(102) [ Mlwesos < C (1Mo + 1AM 0mn)

1

1 4
(103)  [[VM||ps(qraxzy < ClIVMI| 72 g paxe) (||VM||%2(Q;]RBXZ) + ||AM||%2(Q;R3)) ;
, 1 3
(104) VM| sqauzoney < CIVM | faqqgany (IVM a(gumonsy + 1AM 3 )
1
(105) ||VM||L°°(Q;1R3X2) < C||VM||22(Q;RBX2)(”VJ\{”%?(Q;R?'“)

1
+ [ AM|32 (0 re) + IVAM [ 22(0,m0x2)) ¢,
1

1 4
(106)  [AM|psmsy < CIAMI 2o gy (IAM 2 0m0) + [VAM 3 gz

for some constant C' > 0 depending just on Q. Indeed, (102) is a variant of Poincaré
inequality after realizing that ||V2M||%2(Q;R3X2X2) = ||AM||%2(Q;R3) by integration by
parts due to the vanishing Neumann boundary conditions. Further, (103) and (106)
are variants of the Ladyzhenskaya inequality formulated here for functions the traces
of which do not necessarily vanish on 92 while (104) is a more general interpolation
inequality obtained from the Gagliardo—Nirenberg theorem. Finally, (105) is a variant
of the Agmon inequality valid in two dimensions.
We start to estimate the term Iy and get, since v € V,,(to),

(107) I < / [(Vo(V M) ") - VAM| 4 |(v - V)V My, - VAMY| dx
Q

< IVoll Lo (@rex2) [V Ml L2 (@raxe) [[VAME || L2 (orsx2)
+ ||U||L°°(Q;]R7)||v2Mk||L2(Q;R3><2><2)||VAJ\'L€”L7(Q;]R3X2)

S C’(L,m) (||VMk||L2(Q;R3) + ||AMk||L2(Q;R3)) ||VAM]€||L2(Q;R3X2)7
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where we used (55) and (102). For the integral term I, we obtain

(108)

I, < / (VM x (AMy, + Hext)) - VAM| + [(VMy X (Hext + VHext)) - VAM| dz
Q

< ||VMk”L4(Q;]R3><2) (||AM]C||L4(Q;R3) + 2||Hext||W1’4(Q;]R3)) ||VAMk||L2(Q;R3x2)
1

1 4
< CIIVMl72qrsx2y (”vj\"-/[kH%?(Q;R?’X?) + ||AMk||2L2(Q;R3)>
3 2 2 i
X |\ NAM| 72 (ops) <||AMk||L2(Q;R3) + ||VAMk||L2(Q;R3x2))

+2||Hext||W1,4m;Rs>) N YA~

We estimate the integral term I3 and find out that
(109)
I3 = / |(2(VEMLV M}) @ My,) - VAMy| + |V Mg |?|V My, - VAMy,| dx
Q
< 2||Mk||Loo(Q;R3) ||ka||Loo(Q;]R3><2) ||v2Mk»||L2(Q;]R3><2><2) ||VAM]€||L2(Q;R3><2)

+ ||VM]€||%6(SZ;R3X2) ||VAM]€||L2(SZ;]R3X2)

1
S C(Hj\fkr”Lx(Q;]R?’) ||AM/€HL2(Q;R3) ||VMk||z2(Q;R3><2)
1

X (IVMll3a sy + 1AMl 2 oms) + IVAM |32 gons) )
+ IV Ml ooy (IV Ml g o) + 1AM Fgaize) ) IVAMil 2(mone)-
For the integral term I, we estimate
(110)
L= [ (M5 Host) (VML - VAM)
+I(VAM) M) - (VM) Hexe + (VHexe) T Myo)| da
< M| oo () 1 Hext lwr.s (rs) (21 V Ml Lo (qrax2) + [[ M| Lo (;m3))
X | VAMg || L2(imsx2)

< | M| oo () | Hexct s (o) (21 V Mo || 220y + 21 AMi | 2 0m5) + | Mk || Lo (9)
X ||VAM]C||L2(Q;]R3><2),

where to get the last expression we used (104) combined with the Young inequality.
Finally, estimating the integral term I5 yields

(111) Is < [[VHextll 2 [IVAM || L2 -

Combining (2)—(111), we obtain from (101) and an iterative application of Young’s
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inequality that

1d 1
AM|*d AMy|*d
2dt/ﬂ| Kl :n+2/Q|V k| da
< O(Lym) (I Ml gz + 1AM 2 0m) )
(112) + C(Hoxt) (L4 | Ml e o) (L+ [V Ml F o))

2
X (||VM1€||2L2(Q;R3><2) + | AMy 172 .m0 +1) :

We shall make use of (112) later to derive (43). In order to derive further a priori
estimates, let us use that W22(€;R?) embeds continuously into W12(Q; R3) as well
as L°°(;R3) so that with the help of (102) we have that

1
2
IV Mgl L2 (rsxzy < C (||M||%2(Q;R3) + ”AM”%%Q;]W)) ;

1
2

| Ml ams) < € (IM1320ms) + 1AM 320,z )

Using this in (112) and adding it to (100) lets us deduce that
d 2 712 2 2
(113) @t | M |* + |[AM|“dx + | |VM,|* + |VAM, | dx
Q Q
2 2 s
< C(L,m, Hext) (1 + (H]\Jk”m((z;w) + ||AMn||L2(Q;R3)) ) :

In the next step, we make use of the following classical comparison lemma; see, e.g.,
[11, Lemma 2.4]).

LEMMA 5.1. Let f : R x R — R be C* and nondecreasing in its second variable.
Assume further that y : I C R — R is a continuous function satisfying y(t) <
Yo + fot f(s,y(s))ds for allt > 0. Let z : I — R be the solution of 2'(t) = f(t, z(t)),
z(0) = yo. Then, it holds that y(t) < z(t) for all t > 0.

From (113) and Lemma 5.1 we deduce the existence of a time 0 < t; < t** such
that

(114) [ Mgl oo 0,6 5w12r3)) + 1Ml L2 (0,005 .2 (2 Hew)) < C(Ly M, Mo, Hex).-
In order to be able to pass to the limit as k¥ — oo in (99), we need to derive

further estimates on the time derivative of My as well as of VM. To this end, let us
test (99) by 0, M}, to get

/ |0 M |* da = / (= (v V)M — (Mg x AMy) + |V My|* My + AM,
Q Q
- (Mk : Hext)Mk + Hext) N 8th dx

< 3/ |(v- V) My|? + | My, x AM|? + |V M || My|? + | AM;|?
Q

1
+ (M- Hot PP + | Hos? dot ) [ 100 do
Q
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From there, we get

[0s M| 2 (0sre) < G(C(Lvm)HVMk”%%SZ;RB) + || M| oo (09) [|A M| 7 2 o0
+ VM| Lo qmaxay [ Mil| 7 < o.re) + 1AM |7 2(m0)
1 Hext 320 1Ml o i) + 1 Hextl 2 2 )

where we take the supremum over all ¢ € [0,¢1) to find, using (114) and the fact that
Hext € 0(07 T Lz(ﬂv R3))7

(115) 10 M || o< (0,41522 (r3)) < C(Lym, Mo, Hext).
Next, we test (99) by —0:AM;j, and integrate over (0,¢) for ¢t < t; to find out that

t
1
| 1My s+ (1AM ) — A O) 2 00)

t
= // (v V)M + (My, x AMy) — [V My > My, — (My, - Hoxt) My + Hexs)
J0OJQ

- O AMy, dx ds

My, - Hox)V My, — V Hex) - 0,V My,

(8tVMk)TMk) . ((V]\fk)THext + (VHext)TMk> dx ds

S ; /Ot ||atVMk||%2(Q;R3X2) + 5/(:/9 C’(L,m)(|VMk.|2 + |V2Mk,|2)
+ [V M| ?|[AM|? + | M2V AM|* 4 4| My |? |V My |2 | V2 Mg |? + |V M |6
+ 2| My [V My || Hoxt|” + |V Hexi|* + [ My |*|V Hexo|* diz ds
< /Ot ||3tVMk||%2(Q;R3X2)
+ 5(C(L»m)(Hka’”%2(0,t1;L2(Q;R3X2)) VMl 220,00, r2(0mexex2)))
+ (14 MRl (0,006 (2,29 I VMl L= (0,024 (0o x2))
X (VM| 120,154 (imax2x2y)
+ ”Mk||%°°(0,t1;L°°(Q;R3))HVAMk”%2(0,1&1;L2(Q;]R3><2)) + ||VMI<:||%6(o,t1;LG(Q;R3x2))
IV Hextll7 20,4, 12(0max2y)
+ 2||Mk||2Lw(o,t1;Lw(Q;R3)>2||Hext||%eo(o,t1;L2(Q;R3))||VMk||%2(o,t1;Loo(Q;R3x2))
+ ”Mk||%,°°(07t1;L°°(Q;R3))||VHext”%Z(O,tl;Lz(Q;]R?'XZ)))'
Taking the supremum over all ¢ € [0,¢1) and using (114), we get the bound
(116) 10:V My || £2(0,11:22(0)) < C(v, Mo, Hext)-

We now pass to the limit as k& — oo to obtain a weak solution to (2). By our
a priori estimates , we can find M € L>(0,t1, W22(Q;R?)) N W1°(0,¢1; L2(Q; R?))
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N L2(0,t1; W32(;R3)) such that for a (nonrelabeled) subsequence of (Mj)gen, we
have that
(117) My — M  in LP (0,t;; W2 (4 R?)), 1 <p< oo,
(118) oMy, — oM in L* (0,t1; W2 (4 R%)) .
Indeed, the weak convergence result follows by the Banach—Alaoglu theorem,
while the strong convergence (117) is obtained from the Aubin—Lions lemma. In
fact, the Aubin—Lions lemma yields at first the strong convergence M) — M in
L2(0,t1; W22(Q;R®)) but combining this with the boundedness of (Mg)ken in
L>°(0,t1; W22(; R?)) we obtain (117).

Thus, multiplying (99) with ¢ € L2(0,¢), integrating over (0,;), and passing to
the limit £ — oo, we get the equation

t1
/ / (O M + (v- V)M + (M x AM) — |VM[*’M — AM
0 JQ

+ (M : Hext)M + Hext) : QDC dx dt = 0,

which holds for all ¢ € L2(;R?) and all ¢ € L2(0,¢1). From this, we can conclude
that M satisfies (2).
Furthermore, notice that

M € L™= (0,11, W?? (;R?)) n W (0,¢1; L* (2:R?)) N L? (0,21 W2 (2 R?))

is the unique solution of (2). Indeed, assume that there existed two solutions M;, My €
L>(0,t1, W22(Q;R?)) N WHoo(0,¢1; L2(Q; R3)) N L2(0,1; W32(Q; R3)) with My #
M,. The difference M; — Ms would then fulfill for almost all € €2 and almost all
te [0, tl)
O (M — M) + (v- V) (My — Ma)
= A(Ml — Mg) — (Ml — MQ) X AMl + M2 X (A(Ml — Mg))
+ ([VM|? = |VM:?) My + |V Ma|*(My — M) — (My — M) (M - Hext)
— Ma((My — Ma) - Hex).

We multiply this equation by (M; — Ms), integrate over €2, and use the identity
(axb)-c=(bxc)-a to find out that

1d
2dt

_ /ﬂ ((AOMy — My)) x (My — My)) - My

+ (VM) — VMy) - (VM + YV My)) My - (My — Ma) + |V Ma|?| My — Ms|?
— [ My = Ma|* (M - Hexy) — Ma - (My — Ma)((My — My) - Hext) da

1
< / |V (M — M,)|*dx
2 Ja

/ | My — Mo |*dx +/ |V (M — Ms)|*dx
Q Q

+/ (IVMa]? + [V(My + Ma)|*[M:]* 4 [V Ma|* + (|My| + [Ma])|Hexs|)
Q
(*)

X | My — My|?de,
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where we integrated by parts in the first term on the second line. Now, due to the
assumed regularity of M; and Mz, we know that () is bounded in L(0,t1; L>=(Q))
which allows us to apply the Gronwall lemma. Thus, since M;(0) = M3(0), the two
solutions coincide.

Moreover, let us show that M € L*(0, ¢y, W22(Q;R3))NW1>°(0, ¢1; L2(Q;R3))N
L2(0,t1; W32(Q; R3)), which is the solution of (2), fulfills that [M(t)] = 1 a.e. in Q
for a.a. t € [0,%1). To this end, let us multiply (2) with M to obtain

1
(119) o (M + (- 9| M - AP
=(MP—1) (VM =M - Heyy) ae. in Q x [0,t).

Notice that (119) is solved by |[M| = 1 so we just need to show that this is the unique
solution. Let us set 6 := |M|? and since M is fixed being the unique solution of (2),
we may denote f(M) := [VM|?> — M - Hey. Thus (119) transfers to an equation for
0 that reads

(120)

; (00 + (- V)0~ 20) = (0~ VF(M)  ae.in @ x [0,41) with 0(0) = [Myf? =

now if (120) had two solutions 61,60y € L>(0,t1, W22(Q)) N W1>°(0,¢1; L3(Q)), we
could subtract (119) for 6; and 6y, multiply by 6 — 65, and conclude by the Gronwall
lemma that the two solutions have to coincide.

Finally, we pass to the limit in the inequality in (112) integrated over (0,¢1). On
the left-hand side we rely on the convexity of the norm, while on the right-hand side
it is enough to use the strong convergence (117). Therefore, since |[M| = 1 a.e. in
2 x [0,¢1) in the limit, we obtain for almost all ¢ € [0, ¢1)

t
IAM )22 00y < IAMol|2: 8 + C(L, 7, Hoxy) / 1

VM| s qpaxa) + IVM |72 qpaxa) [AM|| 12 (qpsy ds. O

Proof of Lemma 4.3. We show that £ defined in (47) is continuous on Vi, (t*) in
the topology of C'(0,t*;H,,). To this end, let (v;)ien C V,(t*) converge to some
v € Vp(t*) in the sense that (gi); — g&, in C(0,t*) for i = 1,...,m, where v; =
ST (g (D& () and v = Y70 g1, (D€ ().

Let us denote by (F, M;) and (F, M) the solutions of (40)—(41) corresponding to
v; and v, respectively. Notice that their existence is guaranteed by Lemma 4.2.

Let us first realize that F; — F in L°(0,¢*; L?(£2)). To this end, subtract (40)
for F' from (40) for Fj, test the result by F; — F', and integrate of over (0,¢) with some
0 <t < t*to obtain

;/ [Fi = FP(1) dH/t/ K|V (F — F)[? duds
// v - V)| — F| d:cds+// (Vo(F, — F)) - (F — F)

(g —v) - V)F - (Fy— F)+ (Vu — Vo)F - (F, — F)duads,

where we used that F} and F have the same initial data. Realizing that [} [;, 5|V (F; —
F)|? dx ds = 0 because v; is divergence free and employing Young’s inequality yields
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that
2
(121) [(Fr = F)(O)ll 12 (r2x2)

/ I(F1 — ”LZ(SZ]R2X2) ds
4 C’/O ||((Ul _ ’U) . V)F”%Q(Q;R'ZX?) + ||(VU[ — V’U)FH%/Q(Q;R‘sz)dS,

where the first integral on the right-hand side vanishes as | — co due to the assumed
convergence of (v;);en. The claim thus follows by the Gronwall inequality.

Next, we check that M; — M in L2(0,¢*; WH2(Q;R3)). Similarly as above, we
subtract (41) for M from (41) for M; to have that for a.a. z € Q and a.e. t € [0,t*)
(122) Oy(My — M) — A(M; — M) + (v - V)(My — M) + ((vy —v) - V)M

= —(My — M) x (AM; + Hext) + M x (A(M, — M)+
(IVM]? = VM) My + ([VM|? — (Mg Hext) ) (M, — M)
- M((Ml - M)'Hext);

further multiply the result by M; — M and integrate over 2 and (0,t) with some
0<t<t* to get

/|M M2t dx+//|VMl M)|? dz ds

/ / v — ol [VM] + [V (M; — M)|(2]V M|+ VM) |(M; — M)
|VM|2 + 2|Hexy|)|M; — M|? dz ds.

Using now Young’s inequality, we obtain
g

1 . ot p
(123) / |M; — M (1) dm—f—// |V(M; — M)|? dz ds
2 Ja 0/a

R
g// |oi — v||VM|dzds
0/a

it
+ C/ (1 + ||VM||%00(Q;R3X2) + ||VMI||%OO(Q;1R3“) + ||Hext||L°°(ﬂ;R3))
0

X ||My = M |72 (qps) ds,

from which the claim follows by the Gronwall inequality.

Let us define (D?,);(t) and D}, (t) via (37) by using (Fj, M;) and (F, M), respec-
tively. Notice that due to the already proved convergence of (F})ien to F and (M;)ien
to M, we see that (D!,); — D¢, in L1(0,t*).

Further take o, = > 1, (g5,)1(t)&(z) as L(v;) and o = Y"1~ (5,)(8)&i(x) as L(v),
i.e., the solutions of (94) with (D? ), and D!, as the right-hand side, respectively.

The proof is finished if we can show that (Gm)i — gm uniformly on [0,t*). To this
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end, subtract (94) for ¢ from the one for ¥; and write in matrix notation

at((gm)l(t) - f}m(t)) = —vdiag(A,. .., A\ )((‘7 W (t) f}m(t)) + (Dm)l(t) - Dm(t)
+ (AN G )1 (®) - (Gm)i()s s A™(Gin 1 (E) - (G )i (1))
- (Al ~m(t) gm( ) A7n~'n( ) g"l(t))

Adding and subtracting the vector (Agy,(£) « (§m)i(t), .., A" G (t) - Gim(t)) and in-
tegrating over (0,t) with some 0 < ¢ < t* gives

G (£) = Gm(8)] < C(L,m) /| (s |ds+/| Don(s)| ds,

and, by means of the Gronwall inequality, we obtain
[(Gm)i(t) = gm ()] < (/ |(D — Dp(s)] ds) SO (Lm)t"
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