CHARACTER RESTRICTIONS AND MULTIPLICITIES IN
SYMMETRIC GROUPS

I. M. ISAACS, GABRIEL NAVARRO, JORN B. OLSSON, AND PHAM HUU TIEP

ABSTRACT. We give natural correspondences of odd-degree characters of the sym-
metric groups and some of their subgroups, which can be described easily by re-
striction of characters, degrees and multiplicities.

1. INTRODUCTION

In this paper, we present some natural maps from the set of odd-degree complex
irreducible characters of a symmetric group S,, into the set of odd-degree irreducible
characters of the natural subgroups S,, with m < n (that is, the pointwise stabilizers
of n —m points in the natural action of S,, on n points). The image of a character of
S,, under one of these maps is easily described in terms of its restriction to S,,.

As an example of another map on characters of S,, that is defined in terms of
restrictions and which is relevant here, we mention a result of J. L. Alperin. Alperin
discovered, that if y is an odd-degree irreducible character of the symmetric group
G = Syr and P € Syl,(G), then the restriction xp contains a unique linear character
A and the map y — A is a bijection between Irry (G), the set of odd-degree irreducible
characters of G, and the set Irro/(P) of linear characters of P. This fact, whose proof
was finally given in [G], was essential to construct in [GKNT] a canonical bijection
Irry/ (S,,) — Irry (P) for any n.

Recently, an astonishing fact about symmetric groups was proved. It was shown in
[APS] that if y € Irry/(S,), then the restriction xs, , contains a unique odd-degree
irreducible constituent. This simply does not happen in the restriction from S,, to
any arbitrary S,, if m < n, in general. Our main new idea here is to consider not
only odd-degree irreducible constituents but also odd multiplicities. In this way, we
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can construct canonical character correspondences between S,, and S,,_,«. (The case

k=0 is [APS].)

Theorem A. Let n > 1 be an integer, and let k > 0 with 28 < n. If x € Irry(S,),

then the restriction xs . to the natural subgroup S,, o contains a unique odd-degree
n—2

wrreducible constituent with odd multiplicity.

We will denote the unique odd-degree irreducible constituent with odd multiplicity
in the restriction xs . in Theorem A as fi(x). If 2¥ + 2" < n, then both fi(fi(x))
and fi(fx(x)) are defined, but unfortunately, these characters may be different. We
provide examples below.

Recall that irreducible characters x € Irr(S,) are canonically labeled by partitions
of n: x = x* for A  n. We can precisely describe the partition p of n — 2% that
affords the character fi(x) € Irr(S,,_ox). We believe that the following theorem has
interest on its own and, unlike Theorem A, it works for arbitrary primes.

Theorem B. Let p be a prime, and let k,n be integers with 1 < p* < n. Suppose that
X is a partition of n and that y is a partition of n—p*. Let Y (X\) be the Young diagram
of \. Then x* has p'-multiplicity in the restriction of x* to a natural subgroup Sy
of Sy, if and only if Y () is obtained from Y (X) by removing a rim hook of length
p¥. In this case, the multiplicity is congruent to £1 modulo p. Moreover, if 5 = p*
is the hook corresponding to the rim hook Y (A\) \ Y (), then x* @ x” is the unique
irreducible constituent 0 of )(A|sn_p;c XSk that lies above x* and satisfies the condition

p 1 (0(1)/x"(1)).
With Theorems A and B, we can provide an easy description without using com-

binatorics of the canonical map Irry (S,) — Irry/(P) given in [GKNT, Theorem 4.3].
See Theorem 5.1.

2. SOME PRELIMINARIES

For any partition A - n, x* denotes the complex irreducible character of S,, labeled
by A, and Y (\) denotes the Young diagram of A. For brevity, we call a hook of length
m an m-hook, and similarly for rim m-hooks.

A character y = x* € Irr(S,,) afforded by the partition A of n has a degree given by
the so-called hook length formula. For details of the following facts, see [JK], [O1],

[02]. Let p be a positive integer, not necessarily a prime number. To a partition A of

n one may associate its p-core Cp(\) and p-quotient @Q,(\) = oI ,)\S_)l). The

p-core is a partition without p-hooks obtained by removing a sequence of p-hooks
from A. The p-quotient is a p-tuple of partitions. One may recover A from C,(\) and
Qp(A). The following are basic facts.

Lemma 2.1. Let Hy(\) be the (multi-)set of hooks of A having length divisible by p.
)

There is a canonical bijection between Hy(\) and WPy H, (|

) such that an Ip-hook is
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mapped onto an l-hook. This bijection is compatible with hook removals. In particular
we have

Al = 1Co (M) + pwy(A)

where wy(A\) = f:ol ME“\. The number of hooks in \ of length divisible by p equals
wp(A).

We may repeat the process of taking cores and quotients to obtain the p-quotient
tower Q,(X) and the p-core tower C,(\) of A. They have rows numbered by i > 0. The
ith row of Q,()\) contains p* partitions and the ith row of C,()\) contains the p-cores
of these partitions in the same order. The Oth row of Q,()) contains A itself, the 1st

row contains the partitions /\(()1), cee /\1(,1,)1 occurring in the p-quotient @,(\). The 2nd
row contains the partitions occurring in the p-quotients of partitions occurring in the

1st row, and so on.

Remark 2.2. A partition A may be recovered from its p-core tower. For k > 0 it
may also be recovered from the knowledge of rows 0 to (kK — 1) of C,(\) and row k
of Q,(\), because the rows | with [ > k of C,(\) consist of the p-core towers of the
partitions in row k of Q,(\).

If a;(\) is the sum of the sizes of the partitions in the ith row in the p-core tower

Cyp(N), then we have
n= Z a;(\)p".

Now let p be a prime integer and let
n=a+ap+ap’+- - +ap, 0<a;<p—1a #0

be the p-adic decomposition of n.

A partition affording a character in Irr,(S,) will be called p'-partition. A 2'-
partition will be called odd. We write A -, n if A is an odd partition of n.

The following result is essentially due to I.G. Macdonald [M].

Proposition 2.3. A partition A of n is p’ if and only if a; = a;(N) for alli > 0. In
particular for p = 2 we have that X\ is odd if and only if all partitions in the 2-core
tower Co(N) are (0) or (1) and there is at most one entry (1) in each row.

k+1

Lemma 2.4. Suppose that p* <n <p and the partition \ of n is p’. We have

(i) X contains a p*-hook and any partition obtained by removing a p*-hook from X
is still p'.
(ii) If k < I then any partition obtained from X\ by adding a p'-hook is still p'.

Proof. This is a consequence of Proposition 2.3 and Lemma 2.1. O
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3. PROOF OF THEOREM B

Let p be a prime and let n = Y_;_ a;p" be the p-adic decomposition of the non-
negative integer n (however, we do not require the last coefficient a, to be > 0).
Following [O1], we say that m € Zsq with p-adic decomposition m = Y, b;p" is a
p-adic subsum of n if 0 < b; < a; for all 7.

Lemma 3.1. For any nonnegative integer n with p-adic decompositionn = ;_, a;p’
and any prime p, the following statements hold.

(i) If0<m<n thenpt (::1) if and only if m is a p-adic subsum of n.

(ii) Suppose n; > 0 has p-adic decomposition n; = Y ;_ byp' for 1 < j < k and
n= 2521 nj. Thenp{n!/ H?Zl n;!if and only ifZ;?:l bij < a; forall0 <i<r.
Proof. (i) is well known, see [J, Lemma 22.4] or [O1, Lemma (1.1)].

(ii) follows from (i) by an induction on k. (Note, however, that the condition each
n; 18 a p-adic subsum of n is not enough to guarantee that p { (n!/H?Zl n;!). Take,
for instance, k =p+1land ny =ny =...np = 1.) O
Lemma 3.2. Let n = p* € Zg and let \ = n. Then pt x*(1) if and only if \ is a
hook partition, in which case x*(1) = +1(mod p).

Proof. First suppose that A = (r,1"7") is a hook partition, with 1 < r < n. Then
the hook length formula implies that

(3.) ="

By Lemma 3.1(i), p 1 x*(1). Moreover,

+ = ("),
r—1 r r
and p| (Z) by Lemma 3.1(i), provided that 1 <r <n — 1. Now an easy induction on

n — r shows that
n—1 ( 1)7«—1( o )
r—1 ’

Next, by Macdonald’s formula [M], the number of irreducible characters of p’-degree
of S, is exactly n if n = p*. Hence the statements follow. 0

Proof of Theorem B. (a) Write m = n — p¥ and decompose
X smxs o = > capx* @y’
akFm, Brpk
where cqp = ¢)5 € Zxo are the Littlewood-Richardson coefficients. It follows that

D s X1 =) cusx (1),
Bpk
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By Lemma 3.2, p|x?(1) unless § = (b, 17" ") is a hook partition. Hence

(3.2) s X = > cusx”(1)(mod p).

B=(b,1P*~b), 1<b<ph

(b) Suppose g = (b, 1pk*b) is a hook partition. According to [J, Lemma 21.5],
cyp = 0 unless Z := Y (A\) N\ Y (p) is a disjoint union of, say, s skew hooks, in which
case

53 c=(02,)

where ¢ is the total number of columns that Z spans.

Hence, p 1 [x|s,,, x*] only when Z is a disjoint union of s skew hooks. Assuming
21 [xX*s,., X*], we will show that in fact s = 1. Altogether, the formulae (3.1), (3.2),
and (3.3) imply that

1= (00 () = (7 amoan

b=1

(3.4) %

(where the second equality follows by comparing the coeffient of t“~! in (¢ + 1)pk+s*2

and (t+1)*"1(t 4+ 1)7" 1),
Assume by contradiction that s > 2. Then

Pr<ph+s—2<pb4pb -2

and so the p-adic decomposition of p¥+s—2 is Zf:_ol x;p’' +p* for some 0 < x; < p. In
particular, the p-adic decomposition of s—2is s—2 = z;‘:ol ipt. As0 < c—1 < pF—1,

the assumption p { (p k:’fl_ 2) implies by Lemma 3.1(i) that the p-adic decomposition

ofc—1lisc—1= Zf:ol yip" with 0 < y; < x;. It follows that
(3.5) c<s—1.

Recall that Z = Y(A) \ Y (u) is the disjoint union of s skew hooks Sy, ..., Ss, and it
spans ¢ columns. The inequality (3.5) now implies that some skew hooks \S;, S; with
i # j intersect the same column of Y'(X). Thus S; contains a node A and S; contains
a node B, where A and B belong to the same column of Y'()).

We may assume that S; lies higher in Y(\) than S;. Suppose that the nodes
between A and B in the rim of Y(A) all belong to the same column. Since p is a
proper partition, it follows that Z contains all the nodes between A and B in the rim
of Y(A), and so S; and S; (and all skew hooks S; above B) are connected in the rim
of Y'(X), a contradiction. Hence there exists a node C' in the rim of Y'(\) between A
and B that lies to the left of B. But then the row Ro of C in Y(A) lies above, but
is shorter than, the row Rp of B in Y()\), and so A is not a proper partition, again a
contradiction.
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(c) We have shown that s = 1, i.e. Y/(\)\ Y (i) is a rim pF-hook. In this case,
(3.4) shows that [x*|s, , "] = (p::11) (mod p), and so it is congruent to +1(mod p)
by Lemma 3.2.

Suppose now that 8 F p* is such that ¢,5 # 0 and p { x°(1). By Lemma 3.2,
B = (b,17"~?) is a hook partition. Now (3.3) implies that ¢, = 1 and 8 = (¢, 17" ~¢),
that is, 5 is the hook corresponding to the rim hook Y (\) N\ Y (u). Thus the last
statement of the theorem is proved. 0]

Theorem B and Lemma 2.1 yield the following immediate consequence:

Corollary 3.3. Let p be a prime, let k,n be integers with 1 < p* < n, and let
m = n — p*. Suppose that \ is a partition of n. Then the number of u 't m such that
X* has p'-multiplicity in the restriction of x* to S,, is equal to the number of hooks
of length p* in the Young diagram of X, and so it is at most |n/p*|. Furthermore,
each of these p'-multiplicities is congruent to £1 modulo p.

Theorem 3.4. Let n be any positive integer prime, 1 < m < n, and let o be any
partition of n —m. Then there are at least two partitions A\ = \* of n such that
s, contains x* with multiplicity one. Here, A is obtained from « by adding m
nodes to the end of the first row, and A\~ is obtained from « by adding m nodes to
the end of the first column.
Suppose in addition that p is a prime and m = pF > n/2. Then the following
statements hold.
(i) \* are the only partitions of n such that x*|s, . contains x* with multiplicity
one.
(ii) There is a bijection 7, :  +— A(3) between the set H(m) of hook partitions [3
of m and the set O(«) of partitions A of n such that x* has p'-multiplicity in
the restriction of X* to S,_,.. Here, \(B) has an m-hook of shape 3 and Y («)

is obtained from Y (A(B)) by removing the corresponding m-hook. In particular,
AT = X((m)) and A\ = A((1™)). Furthermore,

[X)\(B)‘Snfm ><sm? Xa ® Xﬂ] = 1

(iii) For any x € Irry(S,), Xls,_,, contains a unique irreducible constituent x* that
has both p'-degree and p'-multiplicity. The map x — X' is an m-to-1 surjective
map between Irry (S,) and Irry (S,—). Furthermore, if a € Irry(Sp—m), then
x» € Irry (S,,) for all X € O(a), and

() =x°

for all 5 € H(m).
Proof. (a) As in the proof of Theorem B, we have

(36> N)\a = [X)\‘Sn—nﬂxa] = Zcé\éﬁxﬁ(]‘)
BFm
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First we consider the case A = A" and consider any v F m. We will apply the
Littlewood-Richardson formula [JK, Cor. 2.8.14] to find Cz\w' In particular, if v has
at least two rows, then the (1,1)-node and the (2,1)-node of Y (y) cannot be put in
different rows of ¥'(A) \ Y (), which consists of only one row. Thus ¢}, = 0 unless
v = (m), in which case the Littlewood-Richardson rule shows that cg7 = 1. It follows
from (3.6) that Ny+, = 1.

Next let A = A~ and consider any v - m. If v has at least two columns, then
the (1,1)-node and the (1,2)-node of Y () cannot be put in different columns of
Y () \ Y (a), which consists of only one column. Thus ¢, = 0 unless v = (1), in
which case the Littlewood-Richardson rule shows that ¢}, = 1. It follows from (3.6)
that N)\*,a =1.

(b) From now on we assume that m = p*.

Suppose A F n and N,, = 1. In particular, p { N,,. By Theorem B, Y («) is
obtained from Y'(\) by removing a rim m-hook, say of shape 5 € H(m). In this case,
¢y = 1 by [GKNT, Lemma 4.1], whence

1= N)\Oé 2 Xﬁ(l)

by (3.6). It follows that 8 = (m) or (1™).

From now on we also assume that n < 2m. Then the only proper Y (A) that we
can get by adding a rim m-hook of shape § to Y («) is (the Young diagram of) AT,
respectively A™. Hence (i) follows.

The example of & = (m) shows that the condition n < 2m is necessary: Ny, = 1

for A = AT = (2m), A~ = (m,1™), and also (m?).

(c¢) Again by Theorem B, p 1 N,, if and only if Y («) is obtained from Y (\) by
removing a rim m-hook, say of shape 8 € H(m). Since n < 2m, in this case « is the
m-core of A, cf. [JK, Theorem 2.7.16]. Now [GKNT, Lemma 4.2(i)] shows that the
map 7, : H(m) — O(a) sending 5 to A(S) is well-defined and surjective. This map

is injective since « is the m-core of A() and then f§ is the shape of the rim m-hook
Y (A(B)) \ Y (). The equality

DA s, xs X @ X =1
follows from [GKNT, Lemma 4.1]. Thus we have proved (ii).
(d) First we note by Macdonald’s formula [M] that

(3.7) | Irry (Sn)| = | Irty (Speim) X H(m).

Consider any x = x* € Irry(S,). Then x|s, ,, must contain some irreducible con-
stituent x* € Irry (S,—p) of p’-multiplicity. In other words, A € O(u). We already
mentioned in (¢) that in this case p is the m-core of any X' € O(u). In particular,
the sets O(v) with v = n —m are disjoint, and p is uniquely determined by A. Thus
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x* is uniquely determined by yx, and we can set
Xﬂ = .
Let us write
O'n)={rkn|ptx"}, and O*(v)=0"(n)NO(v).
We have shown that

(3.8) omc |y owec U ow.
HeO* (n—m) HeO* (n—m)

Recall by (ii) that |O(u)| = |H(m)|. This, together with (3.7) and (3.8), implies that
O(p) = O*(u) for all u € O*(n —m), and the map y — x¥ is onto between Irr,(S,,)
and Irr, (S,—,). The fibers of this map are exactly the sets {x” | 7 € O(n)} and so
have size m.

By the definitions of our maps, if 5 € H(m) and A = 7,(5), then Y («) is obtained
from Y(A) by removing a rim m-hook (corresponding to an m-hook of shape f3),
whence (y™))f = y2. O

Note that Theorem 3.4(iii) implies Theorem A in the case 28 < n < 28+1,

4. PROOF OF THEOREM A - ODD DEGREE CHARACTERS IN S,

We call two nonnegative integers 2-disjoint if there is no common summand in their
2-adic decompositions. The following result may also be found as [APS, Lemma 6.

Lemma 4.1. Let X\ be a partition with Qa(\) = (/\(()1), A§”). We have that X is odd,
if and only iof

(i) [C2(N)] <1,

(i) )\él) and )\gl) are both odd, and

(iii) |)\(()1)| and |)\§1)| are 2-disjoint.

Proof. For the 2-core towers we have from the definition that Cz()\(()l)) and Cg()\gl))
are embedded as adjacent towers, starting in row 1 of Cy(\). Thus row i + 1 of Co())

is the union of the ith rows of Cg()\(()l)) and Cg()\gl)). The lemma therefore follows
easily from Lemma 2.3 for p = 2. O

Let us call a hook in an odd partition odd if the partition obtained be removing
the hook is still odd.

Proposition 4.2. Suppose that X =, n. If 28 < n then )\ contains a unique odd
2F_hook.
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Proof. Suppose that 2°1,2%2 . 2% where by < by < ... < b, are the 2-adic sum-
mands of n, so that 2% <n < 2%*1  Thus k < b;. Let Qy()\) = ()\(()1), )\gl)). We use
induction on & > 0. The case k = 0 is [APS, Theorem 1|. Assume that £ > 1 and
that the result is proved for £ — 1. Let ¢ be minimal with the property that & < b;.
Now 2%~ is a 2-adic summand of |);], for j = 0 or j = 1, say for j = 0. The induc-
tion hypothesis shows that the odd partition /\(()1) contains a unique odd 2¥~'-hook.
Removing this we get an odd partition )\81)*. The partition A* with Cy(A*) = Cy(\)
and Q2 (\*) = ()\él)*, /\ﬁ”) is then obtained from )\ by removing a 2*-hook, by Lemma
2.1. Now ])\(()1)*] = |)\E)1)| — 281 The difference between the 2-adic decompositions of
A and [A(V*] is that 25 is replaced by 261, ..., 2%2. Therefore, since |A}”| and
]A§1)| are 2-disjoint we get that ])\81)*] and ]A§1)| are 2-disjoint, due to the choice of i.
Thus \* is odd, by Lemma 2.4. This shows the existence of an odd 2*-hook in \.
We now show the uniqueness of such an odd 2*-hook. A 2*-hook in A corresponds

to a 28 1-hook in /\(()1) or )\(11). If the 2¥-hook is odd, the corresponding 2*~!-hook
should be odd in the 2-quotient partition containing it, by Lemma 2.4. There is at
most one possibility for this in each of the two 2-quotient partitions, by the induction
hypothesis. If again ¢ is minimal with the property that k& < b; and 2%~! is a 2-adic
summand of |\g| then we have seen that removing an odd 2¥~!-hook in )\él) results
in an odd partition \*, obtained from \ by removing an odd 2*-hook. If )\gl) also
contains an odd 2¥~!-hook and )\gl)* is obtained by removing it, then the partition \°
with Cy(A\°) = Cy(N) and Q2(N\°) = (/\(()1), )\gl)*) is not odd. The reason is that |)\gl)|
and |\\V*| are not 2-disjoint. If j is minimal such that k < b; and 2%~ is a 2-adic
summand of \)\gl)| then the difference between the 2-adic decompositions of \)\gl)| and
])\gl)*] is that 2%~1 is replaced by 2¥71 ... 2572 Now 2%~! occurs in this sequence,
because £ < b; < b;, so it is a 2-adic summand of |)\§1)*|. But 2%~1 is also a 2-adic
summand of |)\(()1)|. O

Proof of Theorem A. Consider any x € Irry/(S,), so that x = x* for some A\ F, n.
Let 28 < n and pu F (n — 2%). By Theorem B, x* has odd multiplicity in Xls, .
precisely when Y () is obtained from Y'()\) by removing a 2*-hook. By Proposition
4.2, X has a unique such odd 2*-hook. Hence the statement follows. 0

Proposition 4.2 gives rise to maps from the set of odd partitions of n,n > 2*, to the
set of odd partitions of n — 2%, which, in light of the proof of Theorem A and abusing
the notation, we can also denote by f,. If n > 2¥+2! one may ask whether fi.f; = fi.fx
as maps. This is not the case. A very small example is when n =5,k =1,1 =0. We

have
f1((3,2)) = (3), /o((3)) = (2)
f()((gv 2)) = (37 1)a fl((ga 1)) = (1’ 1)'
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However we have the following result:

Proposition 4.3. Suppose that 28 < n < 28! and that 0 < | < k satisfies that
28+ 2! <n. Then fifi = fife.

Proof. We prove the claim by induction on [ > 0. For [ = 0 the statement follows
from [APS, Lemma 2(1)]. Indeed, if A is an odd partition of n and p = fy(A), then
the odd partition fifo(A) = fe(r) = Cor(p) is obtained from fr(A) = Cor(A) by
removing a 1-hook, i.e. it equals fofr(N).

Assume that [ > 1 and that the claim has result is proved for [ — 1. Odd hooks of
length 2% and 2! correspond to odd hooks of length 2¥~! and 2/~! in the 2-quotient
Q2(N) = (X, 7).

If the odd hooks of length 2~! and 2!~! are not in the same partition of Q2())
then their removals obviously commute so that fi fi(A) = fifx(A). If the odd hooks of
length 281 and 2/~! are in the same partition of Qy(\) then their removals commute
by the induction hypothesis and again fifi(\) = fifr(A). O

Remark 4.4. If 0 <[ < k satisfies that 2% + 2! < n, then we may have fyf; = fifx
without 2* being the highest power of 2 less that n. An example of this is n = 18,
k= 3,1 =2. Also, when n is a power of 2 then f,f; = f,fx for all k,l with 0 <[ < k
and 2% + 2! < n.

Proposition 4.5. Suppose that 2% is a 2-adic summand of n. Then f, induces a
2F_to-1 surjective map between the sets of odd partitions of n and of odd partitions
of n — 2%, Equivalently, the map x — fir(x), where fr(x) is the unique odd-degree
irreducible constituent of odd multiplicity in xs (see Theorem A), induces a 2*-

to-1 surjective map between Irry/ (S,,) and Irry (S, _or).

Proof. 1f k = 0, then n is odd and the result follows from [APS, Theorem 2]. Indeed
the theorem applied to n — 1 shows that f; is injective as a map from the set of odd
partitions of n to the set of odd partitions of n — 1. But then it is bijective, since
these sets have the same cardinality, by [M].

Suppose that k& > 0 and that X\, n and fi(\) = p o n — 2%, Then p is obtained
from X by removing an (odd) 2%-hook H. By Lemma 2.1 this hook corresponds to an
odd 2¥~!-hook in a partition /\51) in row 1 of the p-quotient tower Q,()). Continuing

we see that H corresponds to an odd 1-hook in a partition )\g»k) in row k of Q,(\).
The position j of this partition is also the position of the unique non-zero entry in
row k of C,(A). (See Proposition 2.3.) The kth row of Q,(u) coincides with that of
Q, () except that /\g-k) is replaced by fo()\gk)). Also note that rows 0 to (kK — 1) in
Cy(A) and C,(p) coincide because removing hooks of length divisible by 2 does not
change the 2-core of a partition.

This analysis makes it possible for a given u -, n — 2¥ to describe all \ -, n with
f&(A) = p. Since 2* is not in the 2-adic decomposition of n — 2%, row k of C,(u)
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contains only zero partitions (0). Thus the partitions in row k of Q,(u) are all of
(k)
J

by fo_l(,ug-k)). Then we get a A F, n with fi(\) = p as follows: Rows 0 to k — 1 of

C,(A) and C,(p) coincide. Row k of Q,(A) and Q,(u) coincide except that fi 1(,u§.k))

replaces ugk). The fact that fx(\) = p follows from the above analysis and Remark
2.2. Since there are 2% choices for j, the result is proved. O

even cardinality, since they have 2-core (0). Choose a position j and replace p

Remark 4.6. The map f; may induce a surjective map between the sets of odd
partitions of n and odd partitions of n — 2¥, without 2* being a 2-adic summand of
n. An example is n = 11, k = 2. For n = 17 both f; and f, are neither surjective
nor injective.

5. A CANONICAL McCKAY CORRESPONDENCE

As mentioned above, a canonical bijection between Irry (S,) and Irry/(P) for P €
Syly(S,) was constructed in [GKNT, Theorem 4.3]. Using our results, we can now
give a representation-theoretic description of this McKay bijection.

Let n = 2" + ...+ 2% with ky > ky > ... > k > 0 be the 2-adic decomposition
of n, P; € Syly(Syr; ), so that

P::P1XPQX...XPtESylz(Sn).

Given any x € Irry/ (S,,), we form the sequences (n1, ..., 1), (X1, -, Xt), (A1y--5At),
and a linear character yx* € Irr(P) as follows. Set xo := X, no := n. For any
1 <7 < t, by Theorem A there is a unique odd-degree character y; of S,, with
n; = ni_ — 2k = Z;ZHI 2% such that y; occurs with odd multiplicity in the
restriction of x;_; to S,,. By Theorem B, the restriction of x;_; to S,, X Sqx; contains
a unique odd-degree irreducible constituent y; ® ; that lies above ;.

By [G, Theorem 3.2], the restriction of ¢; to P; contains a unique linear character

)\i~ Set
Y= ®. .. @ N e r(P).

Theorem 5.1. The map x — X* is the canonical McKay bijection Irry/(S,) — Irr(P)
constructed in [GKNT, Theorem 4.3].

Proof. Let x; be labeled by the odd partition m; F, n;. By Theorem B, Y(m;) is
obtained from Y (m;_1) by removing a rim 2*-hook, which is unique by [APS, Lemma
1]. Let p; - 2% denote the corresponding hook partition of 2% and note that ¢; = y*i.
Now the map « in [GKNT, Theorem 4.3(i)] is given by

a(x) = (u1, - ),
and, furthermore, the map  in [GKNT, Theorem 4.3(i)] satisfies

5_1(/“’-"7#75):)\1®)\2®---®/\t-
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Thus \; ® Ao @ ... ® N is exactly 87 (a(x)) = x* as stated in [GKNT, Theorem
4.3(iii). O
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