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ABSTRACT. Let g be an odd prime power, n > 1, and let P denote a maximal parabolic
subgroup of GL,(q) with Levi subgroup GLn—1(q) X GL1(g). We restrict the odd-degree
irreducible characters of GL,(q) to P to discover a natural correspondence of characters,
both for GL,(q) and SL,(g). A similar result is established for certain finite groups with
self-normalizing Sylow p-subgroups. Next, we construct a canonical bijection between the
odd-degree irreducible characters of G = S,,, GLn(q) or GUn(q) with ¢ odd, and those
of Ng(P), where P is a Sylow 2-subgroup of G. Since our bijections commute with the
action of the absolute Galois group over the rationals, we conclude that the fields of values
of character correspondents are the same. We use this to answer some questions of R.
Gow.

1. INTRODUCTION

It is not often the case that a natural correspondence of characters between a group G
and a subgroup H of G is found. Even more rarely this correspondence can be described
by inspecting the restriction of characters from G to H. The paradigmatic example of this
is the Glauberman correspondence, which is a natural bijection between the P-invariant
irreducible characters Irrp(G) of a finite group G of order not divisible by a prime p, acted
on by the p-group P, and the irreducible characters of the fixed point subgroup C¢(P). The
fact that Irrp(G) and Irr(Cg(P)) have the same number of elements is very important, but
that these sets are canonically isomorphic is what lies behind the origin of deep theorems
and conjectures in Representation Theory.

If G is a finite group and p is a prime, the McKay conjecture (cf. [My, Ma]) asserts that
| Irry (G)| = | Irry (Ng(P))| for P € Syl,(G), where Irryy(G) is the set of the irreducible
complex characters of G of degree not divisible by p. Until very recently, this conjecture
was known to hold for various classes of finite groups, but remained open in general. A
milestone result has been achieved by Malle and Spath in [MS] where they succeeded in
proving the McKay conjecture in the case p = 2.
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The focus of this paper is, on the other hand, on the existence of canonical corre-
spondences between Irr, (G) and Irry (H) for certain pairs (G, H) of finite groups with
G > H > Ng(P), and specially for p = 2. Even in the cases where the McKay conjecture
is known to hold for G and H (cf. [O1], [MS]) and thereby the existence of a bijection
between Irr, (G) and Irry (H) is guaranteed, this resulting bijection usually does not give a
canonical correspondence: choices have to be made, and this is what complicates the study
of such maps. In the first instance, one expects a canonical correspondence to commute
with the action of the absolute Galois group over the rationals, and in this case, the fields
of values of character correspondents must be the same. This does not happen often. Also,
one expects that canonical correspondences between Irry (G) and Irry (H) will commute
with every automorphism of G that stabilizes H, and provide essential information on co-
homological character theoretic questions. Furthermore, there is some hope that certain
canonical correspondences will play an important role in proving various refinements of the
McKay conjecture (eg. [Na]).

In conclusion, when a canonical correspondence is found (and as we say, this does not
happen often) it should be possible to understand fundamental properties of certain char-
acters of G by studying the characters of a smaller subgroup H of G. Even more, this
correspondence usually affects the behavior of the character theory of convenient over-
groups which contain G and H in a certain way. The main purpose of this paper is to prove
that for p = 2, and for symmetric, general linear, general unitary, and solvable groups, this
rare phenomenon does happen. Why these groups and why only for p = 2 is a mystery
whose explanation we do not see. As we will point out, this is not going to happen for
other groups and for other primes, but that is not a surprise. The surprise is that this
phenomenon does happen for those selected groups.

For any character xy of G we denote by xg its restriction to a subgroup H.

Definition 1.1. An arbitrary subgroup H < G is called p-restriction good if for every
X € Irry(G), there exists a unique x* € Irry(H) such that xg = x* + A and either
A = 0 or all irreducible constituents of A have degrees divisible by p. A p-restriction good
subgroup H < G is called p-restriction canonical if the map y — x* yields a bijection
between Irry (G) and Irry (H).

Very recently, the following result* has been proved:

Theorem 1.2. [APS] Let n € Z~1. Then S,—1 is a 2-restriction good subgroup in S,,.
Moreover, if n is odd, then Sp_1 is a 2-restriction canonical subgroup in S,.

In this paper, we prove:

Theorem A. Let n € Z-1, q be an odd prime power, and P be a maximal parabolic
subgroup of GLy(q) with Levi subgroup GL,—1(q) x GL1(q). Then P is a 2-restriction good
subgroup in GLy(q). Moreover, if n is odd, then P is a 2-restriction canonical subgroup in

GLy(q).

*In fact, we independently conjectured this statement. But while we were working on the proof of it, we
learned of the preprint [APS] in which the conjecture was proved.
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Theorem B. Let n € Z~1 be odd, q an odd prime power, and Q be a maximal parabolic
subgroup of SLy(q) with Levi subgroup (GLn—1(q) x GL1(q)) N SLy(q). Then Q is a 2-
restriction canonical subgroup in SLy(q).

Theorem C. Let G be a finite group, p be a prime, and P € Sylp(G). Suppose that
P =Ng(P), and in addition that G is a solvable group if p=2. Let P < H < G. Then H
s a p-restriction canonical subgroup in G.

All these theorems might suggest that further results of this type can hold true for ar-
bitrary finite groups with self-normalizing Sylow 2-subgroups. However, the group G =
SL3(2) has self-normalizing Sylow 2-subgroups, and an irreducible character x € Irr(G)
of degree 7 such that the restriction of x to every odd-index proper subgroup H of G has
exactly three irreducible constituents of odd degree. This example also shows that Theo-
rem A does not hold when 2|g. Other examples also show that analogues of Theorem 1.2
and Theorems A, B do not seem to hold when p > 2. However, canonical character corre-
spondences, although not necessarily defined by restriction, can be obtained for symmetric
groups and finite general linear and unitary groups, again for p = 2.

In this paper we are often speaking of canonical or natural correspondences between
characters of a group GG and a subgroup H < GG. We use the word canonical or naturalin the
following sense: either the correspondence is obtained in terms of an explicit representation
theoretic construction involving restriction from G to H (for example as in Theorems A,
B, C), or it is obtained by means of an explicitly described combinatorial bijection on the
labels, or a combination of the two. In all cases, we require that the bijection commutes
with the action of Galois automorphisms and group automorphisms (of G that stabilize
H). We quote I. M. Isaacs in his landmark paper [Is;] that the word natural “is intended to
mean that an algorithm is given for constructing the correspondence and that the result is
independent of any choices made in the application of the algorithm”. We refer the reader
to Sections 4, 5 for more details on the following theorems.

Theorem D. Let n € Z~q and let M be a maximal subgroup of S, of odd index. Then
there is a canonical bijection between Irry/(S,) and Irrey (M).

Theorem E. Let n € Z>1, q be an odd prime power, G = GLy,(q) or GUy(q), and P €
Syly(G). Then there is a canonical bijection between Irre/(G) and Irry (NG (P)).

Since our bijection in Theorem E commutes with Galois action (see Theorem 5.3), it
follows, for instance, that the fields of values of the odd-degree irreducible characters of
G = GLy(q) and GU,(q), if q is odd, are in bijection with the fields of values of the odd-
degree characters of Ng(P) for P € Syly(G). This does not happen in GLy(4) or GLy(8).
Two other cases where there exists a canonical correspondence for the McKay conjecture
for p = 2 are in solvable groups [Is1], and symmetric groups [G], see also Theorem 4.3,
where the constructed correspondence y — X! has the additional property that x* is a
constituent of x|n(p)-

Note that, for some quasisimple groups S and primes p, certain bijections between Irr, (.S)
and Irry (N) for some subgroups N < S containing Ng(P) with P € Syl (S) have been
constructed which commute with group automorphisms (see e.g. [CS], [MS]). These equi-
variant bijections play an important role in the recent proof [MS] of the McKay conjecture
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for the prime p = 2. But it is not clear how these bijections behave with respect to Ga-
lois action. In fact, the example of S = As shows that no bijection between Irry/ (S) and
Irro/(Ng(P)) (for p = 2) can commute with Galois action. Hence, the existence of canonical
correspondences in the case of S,,, GL,(q) and GU,(q) with ¢ odd, is somewhat a miracle
which deserves further investigation for a conceptual explanation.

To illustrate the power of canonical maps, we can answer a question of Gow, which was
privately communicated to us.

Corollary F. The number of real-valued, irreducible characters of odd degree of G =
GLy,(q) and GU,(q), with q any odd prime power, is equal to that of Ng(P) for P € Syly(G),
which is Mt AN AT Gf g — 91 4 9n2 4 9 s the 2-adic decomposition of n.
Furthermore, all such characters are rational-valued.

2. RESTRICTION TO A MAXIMAL PARABOLIC SUBGROUP

Unless otherwise stated, we always assume that p is a prime and H is a subgroup of a
finite group G. We begin with some simple observations. Note that if the p-restriction good
subgroup H of G satisfies |Irry (G)| = |Irry (H)| and p { |G : H|, then it is p-restriction
canonical, by the following lemma. (The lemma also indicates a possible weakening of the
notion of p-restriction good subgroups when one allows a multiplicity > 1 of the p’-degree
irreducible constituent).

Lemma 2.1. Let H have p'-index in G and |Irry (G)| = |Irry (H)|. Suppose that for every
X € Ity (G), among the irreducible constituents of x g there is only one (but possibly with
multiplicity > 1), denoted by x*, that has p'-degree. Then the map * : x — Xx* is a bijection
between Irry (G) and Irry (H).

Proof. For any p € Irry(H), the induced character p¢ has p/-degree, so it contains a
constituent x € Irry (G). By assumption, p = x*. Thus * is surjective, and so it is injective
as well. 0

The following result is well known, see for example [J1, 22.4].

Lemma 2.2. Let a,b € Z>p, n = a + b, and consider the decompositions

t ¢ ¢
n = 22%1', a= Z 2a;,b = 22%“
i=0 i=0 =0

where 0 < a;,b;,n; < 1. Then the following statements are equivalent:

(a) The binomial coefficient () is odd.
(b) a; + b; = n; for alli.
(c) 0<a; <n; foralli.

For r € Z~o we denote by [r], the largest p-power that divides r; we also set [0], := oco.

Corollary 2.3. Let ay,...,am € Zso and n =Y ", a;. Suppose that n!/[[;~, a;! is odd.
Then, by relabeling aq, . .., an, suitably, we may assume that

[’I’L]Q = [al]g < [(IQ]Q < ... < [am]g.
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Proof. There is nothing to prove for m = 1. We will proceed by induction on m > 2.
Relabeling the a;’s if necessary, we may assume that

(21) [a1]2 S [CLQ]Q S . S [CLm]Q.

Assume m = 2, and consider the decompositions

t ¢ t
n= E 2'n;, a1 = E 2'b;, as = ZQ’ci,
i=k =0 =0

with 0 < b;,¢,n; <1, k>0 and ngp = 1. By Lemma 2.2 we have b; = ¢; =0 for 0 <i < k
and, moreover, relabeling a; and as if necessary, we may assume that (b, c;) = (1,0). Thus
[n]2 = [a1]2 < [az]2 as needed.

For the induction step when m > 2, first we apply the case m =2 ton =a; + (n — aq)
and (2.1) to get

la1]2 # [n — a1]2 > [ai]o,

whence [n — ai]2 > [a1]2 = [n]e. Now the statement follows by applying the induction
hypothesis to n — a1 = >, a;. O

Corollary 2.4. Suppose that a,b € Z~g, n =a+b, and (Z) 1s odd. Then there is a unique
c € {a—1,a} such that ("Zl) is odd. Moreover, if we assume additionally that [a]a < [b]2,
then (Zj) is odd.

Proof. As () = (Zj) + (";1), the first claim follows. For the second claim, let ¢ € {a—1,a}
be such that (";1) is odd. By Corollary 2.3, the assumption [a]s < [b]2 implies that
[n]2 = [a]a < [b]2. If n is odd, then a is odd and b is even, and, by Lemma 2.2, ¢ is even,
whence ¢ = a — 1. If n is even, we consider the decompositions

¢ ¢ ¢
n = Z2ini, a= ZQiai, b= ZQibi,
i=k i=0 i=0
with 0 < a;,b;,n; <1, k> 1 and np = 1. By Lemma 2.2,
(ag, ..., ar) =(0,...,0,1), (bg,...,bx) =(0,...,0,0),
and so (ngl) is even. Hence again we must have that c=a — 1. O

Recall that complex irreducible characters of S,, are labelled by partitions A - n: x = x*.
By Theorem 1.2, there is a canonical map A — A\* such that, if xy* € Irr(S,,) is of odd degree
then y* = x*" is the unique odd-degree irreducible constituent of XS, ;-

From now on, we fix an odd prime power q. For any n > 1, let G = GL,(q), with
a natural module V' = Fy = (e1,...,en)r,. As in [KTg], it is convenient for us to use
the Dipper-James classification of complex irreducible characters of GG, as described in

[J2]. Namely, every x € Irr(G) can be written uniquely, up to a permutation of the pairs
{(51,A1), - (SmsAm)}, in the form

(2.2) X = S(s1,A1) 0 S(s2,A2) 0...0S(Sm, Am)-

Here, s; € IF‘qX has degree d; over Fy, \; = k;, Zf;l kid; = n, and the m elements s; have
pairwise distinct minimal polynomials over F,. In particular, S(s;,A\;) is an irreducible
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character of GLy,q,(¢). Furthermore, there is a parabolic subgroup P, = U, L, of G with
Levi subgroup Ly = GLj,q,(q) X ... x GLy,,4,,(¢) and unipotent radical U,. The (outer)
tensor product
P = 5(s51,A1) ® S(52,\2) @ ... ® S(Sms Am)

is an L,-character, and x is obtained from 1 via the Harish-Chandra induction fo, ie.
we first inflate ¢ to a Py-character and then induce it to G. The adjoint operation of
Harish-Chandra restriction *REX takes any character p of G, afforded by a CG-module W
to the L,-character afforded by WUx| the fixed point subspace for U, on W.

Let P = UL be a maximal parabolic subgroup of G with Levi subgroup L = GL1(q) X
GLy—1(q) and unipotent radical U. Conjugating suitably in G and applying the transpose-
inverse automorphism if necessary, we may assume that P = Stabg((e1)r,) and the second
factor GLy,—1(q) of L fixes both ey and (e, ..., en)F,.

Given the above notation, we can now prove the following theorem which implies Theo-
rem A:

Theorem 2.5. Let q be an odd prime power, n > 2, G = GLy(q), P = Stabg((e1)r,)-
Suppose that x € Irro/(G). Then the following statements hold:
(i) One can choose a label (2.2) for x such that s; € Fy (so that di = 1) and N o€
Irrg/(Sy,;) for alli=1,...,m, and
[n]2 = [k:l]g < [kﬁg]z < ... < [k}m]g;
(ii)) xp = x* + A, where x* € Irro/(P) and either A = 0 or A is a P-character all
irreducible constituents of which are of even degree;
(iii) x* is trivial on U, and equal to S(s1, (1)) ® (S(s1,A]) o S(s2,A2) ©...08(Sm,Am))
when viewed as a character of GL1(q) X GLp—1(q);
(iv) If n is odd, then the map x — x* is a bijection between Irry (G) and Irry (P).

Note that in 2.5(iii), the symbol S(s1, A}) is considered void if k; = 1. We proceed in a
series of lemmas.

Lemma 2.6. Statement (i) of Theorem 2.5 holds.
Proof. Since the degree of x is odd, so are the degrees of each S(s;, \;), which implies that
d; = deg(s;) = 1, for example by [KTy, Lemma 5.7(ii)], i.e. s; € F foralli =1,...,m.
Next, we also must have that |G : P,| is odd, which implies by a repeated application of
[NT;, Lemma 4.4(i)] that n!/ [~ ki! is odd. So we may assume by Corollary 2.3 that
[n]e = [k1]2 < [k2]2 < ... < [km]2. Finally, it is well known (and follows from the hook
formula for the degree of unipotent characters of G, see [FS, (1.15)]) that
(2.3) (1) = deg(S(s, \))(mod 2)
if s € Ff, and so we conclude that XN € Trry (Sg,). O
Lemma 2.7. Let X = X x Xo, where X1 = GLy,(q), X2 = GL,(q), PL = ULy a parabolic
subgroup of X1 with unipotent radical U and Levi subgroup L1, and let L = L1 X Xo.
(i) If o is a character of X1 and B is a character of Xo, then *RY (a® ) = *Rfll(a) ® .
(ii) If v is a character of Ly and § is a character of Xa, then Ry (y®6) = Rfll (v) ® 9.
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Proof. (i) Let «, respectively 3, be afforded by a CX;-module A, respectively a CXs-module
B. Then *R¥(a ® f) is afforded by the L-module (A ® B)V = AV @ B and so equal to
*Ry (o) ® B.

(ii) Inflate 7 to the character 4 of P; using P; /U = L;, and inflate vy ® 6 to the character
p=9®3§of P= P x X using P/U = L. Then

R¥(v®6) =p = (F®1x,) - (1x, ®8)p)* =
= (’~Y®1X2)X (1x, ®9) = (Rﬁl(’y)®1x2) (1x, ®96) :Rﬁl(,y)@)d

Proposition 2.8. Statements (ii) and (iii) of Theorem 2.5 hold.

Proof. (a) First we note that, since L acts transitively on the ¢"~! — 1 non-principal irre-

ducible characters of U and ¢ is odd, any irreducible character of P which is nontrivial on
U has even degree. Hence all the odd-degree irreducible constituents of xp are contained
in *RY (x). Next, by Lemma 2.6, we already know that s; € Fgforalli=1,...,m.

Suppose that m = 1. Then x is a unipotent character of G tensored with a linear
character; in particular, x belongs to the principal series. By the Comparison Theorem
[HL, Theorem 5.9] (see also [C, Theorem 5.1] for the case of the principal series), the
computation of * R¥ (x) can be replaced by the computation of (y )s,,_,, where we identify
Sy, respectively S,,_1, with the Weyl group of G = GL,(F,), respectively of £ = GL;(F,) x
GL,—1(F,). (See also [FS, Proposition (1C)] for the explicit formula in the case of G.)
Applying Theorem 1.2 and (2.3), we are done in this case.

(b) Now we will assume m > 2 and set a = k1, b = n—kj, where ky, ..., ky, satisfy 2.5(i);
in particular,
(24) [a]Q < [b]Qa

and so a # b. Let
M = Stabg({e1,. .., eq)r,) N Stabg({eat1,- -, en)F,) = GLa(q) X GLi(q),
so that xy = R%(a ® ), where
a=S5(s1,A1), B =5(s2,A2)0...08(8m,A\m)-

This follows by the transitivity of the Harish-Chandra induction [DM, Proposition 4.7]. By
the Mackey formula for Harish-Chandra induction and restriction (see e.g. [DF, Theorem
1.14]),

“RE() = *RE(RSi(a @ 8)) =iy (*Rifur(a® 8))

® Rﬁﬂwa*1 (Conjw(*R%ﬂw—le(a ® 5))) )

where w is the permutation matrix corresponding to the cycle (1,2,...,a + 1) and conj,,
denotes the conjugation by w.

(2.5)

(c) Here we consider the first summand in the right hand side of (2.5). By Lemma 2.7(i),

* * GLa
Ripv(a® B) = RGLI((gngLafl(q) (@) ® 5.
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It is well known (see e.g. [L, p. 70]) that the Harish-Chandra induction and restriction
respect the Lusztig series, which in our case is labeled by the semisimple element in the
dual group G* = G that has each s; € F;¢ as eigenvalue with multiplicity ;. Hence we can
write

* pGLa
(2.6) RGngq))XGLa ) q) ZS s1,(1)) ® S(s1, 15)

for some r > 1 and some partitions p; - (a — 1). It then follows by Lemma 2.7(ii) and the
transitivity of the Harish-Chandra induction that

Rimy(CRinw(e® B)) = RéLl(q)xGLa,l(q)xGLb(q) ZS (51,(1)) @ S(s1,p5) | ® B

- GLp—
= D2 8051 (1) ® RG89 (S(51145) © B) = ZSS% ) ®7

where v := S(s1,p5)05(s2, A2)0...08(sm, Am) € Irr(GLp—1(q )) Certainly, the irreducible
constituent S(sq, (1)) ® v; can be of odd degree only when deg(S(s1,p;)) and

|GLn-1(q) : (GLa-1(q) x GLy(q))|

are both odd. The former implies, by applying (a) to (2.6) that p; = AJ; furthermore, this
happens for exactly one j € {1,2,...,r}. The latter implies by [NT;, Lemma 4.4(i)] that
(Zj) is odd.

We have shown that the first summand in (2.5) contains at most one irreducible con-
stituent of odd degree, namely

S(s1,(1)) ® (S(s1,A]) 0 S(s2,A2) 0 ... 0S(Sm, Am));
moreover, if such a constituent occurs, then it occurs with multiplicity 1 and (Z:}) is odd.

(d) Arguing as in (c), we can show that each irreducible constituent in the second sum-
mand of (2.5) is of form

S(Slla (1)) ® (5(8,277/1) 0 S(Sé,ljg) 0...0 S(S;‘mymfl) © S(‘Sl?)‘l))a

where s} € {s},...,sl,} = {s2,...,8m} and vi,...,v_1 are some partitions with the
lengths totalling to b— 1. By [NT;, Lemma 4.4(i)], such an irreducible constituent can have
odd degree only when (7;:11) = ("gl) is odd.

Given the condition (2.4), Corollary 2.4 implies that ("a_l) is even. Thus the second
summand in (2.5) contains no odd-degree irreducible constituent. Since x(1) is odd, we are

done by the result of (c). O

Completion of the proof of Theorem 2.5. In view of Lemma 2.6, Proposition 2.8, and Lemma
2.1, it remains to prove that | Irro/ (G)| = | Irrer (P)| when n = 2k+1. We can choose a Sylow
2-subgroup S = S1 xSe < L of G, where S1 = O2(GL1(q)), and Sz € Syly(GLok(q)) has the
form So = AV B, where A € Syl,(GLa(q)) and B € Syly(Sg). Then the S-module V' decom-
poses as V1 @ V', where Vi = (e1)r, and all irreducible constituents of V' = (ea, ..., en)r,
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are of even dimension. It follows that N (S) is contained in Stabg(V;) N Stabg (V') = L
and so Ng(S) = N.(S). By the main result of [O1],

(2.7) | Ity (G)| = |Irro (N@(S))| = | Irre (NL(S))| = | Irro (L)].
As mentioned in part (a) of the proof of Proposition 2.8, |Irre/(L)| = | Irre/ (P)|, and so we
are done. ]

Proof of Theorem B. Let G := GL,(q), and consider normal subgroups S := SL,(q) and
H :=7Z(G)S of G.

(i) Consider any 6 € Irry/(S). Since H = Z(G) * S is a central product, 6 extends to H
which has odd index ged(n, g — 1) in G. Hence 6 lies under some x € Irro/(G). Now we can
find a label (2.2) for y that satisfies 2.5(i). Applying [KT;, Theorem 1.1] to x, we then see
that yg is irreducible, i.e. xg = 6. We have shown that every 6 € Irry/(S) extends to G,
whence

(2.8) | Irror (S)| = | Irro (G)| /(¢ — 1)
as G/S = Cy_1.
(ii) We may assume that Q = P NS, where P is the maximal parabolic subgroup of G

considered in Theorem 2.5. Then @ = ULy with L1 := L NS = GL,_1(q). Note that the
normal subgroup

K := Stabg(e1) N Stabg({e2, ..., en)r,) = SLn-1(q)

of L; acts transitively on Irr(U) \ {1y} since n > 3. It follows that every irreducible
character of @) that is nontrivial on U has even degree. In particular,

(2.9) [ Trrg (Q)] = [Trrar (L.
(iii) Now we keep the notation of (i) and consider any odd-degree irreducible constituent

¢ of g (which exists since § has odd degree). We have shown that ( is trivial on U and so
is a constituent of *RY (x). We can view ¢ as an Lj-character. Any irreducible character of
Z(G)L1 = Z(G) = Ly lying above ¢ then also has degree equal to ((1). Next, Z(G)L; has
odd index ged(n,q — 1) in L. Thus any irreducible character of L lying above ¢ must have
odd degree. Applying Theorem 2.5, we now see that ¢ is a constituent of (x*)r,, and
(X") g = S(51,A]) 0 S(s2,A2) 0 ... 0 (S, Am)
for )
K := Stabg(e1) N Stabg((e2, . .., en)r,) = GLn-1(q).

Since x*(1) is odd, by [NT;, Lemma 4.4(i)] and Corollary 2.3 we have that [k1 — 1]a, [k2]2,

.+, [km]2 are pairwise different; in particular, k1 — 1, ka, ..., kp, are pairwise different. It
then follows by [KT;, Theorem 1.1] that (x*)x is irreducible. Hence, (x*)z, is irreducible
and ¢ = (x")1,.

(iv) To complete the proof of Theorem B, by Lemma 2.1 it remains to show that

| Irro/ (S)| = | Irre (Q)]. Since

| Irror (L)| = [Irry (GL1(q) X GLn-1(q))| = (¢ — 1)|Irro(GLn-1(q))| = (¢ — 1) Irra(L1)],
we are done by combining (2.7), (2.8), and (2.9). O
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3. FINITE GROUPS WITH SELF-NORMALIZING SYLOW SUBGROUPS

In this section we prove Theorem C. In fact, in this case the key hypothesis is that Sylow
p-subgroups are self-normalizing and not the nature of the prime p. The next result was
proved in [N;] for P = H (with a more complicated proof).

Theorem 3.1. Suppose that G is a p-solvable group, P € Sylp(G), and assume that P =
Ng(P). Let P < H < G. If x € Irr(G) has p'-degree, then the restriction of x to H
contains a unique p'-degree irreducible constituent v € Irr(H). This establishes a natural
bijection between the p'-degree irreducible characters of G and H.

Proof. We proceed by induction on |G|. Let x € Irr(G) be of p’-degree. Let N be a normal
subgroup of p’-order. Since x(1) is not divisible by p, using the Clifford correspondence
(Theorem (6.11) of [Isg]), let 6 € Irr(IN) be P-invariant under x. Then Cy(P) = 1 by
hypothesis, and so § = 1y, by the Glauberman correspondence (Theorem (13.1) of [Isg]).
Therefore, N < ker(y). Now consider y € Irr(G/N) the corresponding character in the
factor group. By induction Yypy contains a unique p'-irreducible constituent 1. Now, all
the constituents of this character restrict irreducibly to H, so we are done in this case. So
we may assume that N = 1.

Let now N be a normal p-subgroup of G. Then yp contains a linear constituent A and
Ay =v €Irr(N). Let P <T be the stabilizer of v in G, and let ¢ € Irr(7T") be the Clifford
correspondent of x over v. It is well known by Clifford theory (see [S, Lemma 2.5]) that

xu = (Wram)? + A

where no irreducible constituent of A lies over v. We claim that no irreducible constituent
of A has p'-degree. If £ is an irreducible constituent of A of p/-degree, then £y has some
linear P-invariant constituent e. But then yy has P-invariant irreducible constituents v
and €, and by a standard argument they are N¢(P)-conjugate. However, Ng(P) = P, and
since both are P-invariant, they are equal. This contradicts the choice of A. Suppose now
that T' < G. Notice that T has a self-normalizing Sylow p-subgroup. By induction,

d}TﬁH:,U"{'p’

where p has p’-degree and every irreducible constituent of p has degree divisible by p.
All these constituents lie over v, so all of them induce irreducibly to H by the Clifford
correspondence. We conclude that

xi = Wram) T+ A =p" + o7 + A,

and the theorem is again proved in this case.

Hence the last case is that T" = G. We claim that v extends to GG. This is because v
extends to P, by coprimeness it extends to every Q/N € Syl (G/N) if ¢ # p (by Corollary
(6.27) of [Isg]), and therefore it extends to G by Theorem (6.26) of [Isg]. Let A € Irr(G)
be a linear extension of v. By Gallagher’s Corollary (6.17) of [Iss], we can write x = B,
where 8 € Irr(G/N), has p’-degree. By induction,

/BH:T+Ea
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where every irreducible constituent of = has degree divisible by p. Now
XH = AgfBu = AT + AHE,

and this proves half of the theorem. The bijectivity of the map is proved similarly. O

The fact that Ng(P) = P is key. For instance, take the semidirect product G of an
extraspecial group F' = 3_1|r+2 of exponent 3 acted on by Cy in such a way that Cy acts
trivially on the center of F. The normalizer of a Sylow 2-subgroup in G is N = Cy x Cj,
is even maximal. Every restriction of the irreducible characters of degree 3 has three
irreducible linear constituents.

Proof of Theorem C. In view of Theorem 3.1, we may assume p > 2. Decompose ypg =
25:1 pi + Zj‘:1 Y, where t > 1, s >0, p;,¢; € Irr(H), p 1 pi(1), pl;(1). Now each p;|p
contains a linear character, and by [NTV, Corollary B], xp = A+ ¢ contains a unique linear
character A\ (so that either § = 0 or all irreducible constituents of § have degree divisible
by p). Hence t = 1, and we have a well-defined map

*1x X =

from X :=TIrry (G) to Y := Irrp (H).
Now, for any p € Y, p contains a p/-degree x € Irr(G) and then 7 contains p, so x* = p.
Thus * is onto. By [NTV, Corollary B], |X| = |P/P'| = |Y|. So x is a bijection. O

4. CANONICAL CHARACTER CORRESPONDENCES IN SYMMETRIC GROUPS

Note that the natural character correspondences described in [APS] (see Theorem 1.2)
and in Theorems A, B, and C are given by restriction. In the case of G = S,,, one may
ask whether the restriction to a Young subgroup H of odd index in G would also give such
a correspondence between the odd-degree characters of G and those of H. Unfortunately,
the answer is no: if G = S; and H = S5 X So, then the restriction to H of any irreducible
character of degree 35 of G have three odd-degree irreducible constituents.

When G =S,, and P € Syl,(G), a canonical bijection between Irry/ (G) and Irre/ (NG (P))
was defined in [G] (although given by restriction to P only when n is a 2-power). Another
type of correspondence (given for an arbitrary prime) is described in [E].

We will construct a new explicit canonical bijection, where, in addition, the correspondent
x* € Trry (P) of x € Irrer(G) is an irreducible constituent of xp (although not necessarily
occurring with multiplicity one). Let H(n) denote the set of n hook partitions (n — i,1%),
0 <i<mn,ofn. If \F n, then Y(\) is the Young diagram of . Furthermore, we will
say that A is an odd partition of n (and write A I, n) exactly when x* € Irr(S,) has odd
degree.

Lemma 4.1. Let n € Z>1 and let vy be a partition of n with a hook H of length m in Y ().
Let 8 € H(m) be the hook partition corresponding to H, and let ot (n —m) be such that
Y (a) is obtained from Y (vy) by removing the rim m-hook R of Y () corresponding to H.
Then (x7)s, _,.xs,, contains x* ® xX? as an irreducible constituent with multiplicity one.
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Proof. We apply the Littlewood-Richardson rule as given in [JK, Corollary 2.8.14]. Write
B = (k,1™%) for some 1 < k < m and consider the symbols a;; where the (i, j)-node
belongs to Y (f):
a1, @12, ..., a1k, a21, 4315 -+« y Amp—k+1,1-

We need to count the number of ways of adding symbols a;; to Y (a) to get Y (vy), that is, to
fill up the rim m-hook R of Y () with these symbols a;; in such a way that all conditions
(i), (ii), (iii) of [JK, Corollary 2.8.14] are fulfilled. First we have to put the k symbols
a11, @12, - - -, a1k in k different columns of R consecutively starting from the rightmost to
get a proper diagram. Since R has exactly k columns, we have to put these symbols at
the top of these k columns, and there is exactly one way to do it. Then we need to put

the m — k symbols as1,as1,...,a@m—k+1,1 in the m — k remaining rows of R consecutively
starting from the highest row. Since there remain only m — k rows, each with one node,
there is again exactly one way to do it. ([l

We refer to [JK, §2.7] for the notion of the m-core of any partition A - n and any
m € Zzl'

Lemma 4.2. Let m € Z>y and n € Z be such that m < n < 2m — 1, and let o =
(a1,a2,...,a;) F (n—m) with ay > ag > ... > a, > 0.

(i) For any B = (k,1™%) € H(m), there is evactly one y - n such that v has a hook H
of length m that corresponds to 3, and, furthermore, Y («) is obtained from Y (7y) by
removing the rim m-hook corresponding to H .

(ii) Suppose in addition that m is a 2-power and that o o (n — m). Then, for each
B = (k, 1™ %) € H(m), there is a unique \ o n such that ~y has a hook H of length
m that corresponds to B, and, furthermore, « is the m-core of ~.

Proof. (i) We determine in how many ways Y («) can be obtained from Y () by removing
a rim m-hook R that corresponds to H, a hook of length m with associated partition
B € H(m); in particular, R spans m — k + 1 rows and k columns. Since n < 2m — 1, H
must be the hook corresponding to a node that belongs either to the first row or the first
column of Y (). Thus R must touch either the first row or the first column of Y (a)). We
consider the outer rim S of Y («), which consists of all the (i, j)-nodes, where at least one
of the (i,j — 1)-node, (i — 1,j — 1)-node, (7,5 — 1)-node belongs to the rim of Y («). Then
S spans r + 1 rows and a1 + 1 columns and so has length L :=a; + r + 1. Note that

a+r<a+a+...ta+l=n—m+1<m.

Suppose first that m — k+ 1 < r. Then R spans &k > m —r +1 > ay + 1 columns.
If R does not touch the first row of Y («), then it must touch the first column of Y («)
and so spans at most a; columns, a contradiction. Thus R must begin in the first row of
Y («). In this case, since k¥ < r, R consists precisely of the N7 nodes that belong to the
first m — k 4+ 1 rows of .S, together with m — N; more nodes in the first row, to the right
of the top node of S. (Note that, since the (r + 1)th row of S has at least two nodes, we
have Ny < L —2 <m — 1.) Thus v exists and is unique in this case.

Next suppose that m — k+1 > r 4+ 1. If R does not touch the first column of Y («),
then R spans at most r rows, a contradiction. Hence R must start from the first column
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of Y(«a). If in addition k& < aj, then R consists precisely of the No nodes that belong to
the first k& columns of S, together with m — Ny more nodes in the first column, below the
last row of S. (Note that, since the (a; + 1)th column of S has at least two nodes, we have
Ny < L —2 < m—1.) Thus 7 exists and is unique in this case. Finally, if £ > a; + 1, then
R consists of S together with £ — (a; + 1) more nodes in the first row (to the right of the
top node of §), and (m — k + 1) — (r + 1) additional nodes in the first column (below the
last row of S). Again, v exists and is unique in this case.

(ii) By [APS, Lemma 1] (see also [02, §6]), there are exactly m odd partitions A; o 7,
1 < i < m, such that the m-core of \; is «, and, furthermore, each A; has a unique hook
H; of length m. Asn <2m —1, Y(«) is obtained from Y ();) by removing the rim m-hook
corresponding to H;. Each H; corresponds to exactly one of m hook partitions 8; € H(m),
and, as we showed in (i), \; is uniquely determined by ;. It follows that /31, 52,. .., B, are
pairwise distinct and so are precisely the m hook partitions of m. ]

Theorem 4.3. Let n € Z>1 and let n = 2" + 2™ + ... 42" be the 2-adic decomposition
of n, where ny >mng > ... >n, >0. Let G =S, and P € Syly(G).

(i) There are canonical bijections

Irry (G) -2 O(n) & Irro/ (P)

with ©(n) := H(2™) x H(2"2) x ... x H(2"™).

(ii) If a(x) = (u1, 2, ..., pr) for x € Irra(G), then the restriction of x to the Young
subgroup Soni X Sony X ... X Son, contains X" @ x"?2 ® ... ® x* as an irreducible
constituent.

(iii) The map x — x* := B~ a(x)) is a canonical bijection between Trry/(G) and Irry (P).
Furthermore, x* is an irreducible constituent of xp.

Proof. We can take P = P; X Py X ... x P, with P; € Syly(Sgn;). Then any A € Irry/(P)
is of the form A = A\ ® Ao ® ... ® A\, with \; € Irro(P;). By Lemma 3.1 and Theorem
3.2 of [G], there is a unique v; € H(2") such that A; is the unique odd-degree irreducible
constituent of the restriction of x* € Irry/(Soni ) to P;. Now we can define

BN) = (vi,va,..., 1),

Next, consider any x = x™ € Irry/(Sy,), so that 7 -, n. By [APS, Lemma 1], 7 contains
a unique 2"'-hook corresponding to 1 € H(2"), and my ko (n — 2™), where 7o is the
2™ _core of m. Conversely, any such pair (11, 72) can be obtained in this way from a unique
7 o n by Lemma 4.2. As Y(mg) is obtained from Y'(7) by removing the rim 2"-hook
corresponding to p1, by Lemma 4.1 we have that the restriction of x™ to Son1 X S;,_9m1
contains x#! ® x™ as an irreducible constituent. Applying this process to m we then get a
pair (ug2, ) with po € H(2"2) and 73 b, (n—2"1 —2"2). Repeating this process successively,
we get p; € H(2™) for all i, and can then define

a(x) = (11, gy - - -5 fir)-

One easily checks that both a and 3 are bijections, and that the claims in (ii) and (iii)
concerning restrictions of x to Y and P are fulfilled.
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Note that irreducible characters of G = S,, are rational, and the same is true for odd-
degree irreducible characters of P € Syl,(G), see [NTg, Lemma 3.3]. Furthermore, if n # 6,
then all automorphisms of S, are inner and P = N¢g(P), so every automorphism of G
stabilizing P is induced by a conjugation j, : ¢ — zgx~' for some z € P. Hence the
bijection y — x* in Theorem 4.3 commutes with the actions of Galois automorphisms and
group automorphisms stabilizing P. Direct calculations show that the same conclusion
holds in the case n = 6. g

Remark 4.4. In the notation of Theorem 4.3, the multiplicity of x* in xp is not always
equal to one. For example, if n = 12 and x = (62" (so x(1) = 275), direct computation
shows that the multiplicity of x* in xp is equal to 4.

Corollary 4.5. Let G =S,, and let Y = Sy, x Sg, X ... X S, be a Young subgroup of odd
index in G. Then there is a canonical bijection x — x* between Irry (G) and Irry/ (Y').

Proof. For each i, choose P; € Syly(Sg,). Then P := Py x P, x ... x Py, € Syl,(G).
Consider any y € Trry(G) and let A := x* € Trry(P) as in Theorem 4.3. Next, write
A=A Q@A ®...0 N\, with \; € Irry(F;). For each 4 there is a unique 9; € Irro/ (S, ) such
that (¢;) = \; by Theorem 4.3. Now we can define

X =0 =01 @Y ®... 0 Yy € Ity (Y).

It is easy to check that the map y +— x* is a bijection between Irro/(G) and Irry (V).

Note that all irreducible characters in question are rational. Furthermore, ki, ks, ..., kn
are pairwise distinct by Corollary 2.3, and so Ng(Y) = Y. Hence, if n # 6 then all
automorphisms of G stabilizing Y are induced by conjugations j, : g — zgz~! withz € Y.
If n =6, then Y =S4 x Sy and the same conclusion holds. It follows that the constructed
bijection commutes with the actions of Galois automorphisms and group automorphisms
stabilizing Y. O

We are now ready to prove Theorem D.

Proof of Theorem D. (i) Let M be a maximal subgroup of G = S,, of odd index. We will
construct a canonical bijection x — x* between Irro/ (G) and Irrg/(M). If 1 < n < 4, then
M € Syly(G) and so we can set x* = x using Theorem 4.3. Thus we may assume that
n > 5. Maximal subgroups of odd index of G are determined by the main result of [LS]
and independently by [K, Theorem C], and they are either maximal Young subgroups or
stabilizers S;1S; of set partitions of {1,2,...,n = kt} into ¢ subsets of size k. In the former
case we can apply Corollary 4.5 (with m = 2).
So we will assume that M = S, {S¢, and write M = N x S; where

N:ISkXSkX...XSkg(Sm)t
and S; naturally permutes the t direct factors of N.

(ii) Consider any ¢ € Irro/(M). Since (1) is odd, the length of the S;-orbit of any
irreducible constituent of ¢y is odd. Hence, by Corollary 2.3 and using the action of S; on
N, we can find an irreducible constituent

YP=11®.. N1 QY R..0YQ ... Yy Q... Yy
N—_———

~~

t1 to tm
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of o, where m > 1,1 < [t1]2 < [ta]2 < ... < [tm]2, Yjoy ti = t, and ¢, ..., ¥y, € Irror(Sg)
are pairwise distinct. Note that each Si-orbit of odd length on Irre/(NN) contains a unique
representative 1 satisfying these conditions. Then Y := Stabs, (1)) =S¢, X S¢, X ... xSy, is
a Young subgroup of odd index in S;, and the inertia group J of ¥ in M is precisely N x Y.
Note that ¢ has a canonical extension v to J: if v; is afforded by a CSji-module V;, then
we can let Y act on

V=V®.0Vidh®..dWhe..oV,®...0 V,,

~~ —_—
t1 t2 tm

via naturally permuting the tensor factors, and then take 1; to be the J-character afforded
by V. By the Clifford correspondence and Gallagher’s Corollary (6.17) of [Isz] (or directly
by [JK, Theorem 4.4.3]), we have
¢ = (),
where a € Irry/(Y). Thus each ¢ € Irros(M) defines a unique pair (¢, «) in a canonical
way.
(iii) Fix R € Syly(Sg). Then we can find Q € Syly(S;) such that P = R1Q = R' x Q is
a Sylow 2-subgroup of M.
Consider any A € Irry/(P). Then, as in (ii), after a suitable S;-conjugation, we can write
W= ARt =R ..U OQU R ... QU R ... Q Uy @ ... & Lyt
| ———

-~~~

S1 S9 St

where m/ > 1, 1 < [s1]2 < [s2]2 < ... < [Sp]2s E:il si =1t, and py,..., fyy € Irre(R)
are pairwise distinct. Note that each S;-orbit of odd length on Irry (R?) contains a unique
representative u satisfying these conditions. Then Y’ := Stabs, (1) = Ss; X Sg, X ... xS,
is a Young subgroup of S;. Since u is Q-invariant, Y’ has odd index in S, and the inertia
group J' of i in R! % S; is precisely R! xY’. We can replace Q by Q" := Q1 X Q2 X ... X Q
where @Q; € Syly(Ss;). As in (ii), u has a canonical extension i to J'. We now have that

)\ = (ﬂ)P . /87
where € Trry/(Q'). Thus each A € Irry (P) defines a unique pair (i, 8) in a canonical way.

(iv) Now we can define x* for each x € Irry(G) as follows. First, let A := x¥ € Irry (P)
as in Theorem 4.3. Then we can apply the analysis in (iii) to A to get the canonical pair
(i1, 8). We will now rename m’ by m, s; by t;, and Y’ by Y. For each i, there is a unique

¥; € Irro/(Sg) such that 1/1? = p;. Next,
B=0®B&...QFn,

where f; € Irry(Q;). Again, for each i there is a unique o; € Irry/(Sy,) such that ag = G,
and then we take
=01 Ry ® ... R apy € Irry (V).
Now we define x* := ¢, where ¢ corresponds to (1, a) as in (ii). It is straightforward to
check that this map is a bijection between Irro/(G) and Irry (M).
Note that the irreducible characters of S,, are all rational. Furthermore, all the auto-
morphisms of S, that stabilize a fixed Young subgroup Y of odd index are induced by
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conjugations j, : g — xgr~' with € Y. This is obvious for n # 6 as all automorphisms of

S,, are inner and Y is maximal. If n = 6, then one can check that Y = S4 x So and again all
automorphisms of S,, stabilizing Y are inner. Hence the defined bijection commutes with
the action of Galois automorphisms and group automorphisms stabilizing Y. O

5. CANONICAL CHARACTER CORRESPONDENCES IN FINITE GENERAL LINEAR AND
UNITARY GROUPS

For k = £, we let GL%(q) denote GL,,(q) when k = 4+ and GU,(q) when k = —. Let Cj,
denote the unique subgroup of order ¢ — k1 of FZQ, and let C,, denote the character group
of C (under the pointwise product). We will fix a generator ¢ of C, a primitive (¢ — x1)th
root of unity £ € C. Then, for s =&/ € O, < IFqXQ, let § denote the character that sends e

to &/. We can identify

(5.1) Irr(02(Cy)) x Irr(Og (C)) +— Ch.

Let I' denote the Galois group Gal(Q(£)/Q), and let I' act on Cy; via o(¢) = ' whenever
o(€) = &'. We will fix a suitable basis of the natural module V' = Fy, resp. IFZQ, for G, and
use it to define the Frobenius automorphism Fj, sending any matrix X := (a;;) to (afj) in
that basis (where p is the unique prime divisor of ¢) and, additionally, the inverse-transpose
automorphism 7 : X + ‘X! when k = +. If k = — we set 7 := (F,)/ for ¢ = p/. Let
(5.2) D = (1, F,),

and let D act on Cy and correspondingly on C,. via

Fy(s)=sP, F(8) =3, 7(s) =51, 7(8) =5 =51

We also let D act trivially on H(n), the set of hook partitions of n.
For A F n, let ¢* denote the unipotent character of GLy(q) labeled by A. By [DM,

Proposition 13.30], S(s,\) = ¢ (8 odet) if x = +; note that § € C, is uniquely determined
by S(s, ), so in what follows we also use S(8, \) to denote S(s, ). If K = —, we also define

S(5,)) := (5 0 det).
Lemma 5.1. Let n = 2™ for some m € Zx>q, q be an odd prime power, k = +, G = GL£(q),
and P € Syly(G).

(1) The field of values of any character in Irre (NG (P)) is contained in Q(€).

(ii) There is a canonical bijection between Irry(Ng(P)) and Cy x H(n) that commutes with
the action of I'. Furthermore, we can choose P to be D-invariant and the canonical
bijection to be D-equivariant.

(iii) Irro/(Ng(P)) contains exactly 2+ real characters, and all of them are also rational.

Proof. 1t is well known that
(5.3) Ng(P)=ZP =27, x P,

where Z := Z(G) and Z; := O9/(Z) (see eg. [Ko, Theorem 1] for n > 2). Note that Z can
be canonically identified with Cx. The case m = 0 is obvious, so we will assume m > 1.
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(a) Consider the case n = 2. Suppose ¢ = k1(mod4). Then we can take a basis, which
is orthonormal if Kk = —, of Vj = Iﬁ‘g or ]Fgg, define F), and 7 in this basis, and choose
P =T, x (z), where Ty = Oo(T), T := {diag(z,y) | z,y € Cx}, and |z| = 2. It is easy to
see that each A € Irro/(P) is uniquely determined by v € Irr(O2(Cy)) and j € {0, 1}, where
Ag) = v(zy) for g = diag(x,y) € Ty and A(z) = (—1)7. Also, P is D-invariant.

Suppose ¢ = —k1(mod 4). Then we can find § € IF;; of order (q?—1),. First we consider
the case k = +. Then (¢>—1)2 = (p>—1)2 and so 3 € Fp2\Fy, BPHL = —1, and B+ 6P € F).
Now we can identify V; = IF% with F2 and take = to be the multiplication by 8, z to be
the Frobenius map v — v?. We then choose (1,(3) to be a basis (over Fy) for Vi, and
use this basis to define Fj, and 7. This ensures that Fj fixes both z and z (as they have
matrices <(1) 3 _: 51,) and <(1) B i‘lﬁp> in the given basis), and furthermore 7(z) = 271,
7(z) = x722. If Kk = —, then we can choose a Witt basis for 1] = Fgg, and take

(B 0 (01
=0 ) == ()

in this basis. Using the same basis to define F},, we get F,(x) = 2P, Fj(z) = z. In either
case, P is D-invariant, and D acts trivially on P/P’ = C2, and again each A € Irry (P) is
uniquely determined by v € Irr(O2(Cy)) and j € {0,1}.

Now any « € Irry/(Ng(P)) is of the form oo = d ® A, where § € Irr(Z;) and A € Irry (P).
Then we send « to (3, (2—7,7)), where § € C,, corresponds to (7, 6) via (5.1) and certainly
(2—7,7) € H(2). One easily checks that (i) and (ii) hold in this case. Furthermore, a = &
exactly when 0 = 1z, and v = 7, which then also imply that o is rational. It also follows
that there are exactly 4 of such a’s.

(b) In the general case, we can fix a direct sum decomposition

Vle@VleB...EBVL,

~~

om—1

where V; is considered with the basis chosen in (a), and fix a basis of V' compatible with
that basis of V7 and this decomposition. We then use this basis to define F},, 7, and
choose P = P x Q, where P, = Rx Rx ... x R~ R¥ ' R € Syl,(GL5(q)), and
Q € Syly(X) with ¥ 2 Sym-1 naturally permuting the 2™~! direct summands in V and,
correspondingly, the 2! direct factors in P;. Note that @ also permutes these direct
factors transitively; furthermore, D acts trivially on () and stabilizes both P; and P. It
follows that any 6 € Irry (P) is uniquely determined by A € Irry/(R) and v € Irry(Q), where
Op, =A@A®...® X and g = v. Asin (i), A corresponds to (7, j) with v € Irr(O2(Cy))
and j € {0,1}. Each a € Irro/(Ng(P)) is of the form a = § ® 6, where 6 € Irr(Z;) and
§ € Irry/(P). By Lemma 3.1 and Theorem 3.2 of [G], there is a unique hook partition
7w = (2m"! — k,1%) F 2™~ such that v is the unique linear constituent of the restriction
to Q of x™ € Irr(Sgm-1); in particular, v is rational. Hence @ = & exactly when § = 1,
and A\ = ), which, as mentioned in (i), then imply that « is rational, and there are exactly
2m+1 of such a’s. Now we send « to (3,&), where 5 € Cj corresponds to (7,4) via (5.1),
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and £ € H(n) is defined as follows

- (2™ — 2k, 12k), i=0
(2m — 2k —1,12F+h) . 5 =1,

It is straightforward to see that the defined map is a bijection between Irro,(Ng(P)) and

C\. X H(n), and that both (i) and (ii) hold. O

Lemma 5.2. Let q be an odd prime power, n > 2, G = GU,(q), and let x € Irro/(G).
Then there is a unique label of the form

X = S(81, A1) © S(82,A2) 0. .. 0 S(8m, Am),

where for 1 < i < m we have that 3; € C_ are pairwise different, S(3;,\;) € Irry (GUy, (q)),
x> € Irry (Sy,), and
[n]Q = [kl]Q < [kQ]Q < ... < [km]g

Proof. We can identify the dual group G* with G and consider the Jordan correspondent
(s,¢) of x, where s € G is semisimple and ¢ is a unipotent character of Cg(s), cf. [DM].
It is easy to see that the condition 21 x(1) implies that

Ca(s) 2 GUy, (q) x GUy,(q) % ... x GUy, (q)

with > k; = n and furthermore, n!/ [, k! is odd by [NT1, Lemma 4.4(i)]. Hence by
Corollary 2.3 there is a unique relabeling of the k;’s such that

[n]Q = [/ﬁ]Q < [kg]Q < ... < [k‘m]Q

Now we can write s = diag(si, s2,. .., sm) with s; € Z(GUy, (¢)) and then identify Z(GUy, (¢))
with C_. Note that the s;’s are pairwise different because of the structure of Cg(s). Also,
we can write ¢ = p1 ® P2 @ ... ® @, with ¢; = p* € TIrr(GUy,(¢)) being the unipotent
character labeled by \; - k;. Since 2 f ¢(1), we see that x*(1) = ¢;(1) = 1(mod?2) by
[F'S, (1.15)]. As before, S(8;, \;) is the irreducible character of GUy,(¢q) corresponding to
(54, ™). We also note by [DM, Theorem 13.25] that

(5.4) X = R0 (S(51,A1) ® S(82,%0) @ ... @ S (8, Am)) ,
where Rgc (s) is now the Lusztig induction. ([l

We can now prove the following result which implies Theorem E:

Theorem 5.3. Let n € Z>1, q be an odd prime power, G = GLy(q) or GU,(q), and
P € Syly(G). Then

(i) The field of values of any character in Irry(G) and Irrg (Ng(P)) is contained in
Q(&) = Q(exp(2L)), where k = + if G = GLy(q) and k = — if G = GU,(q).

qg—rl
(ii) There is a canonical bijection x — x* between Irry (G) and Irry (Ng(P)) that com-
mutes with the action of I' = Gal(Q(€)/Q). Furthermore, we can choose P to be
D-invariant and x — x* to be D-equivariant, where D is defined in (5.2).
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Proof. Write n =2™ +2" 4 ... 4+ 2™ with n; > ... > n, > 0, and define
Q(n) := Cp x H(2™) x Cr x H(2") x ... x C,e x H(2™).
We will construct the desired bijection x — x* by composing two canonical bijections

a: Ity (G) — Q(n), B:Qn) — Irry (Ng(P)).

(a) First we consider the case r = 1. Then 37! is the inverse of the map constructed in
Lemma 5.1. Next, if x € Irry/(G), then by Theorem 2.5(i) and Lemma 5.2, x = 5(5, \) with
$ € O, and \ F n, and moreover x* € Irr(S,) has odd degree by (2.3). Hence A € H(n) by
[G, Lemma 3.1] and we can define a(x) = (5, ). Note that, since G is uniform, unipotent
characters of G are Q-linear combinations of the Deligne-Lusztig character R%(17), T < G
any maximal torus, whence they are rational. Furthermore, § o det takes values in Q(¢).
Hence, Q(x) € Q(¢), and for any o € T,

X = S(5,0)7 = S(37,\).

Next, the unipotent character ¢* is D-invariant (see eg. [M, Theorem 2.5]), and F}, re-
spectively 7, sends 5o det to 87 o det, respectively 7! o det. Hence, (i) and (ii) hold in this
case.

(b) In the general case, we can fix a decomposition (orthogonal if K = —)
V=vieVd...eoV,,
where V; = Fini ifk=+andV;, = 1&?3;”‘ if kK = —. We also fix a basis in V compatible with

this decomposition and define F},, 7 in this basis. Then we choose P = Py x P, X ... X P,
with P; € Syly(G;) being D-invariant for G; := GL"(V;) = GL%.,;(q), cf. Lemma 5.1. Note
that P; is an irreducible subgroup of GG; and so

(5.5) Ng(P) = NG1 (Pl) X ... X NGT(P’]“)'
Soif 0 =6, ®...20, € Irres(Ng(P)), then we can define

/8(9) = (fla H17£27M27 cee 7£T7MT)

if the bijection in Lemma 5.1 sends 6; € Trro/(Ng, (P;)) to (£, ;). Lemma 5.1 also implies
that Q(0) C Q(¢) and that 5 commutes with the action of I" and D.

Now consider any x € Irry/(G) and apply Theorem 2.5(i) and Lemma 5.2 to x. Assume
first that m = 1, so that x = S(3,A). Then 21 x*(1) by (2.3). Applying Corollary 4.5 to
the Young subgroup Y = Sgn1 X ... X Son,, we obtain

O =x"@Ox? ... X",
where v; € H(2™) by [G, Lemma 3.1]. In this case, we define
(5.6) a(x) = (8,v1,8,v9,...,8,1p).

In the case of general m, note that, by Lemma 2.2, each k; is the sum of some 2"’s.
Moreover, when we express all k;, 1 < ¢ < m, this way, each 2™ occurs in precisely one
of these m expressions. Now we can apply (5.6) to each S(§;, A\;) and then define a(x) by
putting all «(S(8;, \;)) together. It is easy to check that the resulting map is a bijection.
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Furthermore, as in (a), $;odet take values in Q(€). Hence, (2.2), (5.4), and [DM, Proposition
12.2] (and the paragraph right before it) imply that Q(x) C Q(¢) and that, if

x = RY (S(51,M1) @ S(82,X2) @ ... ® S (8ms Am))

(for a suitable Levi subgroup L which in our case can be chosen to be D-invariant), then
for any o € I' we have

X° = RE (S(55,M1) ® 5(35,A2) @ ... ® S(8%,, Am)) .

Thus a commutes with the action of I'. The fact that o commutes with the action of F),
follows from [NTT, Corollary 2.3] and the arguments in (a). In the case k = +, « also
commutes with 7 as RY is just the Harish-Chandra induction. Hence, (i) and (ii) hold in
this case as well. 0

Note that if P € Syl,(G) satisfies Ng(P) = PCg(P) for some odd prime p, then the
restriction from G to Ng(P) yields a natural correspondence between the p/-degree irre-
ducible characters of the principal p-block of G and those of Ng(P), see [NTV, Theorem
A]. Theorem E yields a canonical correspondence but with p = 2.

Proof of Corollary F. The number of real odd-degree irreducible characters of Ng(P) can
be easily computed using Lemma 5.1 and (5.5). Since the correspondence in Theorem E
preserves fields of values of characters, the statement follows. O

Corollary 5.4. Let n € Z<1, q be an odd prime power, G = GLy(q), and let P be a
parabolic subgroup of odd index in G with Levi subgroup L. Then there is a canonical
bijection between Irry/ (G), Irry (P), and Irre/(L).

Proof. We may assume that P is a standard parabolic subgroup with Levi subgroup L =
GLk, (q) X GLyy(q) X ... x GLg,, (q), where m > 1. As in the proof of Lemma 2.6, 21 |G : P|
implies that we may relabel the k;’s so that [ki]os < [k2]2 < ... < [km]2. We also write
n=2M 42" 4+ 4 2™ where ny > no > ... > n, > 0. As in the proof of Theorem
5.3, note by Lemma 2.2 that each k; is the sum of some 2"’s. Moreover, when we express
all k;, 1 < i < m, this way, each 2™ occurs in precisely one of these m expressions. For
each j, choose Q; € Syly(GLyn;(q)). Then, if k; = 21 4 22 4 ... + 2™, we can choose
R; = le X ng X ... X Qja. S Sle(GLkL(q)), and R:= Ry xRy X...xX R, € Sy12(G) The
formula (5.5) shows that

Ng(R) = NGLkl (q) (Rl) X NGLk2(q) (RQ) X ... X NG’Lkm(q) (Rm) < L.

Consider any x € Irry(G) and let § := x¥ € Irror (NG (R)) as given by the character corre-
spondence in Theorem 5.3. Next, write 0 = 0 ® 02 ®...® 0y, with 0; € Irre/(Ngp, (o) (R:))-
By Theorem 5.3, for each 4 there is a unique 1; € Irry (G Ly, (q)) such that (¢;)* = 6;. Now
we can define

X' =0 =01 @9 ®...0 Yy € Iiry(L)
and check that the map y — x* is a bijection between Irro/(G) and Irro/(L). Note that L

can be chosen to be D-invariant, and x — X! then commutes with the actions of I and D
by Theorem 5.3.
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Finally, we show that the inflation (from L to P) gives a natural bijection between
Irry (L) and Irre/(P). For, consider any ¢ € Irry(P) and suppose that ¢ is nontrivial at
U, the unipotent radical of P. Then the L-orbit on the irreducible constituents of ¢y has
odd size, and so R < L fixes some 1y # X € Irr(U). On the other hand, (5.3) and (5.5)
show that Cg(R) N U = 1. As R acts coprimely on U, the Glauberman correspondence
[Isa, Theorem 13.1] implies that 1g is the only R-invariant irreducible character of U. O

The same proof as above yields an analogue of Corollary 5.4 for G = GU,(q) with 21 ¢:
Corollary 5.5. Let n € Z~1, q be an odd prime power, G = GU,(q), and let
L= GUkl(q) X GUk2(q) X ... X GUkm(Q)

be a Levi subgroup of odd index in G. Then there is a canonical bijection between Irry/(Q)

and Trry (L). O
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