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Abstract. Let q be an odd prime power, n > 1, and let P denote a maximal parabolic
subgroup of GLn(q) with Levi subgroup GLn−1(q) ×GL1(q). We restrict the odd-degree
irreducible characters of GLn(q) to P to discover a natural correspondence of characters,
both for GLn(q) and SLn(q). A similar result is established for certain finite groups with
self-normalizing Sylow p-subgroups. Next, we construct a canonical bijection between the
odd-degree irreducible characters of G = Sn, GLn(q) or GUn(q) with q odd, and those
of NG(P ), where P is a Sylow 2-subgroup of G. Since our bijections commute with the
action of the absolute Galois group over the rationals, we conclude that the fields of values
of character correspondents are the same. We use this to answer some questions of R.
Gow.

1. Introduction

It is not often the case that a natural correspondence of characters between a group G
and a subgroup H of G is found. Even more rarely this correspondence can be described
by inspecting the restriction of characters from G to H. The paradigmatic example of this
is the Glauberman correspondence, which is a natural bijection between the P -invariant
irreducible characters IrrP (G) of a finite group G of order not divisible by a prime p, acted
on by the p-group P , and the irreducible characters of the fixed point subgroup CG(P ). The
fact that IrrP (G) and Irr(CG(P )) have the same number of elements is very important, but
that these sets are canonically isomorphic is what lies behind the origin of deep theorems
and conjectures in Representation Theory.

If G is a finite group and p is a prime, the McKay conjecture (cf. [M1, M2]) asserts that
| Irrp′(G)| = | Irrp′(NG(P ))| for P ∈ Sylp(G), where Irrp′(G) is the set of the irreducible
complex characters of G of degree not divisible by p. Until very recently, this conjecture
was known to hold for various classes of finite groups, but remained open in general. A
milestone result has been achieved by Malle and Späth in [MS] where they succeeded in
proving the McKay conjecture in the case p = 2.
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The focus of this paper is, on the other hand, on the existence of canonical corre-
spondences between Irrp′(G) and Irrp′(H) for certain pairs (G,H) of finite groups with
G > H ≥ NG(P ), and specially for p = 2. Even in the cases where the McKay conjecture
is known to hold for G and H (cf. [O1], [MS]) and thereby the existence of a bijection
between Irrp′(G) and Irrp′(H) is guaranteed, this resulting bijection usually does not give a
canonical correspondence: choices have to be made, and this is what complicates the study
of such maps. In the first instance, one expects a canonical correspondence to commute
with the action of the absolute Galois group over the rationals, and in this case, the fields
of values of character correspondents must be the same. This does not happen often. Also,
one expects that canonical correspondences between Irrp′(G) and Irrp′(H) will commute
with every automorphism of G that stabilizes H, and provide essential information on co-
homological character theoretic questions. Furthermore, there is some hope that certain
canonical correspondences will play an important role in proving various refinements of the
McKay conjecture (eg. [N2]).

In conclusion, when a canonical correspondence is found (and as we say, this does not
happen often) it should be possible to understand fundamental properties of certain char-
acters of G by studying the characters of a smaller subgroup H of G. Even more, this
correspondence usually affects the behavior of the character theory of convenient over-
groups which contain G and H in a certain way. The main purpose of this paper is to prove
that for p = 2, and for symmetric, general linear, general unitary, and solvable groups, this
rare phenomenon does happen. Why these groups and why only for p = 2 is a mystery
whose explanation we do not see. As we will point out, this is not going to happen for
other groups and for other primes, but that is not a surprise. The surprise is that this
phenomenon does happen for those selected groups.

For any character χ of G we denote by χH its restriction to a subgroup H.

Definition 1.1. An arbitrary subgroup H ≤ G is called p-restriction good if for every
χ ∈ Irrp′(G), there exists a unique χ∗ ∈ Irrp′(H) such that χH = χ∗ + ∆ and either
∆ = 0 or all irreducible constituents of ∆ have degrees divisible by p. A p-restriction good
subgroup H ≤ G is called p-restriction canonical if the map χ 7→ χ∗ yields a bijection
between Irrp′(G) and Irrp′(H).

Very recently, the following result∗ has been proved:

Theorem 1.2. [APS] Let n ∈ Z>1. Then Sn−1 is a 2-restriction good subgroup in Sn.
Moreover, if n is odd, then Sn−1 is a 2-restriction canonical subgroup in Sn.

In this paper, we prove:

Theorem A. Let n ∈ Z>1, q be an odd prime power, and P be a maximal parabolic
subgroup of GLn(q) with Levi subgroup GLn−1(q)×GL1(q). Then P is a 2-restriction good
subgroup in GLn(q). Moreover, if n is odd, then P is a 2-restriction canonical subgroup in
GLn(q).

∗In fact, we independently conjectured this statement. But while we were working on the proof of it, we
learned of the preprint [APS] in which the conjecture was proved.
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Theorem B. Let n ∈ Z>1 be odd, q an odd prime power, and Q be a maximal parabolic
subgroup of SLn(q) with Levi subgroup (GLn−1(q) × GL1(q)) ∩ SLn(q). Then Q is a 2-
restriction canonical subgroup in SLn(q).

Theorem C. Let G be a finite group, p be a prime, and P ∈ Sylp(G). Suppose that
P = NG(P ), and in addition that G is a solvable group if p = 2. Let P ≤ H ≤ G. Then H
is a p-restriction canonical subgroup in G.

All these theorems might suggest that further results of this type can hold true for ar-
bitrary finite groups with self-normalizing Sylow 2-subgroups. However, the group G =
SL3(2) has self-normalizing Sylow 2-subgroups, and an irreducible character χ ∈ Irr(G)
of degree 7 such that the restriction of χ to every odd-index proper subgroup H of G has
exactly three irreducible constituents of odd degree. This example also shows that Theo-
rem A does not hold when 2|q. Other examples also show that analogues of Theorem 1.2
and Theorems A, B do not seem to hold when p > 2. However, canonical character corre-
spondences, although not necessarily defined by restriction, can be obtained for symmetric
groups and finite general linear and unitary groups, again for p = 2.

In this paper we are often speaking of canonical or natural correspondences between
characters of a group G and a subgroup H < G. We use the word canonical or natural in the
following sense: either the correspondence is obtained in terms of an explicit representation
theoretic construction involving restriction from G to H (for example as in Theorems A,
B, C), or it is obtained by means of an explicitly described combinatorial bijection on the
labels, or a combination of the two. In all cases, we require that the bijection commutes
with the action of Galois automorphisms and group automorphisms (of G that stabilize
H). We quote I. M. Isaacs in his landmark paper [Is1] that the word natural “is intended to
mean that an algorithm is given for constructing the correspondence and that the result is
independent of any choices made in the application of the algorithm”. We refer the reader
to Sections 4, 5 for more details on the following theorems.

Theorem D. Let n ∈ Z>1 and let M be a maximal subgroup of Sn of odd index. Then
there is a canonical bijection between Irr2′(Sn) and Irr2′(M).

Theorem E. Let n ∈ Z≥1, q be an odd prime power, G = GLn(q) or GUn(q), and P ∈
Syl2(G). Then there is a canonical bijection between Irr2′(G) and Irr2′(NG(P )).

Since our bijection in Theorem E commutes with Galois action (see Theorem 5.3), it
follows, for instance, that the fields of values of the odd-degree irreducible characters of
G = GLn(q) and GUn(q), if q is odd, are in bijection with the fields of values of the odd-
degree characters of NG(P ) for P ∈ Syl2(G). This does not happen in GL2(4) or GL2(8).
Two other cases where there exists a canonical correspondence for the McKay conjecture
for p = 2 are in solvable groups [Is1], and symmetric groups [G], see also Theorem 4.3,
where the constructed correspondence χ 7→ χ] has the additional property that χ] is a
constituent of χ|NG(P ).

Note that, for some quasisimple groups S and primes p, certain bijections between Irrp′(S)
and Irrp′(N) for some subgroups N < S containing NS(P ) with P ∈ Sylp(S) have been
constructed which commute with group automorphisms (see e.g. [CS], [MS]). These equi-
variant bijections play an important role in the recent proof [MS] of the McKay conjecture
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for the prime p = 2. But it is not clear how these bijections behave with respect to Ga-
lois action. In fact, the example of S = A5 shows that no bijection between Irr2′(S) and
Irr2′(NS(P )) (for p = 2) can commute with Galois action. Hence, the existence of canonical
correspondences in the case of Sn, GLn(q) and GUn(q) with q odd, is somewhat a miracle
which deserves further investigation for a conceptual explanation.

To illustrate the power of canonical maps, we can answer a question of Gow, which was
privately communicated to us.

Corollary F. The number of real-valued, irreducible characters of odd degree of G =
GLn(q) and GUn(q), with q any odd prime power, is equal to that of NG(P ) for P ∈ Syl2(G),
which is 2n1+n2+...+nr+r if n = 2n1 + 2n2 + . . . + 2nr is the 2-adic decomposition of n.
Furthermore, all such characters are rational-valued.

2. Restriction to a maximal parabolic subgroup

Unless otherwise stated, we always assume that p is a prime and H is a subgroup of a
finite group G. We begin with some simple observations. Note that if the p-restriction good
subgroup H of G satisfies | Irrp′(G)| = | Irrp′(H)| and p - |G : H|, then it is p-restriction
canonical, by the following lemma. (The lemma also indicates a possible weakening of the
notion of p-restriction good subgroups when one allows a multiplicity > 1 of the p′-degree
irreducible constituent).

Lemma 2.1. Let H have p′-index in G and | Irrp′(G)| = | Irrp′(H)|. Suppose that for every
χ ∈ Irrp′(G), among the irreducible constituents of χH there is only one (but possibly with
multiplicity > 1), denoted by χ∗, that has p′-degree. Then the map ∗ : χ 7→ χ∗ is a bijection
between Irrp′(G) and Irrp′(H).

Proof. For any ρ ∈ Irrp′(H), the induced character ρG has p′-degree, so it contains a
constituent χ ∈ Irrp′(G). By assumption, ρ = χ∗. Thus ∗ is surjective, and so it is injective
as well. �

The following result is well known, see for example [J1, 22.4].

Lemma 2.2. Let a, b ∈ Z≥0, n = a+ b, and consider the decompositions

n =

t∑
i=0

2ini, a =

t∑
i=0

2iai, b =

t∑
i=0

2ibi,

where 0 ≤ ai, bi, ni ≤ 1. Then the following statements are equivalent:

(a) The binomial coefficient
(
n
a

)
is odd.

(b) ai + bi = ni for all i.
(c) 0 ≤ ai ≤ ni for all i.

For r ∈ Z>0 we denote by [r]p the largest p-power that divides r; we also set [0]p :=∞.

Corollary 2.3. Let a1, . . . , am ∈ Z>0 and n =
∑m

i=1 ai. Suppose that n!/
∏m
i=1 ai! is odd.

Then, by relabeling a1, . . . , am suitably, we may assume that

[n]2 = [a1]2 < [a2]2 < . . . < [am]2.
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Proof. There is nothing to prove for m = 1. We will proceed by induction on m ≥ 2.
Relabeling the ai’s if necessary, we may assume that

(2.1) [a1]2 ≤ [a2]2 ≤ . . . ≤ [am]2.

Assume m = 2, and consider the decompositions

n =
t∑
i=k

2ini, a1 =
t∑
i=0

2ibi, a2 =
t∑
i=0

2ici,

with 0 ≤ bi, ci, ni ≤ 1, k ≥ 0 and nk = 1. By Lemma 2.2 we have bi = ci = 0 for 0 ≤ i < k
and, moreover, relabeling a1 and a2 if necessary, we may assume that (bk, ck) = (1, 0). Thus
[n]2 = [a1]2 < [a2]2 as needed.

For the induction step when m > 2, first we apply the case m = 2 to n = a1 + (n− a1)
and (2.1) to get

[a1]2 6= [n− a1]2 ≥ [a1]2,

whence [n − a1]2 > [a1]2 = [n]2. Now the statement follows by applying the induction
hypothesis to n− a1 =

∑m
i=2 ai. �

Corollary 2.4. Suppose that a, b ∈ Z>0, n = a+ b, and
(
n
a

)
is odd. Then there is a unique

c ∈ {a− 1, a} such that
(
n−1
c

)
is odd. Moreover, if we assume additionally that [a]2 ≤ [b]2,

then
(
n−1
a−1
)

is odd.

Proof. As
(
n
a

)
=
(
n−1
a−1
)
+
(
n−1
a

)
, the first claim follows. For the second claim, let c ∈ {a−1, a}

be such that
(
n−1
c

)
is odd. By Corollary 2.3, the assumption [a]2 ≤ [b]2 implies that

[n]2 = [a]2 < [b]2. If n is odd, then a is odd and b is even, and, by Lemma 2.2, c is even,
whence c = a− 1. If n is even, we consider the decompositions

n =
t∑
i=k

2ini, a =
t∑
i=0

2iai, b =
t∑
i=0

2ibi,

with 0 ≤ ai, bi, ni ≤ 1, k ≥ 1 and nk = 1. By Lemma 2.2,

(a0, . . . , ak) = (0, . . . , 0, 1), (b0, . . . , bk) = (0, . . . , 0, 0),

and so
(
n−1
a

)
is even. Hence again we must have that c = a− 1. �

Recall that complex irreducible characters of Sn are labelled by partitions λ ` n: χ = χλ.
By Theorem 1.2, there is a canonical map λ 7→ λ∗ such that, if χλ ∈ Irr(Sn) is of odd degree
then χ∗ = χλ

∗
is the unique odd-degree irreducible constituent of χSn−1 .

From now on, we fix an odd prime power q. For any n ≥ 1, let G = GLn(q), with
a natural module V = Fnq = 〈e1, . . . , en〉Fq . As in [KT2], it is convenient for us to use
the Dipper-James classification of complex irreducible characters of G, as described in
[J2]. Namely, every χ ∈ Irr(G) can be written uniquely, up to a permutation of the pairs
{(s1, λ1), . . . , (sm, λm)}, in the form

(2.2) χ = S(s1, λ1) ◦ S(s2, λ2) ◦ . . . ◦ S(sm, λm).

Here, si ∈ F̄×q has degree di over Fq, λi ` ki,
∑m

i=1 kidi = n, and the m elements si have
pairwise distinct minimal polynomials over Fq. In particular, S(si, λi) is an irreducible
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character of GLkidi(q). Furthermore, there is a parabolic subgroup Pχ = UχLχ of G with
Levi subgroup Lχ = GLk1d1(q) × . . . × GLkmdm(q) and unipotent radical Uχ. The (outer)
tensor product

ψ := S(s1, λ1)⊗ S(s2, λ2)⊗ . . .⊗ S(sm, λm)

is an Lχ-character, and χ is obtained from ψ via the Harish-Chandra induction RGLχ , i.e.

we first inflate ψ to a Pχ-character and then induce it to G. The adjoint operation of

Harish-Chandra restriction ∗RGLχ takes any character ρ of G, afforded by a CG-module W

to the Lχ-character afforded by WUχ , the fixed point subspace for Uχ on W .
Let P = UL be a maximal parabolic subgroup of G with Levi subgroup L = GL1(q) ×

GLn−1(q) and unipotent radical U . Conjugating suitably in G and applying the transpose-
inverse automorphism if necessary, we may assume that P = StabG(〈e1〉Fq) and the second
factor GLn−1(q) of L fixes both e1 and 〈e2, . . . , en〉Fq .

Given the above notation, we can now prove the following theorem which implies Theo-
rem A:

Theorem 2.5. Let q be an odd prime power, n ≥ 2, G = GLn(q), P = StabG(〈e1〉Fq).
Suppose that χ ∈ Irr2′(G). Then the following statements hold:

(i) One can choose a label (2.2) for χ such that si ∈ F×q (so that di = 1) and χλi ∈
Irr2′(Ski) for all i = 1, . . . ,m, and

[n]2 = [k1]2 < [k2]2 < . . . < [km]2;

(ii) χP = χ∗ + ∆, where χ∗ ∈ Irr2′(P ) and either ∆ = 0 or ∆ is a P -character all
irreducible constituents of which are of even degree;

(iii) χ∗ is trivial on U , and equal to S(s1, (1)) ⊗ (S(s1, λ
∗
1) ◦ S(s2, λ2) ◦ . . . ◦ S(sm, λm))

when viewed as a character of GL1(q)×GLn−1(q);
(iv) If n is odd, then the map χ 7→ χ∗ is a bijection between Irr2′(G) and Irr2′(P ).

Note that in 2.5(iii), the symbol S(s1, λ
∗
1) is considered void if k1 = 1. We proceed in a

series of lemmas.

Lemma 2.6. Statement (i) of Theorem 2.5 holds.

Proof. Since the degree of χ is odd, so are the degrees of each S(si, λi), which implies that
di = deg(si) = 1, for example by [KT2, Lemma 5.7(ii)], i.e. si ∈ F×q for all i = 1, . . . ,m.
Next, we also must have that |G : Pχ| is odd, which implies by a repeated application of
[NT1, Lemma 4.4(i)] that n!/

∏m
i=1 ki! is odd. So we may assume by Corollary 2.3 that

[n]2 = [k1]2 < [k2]2 < . . . < [km]2. Finally, it is well known (and follows from the hook
formula for the degree of unipotent characters of G, see [FS, (1.15)]) that

(2.3) χλ(1) ≡ deg(S(s, λ))(mod 2)

if s ∈ F×q , and so we conclude that χλi ∈ Irr2′(Ski). �

Lemma 2.7. Let X = X1×X2, where X1
∼= GLm(q), X2

∼= GLn(q), P1 = UL1 a parabolic
subgroup of X1 with unipotent radical U and Levi subgroup L1, and let L = L1 ×X2.

(i) If α is a character of X1 and β is a character of X2, then ∗RXL (α⊗β) = ∗RX1
L1

(α)⊗β.

(ii) If γ is a character of L1 and δ is a character of X2, then RXL (γ ⊗ δ) = RX1
L1

(γ)⊗ δ.
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Proof. (i) Let α, respectively β, be afforded by a CX1-module A, respectively a CX2-module

B. Then ∗RXL (α ⊗ β) is afforded by the L-module (A ⊗ B)U = AU ⊗ B and so equal to
∗RX1

L1
(α)⊗ β.

(ii) Inflate γ to the character γ̃ of P1 using P1/U ∼= L1, and inflate γ⊗ δ to the character
ρ = γ̃ ⊗ δ of P = P1 ×X2 using P/U ∼= L. Then

RXL (γ ⊗ δ) = ρX = ((γ̃ ⊗ 1X2) · (1X1 ⊗ δ)P )X =

= (γ̃ ⊗ 1X2)X · (1X1 ⊗ δ) = (RX1
L1

(γ)⊗ 1X2) · (1X1 ⊗ δ) = RX1
L1

(γ)⊗ δ.
�

Proposition 2.8. Statements (ii) and (iii) of Theorem 2.5 hold.

Proof. (a) First we note that, since L acts transitively on the qn−1 − 1 non-principal irre-
ducible characters of U and q is odd, any irreducible character of P which is nontrivial on
U has even degree. Hence all the odd-degree irreducible constituents of χP are contained
in ∗RGL (χ). Next, by Lemma 2.6, we already know that si ∈ F×q for all i = 1, . . . ,m.

Suppose that m = 1. Then χ is a unipotent character of G tensored with a linear
character; in particular, χ belongs to the principal series. By the Comparison Theorem
[HL, Theorem 5.9] (see also [C, Theorem 5.1] for the case of the principal series), the

computation of ∗RGL (χ) can be replaced by the computation of (χλ1)Sn−1 , where we identify

Sn, respectively Sn−1, with the Weyl group of G = GLn(Fq), respectively of L = GL1(Fq)×
GLn−1(Fq). (See also [FS, Proposition (1C)] for the explicit formula in the case of G.)
Applying Theorem 1.2 and (2.3), we are done in this case.

(b) Now we will assume m ≥ 2 and set a = k1, b = n−k1, where k1, . . . , km satisfy 2.5(i);
in particular,

(2.4) [a]2 < [b]2,

and so a 6= b. Let

M = StabG(〈e1, . . . , ea〉Fq) ∩ StabG(〈ea+1, . . . , en〉Fq) ∼= GLa(q)×GLb(q),

so that χ = RGM (α⊗ β), where

α = S(s1, λ1), β = S(s2, λ2) ◦ . . . ◦ S(sm, λm).

This follows by the transitivity of the Harish-Chandra induction [DM, Proposition 4.7]. By
the Mackey formula for Harish-Chandra induction and restriction (see e.g. [DF, Theorem
1.14]),

∗RGL (χ) = ∗RGL (RGM (α⊗ β)) =RLL∩M

(
∗RML∩M (α⊗ β)

)
⊕RLL∩wMw−1

(
conjw(∗RMM∩w−1Lw(α⊗ β))

)
,

(2.5)

where w is the permutation matrix corresponding to the cycle (1, 2, . . . , a + 1) and conjw
denotes the conjugation by w.

(c) Here we consider the first summand in the right hand side of (2.5). By Lemma 2.7(i),

∗RML∩M (α⊗ β) = ∗R
GLa(q)
GL1(q)×GLa−1(q)

(α)⊗ β.
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It is well known (see e.g. [L, p. 70]) that the Harish-Chandra induction and restriction
respect the Lusztig series, which in our case is labeled by the semisimple element in the
dual group G∗ ∼= G that has each si ∈ F×q as eigenvalue with multiplicity ki. Hence we can
write

(2.6) ∗R
GLa(q)
GL1(q)×GLa−1(q)

(α) =

r∑
j=1

S(s1, (1))⊗ S(s1, µj)

for some r ≥ 1 and some partitions µj ` (a− 1). It then follows by Lemma 2.7(ii) and the
transitivity of the Harish-Chandra induction that

RLL∩M (∗RML∩M (α⊗ β)) = RLGL1(q)×GLa−1(q)×GLb(q)

 r∑
j=1

S(s1, (1))⊗ S(s1, µj)

⊗ β


=
r∑
j=1

S(s1, (1))⊗RGLn−1(q)
GLa−1(q)×GLb(q)(S(s1, µj)⊗ β) =

r∑
j=1

S(s1, (1))⊗ γj

where γj := S(s1, µj)◦S(s2, λ2)◦ . . .◦S(sm, λm) ∈ Irr(GLn−1(q)). Certainly, the irreducible
constituent S(s1, (1))⊗ γj can be of odd degree only when deg(S(s1, µj)) and

|GLn−1(q) : (GLa−1(q)×GLb(q))|

are both odd. The former implies, by applying (a) to (2.6) that µj = λ∗1; furthermore, this
happens for exactly one j ∈ {1, 2, . . . , r}. The latter implies by [NT1, Lemma 4.4(i)] that(
n−1
a−1
)

is odd.

We have shown that the first summand in (2.5) contains at most one irreducible con-
stituent of odd degree, namely

S(s1, (1))⊗ (S(s1, λ
∗
1) ◦ S(s2, λ2) ◦ . . . ◦ S(sm, λm));

moreover, if such a constituent occurs, then it occurs with multiplicity 1 and
(
n−1
a−1
)

is odd.

(d) Arguing as in (c), we can show that each irreducible constituent in the second sum-
mand of (2.5) is of form

S(s′1, (1))⊗ (S(s′2, ν1) ◦ S(s′3, ν2) ◦ . . . ◦ S(s′m, νm−1) ◦ S(s1, λ1)),

where s′1 ∈ {s′2, . . . , s′m} = {s2, . . . , sm} and ν1, . . . , νm−1 are some partitions with the
lengths totalling to b−1. By [NT1, Lemma 4.4(i)], such an irreducible constituent can have

odd degree only when
(
n−1
b−1
)

=
(
n−1
a

)
is odd.

Given the condition (2.4), Corollary 2.4 implies that
(
n−1
a

)
is even. Thus the second

summand in (2.5) contains no odd-degree irreducible constituent. Since χ(1) is odd, we are
done by the result of (c). �

Completion of the proof of Theorem 2.5. In view of Lemma 2.6, Proposition 2.8, and Lemma
2.1, it remains to prove that | Irr2′(G)| = | Irr2′(P )| when n = 2k+1. We can choose a Sylow
2-subgroup S = S1×S2 < L of G, where S1 = O2(GL1(q)), and S2 ∈ Syl2(GL2k(q)) has the
form S2 = A oB, where A ∈ Syl2(GL2(q)) and B ∈ Syl2(Sk). Then the S-module V decom-
poses as V1 ⊕ V ′, where V1 = 〈e1〉Fq and all irreducible constituents of V ′ = 〈e2, . . . , en〉Fq
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are of even dimension. It follows that NG(S) is contained in StabG(V1) ∩ StabG(V ′) = L
and so NG(S) = NL(S). By the main result of [O1],

(2.7) | Irr2′(G)| = | Irr2′(NG(S))| = | Irr2′(NL(S))| = | Irr2′(L)|.
As mentioned in part (a) of the proof of Proposition 2.8, | Irr2′(L)| = | Irr2′(P )|, and so we
are done. �

Proof of Theorem B. Let G := GLn(q), and consider normal subgroups S := SLn(q) and
H := Z(G)S of G.

(i) Consider any θ ∈ Irr2′(S). Since H = Z(G) ∗ S is a central product, θ extends to H
which has odd index gcd(n, q− 1) in G. Hence θ lies under some χ ∈ Irr2′(G). Now we can
find a label (2.2) for χ that satisfies 2.5(i). Applying [KT1, Theorem 1.1] to χ, we then see
that χS is irreducible, i.e. χS = θ. We have shown that every θ ∈ Irr2′(S) extends to G,
whence

(2.8) | Irr2′(S)| = | Irr2′(G)|/(q − 1)

as G/S ∼= Cq−1.

(ii) We may assume that Q = P ∩ S, where P is the maximal parabolic subgroup of G
considered in Theorem 2.5. Then Q = UL1 with L1 := L ∩ S ∼= GLn−1(q). Note that the
normal subgroup

K := StabS(e1) ∩ StabS(〈e2, . . . , en〉Fq) ∼= SLn−1(q)

of L1 acts transitively on Irr(U) r {1U} since n ≥ 3. It follows that every irreducible
character of Q that is nontrivial on U has even degree. In particular,

(2.9) | Irr2′(Q)| = | Irr2′(L1)|.

(iii) Now we keep the notation of (i) and consider any odd-degree irreducible constituent
ζ of θQ (which exists since θ has odd degree). We have shown that ζ is trivial on U and so

is a constituent of ∗RGL (χ). We can view ζ as an L1-character. Any irreducible character of
Z(G)L1 = Z(G) ∗ L1 lying above ζ then also has degree equal to ζ(1). Next, Z(G)L1 has
odd index gcd(n, q − 1) in L. Thus any irreducible character of L lying above ζ must have
odd degree. Applying Theorem 2.5, we now see that ζ is a constituent of (χ∗)L1 , and

(χ∗)K̃ = S(s1, λ
∗
1) ◦ S(s2, λ2) ◦ . . . ◦ S(sm, λm)

for
K̃ := StabG(e1) ∩ StabG(〈e2, . . . , en〉Fq) ∼= GLn−1(q).

Since χ∗(1) is odd, by [NT1, Lemma 4.4(i)] and Corollary 2.3 we have that [k1 − 1]2, [k2]2,
. . ., [km]2 are pairwise different; in particular, k1 − 1, k2, . . . , km are pairwise different. It
then follows by [KT1, Theorem 1.1] that (χ∗)K is irreducible. Hence, (χ∗)L1 is irreducible
and ζ = (χ∗)L1 .

(iv) To complete the proof of Theorem B, by Lemma 2.1 it remains to show that
| Irr2′(S)| = | Irr2′(Q)|. Since

| Irr2′(L)| = | Irr2′(GL1(q)×GLn−1(q))| = (q − 1)| Irr2′(GLn−1(q))| = (q − 1)| Irr2′(L1)|,
we are done by combining (2.7), (2.8), and (2.9). �
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3. Finite groups with self-normalizing Sylow subgroups

In this section we prove Theorem C. In fact, in this case the key hypothesis is that Sylow
p-subgroups are self-normalizing and not the nature of the prime p. The next result was
proved in [N1] for P = H (with a more complicated proof).

Theorem 3.1. Suppose that G is a p-solvable group, P ∈ Sylp(G), and assume that P =
NG(P ). Let P ≤ H ≤ G. If χ ∈ Irr(G) has p′-degree, then the restriction of χ to H
contains a unique p′-degree irreducible constituent ψ ∈ Irr(H). This establishes a natural
bijection between the p′-degree irreducible characters of G and H.

Proof. We proceed by induction on |G|. Let χ ∈ Irr(G) be of p′-degree. Let N be a normal
subgroup of p′-order. Since χ(1) is not divisible by p, using the Clifford correspondence
(Theorem (6.11) of [Is2]), let θ ∈ Irr(N) be P -invariant under χ. Then CN (P ) = 1 by
hypothesis, and so θ = 1N , by the Glauberman correspondence (Theorem (13.1) of [Is2]).
Therefore, N ≤ ker(χ). Now consider χ̄ ∈ Irr(G/N) the corresponding character in the
factor group. By induction χ̄NH contains a unique p′-irreducible constituent ψ. Now, all
the constituents of this character restrict irreducibly to H, so we are done in this case. So
we may assume that N = 1.

Let now N be a normal p-subgroup of G. Then χP contains a linear constituent λ and
λN = ν ∈ Irr(N). Let P ≤ T be the stabilizer of ν in G, and let ψ ∈ Irr(T ) be the Clifford
correspondent of χ over ν. It is well known by Clifford theory (see [S, Lemma 2.5]) that

χH = (ψT∩H)H + ∆

where no irreducible constituent of ∆ lies over ν. We claim that no irreducible constituent
of ∆ has p′-degree. If ξ is an irreducible constituent of ∆ of p′-degree, then ξN has some
linear P -invariant constituent ε. But then χN has P -invariant irreducible constituents ν
and ε, and by a standard argument they are NG(P )-conjugate. However, NG(P ) = P , and
since both are P -invariant, they are equal. This contradicts the choice of ∆. Suppose now
that T < G. Notice that T has a self-normalizing Sylow p-subgroup. By induction,

ψT∩H = µ+ ρ ,

where µ has p′-degree and every irreducible constituent of ρ has degree divisible by p.
All these constituents lie over ν, so all of them induce irreducibly to H by the Clifford
correspondence. We conclude that

χH = (ψT∩H)H + ∆ = µH + ρH + ∆ ,

and the theorem is again proved in this case.
Hence the last case is that T = G. We claim that ν extends to G. This is because ν

extends to P , by coprimeness it extends to every Q/N ∈ Sylq(G/N) if q 6= p (by Corollary
(6.27) of [Is2]), and therefore it extends to G by Theorem (6.26) of [Is2]. Let λ ∈ Irr(G)
be a linear extension of ν. By Gallagher’s Corollary (6.17) of [Is2], we can write χ = βλ,
where β ∈ Irr(G/N), has p′-degree. By induction,

βH = τ + Ξ ,
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where every irreducible constituent of Ξ has degree divisible by p. Now

χH = λHβH = λHτ + λHΞ ,

and this proves half of the theorem. The bijectivity of the map is proved similarly. �

The fact that NG(P ) = P is key. For instance, take the semidirect product G of an
extraspecial group F = 31+2

+ of exponent 3 acted on by C4 in such a way that C4 acts
trivially on the center of F . The normalizer of a Sylow 2-subgroup in G is N = C4 × C3,
is even maximal. Every restriction of the irreducible characters of degree 3 has three
irreducible linear constituents.

Proof of Theorem C. In view of Theorem 3.1, we may assume p > 2. Decompose χH =∑t
i=1 ρi +

∑s
j=1 ψj , where t ≥ 1, s ≥ 0, ρi, ψj ∈ Irr(H), p - ρi(1), p|ψj(1). Now each ρi|P

contains a linear character, and by [NTV, Corollary B], χP = λ+δ contains a unique linear
character λ (so that either δ = 0 or all irreducible constituents of δ have degree divisible
by p). Hence t = 1, and we have a well-defined map

∗ : χ 7→ χ∗ := ρ1

from X := Irrp′(G) to Y := Irrp′(H).

Now, for any ρ ∈ Y , ρG contains a p′-degree χ ∈ Irr(G) and then χH contains ρ, so χ∗ = ρ.
Thus ∗ is onto. By [NTV, Corollary B], |X| = |P/P ′| = |Y |. So ∗ is a bijection. �

4. Canonical character correspondences in symmetric groups

Note that the natural character correspondences described in [APS] (see Theorem 1.2)
and in Theorems A, B, and C are given by restriction. In the case of G = Sn, one may
ask whether the restriction to a Young subgroup H of odd index in G would also give such
a correspondence between the odd-degree characters of G and those of H. Unfortunately,
the answer is no: if G = S7 and H = S5 × S2, then the restriction to H of any irreducible
character of degree 35 of G have three odd-degree irreducible constituents.

When G = Sn and P ∈ Syl2(G), a canonical bijection between Irr2′(G) and Irr2′(NG(P ))
was defined in [G] (although given by restriction to P only when n is a 2-power). Another
type of correspondence (given for an arbitrary prime) is described in [E].

We will construct a new explicit canonical bijection, where, in addition, the correspondent
χ] ∈ Irr2′(P ) of χ ∈ Irr2′(G) is an irreducible constituent of χP (although not necessarily
occurring with multiplicity one). Let H(n) denote the set of n hook partitions (n − i, 1i),
0 ≤ i < n, of n. If λ ` n, then Y (λ) is the Young diagram of λ. Furthermore, we will
say that λ is an odd partition of n (and write λ `o n) exactly when χλ ∈ Irr(Sn) has odd
degree.

Lemma 4.1. Let n ∈ Z≥1 and let γ be a partition of n with a hook H of length m in Y (γ).
Let β ∈ H(m) be the hook partition corresponding to H, and let α ` (n −m) be such that
Y (α) is obtained from Y (γ) by removing the rim m-hook R of Y (γ) corresponding to H.
Then (χγ)Sn−m×Sm contains χα ⊗ χβ as an irreducible constituent with multiplicity one.
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Proof. We apply the Littlewood-Richardson rule as given in [JK, Corollary 2.8.14]. Write
β = (k, 1m−k) for some 1 ≤ k ≤ m and consider the symbols aij where the (i, j)-node
belongs to Y (β):

a11, a12, . . . , a1k, a21, a31, . . . , am−k+1,1.

We need to count the number of ways of adding symbols aij to Y (α) to get Y (γ), that is, to
fill up the rim m-hook R of Y (γ) with these symbols aij in such a way that all conditions
(i), (ii), (iii) of [JK, Corollary 2.8.14] are fulfilled. First we have to put the k symbols
a11, a12, . . . , a1k in k different columns of R consecutively starting from the rightmost to
get a proper diagram. Since R has exactly k columns, we have to put these symbols at
the top of these k columns, and there is exactly one way to do it. Then we need to put
the m − k symbols a21, a31, . . . , am−k+1,1 in the m − k remaining rows of R consecutively
starting from the highest row. Since there remain only m − k rows, each with one node,
there is again exactly one way to do it. �

We refer to [JK, §2.7] for the notion of the m-core of any partition λ ` n and any
m ∈ Z≥1.

Lemma 4.2. Let m ∈ Z≥2 and n ∈ Z be such that m ≤ n ≤ 2m − 1, and let α =
(a1, a2, . . . , ar) ` (n−m) with a1 ≥ a2 ≥ . . . ≥ ar > 0.

(i) For any β = (k, 1m−k) ∈ H(m), there is exactly one γ ` n such that γ has a hook H
of length m that corresponds to β, and, furthermore, Y (α) is obtained from Y (γ) by
removing the rim m-hook corresponding to H.

(ii) Suppose in addition that m is a 2-power and that α `o (n − m). Then, for each
β = (k, 1m−k) ∈ H(m), there is a unique λ `o n such that γ has a hook H of length
m that corresponds to β, and, furthermore, α is the m-core of γ.

Proof. (i) We determine in how many ways Y (α) can be obtained from Y (γ) by removing
a rim m-hook R that corresponds to H, a hook of length m with associated partition
β ∈ H(m); in particular, R spans m − k + 1 rows and k columns. Since n ≤ 2m − 1, H
must be the hook corresponding to a node that belongs either to the first row or the first
column of Y (γ). Thus R must touch either the first row or the first column of Y (α). We
consider the outer rim S of Y (α), which consists of all the (i, j)-nodes, where at least one
of the (i, j − 1)-node, (i− 1, j − 1)-node, (i, j − 1)-node belongs to the rim of Y (α). Then
S spans r + 1 rows and a1 + 1 columns and so has length L := a1 + r + 1. Note that

a1 + r ≤ a1 + a2 + . . .+ ar + 1 = n−m+ 1 ≤ m.

Suppose first that m − k + 1 ≤ r. Then R spans k ≥ m − r + 1 ≥ a1 + 1 columns.
If R does not touch the first row of Y (α), then it must touch the first column of Y (α)
and so spans at most a1 columns, a contradiction. Thus R must begin in the first row of
Y (α). In this case, since k ≤ r, R consists precisely of the N1 nodes that belong to the
first m − k + 1 rows of S, together with m −N1 more nodes in the first row, to the right
of the top node of S. (Note that, since the (r + 1)th row of S has at least two nodes, we
have N1 ≤ L− 2 ≤ m− 1.) Thus γ exists and is unique in this case.

Next suppose that m − k + 1 ≥ r + 1. If R does not touch the first column of Y (α),
then R spans at most r rows, a contradiction. Hence R must start from the first column
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of Y (α). If in addition k ≤ a1, then R consists precisely of the N2 nodes that belong to
the first k columns of S, together with m −N2 more nodes in the first column, below the
last row of S. (Note that, since the (a1 + 1)th column of S has at least two nodes, we have
N2 ≤ L− 2 ≤ m− 1.) Thus γ exists and is unique in this case. Finally, if k ≥ a1 + 1, then
R consists of S together with k − (a1 + 1) more nodes in the first row (to the right of the
top node of S), and (m− k + 1)− (r + 1) additional nodes in the first column (below the
last row of S). Again, γ exists and is unique in this case.

(ii) By [APS, Lemma 1] (see also [O2, §6]), there are exactly m odd partitions λi `o n,
1 ≤ i ≤ m, such that the m-core of λi is α, and, furthermore, each λi has a unique hook
Hi of length m. As n ≤ 2m− 1, Y (α) is obtained from Y (λi) by removing the rim m-hook
corresponding to Hi. Each Hi corresponds to exactly one of m hook partitions βi ∈ H(m),
and, as we showed in (i), λi is uniquely determined by βi. It follows that β1, β2, . . . , βm are
pairwise distinct and so are precisely the m hook partitions of m. �

Theorem 4.3. Let n ∈ Z≥1 and let n = 2n1 + 2n2 + . . .+ 2nr be the 2-adic decomposition
of n, where n1 > n2 > . . . > nr ≥ 0. Let G = Sn and P ∈ Syl2(G).

(i) There are canonical bijections

Irr2′(G)
α−→ Θ(n)

β←− Irr2′(P )

with Θ(n) := H(2n1)×H(2n2)× . . .×H(2nr).
(ii) If α(χ) = (µ1, µ2, . . . , µr) for χ ∈ Irr2′(G), then the restriction of χ to the Young

subgroup S2n1 × S2n2 × . . . × S2nr contains χµ1 ⊗ χµ2 ⊗ . . . ⊗ χµr as an irreducible
constituent.

(iii) The map χ 7→ χ] := β−1(α(χ)) is a canonical bijection between Irr2′(G) and Irr2′(P ).
Furthermore, χ] is an irreducible constituent of χP .

Proof. We can take P = P1 × P2 × . . . × Pr with Pi ∈ Syl2(S2ni ). Then any λ ∈ Irr2′(P )
is of the form λ = λ1 ⊗ λ2 ⊗ . . . ⊗ λr with λi ∈ Irr2′(Pi). By Lemma 3.1 and Theorem
3.2 of [G], there is a unique νi ∈ H(2ni) such that λi is the unique odd-degree irreducible
constituent of the restriction of χνi ∈ Irr2′(S2ni ) to Pi. Now we can define

β(λ) := (ν1, ν2, . . . , νr).

Next, consider any χ = χπ ∈ Irr2′(Sn), so that π `o n. By [APS, Lemma 1], π contains
a unique 2n1-hook corresponding to µ1 ∈ H(2n1), and π2 `o (n − 2n1), where π2 is the
2n1-core of π. Conversely, any such pair (µ1, π2) can be obtained in this way from a unique
π `o n by Lemma 4.2. As Y (π2) is obtained from Y (π) by removing the rim 2n1-hook
corresponding to µ1, by Lemma 4.1 we have that the restriction of χπ to S2n1 × Sn−2n1
contains χµ1 ⊗χπ2 as an irreducible constituent. Applying this process to π2 we then get a
pair (µ2, π3) with µ2 ∈ H(2n2) and π3 `o (n−2n1−2n2). Repeating this process successively,
we get µi ∈ H(2ni) for all i, and can then define

α(χ) := (µ1, µ2, . . . , µr).

One easily checks that both α and β are bijections, and that the claims in (ii) and (iii)
concerning restrictions of χ to Y and P are fulfilled.
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Note that irreducible characters of G = Sn are rational, and the same is true for odd-
degree irreducible characters of P ∈ Syl2(G), see [NT2, Lemma 3.3]. Furthermore, if n 6= 6,
then all automorphisms of Sn are inner and P = NG(P ), so every automorphism of G
stabilizing P is induced by a conjugation jx : g 7→ xgx−1 for some x ∈ P . Hence the
bijection χ 7→ χ] in Theorem 4.3 commutes with the actions of Galois automorphisms and
group automorphisms stabilizing P . Direct calculations show that the same conclusion
holds in the case n = 6. �

Remark 4.4. In the notation of Theorem 4.3, the multiplicity of χ] in χP is not always

equal to one. For example, if n = 12 and χ = χ(6,23) (so χ(1) = 275), direct computation
shows that the multiplicity of χ] in χP is equal to 4.

Corollary 4.5. Let G = Sn and let Y = Sk1 × Sk2 × . . .× Skm be a Young subgroup of odd
index in G. Then there is a canonical bijection χ 7→ χ? between Irr2′(G) and Irr2′(Y ).

Proof. For each i, choose Pi ∈ Syl2(Ski). Then P := P1 × P2 × . . . × Pm ∈ Syl2(G).
Consider any χ ∈ Irr2′(G) and let λ := χ] ∈ Irr2′(P ) as in Theorem 4.3. Next, write
λ = λ1 ⊗ λ2 ⊗ . . .⊗ λm with λi ∈ Irr2′(Pi). For each i there is a unique ψi ∈ Irr2′(Ski) such
that (ψi)

] = λi by Theorem 4.3. Now we can define

χ? = ψ := ψ1 ⊗ ψ2 ⊗ . . .⊗ ψm ∈ Irr2′(Y ).

It is easy to check that the map χ 7→ χ? is a bijection between Irr2′(G) and Irr2′(Y ).
Note that all irreducible characters in question are rational. Furthermore, k1, k2, . . . , km

are pairwise distinct by Corollary 2.3, and so NG(Y ) = Y . Hence, if n 6= 6 then all
automorphisms of G stabilizing Y are induced by conjugations jx : g 7→ xgx−1 with x ∈ Y .
If n = 6, then Y = S4 × S2 and the same conclusion holds. It follows that the constructed
bijection commutes with the actions of Galois automorphisms and group automorphisms
stabilizing Y . �

We are now ready to prove Theorem D.

Proof of Theorem D. (i) Let M be a maximal subgroup of G = Sn of odd index. We will
construct a canonical bijection χ 7→ χ? between Irr2′(G) and Irr2′(M). If 1 ≤ n ≤ 4, then
M ∈ Syl2(G) and so we can set χ? = χ] using Theorem 4.3. Thus we may assume that
n ≥ 5. Maximal subgroups of odd index of G are determined by the main result of [LS]
and independently by [K, Theorem C], and they are either maximal Young subgroups or
stabilizers Sk oSt of set partitions of {1, 2, . . . , n = kt} into t subsets of size k. In the former
case we can apply Corollary 4.5 (with m = 2).

So we will assume that M = Sk o St, and write M = N o St where

N := Sk × Sk × . . .× Sk ∼= (Sm)t

and St naturally permutes the t direct factors of N .

(ii) Consider any ϕ ∈ Irr2′(M). Since ϕ(1) is odd, the length of the St-orbit of any
irreducible constituent of ϕN is odd. Hence, by Corollary 2.3 and using the action of St on
N , we can find an irreducible constituent

ψ = ψ1 ⊗ . . .⊗ ψ1︸ ︷︷ ︸
t1

⊗ψ2 ⊗ . . .⊗ ψ2︸ ︷︷ ︸
t2

⊗ . . .⊗ ψm ⊗ . . .⊗ ψm︸ ︷︷ ︸
tm
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of ϕN , where m ≥ 1, 1 ≤ [t1]2 < [t2]2 < . . . < [tm]2,
∑m

i=1 ti = t, and ψ1, . . . , ψm ∈ Irr2′(Sk)
are pairwise distinct. Note that each St-orbit of odd length on Irr2′(N) contains a unique
representative ψ satisfying these conditions. Then Y := StabSt(ψ) = St1 ×St2 × . . .×Stm is
a Young subgroup of odd index in St, and the inertia group J of ψ in M is precisely N oY .
Note that ψ has a canonical extension ψ̃ to J : if ψi is afforded by a CSk-module Vi, then
we can let Y act on

V := V1 ⊗ . . .⊗ V1︸ ︷︷ ︸
t1

⊗V2 ⊗ . . .⊗ V2︸ ︷︷ ︸
t2

⊗ . . .⊗ Vm ⊗ . . .⊗ Vm︸ ︷︷ ︸
tm

via naturally permuting the tensor factors, and then take ψ̃ to be the J-character afforded
by V . By the Clifford correspondence and Gallagher’s Corollary (6.17) of [Is2] (or directly
by [JK, Theorem 4.4.3]), we have

ϕ = (ψ̃α)M ,

where α ∈ Irr2′(Y ). Thus each ϕ ∈ Irr2′(M) defines a unique pair (ψ, α) in a canonical
way.

(iii) Fix R ∈ Syl2(Sk). Then we can find Q ∈ Syl2(St) such that P = R oQ = Rt oQ is
a Sylow 2-subgroup of M .

Consider any λ ∈ Irr2′(P ). Then, as in (ii), after a suitable St-conjugation, we can write

µ := λRt = µ1 ⊗ . . .⊗ µ1︸ ︷︷ ︸
s1

⊗µ2 ⊗ . . .⊗ µ2︸ ︷︷ ︸
s2

⊗ . . .⊗ µm′ ⊗ . . .⊗ µm′︸ ︷︷ ︸
sm′

,

where m′ ≥ 1, 1 ≤ [s1]2 < [s2]2 < . . . < [sm′ ]2,
∑m′

i=1 si = t, and µ1, . . . , µm′ ∈ Irr2′(R)
are pairwise distinct. Note that each St-orbit of odd length on Irr2′(R

t) contains a unique
representative µ satisfying these conditions. Then Y ′ := StabSt(µ) = Ss1 × Ss2 × . . .× Ssm′
is a Young subgroup of St. Since µ is Q-invariant, Y ′ has odd index in St, and the inertia
group J ′ of µ in RtoSt is precisely RtoY ′. We can replace Q by Q′ := Q1×Q2× . . .×Qm′
where Qi ∈ Syl2(Ssi). As in (ii), µ has a canonical extension µ̃ to J ′. We now have that

λ = (µ̃)P · β,
where β ∈ Irr2′(Q

′). Thus each λ ∈ Irr2′(P ) defines a unique pair (µ, β) in a canonical way.

(iv) Now we can define χ? for each χ ∈ Irr2′(G) as follows. First, let λ := χ] ∈ Irr2′(P )
as in Theorem 4.3. Then we can apply the analysis in (iii) to λ to get the canonical pair
(µ, β). We will now rename m′ by m, si by ti, and Y ′ by Y . For each i, there is a unique

ψi ∈ Irr2′(Sk) such that ψ]i = µi. Next,

β = β1 ⊗ β2 ⊗ . . .⊗ βm,

where βi ∈ Irr2′(Qi). Again, for each i there is a unique αi ∈ Irr2′(Sti) such that α]i = βi,
and then we take

α := α1 ⊗ α2 ⊗ . . .⊗ αm ∈ Irr2′(Y ).

Now we define χ? := ϕ, where ϕ corresponds to (ψ, α) as in (ii). It is straightforward to
check that this map is a bijection between Irr2′(G) and Irr2′(M).

Note that the irreducible characters of Sn are all rational. Furthermore, all the auto-
morphisms of Sn that stabilize a fixed Young subgroup Y of odd index are induced by
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conjugations jx : g 7→ xgx−1 with x ∈ Y . This is obvious for n 6= 6 as all automorphisms of
Sn are inner and Y is maximal. If n = 6, then one can check that Y ∼= S4×S2 and again all
automorphisms of Sn stabilizing Y are inner. Hence the defined bijection commutes with
the action of Galois automorphisms and group automorphisms stabilizing Y . �

5. Canonical character correspondences in finite general linear and
unitary groups

For κ = ±, we let GLκn(q) denote GLn(q) when κ = + and GUn(q) when κ = −. Let Cκ
denote the unique subgroup of order q − κ1 of F×

q2
, and let C̃κ denote the character group

of Cκ (under the pointwise product). We will fix a generator ε of Cκ, a primitive (q−κ1)th
root of unity ε̃ ∈ C. Then, for s = εj ∈ Cκ ≤ F×

q2
, let ŝ denote the character that sends ε

to ε̃j . We can identify

(5.1) Irr(O2(Cκ))× Irr(O2′(Cκ))←→ C̃κ.

Let Γ denote the Galois group Gal(Q(ε̃)/Q), and let Γ act on Cκ via σ(ε) = εi whenever
σ(ε̃) = ε̃i. We will fix a suitable basis of the natural module V = Fnq , resp. Fnq2 , for G, and

use it to define the Frobenius automorphism Fp sending any matrix X := (aij) to (apij) in

that basis (where p is the unique prime divisor of q) and, additionally, the inverse-transpose
automorphism τ : X 7→ tX−1 when κ = +. If κ = − we set τ := (Fp)

f for q = pf . Let

(5.2) D := 〈τ, Fp〉,

and let D act on Cκ and correspondingly on C̃κ via

Fp(s) = sp, Fp(ŝ) = ŝp, τ(s) = s−1, τ(ŝ) = ¯̂s = ŝ−1.

We also let D act trivially on H(n), the set of hook partitions of n.
For λ ` n, let ϕλ denote the unipotent character of GLκn(q) labeled by λ. By [DM,

Proposition 13.30], S(s, λ) = ϕλ(ŝ ◦ det) if κ = +; note that ŝ ∈ C̃κ is uniquely determined
by S(s, λ), so in what follows we also use S(ŝ, λ) to denote S(s, λ). If κ = −, we also define

S(ŝ, λ) := ϕλ(ŝ ◦ det).

Lemma 5.1. Let n = 2m for some m ∈ Z≥0, q be an odd prime power, κ = ±, G = GLκn(q),
and P ∈ Syl2(G).

(i) The field of values of any character in Irr2′(NG(P )) is contained in Q(ε̃).

(ii) There is a canonical bijection between Irr2′(NG(P )) and C̃κ×H(n) that commutes with
the action of Γ. Furthermore, we can choose P to be D-invariant and the canonical
bijection to be D-equivariant.

(iii) Irr2′(NG(P )) contains exactly 2m+1 real characters, and all of them are also rational.

Proof. It is well known that

(5.3) NG(P ) = ZP = Z1 × P,

where Z := Z(G) and Z1 := O2′(Z) (see eg. [Ko, Theorem 1] for n > 2). Note that Z can
be canonically identified with Cκ. The case m = 0 is obvious, so we will assume m ≥ 1.
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(a) Consider the case n = 2. Suppose q ≡ κ1(mod 4). Then we can take a basis, which
is orthonormal if κ = −, of V1 = F2

q or F2
q2 , define Fp and τ in this basis, and choose

P = T2 o 〈z〉, where T2 = O2(T ), T := {diag(x, y) | x, y ∈ Cκ}, and |z| = 2. It is easy to
see that each λ ∈ Irr2′(P ) is uniquely determined by γ ∈ Irr(O2(Cκ)) and j ∈ {0, 1}, where
λ(g) = γ(xy) for g = diag(x, y) ∈ T2 and λ(z) = (−1)j . Also, P is D-invariant.

Suppose q ≡ −κ1( mod 4). Then we can find β ∈ F×
q2

of order (q2−1)2. First we consider

the case κ = +. Then (q2−1)2 = (p2−1)2 and so β ∈ Fp2rFq, βp+1 = −1, and β+βp ∈ Fp.
Now we can identify V1 = F2

q with Fq2 and take x to be the multiplication by β, z to be
the Frobenius map v 7→ vq. We then choose (1, β) to be a basis (over Fq) for V1, and
use this basis to define Fp and τ . This ensures that Fp fixes both x and z (as they have

matrices

(
0 1
1 β + βp

)
and

(
1 β + βp

0 −1

)
in the given basis), and furthermore τ(x) = x−1,

τ(z) = x−2z. If κ = −, then we can choose a Witt basis for V1 = F2
q2 , and take

x =

(
β 0
0 β−q

)
, z =

(
0 1
1 0

)
in this basis. Using the same basis to define Fp, we get Fp(x) = xp, Fp(z) = z. In either
case, P is D-invariant, and D acts trivially on P/P ′ ∼= C2

2 , and again each λ ∈ Irr2′(P ) is
uniquely determined by γ ∈ Irr(O2(Cκ)) and j ∈ {0, 1}.

Now any α ∈ Irr2′(NG(P )) is of the form α = δ⊗ λ, where δ ∈ Irr(Z1) and λ ∈ Irr2′(P ).

Then we send α to (ŝ, (2− j, j)), where ŝ ∈ C̃κ corresponds to (γ, δ) via (5.1) and certainly
(2− j, j) ∈ H(2). One easily checks that (i) and (ii) hold in this case. Furthermore, α = ᾱ
exactly when δ = 1Z1 and γ = γ̄, which then also imply that α is rational. It also follows
that there are exactly 4 of such α’s.

(b) In the general case, we can fix a direct sum decomposition

V = V1 ⊕ V1 ⊕ . . .⊕ V1︸ ︷︷ ︸
2m−1

,

where V1 is considered with the basis chosen in (a), and fix a basis of V compatible with
that basis of V1 and this decomposition. We then use this basis to define Fp, τ , and

choose P = P1 o Q, where P1 = R × R × . . . × R ∼= R2m−1
, R ∈ Syl2(GL

κ
2(q)), and

Q ∈ Syl2(Σ) with Σ ∼= S2m−1 naturally permuting the 2m−1 direct summands in V and,
correspondingly, the 2m−1 direct factors in P1. Note that Q also permutes these direct
factors transitively; furthermore, D acts trivially on Q and stabilizes both P1 and P . It
follows that any θ ∈ Irr2′(P ) is uniquely determined by λ ∈ Irr2′(R) and ν ∈ Irr2′(Q), where
θP1 = λ⊗ λ⊗ . . .⊗ λ and θQ = ν. As in (i), λ corresponds to (γ, j) with γ ∈ Irr(O2(Cκ))
and j ∈ {0, 1}. Each α ∈ Irr2′(NG(P )) is of the form α = δ ⊗ θ, where δ ∈ Irr(Z1) and
θ ∈ Irr2′(P ). By Lemma 3.1 and Theorem 3.2 of [G], there is a unique hook partition
π = (2m−1 − k, 1k) ` 2m−1 such that ν is the unique linear constituent of the restriction
to Q of χπ ∈ Irr(S2m−1); in particular, ν is rational. Hence α = ᾱ exactly when δ = 1Z1

and λ = λ̄, which, as mentioned in (i), then imply that α is rational, and there are exactly

2m+1 of such α’s. Now we send α to (ŝ, ξ), where ŝ ∈ C̃κ corresponds to (γ, δ) via (5.1),
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and ξ ∈ H(n) is defined as follows

ξ =

{
(2m − 2k, 12k), j = 0
(2m − 2k − 1, 12k+1), j = 1.

It is straightforward to see that the defined map is a bijection between Irr2′(NG(P )) and

C̃κ ×H(n), and that both (i) and (ii) hold. �

Lemma 5.2. Let q be an odd prime power, n ≥ 2, G = GUn(q), and let χ ∈ Irr2′(G).
Then there is a unique label of the form

χ = S(ŝ1, λ1) ◦ S(ŝ2, λ2) ◦ . . . ◦ S(ŝm, λm),

where for 1 ≤ i ≤ m we have that ŝi ∈ C̃− are pairwise different, S(ŝi, λi) ∈ Irr2′(GUki(q)),
χλi ∈ Irr2′(Ski), and

[n]2 = [k1]2 < [k2]2 < . . . < [km]2.

Proof. We can identify the dual group G∗ with G and consider the Jordan correspondent
(s, ϕ) of χ, where s ∈ G is semisimple and ϕ is a unipotent character of CG(s), cf. [DM].
It is easy to see that the condition 2 - χ(1) implies that

CG(s) ∼= GUk1(q)×GUk2(q)× . . .×GUkm(q)

with
∑m

i=1 ki = n and furthermore, n!/
∏m
i=1 ki! is odd by [NT1, Lemma 4.4(i)]. Hence by

Corollary 2.3 there is a unique relabeling of the ki’s such that

[n]2 = [k1]2 < [k2]2 < . . . < [km]2.

Now we can write s = diag(s1, s2, . . . , sm) with si ∈ Z(GUki(q)) and then identify Z(GUki(q))
with C−. Note that the si’s are pairwise different because of the structure of CG(s). Also,
we can write ϕ = ϕ1 ⊗ ϕ2 ⊗ . . . ⊗ ϕm with ϕi = ϕλi ∈ Irr(GUki(q)) being the unipotent
character labeled by λi ` ki. Since 2 - ϕ(1), we see that χλi(1) ≡ ϕi(1) ≡ 1(mod 2) by
[FS, (1.15)]. As before, S(ŝi, λi) is the irreducible character of GUki(q) corresponding to
(si, ϕ

λi). We also note by [DM, Theorem 13.25] that

(5.4) χ = RGCG(s) (S(ŝ1, λ1)⊗ S(ŝ2, λ2)⊗ . . .⊗ S(ŝm, λm)) ,

where RGCG(s) is now the Lusztig induction. �

We can now prove the following result which implies Theorem E:

Theorem 5.3. Let n ∈ Z≥1, q be an odd prime power, G = GLn(q) or GUn(q), and
P ∈ Syl2(G). Then

(i) The field of values of any character in Irr2′(G) and Irr2′(NG(P )) is contained in
Q(ε̃) = Q(exp( 2πi

q−κ1)), where κ = + if G = GLn(q) and κ = − if G = GUn(q).

(ii) There is a canonical bijection χ 7→ χ] between Irr2′(G) and Irr2′(NG(P )) that com-
mutes with the action of Γ = Gal(Q(ε̃)/Q). Furthermore, we can choose P to be
D-invariant and χ 7→ χ] to be D-equivariant, where D is defined in (5.2).
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Proof. Write n = 2n1 + 2n2 + . . .+ 2nr with n1 > . . . > nr ≥ 0, and define

Ω(n) := C̃κ ×H(2n1)× C̃κ ×H(2n2)× . . .× C̃κ ×H(2nr).

We will construct the desired bijection χ 7→ χ] by composing two canonical bijections

α : Irr2′(G)→ Ω(n), β : Ω(n)→ Irr2′(NG(P )).

(a) First we consider the case r = 1. Then β−1 is the inverse of the map constructed in
Lemma 5.1. Next, if χ ∈ Irr2′(G), then by Theorem 2.5(i) and Lemma 5.2, χ = S(ŝ, λ) with

ŝ ∈ C̃κ and λ ` n, and moreover χλ ∈ Irr(Sn) has odd degree by (2.3). Hence λ ∈ H(n) by
[G, Lemma 3.1] and we can define α(χ) = (ŝ, λ). Note that, since G is uniform, unipotent
characters of G are Q-linear combinations of the Deligne-Lusztig character RGT (1T ), T < G
any maximal torus, whence they are rational. Furthermore, ŝ ◦ det takes values in Q(ε̃).
Hence, Q(χ) ⊆ Q(ε̃), and for any σ ∈ Γ,

χσ = S(ŝ, λ)σ = S(ŝσ, λ).

Next, the unipotent character ϕλ is D-invariant (see eg. [M, Theorem 2.5]), and Fp, re-
spectively τ , sends ŝ ◦ det to ŝp ◦ det, respectively ŝ−1 ◦ det. Hence, (i) and (ii) hold in this
case.

(b) In the general case, we can fix a decomposition (orthogonal if κ = −)

V = V1 ⊕ V2 ⊕ . . .⊕ Vr,

where Vi = F2ni
q if κ = + and Vi = F2ni

q2 if κ = −. We also fix a basis in V compatible with

this decomposition and define Fp, τ in this basis. Then we choose P = P1 × P2 × . . .× Pr
with Pi ∈ Syl2(Gi) being D-invariant for Gi := GLκ(Vi) ∼= GLκ2ni (q), cf. Lemma 5.1. Note
that Pi is an irreducible subgroup of Gi and so

(5.5) NG(P ) = NG1(P1)× . . .×NGr(Pr).

So if θ = θ1 ⊗ . . .⊗ θr ∈ Irr2′(NG(P )), then we can define

β(θ) := (t̂1, µ1, t̂2, µ2, . . . , t̂r, µr)

if the bijection in Lemma 5.1 sends θi ∈ Irr2′(NGi(Pi)) to (t̂i, µi). Lemma 5.1 also implies
that Q(θ) ⊆ Q(ε̃) and that β commutes with the action of Γ and D.

Now consider any χ ∈ Irr2′(G) and apply Theorem 2.5(i) and Lemma 5.2 to χ. Assume
first that m = 1, so that χ = S(ŝ, λ). Then 2 - χλ(1) by (2.3). Applying Corollary 4.5 to
the Young subgroup Y = S2n1 × . . .× S2nr , we obtain

(χλ)? = χν1 ⊗ χν2 ⊗ . . .⊗ χνr ,

where νi ∈ H(2ni) by [G, Lemma 3.1]. In this case, we define

(5.6) α(χ) := (ŝ, ν1, ŝ, ν2, . . . , ŝ, νr).

In the case of general m, note that, by Lemma 2.2, each ki is the sum of some 2nj ’s.
Moreover, when we express all ki, 1 ≤ i ≤ m, this way, each 2nj occurs in precisely one
of these m expressions. Now we can apply (5.6) to each S(ŝi, λi) and then define α(χ) by
putting all α(S(ŝi, λi)) together. It is easy to check that the resulting map is a bijection.



20 E. GIANNELLI, A. KLESHCHEV, G. NAVARRO, AND P. H. TIEP

Furthermore, as in (a), ŝi◦det take values in Q(ε̃). Hence, (2.2), (5.4), and [DM, Proposition
12.2] (and the paragraph right before it) imply that Q(χ) ⊆ Q(ε̃) and that, if

χ = RGL (S(ŝ1, λ1)⊗ S(ŝ2, λ2)⊗ . . .⊗ S(ŝm, λm))

(for a suitable Levi subgroup L which in our case can be chosen to be D-invariant), then
for any σ ∈ Γ we have

χσ = RGL (S(ŝσ1 , λ1)⊗ S(ŝσ2 , λ2)⊗ . . .⊗ S(ŝσm, λm)) .

Thus α commutes with the action of Γ. The fact that α commutes with the action of Fp
follows from [NTT, Corollary 2.3] and the arguments in (a). In the case κ = +, α also
commutes with τ as RGL is just the Harish-Chandra induction. Hence, (i) and (ii) hold in
this case as well. �

Note that if P ∈ Sylp(G) satisfies NG(P ) = PCG(P ) for some odd prime p, then the
restriction from G to NG(P ) yields a natural correspondence between the p′-degree irre-
ducible characters of the principal p-block of G and those of NG(P ), see [NTV, Theorem
A]. Theorem E yields a canonical correspondence but with p = 2.

Proof of Corollary F. The number of real odd-degree irreducible characters of NG(P ) can
be easily computed using Lemma 5.1 and (5.5). Since the correspondence in Theorem E
preserves fields of values of characters, the statement follows. �

Corollary 5.4. Let n ∈ Z>1, q be an odd prime power, G = GLn(q), and let P be a
parabolic subgroup of odd index in G with Levi subgroup L. Then there is a canonical
bijection between Irr2′(G), Irr2′(P ), and Irr2′(L).

Proof. We may assume that P is a standard parabolic subgroup with Levi subgroup L =
GLk1(q)×GLk2(q)× . . .×GLkm(q), where m > 1. As in the proof of Lemma 2.6, 2 - |G : P |
implies that we may relabel the ki’s so that [k1]2 < [k2]2 < . . . < [km]2. We also write
n = 2n1 + 2n2 + . . . + 2nr where n1 > n2 > . . . > nr ≥ 0. As in the proof of Theorem
5.3, note by Lemma 2.2 that each ki is the sum of some 2nj ’s. Moreover, when we express
all ki, 1 ≤ i ≤ m, this way, each 2nj occurs in precisely one of these m expressions. For
each j, choose Qj ∈ Syl2(GL2nj (q)). Then, if ki = 2nj1 + 2nj2 + . . . + 2nja , we can choose
Ri := Qj1 ×Qj2 × . . .×Qja ∈ Syl2(GLki(q)), and R := R1×R2× . . .×Rm ∈ Syl2(G). The
formula (5.5) shows that

NG(R) = NGLk1 (q)
(R1)×NGLk2 (q)

(R2)× . . .×NGLkm (q)(Rm) < L.

Consider any χ ∈ Irr2′(G) and let θ := χ] ∈ Irr2′(NG(R)) as given by the character corre-
spondence in Theorem 5.3. Next, write θ = θ1⊗θ2⊗ . . .⊗θm with θi ∈ Irr2′(NGLki (q)

(Ri)).

By Theorem 5.3, for each i there is a unique ψi ∈ Irr2′(GLki(q)) such that (ψi)
] = θi. Now

we can define

χ? = ψ := ψ1 ⊗ ψ2 ⊗ . . .⊗ ψm ∈ Irr2′(L)

and check that the map χ 7→ χ? is a bijection between Irr2′(G) and Irr2′(L). Note that L
can be chosen to be D-invariant, and χ 7→ χ] then commutes with the actions of Γ and D
by Theorem 5.3.
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Finally, we show that the inflation (from L to P ) gives a natural bijection between
Irr2′(L) and Irr2′(P ). For, consider any ϕ ∈ Irr2′(P ) and suppose that ϕ is nontrivial at
U , the unipotent radical of P . Then the L-orbit on the irreducible constituents of ϕU has
odd size, and so R < L fixes some 1U 6= λ ∈ Irr(U). On the other hand, (5.3) and (5.5)
show that CG(R) ∩ U = 1. As R acts coprimely on U , the Glauberman correspondence
[Is2, Theorem 13.1] implies that 1U is the only R-invariant irreducible character of U . �

The same proof as above yields an analogue of Corollary 5.4 for G = GUn(q) with 2 - q:
Corollary 5.5. Let n ∈ Z>1, q be an odd prime power, G = GUn(q), and let

L ∼= GUk1(q)×GUk2(q)× . . .×GUkm(q)

be a Levi subgroup of odd index in G. Then there is a canonical bijection between Irr2′(G)
and Irr2′(L). 2
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