2017 IEEE/ACM 39th International Conference on Software Engineering

Repairing Event Race Errors
by Controlling Nondeterminism

Rezwana Karim
Manu Sridharan®

Christoffer Quist Adamsen*
Anders Mgller
Aarhus University
Aarhus, Denmark
{cqa,amoeller} @cs.au.dk

manu@sridharan.net

Abstract—Modern web applications are written in an event-
driven style, in which event handlers execute asynchronously in
response to user or system events. The nondeterminism arising
from this programming style can lead to pernicious errors. Recent
work focuses on detecting event races and classifying them as
harmful or harmless. However, since modifying the source code
to prevent harmful races can be a difficult and error-prone task,
it may be preferable to steer away from the bad executions.

In this paper, we present a technique for automated repair
of event race errors in JavaScript web applications. Our ap-
proach relies on an event controller that restricts event handler
scheduling in the browser according to a specified repair policy,
by intercepting and carefully postponing or discarding selected
events. We have implemented the technique in a tool called
EventRaceCommander, which relies entirely on source code in-
strumentation, and evaluated it by repairing more than 100 event
race errors that occur in the web applications from the largest 20
of the Fortune 500 companies. Our results show that application-
independent repair policies usually suffice to repair event race
errors without excessive negative impact on performance or user
experience, though application-specific repair policies that target
specific event races are sometimes desirable.

Keywords-JavaScript; event-driven programming; automated
repair

I. INTRODUCTION

Modern application development has largely moved to
platforms requiring event-driven programming, using web
browsers and mobile platforms. The event-driven model is
well-suited to the needs of today’s interactive programs, which
must perform high-latency network requests to send and re-
ceive requested data while remaining responsive to user input.
However, as studied in recent work [8, 11, 21, 22, 25, 34],
this programming style can cause pernicious nondeterminism
errors, which can lead to crashes, lost user data, and malfunc-
tioning user interfaces.

Recent work has attacked this nondeterminism problem
through tools for detecting event races, where application
behavior may differ depending on the order in which event
handlers are executed. For web applications, event race detec-
tors are capable of finding errors in real-world, deployed web

*The work of this author was carried out during an internship at Samsung
Research America.
The author’s current affiliation is Uber.

1558-1225/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE.2017.34

Samsung Research America
Mountain View, CA, USA
rezwana.k @samsung.com

289

Koushik Sen
EECS Department
UC Berkeley, CA, USA
ksen@cs.berkeley.edu

Frank Tip
Northeastern University
Boston, MA, USA
f.tip@northeastern.edu

applications [25]. Further, tools such as R* [11] can filter away
warnings about races that do not affect the external behavior
of web applications.

Despite these advances, the output of state-of-the-art event
race detectors is often still not practical. Diagnosing the
root cause of an event race in a real-world web application
can require a significant effort—it often requires deciphering
complex event sequences, and it can be difficult to classify
how harmful a reported race is, especially for non-expert
users of the tools. In addition, preventing such races may
require introducing complex synchronization into the code, an
arduous task since the web platform provides few mechanisms
for synchronizing across event handlers. Manually devising
such a fix is often not worth the effort, particularly for minor
errors, when considering that fixes sometimes have unforeseen
consequences [31]. Better techniques are needed to reduce the
cost of fixing event race errors.

In this work, we explore automated repair of event race er-
rors in web applications. Automated repair holds great promise
for addressing the aforementioned drawbacks of event race
detectors. If event race errors can be automatically repaired,
without requiring developers to deeply understand root causes,
the errors may be avoided more often. There is a wide body
of work on repairing races in multi-threaded programs [6, 12—
18, 23, 24, 27, 29, 30, 32, 33], but relatively little work
on repair for event races. Wang et al. [28] have proposed a
repair technique for event races in web applications, but it has
significant limitations in the types of races it can handle (see
Section VIII).

Our approach builds on an event controller that restricts
event handler scheduling in the browser according to a speci-
fied repair policy, by intercepting and carefully postponing or
discarding selected events. Restricting schedules dynamically
to avoid bad orderings is a well-known approach to automated
repair of races in the context of shared-memory concurrency
races, but to our knowledge it has not previously been applied
to event-driven applications. An important property of our
approach is that the event controller is built entirely by instru-
menting the web application code. Most event race detection
tools for JavaScript work using modified browsers, which is
reasonable for detecting races, but not for automated repair,

as the code must run on end-user browsers. In spite of relying
solely on light-weight instrumentation, our approach is general
enough to repair common types of event races, although some
event race errors cannot be repaired by merely restricting the
nondeterminism (see Section V-D).

Given this event controller, the question remains of what
policies are required to repair races in practice. A policy
specifies which events to postpone or discard, so choosing
an appropriate policy requires knowledge about which event
orders are good and which are bad. We observe that many
races in web applications can be prevented with a small
collection of application-independent policies. For example,
application developers often expect Ajax response handlers to
execute in a first-in first-out (FIFO) order, and that the page
completes loading before the user interacts with it: many errors
occur when these assumptions are violated. Our application-
independent policies enforce these assumptions, yielding a
simple method for avoiding many races.

Application-independent policies are easy to apply, but may
impact performance or user experience negatively. For exam-
ple, delaying all user events until after the page has loaded
may make the page appear sluggish, and in fact many user
interactions during page load may be perfectly safe (i.e., they
cannot lead to harmful races). We show that these problems
can be alleviated using application-specific policies, which
can be designed, for example, by specializing an application-
independent policy to a particular web application.

In summary, the contributions of this paper are as follows.

« We demonstrate that most errors involving event races
in JavaScript web applications can be repaired auto-
matically, using light-weight instrumentation to steer the
nondeterminism according to a specified repair policy.
We propose the use of application-independent policies,
which can be specialized as needed to avoid excessive
delay in event processing, or to target specific event races
reported by existing race detection tools.

We evaluate our approach based on an implementation
called EventRaceCommander, by repairing 117 event
race errors in the websites of the 20 largest companies
from the Fortune 500 list. Our results show that 94 of the
errors can be repaired using application-independent poli-
cies, mostly without excessive negative impact, and that
application-specific policies can alleviate the undesirable
effects when this is not the case.

II. MOTIVATING EXAMPLE

Figure 1 shows a small web application for browsing
through galleries of images, consisting of three files. File
index.html defines a top-level page with two buttons, labeled
“Gallery 1” and “Gallery 2.” Clicking each button causes
function loadThumbs (lines 15-26) to be invoked with the
gallery name “g1” or “g2,” depending on the gallery being
selected. Executing loadThumbs will send an Ajax request
to the server (lines 17-25). When the server responds, the
readystatechange callback function (lines 18-23) is invoked.
This callback parses the response to retrieve an array of

290

index.html

1 <html>

2 e

3 <div id="container" ...>

4 e

5 <button id="gl">Gallery 1</button>
6 <button id="g2">Gallery 2</button>
7 <script src="init.js"></script>

8 <script src="script.js"></script>
9 </html>

init.js

10 document.getElementById(’gl’).addEventListener(
11 ’click’, function () { loadThumbs(’gl’); }, false);
12 document.getElementById(’g2’).addEventListener(
13 ’click’, function () { loadThumbs(’g2’); }, false);

script.js

14 var thumbs;
15 function loadThumbs(name) {

16 thumbs = [];

17 var xhr = new XMLHttpRequest();

18 xhr.onreadystatechange = function () {

19 if (xhr.readyState === XMLHttpRequest.DONE) {
20 thumbs = JSON.parse(xhr.responseText);

21 showThumbs (name) ;

22 }

23 };

24 xhr.open(’GET’, ’'gallery?name=’ + name, true);
25 xhr.send(null);

26 }

27 function showThumbs(name) {

28 container.innerHTML = '’;

29 for (var pos = 0; pos < thumbs.length; ++pos) {
30 ... // display thumbnail image

31 var b = document.createElement(’button’);

32 b.textContent = ’'Delete’;

33 (function (pos) {

34 b.addEventListener(’click’, function (e) {
35 deleteImg(name, pos);

36 }, false);

37 1 (pos);

38 container.appendChild(b);

39 }

40 }

41 function deleteImg(name, pos) {

42 .

43 xhr.open(’POST’, ’gallery?action=delete&name=’
44 + name + '&img=' + thumbs[pos].id, true);
45

46 }

Fig. 1. Motivating example (inspired by Zheng et al. [34]).
thumbnail images and stores them in variable thumbs (line 20),
and then invokes showThumbs with the same gallery name as
before. Function showThumbs (lines 27-40) iterates through
thumbs and creates a ‘Delete’ button for each image that, when
clicked, will invoke deleteImg with the gallery name and index
of the image. Function deleteImg (lines 41-46) creates another
Ajax request, requesting the selected image to be deleted from
the server (lines 43—44).

A. Event Races

The example application exhibits three event races that
may cause runtime exceptions or other unexpected behavior,
depending on the order in which event handlers execute. The
corresponding undesirable schedules are illustrated in Figure 2
and discussed in detail below.

@) If the user clicks the “Gallery” buttons before init.js has
executed, then the user event is lost, since the click event
handlers are not yet registered.

user clicks
“Gallery 2" (click event is lost)
button

|

@

index.html
(lines 7-9)

index.html
(lines 1-6)

init.js
(lines 10-13)

script.is
(lines 14-46)

user clicks
“Gallery 2"
button

|
x

ReferenceError

index.html
jLncex. atn (loadThumbs not declared)

init.js

(lines 1-7) (lines 10-13)
user clicks onreadystate- Hserchckﬁ usuerch’cks
@ “Gallery 1" change Gallery 2 Delete TypeError
button event button button (no property id in
J. l l l undefined)

index.html]| |

init.js | |1oadThumbs| |showrhumbs| |1oaaThumos]| | deleteing x
script.js lines 15-26 lines 27-40 lines 15-26, lines 41-46,

(ines 1-48) ()] | ¢ | (AL)

Fig. 2. TIllustration of event races in the program of Figure 1.

® If the user clicks the “Gallery” buttons after executing
init.js, but before script.js has executed, then an event
handler is associated with the click event, but function
loadThumbs is still undeclared. Hence, executing either of
the click event handlers on lines 11 and 13 triggers an
uncaught ReferenceError.

Assume the user clicks the “Gallery 17 button after
the entire page has been parsed. This causes loadThumbs
(lines 15-26) to execute with argument “g1,” generating
an Ajax request. When the server responds, the event
handler on lines 18-23 executes, causing showThumbs to ex-
ecute (lines 27—-40). If the user then clicks the “Gallery 2”
button, loadThumbs runs again (now with argument “g2”)
assigning an empty array to thumbs before making a sec-
ond Ajax request. Now, say the user clicks the “Delete”
button for an image that is still on the screen, before
the response to the second Ajax request is received.
Then, the click handler on lines 34—36 invokes deleteImg
(lines 41-46), causing the expression thumbs[pos].id to
be evaluated (line 44). But thumbs is still empty! So,
thumbs [pos] evaluates to undefined, and accessing the id
property of undefined yields an uncaught TypeError.

We will refer to scenarios where user events interfere with
initializations performed during page loading (e.g., scenarios
@ and ®) as initialization races. Races such as the one in
scenario (©) will be referred to as post-initialization races.

B. Repairing Event Race Errors

The types of problems discussed above commonly occur
when a schedule differs from developers’ expectations. For
example, developers typically test their code in environments
where the parsing and loading of a page is fast and where user
actions do not occur until page loading is complete. Scenarios
like @ and) violate this assumption, causing various sorts of
errors to arise when user events arrive at inopportune moments.
Similarly, developers commonly assume the network to be fast,
so that responses to Ajax requests are received before the user
performs additional actions. Scenario (C), where the user clicks

291

on “Delete” before the response for the click on “Gallery 2” is
received, violates this assumption, resulting in a runtime error.

Our approach for preventing undesirable schedules relies
on code instrumentation, and takes as input a repair policy
that specifies constraints on the scheduling of event handlers.
In particular, the web application is instrumented so that all
events are intercepted and monitored by a runtime controller.
At runtime, when an event arrives that is not in accordance
with the repair policy, it is either discarded or postponed until
the execution of the associated event handlers agrees with the
policy. For example, scenarios &) and ®) can be prevented
in our approach by an application-independent policy that
postpones user events until all statically declared scripts are
loaded, by intercepting the events and regenerating them later.
(In cases where this policy blocks harmless user events, one
can easily create a policy that only postpones clicks on the
“Gallery” buttons.) Likewise, scenario © can be prevented
by an application-independent policy that discards user events
after an Ajax request until the response arrives. In such cases,
EventRaceCommander shows a “spinner” on the screen to
inform the end-user that user events are temporarily blocked.

While the three scenarios discussed here can be repaired us-
ing application-independent policies, application-specific poli-
cies may be preferable, as we shall see in Section VIL.

III. BACKGROUND ON EVENT RACES

This section defines event races and related concepts using
a simplified version of the formalism of Raychev et al. [25].

We instrument an event-based program to generate a se-
quence of operations, called a trace, for a given execution.
An operation can be of the following kinds (assuming each
event is given a unique identifier u):

o read(u,x) and write(u,z) denote that an event handler

of u reads and writes, respectively, a shared variable x.

e fork(u,v) denotes that an event handler of u creates a

new event v that will be dispatched later.

e begin(u) and end(u) denote the beginning and ending,

respectively, of the execution of u’s event handlers.

We denote the set of all operations by Op, and the event
to which an operation o belongs by evi(c). The execution
of a program generates a finite trace 7 = o¢---0, € Op™.
In event-based programs, all event handlers of an event ex-
ecute atomically without interleaving with the execution of
any handler of another event. Therefore, if an event u gets
dispatched, then all the operations from the event handlers
of u appear as a contiguous subsequence in the trace, where
the first and last operations of the subsequence are begin(u)
and end(u), respectively. If the trace contains an operation
Sork(u,v), then begin(u) appears before begin(v), i.e., an event
must be created before it gets dispatched.

A trace 7 defines a linear relation <, where o < ¢’ if the
operation ¢ appears before ¢’ in the trace 7. As in traditional
concurrent programs, we can define a happens-before relation
= as the minimal partial order (i.e., a reflexive, anti-symmetric,
transitive relation) over the events of a trace such that u < v if
fork(u,v) € 7 or if u and v are user events where begin(u) <

scheduler(o, T, P) := (7 - extend(o, T, P), update(o, T, P))
update(a, T, 7)) =P \ {(q7 s, 1, a?/r) € PA(O-v T, ST)}
U{ri € (o) | (4,5,t,a,7) € Pa(o,7,57)}

Fig. 3.

begin(v). Two events u and v are unordered, denoted by u || v,
if they are not related by the happens-before relation. We are
now in a position to define the notion of an event race.

An event race (0,0”) is a pair of operations from a trace T
where o < o, evi(o) || evi(c’), both o and o’ access (i.e.,
read or write) the same shared variable, and at least one of o
and o’ is a write.

Recent work has focused on classifying event races as either
harmful or harmless [11, 20, 21, 25]. In general, such classi-
fication is a subjective matter. In many cases, lost user events
or uncaught exceptions do not significantly affect the user ex-
perience and do not require remediation, though for some web
sites such errors are intolerable. Our approach side-steps this
ambiguity by relying on the user of EventRaceCommander
to distinguish desirable schedules from undesirable ones, and
applying a repair policy that prevents undesirable schedules
from taking place. In other words, our approach does not rely
on a particular definition of harmfulness, nor is it limited to
races that are considered harmful.

IV. A FRAMEWORK FOR SPECIFYING REPAIR POLICIES

This section presents a framework for constraining the order
in which event handlers are executed using a specified repair
policy. A repair policy P consists of a set of rules, which upon
their activation (determined by the current trace 7 and program
state S, of the web application) may discard or postpone
events occurring in the execution. To this end, we add the
following types of operations.

e discard(u) denotes the discarding of event u (i.e., the
event handlers for event v will not be invoked, and no
begin(u) operation will ever appear in the trace).

o postpone(u) denotes the postponement of event u (i.e., u
will be re-emitted later, and at least one of the operations
begin(u), discard(u), postpone(u) will appear in the trace
once u is re-emitted).

A key contribution of our work is that we—based on a study
of many event races in real-world web applications—observe
that harmful races mostly arise for similar reasons, and can be
repaired using application-independent policies.

A rule is a quintuple of the form (g, s,t,a,7) € Q where:

e ¢ is an operation predicate over the operations in Op that
specifies a necessary condition for the rule to be activated
upon the current operation of a scheduler.

s is an expiration status, which is a predicate over the
pairs of traces and program states that determines if the
rule is enabled or expired.

t € {1,00} is a scope. If t = 1, then the rule expires
the first time it is activated, otherwise it remains enabled
until the expiration status s becomes true.

extend(o, T, P) 1=

292

discard(u)
postpone(u)

if o = begin(u) A action(u, T, P) = DISCARD
if o = begin(u) A action(u, T, P) = POSTPONE

o otherwise

action(u, 7, P) := max{a | (¢, s,t,a,r) € Pa(begin(u), T, Sr)}, where

DISPATCH < POSTPONE < DISCARD

The effect of a repair policy on the execution.

e a € {DISPATCH, DISCARD, POSTPONE} is an action in
response to the event that the rule was activated by.

e 7 : Op — 22 is an extension function that maps an
operation to a policy, which is used for dynamically
adding new rules to the existing policy.

For the sake of presentation, we will use (q,s,t,a) =
70,...,7n to denote the policy {(q,s,t,a, 0. Uy<;<, i)}
and (g, s, t,a) to denote the policy {(q, s,t,a,d)}.

A rule (g,s,t,a,r) € P is activated by an operation o
in state (7,5,) if ¢(o) and —s(r,S;) hold, ie., the rule
matches the operation and is not expired. We denote by
Pa(o,,S;) the set of rules in P that are activated by o
in (7,S5;). The definition of activated rules enables us to
describe the effect of a repair policy on the execution by
means of a function, scheduler(c, T, P) (Figure 3), that maps
an operation, a trace, and a repair policy to an extended trace
and updated policy. The auxiliary function extend(c,T,P)
(Figure 3) determines whether events should be discarded or
postponed, by computing the action for o as a maximum
over the activated actions (multiple rules may be activated
simultaneously). The ordering among actions is defined in
Figure 3. If o is not a begin operation, then 7 is simply
extended with o. Hence, a policy cannot discard or postpone
an event based on specific operations within an event handler.
Rules can, however, match on specific operations and use them
to modify the policy via the extension function.

In addition to extending the trace 7, the current repair policy
P is replaced by P’ update(o, T, P) (Figure 3), which
differs from P as follows.

1) All rules with scope 1 that were activated by o in (7, S;)
are removed from P.

2) P is extended with the rules in (o) for every activated
rule (g, s,t,a,r).

We emphasize that postponing one event may require other
events to be postponed as well, due to the happens-before
relation of the original web application. For example, the load
event of a script always follows the execution of the same
script. Our framework automatically enforces such constraints,
and additionally preserves the order of user events.

V. REPAIR POLICIES

We identify five classes of event races that cause many prob-
lems in practice. Section V-A defines application-independent
policies in terms of the framework presented in Section IV.
Then, Section V-B shows how such general policies can
be specialized to particular web applications, for improved
performance and user experience.

Quser(0) := o = begin(u) A type(u) € {keydown, mousedown, ... }
Gealtback(0) == o = begin(u) A (type(u) = timer V

(type(w) = load A tagName(target(u)) € {iframe, img}))
Gpork(0) := o = fork(-,v) A (type(v) € {script-exec, timer} Vv

(type(v) = readystatechange A readyState(target(v)) = 4))

Qbegin(uvo') = o= begin(u)

(@)
WAITFOR(u) := (Qusers ARRIVED(1), 00, DISCARD)
WAITREC() = (qfork, ARRIVED(u), 00, DISPATCH)
M WAITFOR (w), WAITREC(w)
ORDER(u, V) := (qpegin(v), ARRIVED (1), 00, POSTPONE)
ORDERNEXT(u) := (qfork, ARRIVED(u), 1, DISPATCH)

k
Lokl ORDER (u, w)

(©

ARRIVED(u, 7, S7) := begin(u) € T
PARSED(T, S7) := DOMCONTENTLOADED € Ujppin(u)er PE(1)

(b)

Pinituser = (Quser, PARSED, 0o, POSTPONE)

’Pinir’xysrem = (QCallbach PARSED, oo, POSTPONE)
Sork(w,v)
Pa.\'ym',uxﬂr = (qfor/m T, oo, DISPATCH) = WAITFOR(U)

k(u,
Pasynefifo = (Qfork; T, 00, DISPATCH) % ORDERNEXT(v)

pin-'—il,usfr = 7Dinit,u.\'er U ((qu'/ﬁ PARSED, oo, DISPATCH)
Sfork(w,v

(@)

WAITFOR(v), WAITREC(U))

Fig. 4. Repair policies. (a) operation predicates, (b) expiration status utilities, (c) utility functions, (d) application-independent repair policies.

A. Application-Independent Repair Policies

User events before DOMContentLoaded: Scenarios @)
and ®) from Section II-A illustrate initialization races that lead
to undesirable behavior when a user interacts with a web page
before it has been fully parsed. The errors induced by these
races can be repaired by enforcing the policy Piyi,user from
Figure 4(d), where ¢, is an operation predicate that matches
any user event. Due to the definition of the policy’s expiration
status, PARSED (Figure 4(b)), this policy postpones any user
event until the event handlers of DoMContentLoaded have been
executed. It is easy to see how this policy prevents the errors
in scenarios @ and ® from Section II-A: By preventing
click events on the “Gallery” buttons until the page has been
parsed, the click event handlers will be registered in time, and
the loadThumbs function will be defined before it is invoked,
thereby preventing the ReferenceError.

In this policy, DISCARD could be used instead of
POSTPONE. The DISCARD action is intended for user events
only, since users can always simply repeat their inputs when
the policy allows it, which is not possible for system events.

System events before DOMContentLoaded: Harmful initial-
ization races also arise when system events fire unexpectedly
early. In the following example, which is based on code from
exxon.com, the load event listener attached by the script will
never run if the iframe loads prior to the execution of the script.

47 <iframe src="..." id="iframe"></iframe>

48 ...

49 <script>

50 $(C#iframe’).load(function (e) { /* adjust iframe height */ });
51 </script>

Such errors can be repaired using the policy Piirsysiem from
Figure 4(d), which postpones system events, such as the load
event of the iframe in line 47, until the page has been parsed.
Pinit,system Matches any iframe or img load event, and any timer
event, with the operation predicate ¢ qpack-

User events while async event is pending: Scenario €
in Section II-A represents a situation where the application
logic implicitly assumes that asynchronously forked events are
handled atomically, without being interrupted by user events.

293

Such post-initialization race errors can be prevented using
policy Pasync,user of Figure 4(d). Informally, this policy adds
the rule WAITFOR(v) (Figure 4(c)) to the policy whenever an
operation forks an asynchronous event v (e.g., Ajax request,
asynchronous script request, setTimeout). This rule discards
user events until v is observed in the trace.

Ajax FIFO: Sometimes programmers implicitly assume
that the responses to multiple Ajax requests arrive in the
same order as the requests were made. Consider the fol-
lowing example, which captures the essence of a race from
gazzetta.it [21]:

f(a; B;
gb); B;

52 ajax(’POST’, urll, function (a) { document.cookie
53 ajax(’POST’, url2, function (b) { document.cookie

The two callback functions are executed in response to the
first and second Ajax request, respectively. Both functions
assign some data from the server’s response to the same
document.cookie key. Therefore, the value of this key depends
on the order in which Ajax responses arrive.

To prevent such races, we use policy Pgync, s of Figure 4(d)
to postpone Ajax response events that would break FIFO
order: Upon each Ajax request operation fork(-,v), the policy
starts listening for the next Ajax request operation fork(-,w)
by adding the rule ORDERNEXT(v). The use of scope 1
in ORDERNEXT ensures that the rule will not be activated
upon any Ajax request operations following fork(-,w). If
begin(v) appears in the trace before fork(-,w), then FIFO is
already maintained and ORDERNEXT(v) expires due to its
expiration status, ARRIVED(v). Otherwise, FIFO is enforced
by ORDER(v,w) (added from ORDERNEXT(v)), which post-
pones begin(w) until begin(v) appears in the trace. Further-
more, ORDERNEXT(w) is added (by the rule in Pagycfifo) to
order begin(w) with the response of the Ajax request operation
that follows fork(-,w) (if any).

User events before async initialization: Sometimes ini-
tialization actions are being performed by asynchronously
executed code. Consider the following snippet, which was
extracted from flysas.com.

54 <input id="from-airport" /><input id="to-airport" />
55 <script>

56
57
58
59
60
61
62
63

var lastFrom = ..., lastTo = ...; // inspect cookie
$.get(’/service?code=" + lastFrom, function (from) {
$.get(’/service?code=" + lastTo, function (to) {
$(’#from-airport’).val(from.name);
$(’#to-airport’).val(to.name);
B;
I3H
</script>

During loading, the user’s input may be overwritten, since the
fields in lines 59-60 are not initialized until the responses of
the two Ajax requests in lines 57-58 have been processed.
This may happen after the DOMCONTENTLOADED event,
and therefore the policy Pini,user does not suffice to repair
the race. To accommodate for this, we define an extension
of this policy, P}, . that additionally discards user events
until asynchronous initialization has been performed.
Intuitively, P;}, . continuously adds WAITFOR (v) (which
discards user events until begin(v) appears in the trace) for
every operation fork(-,v) that matches g, as long an event
that has been forked by some other operation matching gy«
is pending. For example, if fork(-,v) and fork(-,w) denote
the Ajax requests in lines 57 and 58, respectively, then
WAITFOR(v) is added upon fork(-,v), which discards user
events until the callback in lines 57-62 has executed. In addi-
tion, WAITREC(v) is added, which itself adds WAITFOR(w)
upon fork(-,w). The WAITFOR(w) rule discards user events
until after the callback in lines 58-61.

The WAITREC rule recursively adds new rules to approxi-
mate when asynchronous initialization is over. This may lead
to user events being discarded indefinitely (e.g., in the presence
of image sliders that keep changing automatically). Thus, this
policy should only be used for pages that always “terminate”
(i.e., where the event queue eventually becomes empty if no
more user events are made), or gy« should be defined such
that it excludes operations that are not part of initialization
(e.g., by ignoring timer operations).

B. Application-Specific Policies

The application-independent policies can be applied without
a deep understanding of the races, and suffice for preventing
the majority of the race errors (see Section VII). However,
sometimes the policies negatively affect web page responsive-
ness (e.g., the user experience of a web page can be degraded
when too many user events are interrupted). This motivates
application-specific repair policies that reduce disruption. It is
straightforward to refine an application-independent policy to
specific user events. The manual effort required to design an
“optimal” application-specific policy naturally requires under-
standing the cause of the race.

Specializing an application-independent policy to a concrete
web application is straightforward. As an example, recall
that the race errors exposed by scenarios @) and B) can be
prevented by enforcing the policy Py user- However, this may
unnecessarily affect clicks to buttons other than “Gallery 17
and “Gallery 2” during page loading. This problem can be
alleviated by refining the operation predicate Gy, in Piniruser
to only match click events on those two buttons.

294

The interruption of the user is still not minimal, though,
since the function loadThumbs (Figure 1, lines 15-26) is de-
clared strictly before the DOMContentLoaded event gets dis-
patched. This can be remedied by, for example, exchanging
the policy’s expiration status from PARSED to one that, unlike
all of the application-independent policies, relies on the actual
program state to return true when loadThumbs is declared in the
global scope of .S-. With this modification, it not only becomes
clear that the policy covers the event races in question; it also
minimizes the interruption of the user.

C. Effectiveness of Repair Policies

To understand if a repair policy P prevents the bad order
of an event race, recall that state-of-the-art dynamic race
detectors, such as EventRacer [25], report event races as two
operations o and o’ in a trace 7 where ev#(o) || evt(o”).

Simply checking that the race disappears when running a
race detector on the instrumented program that enforces P
is too naive, since state-of-the-art race detectors are currently
unable to reason about ad-hoc synchronization and will report
(0,0") as a false positive. On the other hand, checking that
the race becomes covered [25] gives false confidence.! Indeed,
most races become covered in the instrumented program,
since the execution of event handlers is controlled by ad-hoc
synchronization in the instrumented program.

To see how a repair policy P prevents the bad order of
(0,0"), consider that the instrumentation restricts the non-
determinism in the original program, by enforcing an order
among certain events in the execution. Assuming that the
trace 7 obtained by the race detector is valid according to
‘P, it is possible to model the effect of P by defining an
augmented happens-before relation <p as the minimal partial
order such that u <p v if either v < v or P would enforce u
to execute before v. Using this relation, it is possible to tell
if P would prevent the race (o,0’) by checking if o <p o’
or o/ <p o, giving developers a way to automatically repair
races that has been reported from dynamic race detectors (for
a fixed catalogue of policies). The relation <5 can be built
for multiple application-independent policies by extending
EventRacer. It remains open for future work to construct the
relation for arbitrary policies.

D. Discussion of Limitations and Liveness

Although it is not a problem for the repair policies we
have presented so far, there is a risk for postponing events
indefinitely, thereby breaking liveness, when enforcing poli-
cies. Generally, we want to prevent some bad ordering v - - - u
by discarding or postponing v until w has been dispatched.
To avoid breaking liveness, it must be known by the time v is
about to fire that » will inevitably occur later in the execution.

Intuitively, repair policies can only make decisions based
on past events and not on future events. Let F' be a set of
events that are known to happen in the future. Initially, F'
contains events that always happen during page loading, e.g.,

Untuitively, a race (o, d”’) is covered by another race (3,8’) if (o,0") is
no longer a race when (4, 4’) is being treated as synchronization.

DOMContentLoaded. During execution, as soon as some event is
known to happen in the future (e.g., a timeout is registered or
an Ajax request is sent), it is added to F'. Perhaps surprisingly,
F may also contain some user events, since a single user event
is typically composed of a sequence of low-level events (e.g.,
a keyup event always follows a keydown event). We now define a
necessary condition for being able to enforce an order u - - - v:
If v comes before u, and u ¢ F, then there is no way to
steer away from the bad execution without potentially breaking
liveness, since it is unknown if u will ever arrive (safety can
be preserved, though, by postponing v until u, or indefinitely
if w never arrives). Otherwise, if we can define (i) an operation
predicate that identifies begin(v), and (ii) a state predicate that
becomes false at some point after u has been dispatched, then
the desired ordering can be enforced.

We call a repair policy enforceable for a program if it does
not break liveness in any execution. Conversely, we call a race
repairable if there exists an enforceable policy that prevents
the bad order of that race. The application-independent policies
Pinitusers Pinit,systems Pasyne.fifo» a0d Pagyne,user are enforceable for
all programs, and P\, .. is enforceable for all programs that
“terminate” (see Section V-A).

There are situations where it is not possible to prevent
an ordering v---u by only discarding or postponing events.
Consider the following example:

64 <script>setTimeout(function () { d = document; }, 0);</script>

65 <script>console.log(d.querySelectorAll(’*’).length);</script>

Here, the callback in line 64 is supposed to execute prior to
the script in line 65. If the latter executes first, then the only
possible repair is to postpone its execution. However, this will
change program behavior, since line 65 counts the number of
elements currently in the DOM. We have not seen any such
examples in practice, and hypothesize that this situation is rare.

In other cases, although it is technically possible to repair an
event race error, the result would have such a negative impact
on user experience that we do not consider it. These races
involve event handlers that are triggered when the user merely
moves the cursor (e.g., mouseenter). Using a repair policy, the
user can be provided with feedback that the page is not ready.
However, for this kind of “indirect” user event (as opposed to
mouse clicks and key events), the event handler registration
should rather be performed earlier by changing the code.

VI. IMPLEMENTATION

Our implementation, named EventRaceCommander, instru-
ments HTML and JavaScript source files of a given web
application on-the-fly using mitmproxy [3]. The instrumenta-
tion intercepts relevant operations and interacts with the event
controller, which is loaded before any application code, such
that instrumentation and application code do not race.

The implementation of EventRaceCommander is available
at https://github.com/cs-au-dk/EventRaceCommander.

A. Controlling the execution

For non-DOM events (e.g., timers, Ajax responses),
EventRaceCommander replaces each registration of an event

295

handler h with the registration of a new event handler A’ that
adds h to a queue maintained by the event controller. This
involves intercepting calls to a small set of global functions
(e.g., setTimeout), and instrumenting all property assignments
to intercept registrations to, €.g., the onreadystatechange prop-
erty of XMLHttpRequest objects.

For DOM events (e.g., click, load), the situation is slightly
more complicated due to capturing and bubbling. These event
delegation mechanisms propagate events from the document
root to the target node and back [1]. EventRaceCommander
handles DOM events as follows. When the page starts loading,
event handlers for all DOM event types are registered for
the capturing phase of the root element (this ensures that
these event handlers are triggered first, since event handlers
are triggered in registration order). When one of these event
handlers is invoked with an event e that was not previously
postponed, the event controller is notified that e has been
emitted. The controller then queries the repair policy for
the action @’ associated with e. If o DISPATCH, then
all event handlers associated with e are triggered, and the
controller is notified that e has been dispatched. Otherwise,
a’ € {DISCARD, POSTPONE}, and the execution of the appli-
cation’s event handlers and other possible side-effects of the
event (e.g., the insertion of a character into a text field) are pre-
vented by calling stopImmediatePropagation and preventDefault
on the event object of e. Furthermore, if @’ = POSTPONE, then
the process is repeated by re-dispatching e asynchronously.

B. Intercepting relevant operations

EventRaceCommander intercepts fork, begin and end in-
structions. Operations of type fork are intercepted by replac-
ing certain browser API functions and intercepting property
assignments. For example, the send function on the prototype
of XMLHttpRequest is replaced by a function that, in addition to
sending the request, notifies the event controller that an Ajax
response event has been forked.

It is insufficient to monitor events for which the program has
an event handler: in order to enforce, €.g., Pagync fifo, all Ajax
response events must be intercepted, even those that have no
response event handler. EventRaceCommander therefore adds
a default event handler for such events.

VII. EVALUATION

We aim to answer the following research questions.

RQ1: How effective is each of the application-independent
policies of Section V at repairing event race errors?
RQ2: What is the impact of each application-independent re-

pair policy on runtime performance and user experience?
RQ3: Is it possible to reduce runtime overhead and improve
user experience using application-specific policies?

A. Experimental Methodology

Selecting event race errors: We use existing tools, such
as, EventRacer [25] and R* [11], to identify candidate event
races in the web applications of the 20 largest companies
from the Fortune 500 list. Since front pages of many websites

often contain little dynamic behavior, we manually explore the
selected sites to find interesting pages.

Following Mutlu et al. [20], we focus on observable races
that result in errors, such as, uncaught exceptions or visual
differences so that we can confirm the effectiveness of our
repairs. In order to keep the amount of work manageable,
we examine up to 25 candidate races for each website to
identify whether they are observable. Altogether this gives us
117 errors that are caused by observable races.

Selecting application-independent repair policies: We
study each observable race in detail to identify which of
the application-independent repair policies that can repair the
corresponding error.

Measuring instrumentation overhead: For each web-
site, we create an application-independent policy that repairs
all race errors (possibly by combining multiple application-
independent policies), and measure the overhead of that policy.
We use the Chrome Debugging Protocol [2] to measure:
(i) parsing time (i.e., time to DOMContentLoaded), showing the
cost for loading EventRaceCommander and instrumenting the
source, and (ii) layout time (i.e., time to last layout event
during initialization). In this experiment, we prevent layout
events from triggering indefinitely (e.g., due to a slideshow)
by stopping recursive timer registrations and intervals so that
every web application terminates. We report the mean of 50
repetitions in each case.

User experience: Parsing time and layout time indirectly
reflect the user’s experience: most elements are ready for
user interactions after a page has been parsed, and layout
time reflects perceived responsiveness. In a few cases where
application-independent policies are inadequate because of
undesirable impact on the user experience, we attempt to
design application-specific versions of application-independent
policies that do no exhibit similar problems. For each such
case, we attempt to evaluate the impact on user experience
by comparing the delays in event processing for application-
independent and application-specific policies.

System details: We run the experiments on Ubuntu 15.10
with an Intel Core i7-3770 CPU and 16 GB RAM.

Table I shows the sites and races used to evaluate
EventRaceCommander.> The “Race errors” column presents
the total number of observable races found in each site. The
“Race classification” columns classify these races. Most of
the observable races that we found are initialization races,
and nearly all of these involve user events, except a race
on att.com, where two dependent scripts are loaded without
any ordering, and on exxon.com, where an iframe load event
handler is registered late. Late event handler registrations tend
to be a recurring problem. We also identify multiple post-
initialization races. These typically cause a web application to
end up in an inconsistent state.

2We did not detect any observable races on berkshirehathaway.com,
valero.com, unitedhealthgroup.com, and kroger.com. Those sites are
excluded from the table.

296

B. Experimental Results

RQI1: The “Repair policy” columns of Table I reflect the
applicability of the application-independent policies. If, for a
given site, an event race r; appears in the column of repair
policy P, then P repairs the error caused by ;. Otherwise,
no application-independent policy prevents r;, and the race ap-
pears in the “None” column. In our experiments, al/l observable
races that could not be repaired using application-independent
policies involve indirect user inputs (Section V-D). These races
are relatively harmless (e.g., dropdowns that do not unfold
when the user hovers a menu item with the cursor during
loading). Note that races with the same classification tend to
be prevented using the same policies. This is to be expected,
since Pinit,users 771-;-,‘ user AN Piniy sysrem target initialization races,
unlike Pasyncﬁfn and Pa.rync,user-

Although we cannot guarantee that our application-
independent policies always suffice, our results suggest that
the policies can prevent most event race errors in practice:
94 of the 117 event race errors are repairable using our
application-independent policies.

This also suggests that, although EventRaceCommander
relies on a light-weight instrumentation, it provides sufficient
control of the nondeterminism to prevent the races that occur in
practice. Furthermore, the results indicate that our assumption
of what “good” schedules are (Section II-B) agrees with de-
velopers’ expectations (otherwise, our policies would enforce
erroneous schedules).

Table I shows that many race errors can be repaired using
more than one application-independent policy. Not surpris-
ingly, many races can be repaired using both P, and
77;{,-,,”38,, but we also find that Pyeycsifo and Pusyncuser Often
repair the same race. This happens when a user triggers an
asynchronous event (e.g., an Ajax request) twice. The policy
Pasynefifo avoids such races by enforcing an order among the
unordered events, whereas Peycuser POStpones user events
while an asynchronous event is pending (thereby ensuring that
event handlers and their forked events execute atomically).

RQ2: The last two columns of Table I show parsing and
layout time. For most sites, the instrumentation overhead is
less than 200ms, which we deem to be acceptable. Small
websites exhibit larger relative overheads due the cost of
including EventRaceCommander’s 32 KB of JavaScript. The
absolute overhead is barely noticeable by a user, though.

Regarding user experience, it is important to interrupt only
user events that are involved in races, and only for as long as
is necessary to prevent undesirable schedules. Generally, we
find that the policies Py sysiem aNd Pagync fifo Can be enforced
obliviously to the user, since they do not involve user events
and, in our experiments, do not significantly postpone UI
updates. There is often room for improvements over Pyt users
Pasyne,user- and Pif, .. since the operation predicates in these
policies are overly general. This is mostly a problem for
Pl;,)user in sites that extensively load code asynchronously
(e.g., walmart.com, which uses RequireJS [4]). In such cases,
the page appears to be ready significantly before user input
is tolerated, and an application-specific policy should be used

Race classification

Repair policy Instrumentation overhead

g Initialization Post-init. s N
g races races R < s 2 g
o 3 2 8 = 3
3 ; 3 s = g g
9 declare/ register/ update/ system/ 2 +5 % g g
Website & event event event user & Q Y 5N & None Parsing (ms) Layout (ms)
walmart.com 14 71...713 T14 T1...T10 T14 T14 711...T13 +609 (1.29)() +247 (1.08)()
exxon.com 7 T1...T6 r7 T1...T5 | T1...75 |T6 r7 r7 +20 (1.02x)| +23 (1.01x)
chevron.com 8 r1...T6 T7...T8 T7...T8 | T7...T8 | T1...T6 +88 (1.12x)| +176 (1.13x)
apple.com 3 r1...7T2 3 r1...72 | T1...72 T3 3 +69 (1.11x)| +65 (1.10x)
gm.com 8 T1...T6 7 s T1...T6 | T1...77 8 s +60 (1.08x)| +60 (1.08x)
phillips66.com 3 T1...7T2 T3 r1 T1...7T2 r3 T3 +87 (1.14x)| +31 (1.04x)
ge.com 10 T1...T7|T8...T10 71 T2...T7 T8...T10|78..-T10 +124 (1.08x)| +207 (1.13x)
ford.com 1 1 1 1 +154 (1.06x)| +155 (1.06x)
cvshealth.com 10 7T1...78 Tr9...710|| "1...T7 | T1...T7 T9...7T710(7T9...T10 T8 -24 (0.98X) -14 (0.99)()
mckesson.com 2 1 (D) r1...7T2 | Tr1...72 +101 (1.08x) +7 (1.00x)
att.com 12| r1...72 [73...712 r3...7T12(73...712 T1...T2 +723 (1.21x)| +699 (1.20x)
verizonwireless.com 13 |[r1...713 r1...713|T1...713 +360 (1.15x)| +266 (1.12)
amerisourcebergen.com|| 4 T1...74 T1...7T4 | T1...74 +13 (1.04x)| +12 (1.03x)
fanniemae.com 5 T1...T5 T1...7T5 | T1...T5 +143 (1.26x)| +70 (1.10x)
costco.com 16 71...T16 r1...73 | Tr1...7T3 T4...7T16 +92 (1.11x)| +45 (1.03x)
hp.com 1 r1 r1 1 +35 (1.01x)| +37 (1.01x)
total 117 18 78 9 12 61 78 1 14 12 23
TABLE 1

OBSERVABLE RACES, APPLICABILITY OF APPLICATION-INDEPENDENT REPAIR POLICIES, AND INSTRUMENTATION OVERHEAD.

Race classification: declare/event: an entity may be used before it is declared, triggering an error (e.g., scenario B)). register/event: an event handler may be
registered late, leading to lost events (e.g., scenario @), lines 47-51). update/event: a form field may be updated asynchronously, overwriting the user’s input
(e.g., lines 54-63). system/user: a system and user event are unordered, leading to an error or erroneous state (e.g., scenario ©).

to target the relevant user events, and minimize the time in
which the user is disrupted.

Interestingly, we find that some of the websites, e.g. apple.
com, prevent races in ways similar to Pygyne,user» by showing a
spinner that takes up most space on the screen, when a user
event leads to asynchronous DOM updates.

RQ3: We now briefly report on two event races where
application-independent repair policies yield suboptimal re-
sults, and discuss how each situation can be remedied using
an application-specific policy.

On att.com, event race 77 can cause a TypeError due
to two scripts being unordered.? Policy Piugynefifo €nsures
that asynchronous scripts are executed in FIFO order and
fixes the error, but unnecessarily imposes an order on 39
scripts. On average, 21 of these scripts are postponed for
292ms. This can be prevented using a specialized policy
Prsyne,fifo Which only postpones the execution of satellite-
567046aa64746d0712008241. js. On average, this policy post-
pones no scripts at all (i.e., in our experiments, the two scripts
always load in the desired order).

On walmart.com, a click event handler of a button is
registered by an asynchronous script. Until that happens, click
events on the button are lost and no dropdown is shown
(event race error r13). While this problem can be fixed using
the application-independent policy P, ... this results in
excessive delays for processing a click event. We can avoid
such undesirable impact on the user experience by designing
an application-specific policy Py, that postpones click events
only until the handler is present. In an experiment, we issue

3The global variable s_att is declared in s-code-contents-
65778bc202aa3fe®1113e6bb6eabd103eda®99fe5.js, and used in
satellite-567046aa64746d0712008241.js. The latter may, depending
on the event order, crash during an assignment to s_att.events.

297

a click immediately when the button is declared, and measure
the time until the corresponding event handlers execute. On
average, the click event is dispatched 817ms faster when using
the policy Py instead of Pyl .-

The application-specific repair policies discussed above are
both “optimal” in the sense that they only postpone events that
are involved in the races under consideration, for the minimal
amount of time required to prevent the undesired orders. We
argue that, for these race errors, enforcing repair policies using
EventRaceCommander compares well to alternative solutions
such as modifying the code to introduce ad-hoc synchroniza-
tion or explicitly load scripts synchronously.

C. Discussion

Some aspects of our evaluation may affect the generality
of the reported results. Most significantly, the selection of
websites and event race errors used in our evaluation could
be subject to bias. We have attempted to address this concern
by evaluating EventRaceCommander on the websites of the
20 largest companies from the Fortune 500 list, similar to
previous work on event race detection [11, 25].

The code of the websites used in our evaluation may be sub-
ject to change, which may affect reproducibility of our results.
Therefore, we spent significant effort using mitmproxy [3]
to record the server responses for an interaction with every
site under consideration. This enables reproducibility for all
front pages. Regrettably, some highly dynamic pages that we
consider cannot be replayed, since the URLs of Ajax requests
depend on user input, random numbers, timestamps, etc. Still,
this is a significant improvement over recent work [8, 10, 11,
21, 22, 25, 28, 34], where the importance of reproducibility
has mostly been ignored. The recordings from our study are
available with the implementation of EventRaceCommander.

A related concern is that real websites may give rise to
unpredictable network delays, which may affect repair poli-
cies, such as, Pugyncsifo- In principle, these delays can become
arbitrarily large, so the data from our experiments may not
truly reflect the impact on user experience. In our experiments,
we avoid large fluctuations by relying on recordings of every
website, and by conducting experiments 50 times and reporting
average times. To prevent situations where the user is being
disrupted for too long, it would be possible to monitor if
EventRaceCommander postpones an event for more than a
given threshold. In such cases, the event could simply be
dispatched, and the users of EventRaceCommander could be
notified of the incident, so that the policy can be adjusted.

VIII. RELATED WORK

Race detection: Ide et al. [10] pointed out that JavaScript
programs can have data races despite being single-threaded
and non-preemptive. Such races often arise due to asyn-
chronous Ajax communication and HTML parsing. The au-
thors note regarding Ajax races that “the programmer prefers
to think of the interaction with the server as a synchronous
call”, which is also the foundation for our scheduling policies
for such races. Zheng et al. [34] proposed a static analysis
for automatically detecting JavaScript races. Due to the dy-
namic nature of JavaScript, such static analyses are often pro-
hibitively imprecise or unscalable. Inspired by successful tech-
niques developed for multi-threaded programs [7], WebRacer
and EventRacer instead use dynamic analysis and a happens-
before relation [22, 25]. This significantly improves precision,
however, these tools cannot distinguish harmful from benign
races, which has motivated techniques that explore whether
races cause observable differences [8, 11, 21]. Still, these
techniques tend to report many false positives and also miss
harmful races, and it has been observed that the harmful races
that are detected are often difficult to fix.

Event race detection algorithms have also been devel-
oped for Android, using similar techniques as those target-
ing JavaScript, but with more sophisticated happens-before
relations [5, 9, 19]. Adapting our technique to Android is an
interesting opportunity for future work.

Automated fixing of race errors: The idea of automati-
cally fixing race errors has been studied extensively in a multi-
threaded setting, but not much for event-driven applications,
in particular JavaScript.

Some techniques patch the program code by inserting,
e.g., locks and wait-signal operations, based on reports from
race detectors and static analysis [12-16, 29]. The JavaScript
platform provides no explicit synchronization primitives, but
our repair policy mechanism can simulate the effect of having
wait-signal primitives or atomic groups of event handlers.

Other techniques steer away from nondeterministic errors
by postponing selected actions, much like our approach but
for multi-threaded programs. The Al technique [32] attempts
to stall threads where manifestation of a concurrency bug is
about to become deterministic. Kivati [6] uses static analysis
and hardware watchpoints to detect atomicity violations and

298

then dynamically reorders the relevant instructions. The Aviso
system [17] learns schedule constraints from successful and
failing executions, and then uses these constraints to guide
scheduling, much like our policy mechanism and controller.
The Loom system [30] uses a notion of execution filters, which
resembles our use of application-specific repair policies.

These techniques share the limitation of EventRace-
Commander that they cannot fix all race errors while entirely
avoiding situations where actions are postponed excessively.

Other approaches include rollback-recovery [33], replicated
execution with different schedules [27], replication of shared
state in critical sections [23, 24], or require special hard-
ware [18], which would not be realistic for JavaScript.

EventHealer [26], unlike most of the work mentioned above,
considers event-driven programs, but with a different execution
model than the one in JavaScript: execution takes place in a
main thread, which has lower priority than event handlers,
and preemption is possible but can be selectively disabled
to protect critical sections. The system uses static analysis
to locate event handlers, shared variables, and fragments of
code that should be treated as critical sections, which is very
different from our setting.

None of the work on automated fixing discussed above
targets JavaScript. A position paper by Mutlu et al. [20]
proposes a notion of “schedule shepherding” for JavaScript,
but does not present any mechanism for how to actually do
it. The recent ARROW tool by Wang et al. [28] is the first
to automatically repair races in JavaScript applications. The
key difference to EventRaceCommander is that ARROW is
based on static analysis, which is notoriously difficult for real-
world JavaScript code. Moreover, the main idea in ARROW
is to identify inconsistencies between the happens-before and
def-use relations, which may miss many race errors, even if
more powerful static analysis were developed. ARROW cannot
repair any of the errors in the example application in Section II.

IX. CONCLUSION

We have presented a general framework for controlling
nondeterminism in event-driven applications using specified
repair policies, and proposed application-independent policies
to prevent nondeterminism that commonly triggers event race
errors. The framework is sufficiently general to repair a wide
variety of real-world event race errors. Our experimental re-
sults show that 94 of 117 event race errors are repairable by our
application-independent policies, and that application-specific
policies are useful to target specific races, when needed.

For future work, it will be interesting to automate the
process of inferring application-specific policies for a given
event race, to avoid negative impacts from overly general
policies. Such candidate policies should restrict the nonde-
terminism only as needed to repair a given race, but still
be reasonably general, so that they do not only apply to the
concrete execution explored by the dynamic race detector.

Acknowledgments This work was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No 647544).

(1]

[2]

[3]

(4]
[5]

[6]

(71

(8]

[91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES
W3C Document Object Model Level 2 Events Specification.
http://www.w3.org/TR/DOM-Level-2-Events/events.
html#Events-flow, last accessed on 2016/08/24.
Chrome Debugging Protocol. https://developer.chrome.

com/devtools/docs/debugger-protocol, last accessed on
2016/08/24.
mitmproxy. https://mitmproxy.org/, last accessed on
2016/08/24.

RequireJS. http://requirejs.org/, last accessed on 2016/08/24.
P. Bielik, V. Raychev, and M. T. Vechev. Scalable race detection for
Android applications. In Proc. 30th ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2015.

L. Chew and D. Lie. Kivati: fast detection and prevention of
atomicity violations. In Proc. 5th European Conference on Computer
Systems (EuroSys), 2010.

C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. Commun. ACM, 53(11), 2010.

S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in
client-side Java Script web applications. In Proc. 7th IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST), 2014.

C. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy, P. M.
Chen, Z. Kong, and J. Flinn. Race detection for event-driven
mobile applications. In Proc. 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2014.
J. Ide, R. Bodik, and D. Kimelman. Concurrency concerns in rich
internet applications. In Proc. Workshop on Exploiting Concurrency
Efficiently and Correctly, 2009.

C. S. Jensen, A. Mgller, V. Raychev, D. Dimitrov, and M. T. Vechev.
Stateless model checking of event-driven applications. In Proc.
30th ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2015.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-
violation fixing. In Proc. 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2011.
G. Jin, W. Zhang, and D. Deng. Automated concurrency-bug fixing.
In Proc. 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

S. Khoshnood, M. Kusano, and C. Wang. ConcBugAssist: constraint
solving for diagnosis and repair of concurrency bugs. In Proc.
International Symposium on Software Testing and Analysis (ISSTA),
2015.

B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing data
races on-the-fly. In Proc. 5th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD), 2007.

P. Liu and C. Zhang. Axis: Automatically fixing atomicity violations
through solving control constraints. In Proc. 34th International
Conference on Software Engineering (ICSE), 2012.

B. Lucia and L. Ceze. Cooperative empirical failure avoidance for
multithreaded programs. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

B. Lucia, J. Devietti, L. Ceze, and K. Strauss. Atom-Aid: Detecting
and surviving atomicity violations. IEEE Micro, 29(1), 2009.

299

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

P. Maiya, A. Kanade, and R. Majumdar. Race detection for Android
applications. In Proc. 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2014.

E. Mutlu, S. Tasiran, and B. Livshits. I know it when I see it:
Observable races in JavaScript applications. In Proc. Workshop on
Dynamic Languages and Applications (Dyla), 2014.

E. Mutlu, S. Tasiran, and B. Livshits. Detecting JavaScript races
that matter. In Proc. 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2015.

B. Petrov, M. T. Vechev, M. Sridharan, and J. Dolby. Race detection
for web applications. In Proc. 33rd ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2012.
S. K. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani.
ISOLATOR: dynamically ensuring isolation in concurrent programs.
In Proc. 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2009.
P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. G. Zorn, R. Nag-
pal, and K. Pattabiraman. Efficient runtime detection and toleration
of asymmetric races. IEEE Trans. Computers, 61(4), 2012.

V. Raychev, M. T. Vechev, and M. Sridharan. Effective race de-
tection for event-driven programs. In Proc. 28th ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages, and Applications (OOPSLA), 2013.

G. M. Tchamgoue, K. H. Kim, and Y. Jun. EventHealer: Bypassing
data races in event-driven programs. Journal of Systems and Soft-
ware, 118, 2016.

K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy.
Detecting and surviving data races using complementary schedules.
In Proc. 23rd ACM Symposium on Operating Systems Principles
(SOSP), 2011.

W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster.
ARROW: Automated repair of races on client-side web pages. In
Proc. International Symposium on Software Testing and Analysis
(ISSTA), 2016.

D. Weeratunge, X. Zhang, and S. Jagannathan. Accentuating the
positive: atomicity inference and enforcement using correct execu-
tions. In Proc. 26th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2011.

J. Wu, H. Cui, and J. Yang. Bypassing races in live applications
with execution filters. In Proc. 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

Z.Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairavasundaram.
How do fixes become bugs? In Proc. 13th European Software
Engineering Conference and 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2011.

M. Zhang, Y. Wu, S. Lu, S. Qi, J. Ren, and W. Zheng. AL
a lightweight system for tolerating concurrency bugs. In Proc.
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2014.

W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam.
ConAir: featherweight concurrency bug recovery via single-threaded
idempotent execution. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

Y. Zheng, T. Bao, and X. Zhang. Statically locating web application
bugs caused by asynchronous calls. In Proc. 20th International
Conference on World Wide Web (WWW), 2011.

