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Abstract. We give natural correspondences of odd-degree characters of the sym-
metric groups and some of their subgroups, which can be described easily by re-
striction of characters, degrees and multiplicities.

1. Introduction

In this paper, we present some natural maps from the set of odd-degree complex
irreducible characters of a symmetric group Sn into the set of odd-degree irreducible
characters of the natural subgroups Sm with m < n (that is, the pointwise stabilizers
of n−m points in the natural action of Sn on n points). The image of a character of
Sn under one of these maps is easily described in terms of its restriction to Sm.

As an example of another map on characters of Sn that is defined in terms of
restrictions and which is relevant here, we mention a result of J. L. Alperin. Alperin
discovered, that if χ is an odd-degree irreducible character of the symmetric group
G = S2k and P ∈ Syl2(G), then the restriction χP contains a unique linear character
λ and the map χ 7→ λ is a bijection between Irr2′(G), the set of odd-degree irreducible
characters of G, and the set Irr2′(P ) of linear characters of P . This fact, whose proof
was finally given in [G], was essential to construct in [GKNT] a canonical bijection
Irr2′(Sn)→ Irr2′(P ) for any n.

Recently, an astonishing fact about symmetric groups was proved. It was shown in
[APS] that if χ ∈ Irr2′(Sn), then the restriction χSn−1 contains a unique odd-degree
irreducible constituent. This simply does not happen in the restriction from Sn to
any arbitrary Sm if m < n, in general. Our main new idea here is to consider not
only odd-degree irreducible constituents but also odd multiplicities. In this way, we
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can construct canonical character correspondences between Sn and Sn−2k . (The case
k = 0 is [APS].)

Theorem A. Let n > 1 be an integer, and let k ≥ 0 with 2k < n. If χ ∈ Irr2′(Sn),
then the restriction χS

n−2k
to the natural subgroup Sn−2k contains a unique odd-degree

irreducible constituent with odd multiplicity.

We will denote the unique odd-degree irreducible constituent with odd multiplicity
in the restriction χS

n−2k
in Theorem A as fk(χ). If 2k + 2l < n, then both fk(fl(χ))

and fl(fk(χ)) are defined, but unfortunately, these characters may be different. We
provide examples below.

Recall that irreducible characters χ ∈ Irr(Sn) are canonically labeled by partitions
of n: χ = χλ for λ ` n. We can precisely describe the partition µ of n − 2k that
affords the character fk(χ) ∈ Irr(Sn−2k). We believe that the following theorem has
interest on its own and, unlike Theorem A, it works for arbitrary primes.

Theorem B. Let p be a prime, and let k, n be integers with 1 ≤ pk < n. Suppose that
λ is a partition of n and that µ is a partition of n−pk. Let Y (λ) be the Young diagram
of λ. Then χµ has p′-multiplicity in the restriction of χλ to a natural subgroup Sn−pk
of Sn if and only if Y (µ) is obtained from Y (λ) by removing a rim hook of length
pk. In this case, the multiplicity is congruent to ±1 modulo p. Moreover, if β ` pk
is the hook corresponding to the rim hook Y (λ) r Y (µ), then χµ ⊗ χβ is the unique
irreducible constituent θ of χλ|S

n−pk×Spk that lies above χµ and satisfies the condition

p - (θ(1)/χµ(1)).

With Theorems A and B, we can provide an easy description without using com-
binatorics of the canonical map Irr2′(Sn)→ Irr2′(P ) given in [GKNT, Theorem 4.3].
See Theorem 5.1.

2. Some Preliminaries

For any partition λ ` n, χλ denotes the complex irreducible character of Sn labeled
by λ, and Y (λ) denotes the Young diagram of λ. For brevity, we call a hook of length
m an m-hook, and similarly for rim m-hooks.

A character χ = χλ ∈ Irr(Sn) afforded by the partition λ of n has a degree given by
the so-called hook length formula. For details of the following facts, see [JK], [O1],
[O2]. Let p be a positive integer, not necessarily a prime number. To a partition λ of

n one may associate its p-core Cp(λ) and p-quotient Qp(λ) = (λ
(1)
0 , · · · , λ(1)p−1). The

p-core is a partition without p-hooks obtained by removing a sequence of p-hooks
from λ. The p-quotient is a p-tuple of partitions. One may recover λ from Cp(λ) and
Qp(λ). The following are basic facts.

Lemma 2.1. Let Hp(λ) be the (multi-)set of hooks of λ having length divisible by p.

There is a canonical bijection between Hp(λ) and ∪· p−1i=0Hp(λ
(1)
i ) such that an lp-hook is
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mapped onto an l-hook. This bijection is compatible with hook removals. In particular
we have

|λ| = |Cp(λ)|+ pwp(λ)

where wp(λ) =
∑p−1

i=0 |λ
(1)
i |. The number of hooks in λ of length divisible by p equals

wp(λ).

We may repeat the process of taking cores and quotients to obtain the p-quotient
tower Qp(λ) and the p-core tower Cp(λ) of λ. They have rows numbered by i ≥ 0. The
ith row of Qp(λ) contains pi partitions and the ith row of Cp(λ) contains the p-cores
of these partitions in the same order. The 0th row of Qp(λ) contains λ itself, the 1st

row contains the partitions λ
(1)
0 , . . . , λ

(1)
p−1 occurring in the p-quotient Qp(λ). The 2nd

row contains the partitions occurring in the p-quotients of partitions occurring in the
1st row, and so on.

Remark 2.2. A partition λ may be recovered from its p-core tower. For k > 0 it
may also be recovered from the knowledge of rows 0 to (k − 1) of Cp(λ) and row k
of Qp(λ), because the rows l with l ≥ k of Cp(λ) consist of the p-core towers of the
partitions in row k of Qp(λ).

If αi(λ) is the sum of the sizes of the partitions in the ith row in the p-core tower
Cp(λ), then we have

n =
∑
i

αi(λ)pi.

Now let p be a prime integer and let

n = a0 + a1p+ a2p
2 + · · ·+ akp

k, 0 ≤ ai ≤ p− 1, ak 6= 0

be the p-adic decomposition of n.
A partition affording a character in Irrp′(Sn) will be called p′-partition. A 2′-

partition will be called odd. We write λ `o n if λ is an odd partition of n.
The following result is essentially due to I.G. Macdonald [M].

Proposition 2.3. A partition λ of n is p′ if and only if ai = αi(λ) for all i ≥ 0. In
particular for p = 2 we have that λ is odd if and only if all partitions in the 2-core
tower C2(λ) are (0) or (1) and there is at most one entry (1) in each row.

Lemma 2.4. Suppose that pk ≤ n < pk+1 and the partition λ of n is p′. We have

(i) λ contains a pk-hook and any partition obtained by removing a pk-hook from λ
is still p′.

(ii) If k < l then any partition obtained from λ by adding a pl-hook is still p′.

Proof. This is a consequence of Proposition 2.3 and Lemma 2.1. �
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3. Proof of Theorem B

Let p be a prime and let n =
∑r

i=0 aip
i be the p-adic decomposition of the non-

negative integer n (however, we do not require the last coefficient ar to be > 0).
Following [O1], we say that m ∈ Z≥0 with p-adic decomposition m =

∑r
i=0 bip

i is a
p-adic subsum of n if 0 ≤ bi ≤ ai for all i.

Lemma 3.1. For any nonnegative integer n with p-adic decomposition n =
∑r

i=0 aip
i

and any prime p, the following statements hold.

(i) If 0 ≤ m ≤ n then p -
(
n
m

)
if and only if m is a p-adic subsum of n.

(ii) Suppose nj ≥ 0 has p-adic decomposition nj =
∑r

i=0 bijp
i for 1 ≤ j ≤ k and

n =
∑k

j=1 nj. Then p - n!/
∏k

j=1 nj! if and only if
∑k

j=1 bij ≤ ai for all 0 ≤ i ≤ r.

Proof. (i) is well known, see [J, Lemma 22.4] or [O1, Lemma (1.1)].
(ii) follows from (i) by an induction on k. (Note, however, that the condition each

ni is a p-adic subsum of n is not enough to guarantee that p - (n!/
∏k

j=1 nj!). Take,

for instance, k = p+ 1 and n1 = n2 = . . . nk = 1.) �

Lemma 3.2. Let n = pk ∈ Z>0 and let λ ` n. Then p - χλ(1) if and only if λ is a
hook partition, in which case χλ(1) ≡ ±1(mod p).

Proof. First suppose that λ = (r, 1n−r) is a hook partition, with 1 ≤ r ≤ n. Then
the hook length formula implies that

(3.1) χλ(1) =

(
n− 1

r − 1

)
.

By Lemma 3.1(i), p - χλ(1). Moreover,(
n− 1

r − 1

)
+

(
n− 1

r

)
=

(
n

r

)
,

and p|
(
n
r

)
by Lemma 3.1(i), provided that 1 ≤ r ≤ n− 1. Now an easy induction on

n− r shows that (
n− 1

r − 1

)
≡ (−1)r−1(mod p).

Next, by Macdonald’s formula [M], the number of irreducible characters of p′-degree
of Sn is exactly n if n = pk. Hence the statements follow. �

Proof of Theorem B. (a) Write m = n− pk and decompose

χλ|Sm×Spk =
∑

α`m, β`pk
cαβχ

α ⊗ χβ,

where cαβ = cλαβ ∈ Z≥0 are the Littlewood-Richardson coefficients. It follows that

[χλ|Sm , χµ] =
∑
β`pk

cµβχ
β(1).
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By Lemma 3.2, p|χβ(1) unless β = (b, 1p
k−b) is a hook partition. Hence

(3.2) [χλ|Sm , χµ] ≡
∑

β=(b,1pk−b), 1≤b≤pk

cµβχ
β(1)(mod p).

(b) Suppose β = (b, 1p
k−b) is a hook partition. According to [J, Lemma 21.5],

cµβ = 0 unless Z := Y (λ) r Y (µ) is a disjoint union of, say, s skew hooks, in which
case

(3.3) cµβ =

(
s− 1

c− b

)
,

where c is the total number of columns that Z spans.
Hence, p - [χλ|Sm , χµ] only when Z is a disjoint union of s skew hooks. Assuming

p - [χλ|Sm , χµ], we will show that in fact s = 1. Altogether, the formulae (3.1), (3.2),
and (3.3) imply that

(3.4) [χλ|Sm , χµ] ≡
c∑
b=1

(
s− 1

c− b

)(
pk − 1

b− 1

)
=

(
pk + s− 2

c− 1

)
(mod p),

(where the second equality follows by comparing the coeffient of tc−1 in (t+ 1)p
k+s−2

and (t+ 1)s−1(t+ 1)p
k−1).

Assume by contradiction that s ≥ 2. Then

pk ≤ pk + s− 2 ≤ pk + pk − 2

and so the p-adic decomposition of pk+s−2 is
∑k−1

i=0 xip
i+pk for some 0 ≤ xi < p. In

particular, the p-adic decomposition of s−2 is s−2 =
∑k−1

i=0 xip
i. As 0 ≤ c−1 ≤ pk−1,

the assumption p -
(
pk+s−2
c−1

)
implies by Lemma 3.1(i) that the p-adic decomposition

of c− 1 is c− 1 =
∑k−1

i=0 yip
i with 0 ≤ yi ≤ xi. It follows that

(3.5) c ≤ s− 1.

Recall that Z = Y (λ) r Y (µ) is the disjoint union of s skew hooks S1, . . . , Ss, and it
spans c columns. The inequality (3.5) now implies that some skew hooks Si, Sj with
i 6= j intersect the same column of Y (λ). Thus Si contains a node A and Sj contains
a node B, where A and B belong to the same column of Y (λ).

We may assume that Si lies higher in Y (λ) than Sj. Suppose that the nodes
between A and B in the rim of Y (λ) all belong to the same column. Since µ is a
proper partition, it follows that Z contains all the nodes between A and B in the rim
of Y (λ), and so Si and Sj (and all skew hooks Sj′ above B) are connected in the rim
of Y (λ), a contradiction. Hence there exists a node C in the rim of Y (λ) between A
and B that lies to the left of B. But then the row RC of C in Y (λ) lies above, but
is shorter than, the row RB of B in Y (λ), and so λ is not a proper partition, again a
contradiction.
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(c) We have shown that s = 1, i.e. Y (λ) r Y (µ) is a rim pk-hook. In this case,

(3.4) shows that [χλ|Sm , χµ] ≡
(
pk−1
c−1

)
(mod p), and so it is congruent to ±1(mod p)

by Lemma 3.2.
Suppose now that β ` pk is such that cµβ 6= 0 and p - χβ(1). By Lemma 3.2,

β = (b, 1p
k−b) is a hook partition. Now (3.3) implies that cµβ = 1 and β = (c, 1p

k−c),
that is, β is the hook corresponding to the rim hook Y (λ) r Y (µ). Thus the last
statement of the theorem is proved. �

Theorem B and Lemma 2.1 yield the following immediate consequence:

Corollary 3.3. Let p be a prime, let k, n be integers with 1 ≤ pk < n, and let
m = n− pk. Suppose that λ is a partition of n. Then the number of µ ` m such that
χµ has p′-multiplicity in the restriction of χλ to Sm is equal to the number of hooks
of length pk in the Young diagram of λ, and so it is at most bn/pkc. Furthermore,
each of these p′-multiplicities is congruent to ±1 modulo p.

Theorem 3.4. Let n be any positive integer prime, 1 ≤ m < n, and let α be any
partition of n − m. Then there are at least two partitions λ = λ± of n such that
χλ|Sn−m contains χα with multiplicity one. Here, λ+ is obtained from α by adding m
nodes to the end of the first row, and λ− is obtained from α by adding m nodes to
the end of the first column.

Suppose in addition that p is a prime and m = pk > n/2. Then the following
statements hold.

(i) λ± are the only partitions of n such that χλ|Sn−m contains χα with multiplicity
one.

(ii) There is a bijection πα : β 7→ λ(β) between the set H(m) of hook partitions β
of m and the set O(α) of partitions λ of n such that χα has p′-multiplicity in
the restriction of χλ to Sn−m. Here, λ(β) has an m-hook of shape β and Y (α)
is obtained from Y (λ(β)) by removing the corresponding m-hook. In particular,
λ+ = λ((m)) and λ− = λ((1m)). Furthermore,

[χλ(β)|Sn−m×Sm , χα ⊗ χβ] = 1.

(iii) For any χ ∈ Irrp′(Sn), χ|Sn−m contains a unique irreducible constituent χ] that
has both p′-degree and p′-multiplicity. The map χ 7→ χ] is an m-to-1 surjective
map between Irrp′(Sn) and Irrp′(Sn−m). Furthermore, if α ∈ Irrp′(Sn−m), then
χλ ∈ Irrp′(Sn) for all λ ∈ O(α), and

(χπα(β))] = χα

for all β ∈ H(m).

Proof. (a) As in the proof of Theorem B, we have

(3.6) Nλα := [χλ|Sn−m , χα] =
∑
β`m

cλαβχ
β(1).
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First we consider the case λ = λ+ and consider any γ ` m. We will apply the
Littlewood-Richardson formula [JK, Cor. 2.8.14] to find cλαγ. In particular, if γ has
at least two rows, then the (1, 1)-node and the (2, 1)-node of Y (γ) cannot be put in
different rows of Y (λ) r Y (α), which consists of only one row. Thus cλαγ = 0 unless

γ = (m), in which case the Littlewood-Richardson rule shows that cλαγ = 1. It follows
from (3.6) that Nλ+,α = 1.

Next let λ = λ− and consider any γ ` m. If γ has at least two columns, then
the (1, 1)-node and the (1, 2)-node of Y (γ) cannot be put in different columns of
Y (λ) r Y (α), which consists of only one column. Thus cλαγ = 0 unless γ = (1m), in

which case the Littlewood-Richardson rule shows that cλαγ = 1. It follows from (3.6)
that Nλ−,α = 1.

(b) From now on we assume that m = pk.
Suppose λ ` n and Nλα = 1. In particular, p - Nλα. By Theorem B, Y (α) is

obtained from Y (λ) by removing a rim m-hook, say of shape β ∈ H(m). In this case,
cλαβ = 1 by [GKNT, Lemma 4.1], whence

1 = Nλα ≥ χβ(1)

by (3.6). It follows that β = (m) or (1m).
From now on we also assume that n < 2m. Then the only proper Y (λ) that we

can get by adding a rim m-hook of shape β to Y (α) is (the Young diagram of) λ+,
respectively λ−. Hence (i) follows.

The example of α = (m) shows that the condition n < 2m is necessary: Nλα = 1
for λ = λ+ = (2m), λ− = (m, 1m), and also (m2).

(c) Again by Theorem B, p - Nλα if and only if Y (α) is obtained from Y (λ) by
removing a rim m-hook, say of shape β ∈ H(m). Since n < 2m, in this case α is the
m-core of λ, cf. [JK, Theorem 2.7.16]. Now [GKNT, Lemma 4.2(i)] shows that the
map πα : H(m) → O(α) sending β to λ(β) is well-defined and surjective. This map
is injective since α is the m-core of λ(β) and then β is the shape of the rim m-hook
Y (λ(β)) r Y (α). The equality

[χλ(β)|Sn−m×Sm , χα ⊗ χβ] = 1

follows from [GKNT, Lemma 4.1]. Thus we have proved (ii).

(d) First we note by Macdonald’s formula [M] that

(3.7) | Irrp′(Sn)| = | Irrp′(Sn−m)×H(m)|.

Consider any χ = χλ ∈ Irrp′(Sn). Then χ|Sn−m must contain some irreducible con-
stituent χµ ∈ Irrp′(Sn−m) of p′-multiplicity. In other words, λ ∈ O(µ). We already
mentioned in (c) that in this case µ is the m-core of any λ′ ∈ O(µ). In particular,
the sets O(ν) with ν ` n−m are disjoint, and µ is uniquely determined by λ. Thus
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χµ is uniquely determined by χ, and we can set

χ] = χµ.

Let us write

O∗(n) = {τ ` n | p - χτ}, and O∗(ν) = O∗(n) ∩ O(ν) .

We have shown that

(3.8) O∗(n) ⊆
⋃

µ∈O∗(n−m)

O∗(µ) ⊆
⋃

µ∈O∗(n−m)

O(µ).

Recall by (ii) that |O(µ)| = |H(m)|. This, together with (3.7) and (3.8), implies that
O(µ) = O∗(µ) for all µ ∈ O∗(n−m), and the map χ 7→ χ] is onto between Irrp′(Sn)
and Irrp′(Sn−m). The fibers of this map are exactly the sets {χτ | τ ∈ O(µ)} and so
have size m.

By the definitions of our maps, if β ∈ H(m) and λ = πα(β), then Y (α) is obtained
from Y (λ) by removing a rim m-hook (corresponding to an m-hook of shape β),
whence (χπα(β))] = χα. �

Note that Theorem 3.4(iii) implies Theorem A in the case 2k ≤ n < 2k+1.

4. Proof of Theorem A - Odd degree characters in Sn

We call two nonnegative integers 2-disjoint if there is no common summand in their
2-adic decompositions. The following result may also be found as [APS, Lemma 6].

Lemma 4.1. Let λ be a partition with Q2(λ) = (λ
(1)
0 , λ

(1)
1 ). We have that λ is odd,

if and only if

(i) |C2(λ)| ≤ 1,

(ii) λ
(1)
0 and λ

(1)
1 are both odd, and

(iii) |λ(1)0 | and |λ(1)1 | are 2-disjoint.

Proof. For the 2-core towers we have from the definition that C2(λ(1)0 ) and C2(λ(1)1 )
are embedded as adjacent towers, starting in row 1 of C2(λ). Thus row i+ 1 of C2(λ)

is the union of the ith rows of C2(λ(1)0 ) and C2(λ(1)1 ). The lemma therefore follows
easily from Lemma 2.3 for p = 2. �

Let us call a hook in an odd partition odd if the partition obtained be removing
the hook is still odd.

Proposition 4.2. Suppose that λ `o n. If 2k ≤ n then λ contains a unique odd
2k-hook.
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Proof. Suppose that 2b1 , 2b2 , . . . , 2bt , where b1 < b2 < . . . < bt, are the 2-adic sum-

mands of n, so that 2bt ≤ n < 2bt+1 . Thus k ≤ bt. Let Q2(λ) = (λ
(1)
0 , λ

(1)
1 ). We use

induction on k ≥ 0. The case k = 0 is [APS, Theorem 1]. Assume that k ≥ 1 and
that the result is proved for k − 1. Let i be minimal with the property that k ≤ bi.
Now 2bi−1 is a 2-adic summand of |λj|, for j = 0 or j = 1, say for j = 0. The induc-

tion hypothesis shows that the odd partition λ
(1)
0 contains a unique odd 2k−1-hook.

Removing this we get an odd partition λ
(1)∗
0 . The partition λ∗ with C2(λ

∗) = C2(λ)

and Q2(λ
∗) = (λ

(1)∗
0 , λ

(1)
1 ) is then obtained from λ by removing a 2k-hook, by Lemma

2.1. Now |λ(1)∗0 | = |λ
(1)
0 | − 2k−1. The difference between the 2-adic decompositions of

|λ(1)0 | and |λ(1)∗0 | is that 2bi−1 is replaced by 2k−1, . . . , 2bi−2. Therefore, since |λ(1)0 | and

|λ(1)1 | are 2-disjoint we get that |λ(1)∗0 | and |λ(1)1 | are 2-disjoint, due to the choice of i.
Thus λ∗ is odd, by Lemma 2.4. This shows the existence of an odd 2k-hook in λ.

We now show the uniqueness of such an odd 2k-hook. A 2k-hook in λ corresponds

to a 2k−1-hook in λ
(1)
0 or λ

(1)
1 . If the 2k-hook is odd, the corresponding 2k−1-hook

should be odd in the 2-quotient partition containing it, by Lemma 2.4. There is at
most one possibility for this in each of the two 2-quotient partitions, by the induction
hypothesis. If again i is minimal with the property that k ≤ bi and 2bi−1 is a 2-adic

summand of |λ0| then we have seen that removing an odd 2k−1-hook in λ
(1)
0 results

in an odd partition λ∗, obtained from λ by removing an odd 2k-hook. If λ
(1)
1 also

contains an odd 2k−1-hook and λ
(1)∗
1 is obtained by removing it, then the partition λo

with C2(λ
o) = C2(λ) and Q2(λ

o) = (λ
(1)
0 , λ

(1)∗
1 ) is not odd. The reason is that |λ(1)0 |

and |λ(1)∗1 | are not 2-disjoint. If j is minimal such that k ≤ bj and 2bj−1 is a 2-adic

summand of |λ(1)1 | then the difference between the 2-adic decompositions of |λ(1)1 | and

|λ(1)∗1 | is that 2bj−1 is replaced by 2k−1, . . . , 2bj−2. Now 2bi−1 occurs in this sequence,

because k ≤ bi < bj, so it is a 2-adic summand of |λ(1)∗1 |. But 2bi−1 is also a 2-adic

summand of |λ(1)0 |. �

Proof of Theorem A. Consider any χ ∈ Irr2′(Sn), so that χ = χλ for some λ `o n.
Let 2k < n and µ ` (n − 2k). By Theorem B, χµ has odd multiplicity in χ|S

n−2k

precisely when Y (µ) is obtained from Y (λ) by removing a 2k-hook. By Proposition
4.2, λ has a unique such odd 2k-hook. Hence the statement follows. �

Proposition 4.2 gives rise to maps from the set of odd partitions of n, n ≥ 2k, to the
set of odd partitions of n−2k, which, in light of the proof of Theorem A and abusing
the notation, we can also denote by fk. If n ≥ 2k+2l one may ask whether fkfl = flfk
as maps. This is not the case. A very small example is when n = 5, k = 1, l = 0. We
have

f1((3, 2)) = (3), f0((3)) = (2)

f0((3, 2)) = (3, 1), f1((3, 1)) = (1, 1).
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However we have the following result:

Proposition 4.3. Suppose that 2k ≤ n < 2k+1 and that 0 ≤ l < k satisfies that
2k + 2l ≤ n. Then fkfl = flfk.

Proof. We prove the claim by induction on l ≥ 0. For l = 0 the statement follows
from [APS, Lemma 2(1)]. Indeed, if λ is an odd partition of n and µ = f0(λ), then
the odd partition fkf0(λ) = fk(µ) = C2k(µ) is obtained from fk(λ) = C2k(λ) by
removing a 1-hook, i.e. it equals f0fk(λ).

Assume that l ≥ 1 and that the claim has result is proved for l− 1. Odd hooks of
length 2k and 2l correspond to odd hooks of length 2k−1 and 2l−1 in the 2-quotient

Q2(λ) = (λ
(1)
0 , λ

(1)
1 ).

If the odd hooks of length 2k−1 and 2l−1 are not in the same partition of Q2(λ)
then their removals obviously commute so that fkfl(λ) = flfk(λ). If the odd hooks of
length 2k−1 and 2l−1 are in the same partition of Q2(λ) then their removals commute
by the induction hypothesis and again fkfl(λ) = flfk(λ). �

Remark 4.4. If 0 ≤ l < k satisfies that 2k + 2l ≤ n, then we may have fkfl = flfk
without 2k being the highest power of 2 less that n. An example of this is n = 18,
k = 3, l = 2. Also, when n is a power of 2 then fkfl = flfk for all k, l with 0 ≤ l < k
and 2k + 2l ≤ n.

Proposition 4.5. Suppose that 2k is a 2-adic summand of n. Then fk induces a
2k-to-1 surjective map between the sets of odd partitions of n and of odd partitions
of n − 2k. Equivalently, the map χ 7→ fk(χ), where fk(χ) is the unique odd-degree
irreducible constituent of odd multiplicity in χS

n−2k
(see Theorem A), induces a 2k-

to-1 surjective map between Irr2′(Sn) and Irr2′(Sn−2k).

Proof. If k = 0, then n is odd and the result follows from [APS, Theorem 2]. Indeed
the theorem applied to n− 1 shows that f0 is injective as a map from the set of odd
partitions of n to the set of odd partitions of n − 1. But then it is bijective, since
these sets have the same cardinality, by [M].

Suppose that k > 0 and that λ `o n and fk(λ) = µ `o n− 2k. Then µ is obtained
from λ by removing an (odd) 2k-hook H. By Lemma 2.1 this hook corresponds to an

odd 2k−1-hook in a partition λ
(1)
i in row 1 of the p-quotient tower Qp(λ). Continuing

we see that H corresponds to an odd 1-hook in a partition λ
(k)
j in row k of Qp(λ).

The position j of this partition is also the position of the unique non-zero entry in
row k of Cp(λ). (See Proposition 2.3.) The kth row of Qp(µ) coincides with that of

Qp(λ) except that λ
(k)
j is replaced by f0(λ

(k)
j ). Also note that rows 0 to (k − 1) in

Cp(λ) and Cp(µ) coincide because removing hooks of length divisible by 2 does not
change the 2-core of a partition.

This analysis makes it possible for a given µ `o n− 2k to describe all λ `o n with
fk(λ) = µ. Since 2k is not in the 2-adic decomposition of n − 2k, row k of Cp(µ)
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contains only zero partitions (0). Thus the partitions in row k of Qp(µ) are all of

even cardinality, since they have 2-core (0). Choose a position j and replace µ
(k)
j

by f−10 (µ
(k)
j ). Then we get a λ `o n with fk(λ) = µ as follows: Rows 0 to k − 1 of

Cp(λ) and Cp(µ) coincide. Row k of Qp(λ) and Qp(µ) coincide except that f−10 (µ
(k)
j )

replaces µ
(k)
j . The fact that fk(λ) = µ follows from the above analysis and Remark

2.2. Since there are 2k choices for j, the result is proved. �

Remark 4.6. The map fk may induce a surjective map between the sets of odd
partitions of n and odd partitions of n − 2k, without 2k being a 2-adic summand of
n. An example is n = 11, k = 2. For n = 17 both f1 and f2 are neither surjective
nor injective.

5. A canonical McKay correspondence

As mentioned above, a canonical bijection between Irr2′(Sn) and Irr2′(P ) for P ∈
Syl2(Sn) was constructed in [GKNT, Theorem 4.3]. Using our results, we can now
give a representation-theoretic description of this McKay bijection.

Let n = 2k1 + . . . + 2kt , with k1 > k2 > . . . > kt ≥ 0 be the 2-adic decomposition
of n, Pi ∈ Syl2(S2ki ), so that

P := P1 × P2 × . . .× Pt ∈ Syl2(Sn).

Given any χ ∈ Irr2′(Sn), we form the sequences (n1, . . . , nt), (χ1, . . . , χt), (λ1, . . . , λt),
and a linear character χ] ∈ Irr(P ) as follows. Set χ0 := χ, n0 := n. For any
1 ≤ i ≤ t, by Theorem A there is a unique odd-degree character χi of Sni with
ni := ni−1 − 2ki =

∑t
j=i+1 2kj , such that χi occurs with odd multiplicity in the

restriction of χi−1 to Sni . By Theorem B, the restriction of χi−1 to Sni×S2ki contains
a unique odd-degree irreducible constituent χi ⊗ ϕi that lies above χi.

By [G, Theorem 3.2], the restriction of ϕi to Pi contains a unique linear character
λi. Set

χ] := λ1 ⊗ λ2 ⊗ . . .⊗ λt ∈ Irr(P ).

Theorem 5.1. The map χ 7→ χ] is the canonical McKay bijection Irr2′(Sn)→ Irr(P )
constructed in [GKNT, Theorem 4.3].

Proof. Let χi be labeled by the odd partition πi `o ni. By Theorem B, Y (πi) is
obtained from Y (πi−1) by removing a rim 2ki-hook, which is unique by [APS, Lemma
1]. Let µi ` 2ki denote the corresponding hook partition of 2ki , and note that ϕi = χµi .
Now the map α in [GKNT, Theorem 4.3(i)] is given by

α(χ) = (µ1, . . . , µt),

and, furthermore, the map β in [GKNT, Theorem 4.3(i)] satisfies

β−1(µ1, . . . , µt) = λ1 ⊗ λ2 ⊗ . . .⊗ λt.
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Thus λ1 ⊗ λ2 ⊗ . . . ⊗ λt is exactly β−1(α(χ)) = χ] as stated in [GKNT, Theorem
4.3(iii)]. �
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