
On the Complexity of Simple and Optimal Deterministic Mechanisms

for an Additive Buyer

Xi Chen∗ George Matikas† Dimitris Paparas‡ Mihalis Yannakakis§

Abstract

We show that the Revenue-Optimal Deterministic
Mechanism Design problem for a single additive buyer
is #P-hard, even when the distributions have support
size 2 for each item and, more importantly, even when
the optimal solution is guaranteed to be of a very simple
kind: the seller picks a price for each individual item and
a price for the grand bundle of all the items; the buyer
can purchase either the grand bundle at its given price
or any subset of items at their total individual prices.
The following problems are also #P-hard, as immediate
corollaries of the proof:

1. determining if individual item pricing is optimal
for a given instance,

2. determining if grand bundle pricing is optimal, and

3. computing the optimal (deterministic) revenue.

On the positive side, we show that when the distri-
butions are i.i.d. with support size 2, the optimal rev-
enue obtainable by any mechanism, even a randomized
one, can be achieved by a simple solution of the above
kind (individual item pricing with a discounted price for
the grand bundle) and furthermore, it can be computed
in polynomial time. The problem can be solved in poly-
nomial time too when the number of items is constant.

1 Introduction

Consider the following natural scenario: A customer
walks in a grocery store with the intention of buying
some items. The store owner has statistical information
from past customers that reveals how much a typical
customer values each item. Her goal is to assign prices
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for the items and offer discounts for bundles of them to
encourage the customer to spend more money in a way
that maximizes her expected revenue.

In this paper we formally study practices like the
above, which we refer to as the optimal bundle-pricing
problem, under the setting where a single additive buyer
is interested in n heterogeneous items offered by a seller.
While the buyer’s values for the items are unknown,
the seller is given as input a product distribution F =
F1×· · ·×Fn from which the valuations v = (v1, . . . , vn)
of the buyer for the n items are drawn, where each Fi is
a discrete distribution given explicitly (by listing its sup-
port and probabilities). The seller offers a finite menu
M of bundles to the buyer (or a bundle-pricing), with
each entry of the menu consisting of a subset (bundle)
T ⊆ [n] of items and the price πT at which it is sold.
Given a menuM , the buyer draws her valuations v from
F and then either buys a bundle T from M that maxi-
mizes her utility

∑

i∈T vi − πT or nothing if the utility
of every bundle in M is negative1; the price πT of the
bundle bought by the buyer is the revenue of the seller.
The goal of the seller is to find a menu that maximizes
her expected revenue (i.e., the expected price πT that
the buyer pays), which is known to be equivalent to the
problem of Revenue Optimal Deterministic Mechanism
Design. If we extend bundle-pricings to allow the seller
to offer a finite menu of lotteries (or a lottery-pricing),
where a lottery is a pair ((x1, . . . , xn), π) with π being its
price and xi ∈ [0, 1] being the probability of the buyer
getting item i ∈ [n] if this lottery is purchased, we ob-
tain the optimal lottery-pricing problem, also known in
the literature as the problem of Revenue Optimal Ran-
domized Mechanism Design. We define these problems
formally in Section 2.2

It is worth pointing out that bundle-pricing schemes
commonly used in practice do not necessarily list explic-

1Ties in utility are broken in favor of a bundle with higher
price (and value).

2We choose to follow the language of bundle-pricings and

lottery-pricings in this paper, instead of deterministic and ran-
domized mechanisms, mainly because they are conceptually closer

to common practices seen in the real world and are easier to un-

derstand for readers that are not familiar with mechanism design
(e.g., there is no need to introduce the notion of truthfulness).
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itly the bundles offered in the menu, but may specify
them implicitly in a succinct manner. For example, in
the case of offering a simple item-pricing without any
discounts for bundles, the seller needs only to specify a
price for each item (n numbers in total); the induced
menu consists of all 2n subsets of items, each priced at
the sum of prices of items in the subset, and has the
desired property that the buyer’s problem, i.e., finding
an optimal bundle in the menu given v, is easy to solve.
Because of this, it would not be appropriate to require
the output of the bundle-pricing problem to be an ex-
plicit list of bundles in an optimal menu, but rather it
can be represented in a reasonably succinct way. The
exact representation of the output, however, will not af-
fect our main results, as we explain when we describe
them later in this section.

Both optimal deterministic and randomized mecha-
nism design problems have been studied intensively dur-
ing the past decade [Tha04, GHK+05, Bri08, CHK07,
CHMS10, CD11, CMS10, BCKW10, Pav10, WT14,
BILW14, DDT14, DDT12, DDT13, DDT15, HN12,
MV06, Rub16, LY13, Yao15]. For some instances, ran-
domized mechanisms can achieve strictly higher revenue
than deterministic mechanisms. However, determinis-
tic mechanisms (bundle-pricings) are much more widely
used in practice (especially “simple” pricing schemes);
we will focus on deterministic mechanisms in this paper.
Recently, much effort has been devoted to understand-
ing the power and limitations of simple pricing schemes,
that is, menus that can be described succinctly in a
natural way and at the same time induce an easy-to-
solve buyer’s problem. Some of the examples include
(i) selling all items separately (item-pricing), (ii) selling
only the grand bundle that consists of all items (grand-
bundle pricing), and (iii) partition mechanisms, where
one partitions the items into disjoint groups, each with
its own price, and sells the groups separately. While it
is known that none of these solutions is optimal in gen-
eral among bundle-pricings, there has been substantial
work studying basic questions for each of these simple
solutions, including the following: How does the revenue
achievable by these solutions compare with optimal rev-
enues achievable by bundle or lottery pricings? What
are conditions under which these solutions are optimal?
Can we compute an optimal solution of each type?

In case (i) of selling the items separately, we know
how to compute efficiently an optimal item-pricing:
each item is assigned separately its optimal price fol-
lowing Myerson’s theory [Mye81]. In both cases (ii)
and (iii) of the grand bundle and partition mechanisms,
the problem of finding an optimal solution is intractable
(#P-hard [DDT12] and NP-hard [Rub16], respectively).
However, the fact that it is hard to find an optimal solu-

tion of a certain type (grand bundle or partition mecha-
nisms) does not mean that one cannot easily find a solu-
tion that is not of this type and has higher revenue (for
example, by selling also individual items), or possibly
even find a solution that is optimal among all bundle-
pricings. Thus, two central questions remain concerning
the bundle-pricing (or optimal deterministic mechanism
design) problem:

1. Is there an efficient algorithm that finds an
optimal bundle-pricing?

2. If the problem above is hard in general, is there
such an algorithm when the instance is promised
to have a “simple” optimal bundle-pricing?

Our results resolve both questions in the negative
by showing that the problem is #P-hard, even when the
distributions have support size 2 for each item and, more
importantly, even when the instance is promised to have
a unique optimal bundle-pricing that is of a very simple
kind, which we call a discounted item-pricing : the seller
picks a price for each individual item and a price for the
grand bundle of all the items; the buyer can purchase
either the grand bundle at its given price or any subset
of items at their total individual prices. Such a solution
can be described using n + 1 numbers and the buyer’s
problem is also easy to solve. This is the reason why
the exact output format of the problem does not affect
our hardness result.

This result tells us that the bundle-pricing (deter-
ministic mechanism design) problem is inherently com-
putationally hard, and furthermore the difficulty is not
(only) due to the fact that the optimal solution can
be very complex, of the kind that one would not use in
practice anyway; the problem is hard even when the op-
timal solution is extremely simple: standard item pric-
ing with a discount for the grand bundle.

As a by-product of the proof, we also resolve in the
negative the question of whether there is a ‘nice’ char-
acterization (i.e., an easy-to-check necessary and suffi-
cient condition) of when item-pricings are optimal, i.e.,
whether an item-pricing can achieve the optimal rev-
enue achievable by bundle pricings or whether bundling
helps. The same applies to grand-bundle pricings (and
partition mechanisms), i.e., there is no easy-to-check
characterization for the optimality of grand-bundle pric-
ings under standard complexity-theoretic assumptions.

On the positive side, we show that when F1, . . . ,Fn

are i.i.d. with support size 2, the optimal revenue
achievable by any pricing scheme, even a lottery one,
can be achieved by a discounted item-pricing which,
furthermore, can be computed in polynomial time. We
discuss our results in detail below in Section 1.1.
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1.1 Our Results. Given an input distribution F we
use BRev(F),SRev(F),DRev(F) and Rev(F) to de-
note the optimal expected revenues achievable by a
grand-bundle pricing (i.e., selling the grand bundle
only), an item-pricing (i.e., selling all items separately),
a bundle-pricing, and a lottery-pricing, respectively.

First we state our positive result for i.i.d. distribu-
tions with support size 2:

Theorem 1.1. When F1, . . . ,Fn are i.i.d. with support
size 2 ({a, b} with a < b), Rev(F) can always be
achieved by a discounted item-pricing where the grand
bundle is priced at kb + (n − k)a for some k ∈ [0 : n]
and each item is priced at b. Moreover, the parameter
k can be found in polynomial time.

Our main result addresses the two questions from
the introduction in the negative: we show that it is
#P-hard to find an optimal bundle-pricing for a single
additive buyer, even when F is a product distribution
and each Fi has support size 2. Although in general an
optimal solution can be highly complex and consist of
exponentially many bundles without a succinct descrip-
tion, our hardness result is established on instances that
are guaranteed to have a unique and very simple opti-
mal solution, namely, the discounted item-pricing that
we defined earlier. Such a pricing scheme corresponds to
the ubiquitous practice of offering an individual price πi

for each item i and also the grand bundle of all items at a
discounted price π, for example a combo of a toothpaste,
a toothbrush, dental floss, and mouth wash offered at a
15% discount as compared to the cost of buying them
separately. The buyer can choose to buy the grand bun-
dle at π or any subset T of items at

∑

i∈T πi, whichever
brings the highest (nonnegative) utility (note that in
the latter case the buyer will obviously buy the set T of
all items whose price is less than or equal to the buyer’s
value). While a discounted item-pricing offers exponen-
tially many bundles, it has a succinct representation by
n+1 numbers and is easy to implement in practice. We
state our main hardness result in Theorem 1.2:

Theorem 1.2. The optimal bundle-pricing problem is
#P-hard even when (1) all distributions have support
size 2 and (2) the instance is promised to have a unique
optimal solution that is a discounted item-pricing.

Indeed, the hard instances constructed in the proof of
Theorem 1.2 have the property that either

(i) the grand-bundle pricing3 that offers the grand
bundle at the sum of low values of all items; or

3Note that a grand-bundle pricing is a special case of dis-
counted item-pricings.

(ii) the discounted item-pricing that offers each
individual item at its high value and the grand
bundle at a specific value that can be computed
from the instance in polynomial time,

is guaranteed to be optimal among all bundle-pricings,
but it is #P-hard to determine which one is better.
Note that (i) can be equivalently described as an item-
pricing, with each item priced at its low value, and the
revenue can be computed in polynomial time. These
observations together lead to a number of corollaries.

Corollary 1.1. The following problems are #P-hard:

1. Given a product distribution F , decide whether
DRev(F) = SRev(F), i.e., whether an
item-pricing is optimal among all bundle-pricings.

2. Given a product distribution F , decide whether
DRev(F) = BRev(F), i.e., whether a
grand-bundle pricing is optimal among all
bundle-pricings.

Corollary 1.2. The following problems are #P-hard:

1. Given a product distribution F , compute
DRev(F).

2. Given a product distribution F and a valuation v,
compute the bundle bought at v in any optimal
bundle-pricing.

We remark finally that all the hardness results hold
if the number of items is unbounded. For a constant
number of items, we obtain a polynomial-time algorithm
(though the dependency of its running time on the
number of items is exponential).

Theorem 1.3. When the number of items is constant,
an optimal bundle-pricing can be computed in polyno-
mial time.

1.2 Related Work. The seminal work of Myerson
[Mye81] completely settles the case of selling a sin-
gle item, by giving a computationally efficient and de-
terministic mechanism (i.e., a pricing of the item) that
maximizes the expected revenue among all possible,
randomized or deterministic, mechanisms. The more
general multi-dimensional setting, however, turns out
to be inherently more difficult. Unlike Myerson’s set-
ting, randomization in general improves the revenue
when there are many items for sale, even if there is
a single unit-demand buyer [Tha04] (i.e. the buyer
wants to buy only one item) or an additive buyer
[MV06]. It is also known that the optimal menu of lotter-
ies may have exponential size [CDO+15, HN13]. More-
over, under standard complexity-theoretic assumptions,
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recent results rule out the existence of computationally
efficient algorithms that find a revenue-optimal deter-
ministic or randomized mechanism for a unit-demand
buyer [CDP+14, CDO+15, GHK+05, Bri08], or a ran-
domized mechanism for an additive buyer [DDT14].
However, hardness results for the optimal determinis-
tic mechanism design problem with an additive buyer
are limited. Rubinstein [Rub16] proved that finding
an optimal partition mechanism is strongly NP-hard;
Daskalakis et al. [DDT12] proved that finding an opti-
mal price for selling the grand bundle is #P-hard. These
results are for restrictions of the problem that impose
a specific menu structure, and the original problem re-
mained open before this work.

Among these hardness results, the one that is most
relevant to ours is that of Daskalakis, Deckelbaum, and
Tzamos [DDT14]. They construct instances F with
support size 2 for each Fi and show that the prob-
lem of finding an optimal lottery-pricing (or random-
ized mechanism) is #P-hard. This, however, does not
have any consequences for the bundle-pricing problem
for two reasons. First, the deterministic mechanism de-
sign problem is not necessarily harder than the random-
ized one. In fact, in the setting of a unit-demand buyer,
the deterministic problem is provably “easier”: the ran-
domized problem is #P-hard [CDO+15] while the de-
terministic one is in NP [CDP+14]. Second, for the
construction of [DDT14] to work for bundle-pricings, it
would need to be the case that optimal menus of lot-
teries of their instances are deterministic and consist of
bundles only. However, this is not the case: the so-
lution in [DDT14] makes essential use of the random-
ization feature and the optimal menu for F contains a
large number of lotteries (with probabilities in (0, 1))
for valuations in a certain “critical” region. Compared
to techniques used in [DDT14], ours are different in the
following two aspects: (1) Since DRev(F) is captured
by an integer program (instead of a linear program for
Rev(F); see Section 2), we cannot use LP duality but
have to rely on more discrete and combinatorial argu-
ments to identify its optimal integer solutions; (2) An
important step in both proofs is to relax the integer (or
linear) program that captures DRev(F) (or Rev(F)).
Our relaxation is significantly different from the LP re-
laxation of [DDT14]. We need to keep a large set of
global constraints from the original IP while local con-
straints suffice for the purpose of [DDT14].

Most of the work on the deterministic mechanism
design problem for an additive buyer so far focuses on
approximation. Hart and Nisan [HN12] studied two sim-
ple deterministic mechanisms for product distributions:
selling items separately or selling the grand bundle only.
They showed that selling items separately and grand

bundling are respectively Ω(1/ log2 n) and Ω(1/ log n)
approximations of the optimal revenue achievable by
any (possibly randomized) mechanism (later improved
by Li and Yao [LY13] to Ω(1/ log n) for both schemes,
which is known to be tight [HN12]). While neither of
these two schemes can achieve by itself a constant fac-
tor approximation, Babaioff et al. [BILW14] showed
that the better of the two gives a (1/6)-approximation.
Recently, Daskalakis et al. [DDT13, DDT15] studied
conditions for grand-bundling mechanisms to be op-
timal (for continuous distributions), and showed that
this happens if and only if two stochastic dominance
conditions hold. Rubinstein [Rub16] worked on parti-
tion mechanisms and obtained a polynomial-time ap-
proximation scheme (PTAS) for a revenue maximiz-
ing partition mechanism. A number of other results
[DW12, CH13] obtained approximation schemes for
i.i.d. distributions with the MHR property. Gian-
nakopoulos and Koutsoupias [GK14] obtained optimal
mechanisms for i.i.d. uniform distributions with up to
six items. Finally Yao [Yao15] introduced a new ap-
proach for reducing the k-item n-bidder problem to the
k-item 1-bidder setting and gave a deterministic mech-
anism that yields at least a constant fraction of the
optimal revenue for the more general k-item n-bidder
setting.

We also note that there is extensive work study-
ing unit-demand buyers (e.g., [CDP+14, CDO+15,
GHK+05, Bri08, CHK07, CHMS10, CD11, CMS10,
BCKW10, Pav10, WT14]). Besides the papers cited
earlier that address the complexity of an optimal mech-
anism in that context, the rest of the work, which mostly
concerns special cases or approximation, is not directly
related to the topic of the present paper.

2 Preliminaries

Let Di be the support of Fi, and D = D1× · · ·×Dn be
the set of valuation vectors. For each v ∈ D, let

Pr[v] = Pr
F1

[v1]× · · · × Pr
Fn

[vn]

denote the probability of v drawn from F .
We first defineDRev(F), the optimal expected rev-

enue obtainable by a bundle-pricing, by formulating it
using an integer program with n + 1 variables associ-
ated with each valuation v ∈ D: xv,1, . . . , xv,n and πv,
where xv,i ∈ {0, 1} indicates whether item i is included
in the bundle the buyer chooses from the menu (with
xv,i = 1 if item i is included) when her valuation is v

and πv denotes the price of the bundle. We also write
xv = (xv,1, . . . , xv,n) ∈ {0, 1}n to denote the allocation
vector for valuation v. The integer program then maxi-
mizes the expected revenue:

∑

v∈D πv ·Pr[v] subject to
the following constraints:
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1. xv,i ∈ {0, 1} for all v ∈ D;

2. For each v ∈ D, the utility is nonnegative:
∑

i∈[n]

vi · xv,i − πv ≥ 0;

3. For all w,v ∈ D, w does not envy the bundle of v:
∑

i∈[n]

wi · xw,i − πw ≥
∑

i∈[n]

wi · xv,i − πv.

We refer to this integer program as the standard IP for
DRev(F) and the goal of the optimal bundle-pricing
problem is to find an optimal solution to the standard
IP. As discussed earlier, the exact way of defining
the output of the problem does not affect our main
results. (For example, one can adopt the model used in
[DDT14, CDO+15], where a polynomial-time algorithm
A for the optimal bundle-pricing problem takes as input
a distribution F and a valuation v ∈ D and outputs
a bundle A(F ,v) such that {A(F ,v) : v ∈ D} is
an optimal solution to the standard IP for DRev(F).
Under this formulation Theorem 1.2 implies that there
cannot be any such polynomial-time algorithm unless
#P can be solved in polynomial time.)

The equivalence between the optimal bundle-
pricing problem and deterministic mechanism design
follows from the observation that any feasible solution
{xv, πv : v ∈ D} to the standard IP for DRev(F) can
be equivalently viewed as a deterministic mechanism
that is both individually rational and truthful, and vice
versa: the mechanism, upon v reported by the buyer,
assigns items xv to the buyer and charges her πv.

Sometimes (e.g., in Section 4), it is more convenient
to replace πv by a nonnegative utility variable uv. The
standard IP maximizes the same expected revenue:

∑

v∈D





∑

i∈[n]

vi · xv,i − uv



 · Pr[v]

subject to the following (slightly simpler) constraints:

1. xv,i ∈ {0, 1} and uv ≥ 0 for all v ∈ D;

2. For all w,v ∈ D, w does not envy the bundle of v:

uw ≥
∑

i∈[n]

wi · xv,i −





∑

i∈[n]

vi · xv,i − uv





= uv +
∑

i∈[n]

(wi − vi) · xv,i.

We refer to this IP as the standard IP (utility version)
for DRev(F).

On the other hand, the optimal revenue Rev(F)
obtainable by a lottery-pricing is captured by the same
objective function and linear constraints, except that
xv,i takes values in [0, 1] instead of {0, 1}. We refer to
this linear program as the standard LP for Rev(F).

3 IID with Support Size 2

We establish Theorem 1.1 in this section.
Let F1, . . . ,Fn be i.i.d. distributions with support

size 2. Without loss of generality we can assume that the
support is {1, b} with b > 1. (If the support is {0, b} the
problem is trivial: the optimal revenue can be achieved
by offering every item at price b; if the support is {a, b}
with 0 < a < b, then we can equivalently rescale it to
{1, b/a}.) Let p ∈ (0, 1) be the probability that an item
takes value b, and 1−p that it takes 1. We let Pi denote
the probability of v ∼ F having i items at value b and
n− i at 1, for each i ∈ [0 : n]. That is,

Pi =

(

n

i

)

· pi · (1− p)n−i.

The following lemma for Pi’s is crucial. Its proof can
be found in the full version of the paper [CMPY17].

Lemma 3.1. There exists a k ∈ [0 : n] such that

(3.1) (n− i)Pi − (b− 1)(Pi+1 + · · ·+ Pn)

is negative for all i : 0 ≤ i < k and is nonnegative for
all i : k ≤ i ≤ n.

Let k ∈ [0 : n] be an integer that satisfies Lemma
3.1, which is unique and can be computed in polynomial
time. We write S∗ to denote the following discounted
item-pricing:

The grand bundle [n] is offered at kb+ n− k
and each item is offered individually at b (the
latter means that the buyer can buy any
bundle T ⊆ [n] at price |T |b).

Given S∗, the behavior of the buyer is as follows. If a
valuation vector has k or more items at b then the buyer
buys the grand bundle at kb+ n− k; otherwise it buys
all the items that have value b. The expected revenue
R∗ of the discounted item-pricing S∗ is then

R∗ =
∑

1≤i<k

bi · Pi + (kb+ n− k)
∑

k≤i≤n

Pi.

It is clear that given k, R∗ can be computed in polyno-
mial time.

To finish the proof of Theorem 1.1, we show that
S∗ achieves the optimal revenue Rev(F).
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Lemma 3.2. R∗ = Rev(F) when F1, . . . ,Fn are i.i.d.
with support size 2 and k satisfies Lemma 3.1.

We start with some preparation. First recall that
when distributions are i.i.d., Daskalakis and Weinberg
[DW12] showed that there always exists an optimal
solution to the standard LP for Rev(F) (we use the
price version in this section) that is “symmetric”: For
any permutation σ over [n] with σ(v) = w (i.e. vσ(i) =
wi for all i ∈ [n]), we always have σ(xv) = xw and
πv = πw, i.e., the lotteries bought at v and w are
the same under the permutation σ. Based on that, one
can significantly reduce the number of variables for the
i.i.d. support-size 2 case, and we refer to the new LP
described below as the symmetric LP for Rev(F).

The symmetric LP has 3n + 1 variables: xi, for
i = 1, . . . , n, is the probability of getting an item with
value b in v when the valuation v has i items at b (and
n − i items at 1); yi, for i = 0, 1, . . . , n − 1, is the
probability of getting an item with value 1 when the
valuation has i items at b; finally, πi for i = 0, 1, . . . , n
is the price of the lottery for a valuation with i items at
b. The symmetric LP maximizes the expected revenue:
∑n

i=0 πi · Pi subject to the same constraints of the
standard LP after replacing πv by π` when v has ` items
at b and xv,i by x` if vi = b and by y` if vi = 1. It is
not hard to see that the number of distinct constraints
left after the replacement is polynomial in n and thus,
the symmetric LP can be solved exactly in polynomial
time. By [DW12], the optimal value of the symmetric
LP is Rev(F).

We are now ready to prove Lemma 3.2.

Proof. [Proof of Lemma 3.2] Since R∗ is the expected
revenue of S∗, it suffices to show Rev(F) ≤ R∗.

For this purpose we will relax the symmetric LP for
Rev(F) and show that its optimal value is at most R∗.
In the relaxed LP we only keep the following constraints
of the symmetric LP:

1. 0 ≤ xi ≤ 1 for each i ∈ [n] and 0 ≤ yi ≤ 1 for each
i ∈ [0 : n− 1].

2. π0 ≤ ny0 (i.e., the utility at the all-1 vector is
nonnegative);

3. For each i ∈ [n], the constraint that the valuation
w with wj = b for j ∈ [i] and wj = 1 for j > i
does not envy the lottery of v with vj = b for
j ∈ [i− 1] and vj = 1 for j > i− 1:

bixi + (n− i)yi − πi

≥ b(i− 1)xi−1 + (n− i+ b)yi−1 − πi−1.(3.2)

Note that when i = 1, x0 appears on the RHS
with coefficient 0; when i = n, yn appears on the

LHS with coefficient 0. For convenience we
introduce x0 = yn = 0 as dummy variables that
never appear in the relaxed LP but help simplify
the presentation of these constraints.

Since all of them are part of the symmetric LP, the
optimal value of the relaxed LP is at least Rev(F). In
the rest of the proof we show that the optimal value of
the relaxed LP is at most R∗.

To this end we use the constraints above to upper-
bound each πi using x and y variables. For i = 0 we use
π0 ≤ ny0. For each j ∈ [n] we have from constraints (2)
in the relaxed LP that:

πj ≤ πj−1 + bjxj + (n− j)yj

− b(j − 1)xj−1 − (n− j + b)yj−1.

Summing these inequalities for all j = 1, . . . , i, we get
after some cancellations:

πi ≤ π0 + bixi + (n− i)yi

− (b− 1)(yi−1 + yi−2 + · · ·+ y1)− (n+ b− 1)y0.

Plugging in π0 ≤ ny0, we have for each i ∈ [n]:

πi ≤ bixi + (n− i)yi − (b− 1)(yi−1 + · · ·+ y1 + y0).

Replacing in the objective function
∑

i Pi · πi each
πi by its upper bound, we get a linear form in the xi’s,
i ∈ [n], and yi’s, i ∈ [0 : n− 1], which upperbounds the
value of the relaxed LP (note that x0 and yn are dummy
variables that do not really appear in any constraint).
For each i ∈ [n], the coefficient of xi is bi · Pi, thus this
term is maximized if we set xi = 1 for each i ∈ [n].
The coefficient of y0 is nP0 − (b− 1)(P1 + · · ·+Pn) and
the coefficient of yi for each i ∈ [n − 1] is (n − i)Pi −
(b− 1)(Pi+1 + · · ·+ Pn). From the choice of k ∈ [0 : n]
and Lemma 3.1, we have for all i ∈ [0 : n − 1]: The
coefficient of yi is negative if i < k, and is nonnegative
if i ≥ k. Therefore, the linear form is maximized when
we set yi = 0 for all i < k and yi = 1 for all i ≥ k.
Applying these substitutions in the linear form, the
upper bound on the value of the LP becomes (note that
(n− i)Pi − (b− 1)(Pi+1 + · · ·+ Pn) is 0 when i = n):

n
∑

i=1

bi · Pi +
n−1
∑

i=k

[

(n− i)Pi − (b− 1)(Pi+1 + · · ·+ Pn)
]

=

n
∑

i=1

bi · Pi +

n
∑

i=k

[

(n− i)Pi − (b− 1)(Pi+1 + · · ·+ Pn)
]

=

n
∑

i=1

bi · Pi +

n
∑

i=k

Pi ·
[

(n− i)− (b− 1)(i− k)
]

= R∗.

This finishes the proof of the lemma. �
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4 Hardness of Revenue-Optimal Deterministic

Mechanism Design

We prove Theorem 1.2 in this section. The plan is to
reduce from the following #P-hard decision problem
called COMP introduced in [CDO+15]. The input
consists of three parts: 1) a set B of n nonnegative
integers B = {b1, . . . , bn} between 0 and 2n (we assume
without loss of generality that b1 ≤ · · · ≤ bn); 2) a
subset W ⊂ [n] of size |W | = n/2 (assume without loss
of generality that n is even) and we use w to denote
∑

i∈W bi; and 3) an integer t. The question is to decide
whether the number of S ⊂ [n] such that |S| = n/2
and

∑

i∈S bi ≥ w is at least t or at most t − 1. While
COMP was shown to be #P-hard in [CDO+15], we need
here the same problem with the following two extra
conditions on the two input sets B and W , which we
will refer to as COMP∗:

1. Every (n/2)-subset S ⊂ [n] with bn ∈ S satisfies
∑

i∈S bi ≥ w, i.e. b1 + · · ·+ bn/2−1 + bn ≥ w.

2. Every (n/2)-subset S ⊂ [n] that does not contain
bn but contains either b1 or b2 must satisfy
∑

i∈S bi < w, i.e. b2 + bn/2+1 + · · ·+ bn−1 < w.

These conditions will come in handy in the reduction
below. The #P-hardness proof of the problem COMP∗

can be found in the full version [CMPY17].

4.1 The Reduction. We now present the reduction
from COMP∗ to the optimal bundle-pricing problem.

Given an input instance (B,W, t) of COMP∗ (with
B and W satisfying the extra conditions) we define an
instance F of optimal bundle-pricing with n + 1 items
and support size 2. We shall refer to the first n items as
item i for i ∈ [n] and refer to the last item as the special
item. We use the following parameters:

h = 22n, p =
1

2(h+ 1)
, δ =

1

23n
,

ai = biδ and hi = h+ ai, for each i ∈ [n]

(so ai ∈ [0, 2nδ] and is an integer multiple of δ). Then
item i is supported on {1, hi + 1}. The probability of
hi + 1 is p and the probability of 1 is 1− p. Let

c = wδ, α =
nh

2
+ c, σ =

1

pn
and τ =

σ

σ + α

(hence c ∈ [0, (n/2)2nδ] and is an integer multiple of δ).
The special item is supported on {σ, σ + α}. The
probability of σ + α is τ − ε and the probability of σ
is 1 − τ + ε = (α/(σ + α)) + ε for some ε (which is not
necessarily positive) to be specified at the end of the
proof; for now we only require that |ε| = o(1/σ). Note

that since σ � α, the probability τ − ε of σ + α is very
close to 1, and the probability 1− τ + ε of σ is positive
but very close to 0. This finishes the description of
the bundle pricing instance F (except the choice of the
parameter ε which we will set at the end).

4.2 Plan of the Proof. Our plan for the proof is
the following. In Section 4.3, we introduce some no-
tation and define two simple bundle-pricings (Solution
1 and 2), as feasible solutions to the standard IP for
DRev(F), both of which are discounted item-pricings.
Most of the work lies in Section 4.4, where we show
that whenever |ε| = o(1/σ), one of these two solutions
is the unique optimal solution to the standard IP and
achieves DRev(F). This is done by relaxing the stan-
dard IP and showing that one of these two solutions is
the unique optimal solution to the relaxed IP. As they
are both feasible to the standard IP, we conclude that
one of them is uniquely optimal for the standard IP.

Finally, we set ε carefully (with |ε| = o(1/σ) as
promised) in Section 4.5 to show that Solution 2 is
strictly better if the (B,W, t) used in the construction
of F is a yes-instance of problem COMP∗, and Solution
1 is strictly better if it is a no-instance. This finishes
the proof of Theorem 1.2.

4.3 Notation and two simple solutions. For con-
venience, we will use a subset S ⊆ [n] to denote a val-
uation vector over the first n items, where i ∈ S (or
i /∈ S) means that item i takes the high value hi +1 (or
low value 1). We will also use (S, σ + α) (or (S, σ)) to
denote a full valuation vector over all the n+1 items in
which the special item has the high value σ+α (or low
value σ).

Given S ⊆ [n], we write Pr[S] to denote p|S|(1 −
p)n−|S|; given an integer i ∈ [0 : n], we write

Pr[i] =

(

n

i

)

· pi(1− p)n−i,

use Pr[i ≥ k] to denote
∑n

i=k Pr[i], and Pr[i > k] to
denote

∑n
i=k+1 Pr[i]. We write Pr[S, σ] and Pr[S, σ+α]

to denote the probabilities of (S, σ) and (S, σ + α):

Pr[S, σ] = Pr[S] · (1− τ + ε) and

Pr[S, σ + α] = Pr[S] · (τ − ε).

We use the standard IP for DRev(F) (the utility
version) but rename the variables as follows. For each
S ⊆ [n] we use xS,i ∈ {0, 1} to denote the variable for
item i in valuation (S, σ) for each i ∈ [n], zS ∈ {0, 1} to
denote the variable for the special item, and uS ≥ 0 to
denote the utility. For each S ⊆ [n], we use x′

S,i ∈ {0, 1}
to denote the variable for item i in valuation (S, σ+α),
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z′S ∈ {0, 1} to denote the variable for the special item,
and u′

S ≥ 0 to denote the utility.
The two simple bundle-pricings we are interested in

are the following:

Solution 1: Offer the grand bundle at σ + n, or
(equivalently) offer each item at its low value.

Solution 2: The discounted item-pricing where the
grand bundle is offered at σ + α+ n and each
individual item is offered at its high value. As
discussed in the introduction, this means that the
buyer can buy either the grand bundle at
σ + α+ n or any bundle of items at the sum of
their high values. When this menu is offered, the
buyer buys the grand bundle if its utility is
positive (since her utility from buying items
priced at their high values can never be positive)
and buys the bundle of items at their high values
(if any) if the utility from the grand bundle is
negative. For the case when the utility from the
grand bundle is 0, the buyer still gets the grand
bundle since it always gives a higher revenue.

These two bundle-pricings induce two feasible solutions
to the standard IP:

1. In Solution 1, every valuation (S, σ) and (S, σ+α)
buys the grand bundle. So we have for each
S ⊆ [n] and i ∈ [n], xS,i = zS = x′

S,i = z′S = 1.
Regarding the utilities we have

uS =
∑

i∈S hi and u′
S = α+

∑

i∈S hi.

2. In Solution 2 we have 1) for each S ⊆ [n] and
i ∈ [n], x′

S,i = z′S = 1 and u′
S =

∑

i∈S hi; 2) for
each S ⊆ [n] with

∑

i∈S hi ≥ α, we have
xS,i = zS = 1 for all i ∈ [n], uS =

∑

i∈S hi − α;
3) for each S ⊆ [n] with

∑

i∈S hi < α, we have
xS,i = 1 for each i ∈ S, xS,i = 0 for each i /∈ S,
zS = 0, and uS = 0. Given our choice of
parameters (i.e. h � ai, c), every S with
|S| > n/2 satisfies case 2) and every S with
|S| < n/2 satisfies case 3). A set S with |S| = n/2
satisfies case 2) if we have

∑

i∈S ai ≥ c
(equivalently,

∑

i∈S bi ≥ w) and satisfies case 3)
otherwise. This is the connection with COMP∗

that we will explore in the reduction.

As discussed in the plan, we introduce a relaxation
of the standard IP that only contains a subset of its
constraints and refer to it as the relaxed IP. It contains
the following constraints:

1. xS,i, zS , x
′
S,i, z

′
S ∈ {0, 1} and uS , u

′
S ≥ 0, for all

S ⊆ [n] and i ∈ [n];

2. For each S 6= ∅, (S, σ+α) does not envy (∅, σ+α):

u′
S ≥ u′

∅ +
∑

i∈S hi · x
′
∅,i.

3. For each S ⊆ [n], (∅, σ + α) does not envy (S, σ):

u′
∅ ≥ uS −

∑

i∈S hi · xS,i + α · zS .

4. For each S ⊆ [n], (S, σ) does not envy (∅, σ + α):

uS ≥ u′
∅ +

∑

i∈S hi · x
′
∅,i − α · z′∅.

5. For each pair of T, S with T ⊂ S ⊆ [n], (S, σ) does
not envy (T, σ):

uS ≥ uT +
∑

i∈S\T hi · xT,i.

The objective function of the relaxed IP is the same
expected revenue, which is the sum of the following over
all S ⊆ [n]:

(

∑

i∈S

(hi + 1)x′
S,i +

∑

i/∈S

x′
S,i + (σ + α)z′S − u′

S

)

Pr[S, σ + α]

+

(

∑

i∈S

(hi + 1)xS,i +
∑

i/∈S

xS,i + σzS − uS

)

Pr[S, σ].

4.4 One of the two simple solutions is optimal.

Our goal is the following lemma about optimal solutions
to the relaxed IP:

Lemma 4.1. In an optimal solution to the relaxed IP,
if z∅ = 1, then it must be Solution 1; if z∅ = 0, then it
must be Solution 2.

As both solutions are feasible for the standard IP,
we have the following corollary:

Corollary 4.1. Either Solution 1 or 2 is the unique
optimal solution to the standard IP.

We start the proof of Lemma 4.1 with a few simple
observations.

Lemma 4.2. In any optimal solution to the relaxed IP,
we have xS,i = 1 for all S ⊆ [n] and i ∈ S, x′

S,i = 1 for
all S 6= ∅ and i ∈ [n], and z′S = 1 for all S ⊆ [n].

Proof. The part of x′
S,i = 1 for all S 6= ∅ and i ∈ [n]

and z′S = 1 for all S 6= ∅ is trivial as they do not
appear in the constraints of the relaxed IP but appear
with a positive coefficient in the objective function.
For z′∅, note that it only appears on the right hand
side with a negative coefficient. Thus, if z′∅ = 0 in a
feasible solution, we can switch it to 1 and the new
solution remains feasible but the expected revenue goes
up strictly. The same argument works for xS,i for all
S ⊆ [n] and i ∈ S. �
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Next we show that x′
∅,i = 1 for all i ∈ [n] in any

optimal solution to the relaxed IP.

Lemma 4.3. In an optimal solution to the relaxed IP,
x′
∅,i = 1 for all i ∈ [n] and u′

S = u′
∅ +

∑

i∈S hi for all

nonempty S ⊆ [n].

Proof. Assume for contradiction that x′
∅,i = 0 for i ∈ I

and I is nonempty. Then we make the following changes
to obtain a new solution:

i) We change x′
∅,i from 0 to 1 for each i ∈ I;

ii) For each S 6= ∅, we increase u′
S by

∑

i∈S∩I hi;

iii) For each S ⊆ [n], we replace uS by the maximum
of the original uS and u′

∅ +
∑

i∈S hi − α (by doing
this the new uS can go up by at most

∑

i∈S∩I hi

because of constraints (4)).

We first verify that the new solution remains feasi-
ble and then show that its expected revenue is strictly
better than that of the original solution. For its fea-
sibility, constraints in (2) and (4) are trivial. (3) for
S holds trivially if uS remains the same. Otherwise
uS = u′

∅ +
∑

i∈S hi − α and thus,

uS −
∑

i∈S

hi · xS,i + α · zS = uS −
∑

i∈S

hi + α · zS

≤ uS −
∑

i∈S

hi + α = u′
∅.

For 5), the constraint for T ⊂ S holds trivially if uT

remains the same. If uT goes up, we have

uS ≥ u′
∅ +

∑

i∈S

hi − α and

uT = u′
∅ +

∑

i∈T

hi − α

and thus, uS−uT ≥
∑

i∈S\T hi ≥
∑

i∈S\T hi ·xT,i. This
shows that the new solution is also feasible.

Finally, comparing the two solutions, the net gain
of expected revenue in the new one is at least

|I| · Pr[∅, σ + α]−
∑

S⊆[n]

(

Pr[S, σ + α] + Pr[S, σ]
)

∑

i∈S∩I

hi

= |I| · (τ − ε) · (1− p)n −
∑

i∈I

phi > 0

as by our choice of parameters the first term is close to
|I| and the second term is close to |I|/2.

The second part of the lemma follows trivially since
u′
S appears only in the LHS of constraints (2) when

S 6= ∅ and appears in the objective function with a
negative coefficient. �

So far we have shown in an optimal solution to the
relaxed IP that every entry in x′ and z′ is 1 and the only
unsettled variable in u′ is u′

∅, with u′
S = u′

∅ +
∑

i∈S hi

for all S 6= ∅. (For a sanity check, note that these
conditions hold in Solution 1 and 2.) Next we prove the
first case of Lemma 4.1.

Lemma 4.4. In an optimal solution to the relaxed IP,
if z∅ = 1, then it must be Solution 1.

Proof. Assuming z∅ = 1, we have u′
∅ ≥ u∅ + α from

constraints (3). Next we show that x∅,i = 1 for all
i ∈ [n]. Assume for contradiction that x∅,i = 0 for i ∈ I
and I is nonempty. Then we make the following changes
to obtain a new solution: i) We change x∅,i from 0 to 1
for every i ∈ I; and ii) For each S 6= ∅, we change uS

to be the maximum of the original uS and u∅+
∑

i∈S hi

(by doing this uS can go up by at most
∑

i∈S∩I hi due
to constraints (5) for T = ∅).

Following the same argument used in the previous
lemma, we verify that the new solution is feasible and
then show that its expected revenue is strictly higher;
the details can be found in the full version [CMPY17].
This allows us to conclude that x∅,i = 1 for all i ∈ [n].

Finally, given that x∅,i = 1 for all i ∈ [n] and u∅ ≥ 0,
we have uS ≥

∑

i∈S hi, u
′
∅ ≥ α and

u′
S = u′

∅ +
∑

i∈S

hi ≥ α+
∑

i∈S

hi.

Comparing it with Solution 1, a) the utility of every
valuation of this solution is at least as large as that of
Solution 1; and b) every allocation variable xS,i, x

′
S,i,

zS and z′S in Solution 1 is 1 (the maximum possible).
Thus, its revenue is no more than that of Solution 1 and
in order to be optimal, it must be exactly the same as
Solution 1. This finishes the proof of the lemma. �

In the rest of this subsection, we consider the more
challenging case when z∅ = 0, and prove the second part
of Lemma 4.1 using a sequence of lemmas.

First we show that u′
∅ = 0 when z∅ = 0.

Lemma 4.5. In any optimal solution to the relaxed IP,
if z∅ = 0 then we have u′

∅ = 0.

Proof. Assume for contradiction that u′
∅ > 0. We show

first that u′
∅ > 0 implies that u′

∅ ≥ δ.
For this purpose we fix all the allocation variables

to their {0, 1} values in the optimal solution and replace
each u′

S , S 6= ∅, using u′
S = u′

∅ +
∑

i∈S hi (by Lemma
4.4) to obtain a linear program over the rest of utility
variables uS , S ⊆ [n], and u′

∅. The linear program
maximizes the objective function (hence these utility
variables must have the minimum possible values),
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subject to the constraints (1), (3), (4), (5) of the relaxed
IP (note that constraints (2) are already satisfied). All
the constraints (3), (4), (5) of the relaxed IP have the
form v ≥ v′+b where v, v′ are two variables from the set
V = {uS : S ⊆ [n]}∪{u′

∅} and b has the form c1h+ c2δ,
where c1, c2 are integers and |c2| ≤ O(n2n) (note that
all hi have this form with c2 ∈ [0, 2n], α also has this
form with c2 ∈ [0, (n/2)2n], and the allocation variables
have value 0 or 1). Recall that h = 22n and δ = 1/23n.
The problem of finding the optimal utilities becomes a
shortest-path problem over 2n + 2 vertices: the set V
plus an extra vertex 0 as the source vertex. The distance
from 0 to each vertex in V is set to 0 and the distance
from v′ to v is set to −b if v ≥ v′+b is a constraint in the
relaxed IP. The optimal value of u′

∅ is then the length
of the shortest path from vertex 0 to vertex u′

∅ with
the sign changed. Hence u′

∅ is a sum of at most 2n + 1
edge weights (−b), with each of them being an integer
multiple c1 of h plus an integer multiple c2 of δ (with
|c2| ≤ O(n2n)). As a result, u′

∅ is of the form d1h+ d2δ
where d1 and d2 are both integers and |d2| = O(n22n).
For u′

∅ to be positive, we have either d1 > 0, in which
case u′

∅ = Ω(h) (as δ = 1/23n), or d1 = 0 and d2 > 0, in
which case u′

∅ ≥ δ.
Now we modify the given solution to obtain a new

solution. Let D denote the set of all subsets S ⊂ [n]
with

∑

i∈S hi < α, and U denote the set of all S ⊆ [n]
with

∑

i∈S hi ≥ α. We modify the solution as follows:

i) We set xS,i = 0 and zS = 0 for all S ∈ D and i /∈ S;

ii) We change u′
∅ to 0 and u′

S to
∑

i∈S hi;

iii) For each S ∈ D we change uS to 0; For each S ∈ U
we change uS to

∑

i∈S hi − α (which
is nonnegative by the definition of U and can only
go down compared to the old solution
by constraints (4) using x′

∅,i = 1 from Lemma 4.3
and z′∅ = 1 from Lemma 4.2).

Every other entry remains the same as in the original
solution. As before, we first show that the new solution
is feasible and then show that its expected revenue is
strictly higher. Details of the analysis can be found in
the full version [CMPY17]. This finishes the proof of
the lemma. �

Let D and U be the sets defined in the proof above.
We have the following simple corollary:

Corollary 4.2. In any optimal solution to the relaxed
IP, if z∅ = 0 then zS = 0 for all S ∈ D.

Proof. By constraints (3), we have for S ∈ D:

0 ≥ uS −
∑

i∈S

hi + α · zS .

As a result, α · zS ≤
∑

i∈S hi < α.

Next we show that if z∅ = 0 in an optimal solution,
then xS,i = 0 for all S ∈ D and i /∈ S.

Lemma 4.6. In an optimal solution, if z∅ = 0 then
xS,i = 0 for all S ∈ D and i /∈ S.

Proof. Assume for contradiction that we do not have
xT,i = 0 for all sets T ∈ D and i /∈ T . (For reasons that
will become clear later we need special treatments for
not only those T at level n/2 but those at level (n/2)−1
as well.) We use G to denote the set of pairs (T, k) such
that |T | < (n/2)− 1, k /∈ T and xT,k = 1; we use G∗ to
denote the set of pairs (T, k) such that |T | = (n/2)− 1,
k /∈ T , T ∪ {k} ∈ U and xT,k = 1; we use G†

1 to denote
the set of pairs (T, k) such that |T | = (n/2)− 1, k /∈ T ,
T ∪ {k} ∈ D (so it follows from the first condition that
B and W satisfy that n /∈ T ∪{k}) and xT,k = 1; we use
G†
2 to denote the set of pairs (T, k) such that |T | = n/2,

T ∈ D, k /∈ T and xT,k = 1. Then G ∪ G∗ ∪ G†
1 ∪ G†

2 is
nonempty. We next use G,G∗,G†

1 and G†
2 to define two

sets E , E†, where E consists of subsets of size n/2 and E†

consists of subsets of size n/2 + 1 so they are disjoint.

1. S ⊂ [n] is in E if |S| = n/2, S ∈ U and
T ∪ {k} ⊆ S for some pair (T, k) ∈ G ∪ G∗.

2. S ⊂ [n] is in E† if |S| = (n/2) + 1 and satisfies
either S = T ∪ {k} for some pair (T, k) ∈ G†

2 or
S = T ∪ {k, r} for some pair (T, k) ∈ G†

1 with r
being the smallest index not in T ∪ {k}.

We need the following simple claim about zS , S ∈
E ∪ E†, in the original solution. The proof can be found
in the full version [CMPY17].

Claim 4.1. We have zS = 0 for every S ∈ E ∪ E† in
the original solution.

Claim 4.1 inspires us to derive a new solution by
making the following changes in the old one:

i) For all (T, k) ∈ G ∪ G∗ ∪ G†
1 ∪ G†

2, change xT,k

from 1 to 0 (so that xT,k = 0 in the new solution
for all T ∈ D and k /∈ T );

ii) For all S ∈ E ∪ E†, change zS from 0 to 1;

iii) For all S ∈ D, change uS to 0; For all S ∈ U ,
change uS to

∑

i∈S hi − α (note that the new uS

is nonnegative as S ∈ U and can only go down
from the original by constraint (4)).

All other entries remain the same in the new solution.
We first verify that the new solution is feasible and

then show that it is strictly better than the old solution.
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For the feasibility, constraints (2) are trivial. For (3),
the constraint is trivial if S ∈ D (since uS = zS = 0); if
S ∈ U , we have uS =

∑

i∈S hi − α and thus, the RHS
is at most 0. For (4), the constraint is trivial if S ∈ D
(since the RHS is negative); if S ∈ U , the LHS and RHS
are the same. For (5), the constraint is trivial if T ∈ D
(since the RHS is 0); otherwise we have both S and T are
in U and the constraint follows from uS =

∑

i∈S hi − α
and uT =

∑

i∈T hi−α in the new solution. This finishes
the proof of feasibility of the new solution.

Note that each utility variable in the new solution
can only go down from that in the old solution. As
a result, the net gain of expected revenue in the new
solution is at least

∑

S∈E∪E†

σ · Pr[S, σ]−
∑

(T,k)∈G∪G∗∪G†
1
∪G†

2

Pr[T, σ].

Ignoring the common factor of 1−τ+ε and rearranging
the terms, we obtain



σ
∑

S∈E

Pr[S]−
∑

(T,k)∈G∪G∗

Pr[T ]





+



σ
∑

S∈E†

Pr[S]−
∑

(T,k)∈G†
1
∪G†

2

Pr[T ]



 .

The rest of the proof can be found in the full version
[CMPY17], where we show that the first term is positive
if G ∪ G∗ is nonempty and the second term is positive
if G†

1 ∪ G†
2 is nonempty. This shows that the expected

revenue goes up strictly in the new solution. �

Finally we prove the second part of Lemma 4.1.
Lemma 4.1 follows from Lemma 4.4 and 4.7.

Lemma 4.7. In an optimal solution to the relaxed IP,
if z∅ = 0, then it must be Solution 2.

Proof. We show that, when z∅ = 0, every utility variable
in the optimal solution is at least as large as that in
Solution 2, and every allocation variable is at most as
large as that in Solution 2. So for it to be optimal, it
must be exactly the same as Solution 2.

For utilities we first note that u′
S is the same in both

solutions for all S ⊆ [n] since in both we have u′
∅ = 0 and

u′
S =

∑

i∈S hi. Next for each S ∈ D, we have uS = 0
in Solution 2. Finally, for each S ∈ U we have from
constraint (4) that uS ≥ u′

∅+
∑

i∈S hi−α =
∑

i∈S hi−α
in the optimal solution, which is at least as large as uS

in Solution 2. For allocation variables, we first have
x′
S,i = z′S = 1 in both solutions for all S ⊆ [n] and

i ∈ [n]. Next we have xS,i = 1 in both solutions for

all S ⊆ [n] and i ∈ S. For each S ∈ D, we have
xS,i = zS = 0 in both solutions for all i /∈ S. Finally for
each S ∈ U , we have xS,i = zS = 1 in Solution 2 for all
i /∈ S. This finishes the proof of the lemma.�

4.5 Finishing the reduction from COMP∗.

Finally, we show that with an appropriate choice of ε
(with |ε| = o(1/σ) as promised) that can be computed in
polynomial time, we have 1) Solution 2 is strictly better
than Solution 1 if (B,W, t) is a yes-instance of COMP∗;
and 2) Solution 1 is strictly better than Solution 2 if it
is a no-instance.

The expected revenue of Solution 1 is Rev1 = n+σ.
Let t∗ be the number of (n/2)-sets S ⊂ [n] with
∑

i∈S hi ≥ α (recall that (B,W, t) is a yes-instance if
t∗ ≥ t and is a no-instance if t∗ ≤ t − 1) and let R be
the set of all sets S ⊂ [n] with

∑

i∈S hi < α. Then Rev2

of Solution 2 is

(n+ σ + α)
(

(τ − ε) + (1− τ + ε)

×
(

Pr[i > n/2] + t∗ · pn/2 · (1− p)n/2
))

+ (1− τ + ε)
∑

S∈R

Pr[S] ·
∑

i∈S

(hi + 1).

Below we use a = b± c to denote |a− b| ≤ c. The sum
∑

S∈R Pr[S] ·
∑

i∈S(hi + 1) is equal to
∑

i∈[n]

(hi + 1)p−
∑

S/∈R

Pr[S]
∑

i∈S

(hi + 1)

=
∑

i∈[n]

(hi + 1)p±O(2npn/2nh).

Then Rev2 = B−Aε, where A = A′ ±O(σ2npn/2) with

A′ = (n+ σ + α)
(

1− Pr[i > n/2]
)

−
∑

i∈[n]

(hi + 1)p

and A′ = Θ(σ) can be computed efficiently. On the
other hand, we note for B that Pr[i > n/2] ≤ 2npn/2+1

and (n+ σ + α) · (1− τ) = O(α). As a result, we have

B = (n+ σ + α)
(

τ + (1− τ) · t∗ · pn/2 · (1− p)n/2
)

+ (1− τ)
∑

i∈[n]

(hi + 1)p±O(α2npn/2+1).

For convenience we write B as

B = B′ + C ′ · t∗ ±O(α2npn/2+1),

where

B′ = (n+ σ + α)τ + (1− τ)
∑

i∈[n]

(hi + 1)p and

C ′ = (n+ σ + α) · (1− τ) · pn/2 · (1− p)n/2
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can be computed efficiently. Plugging in τ = σ/(σ + α)
and hi = h+ ai, we have (after simplification)

B′ = σ + n−
αn

2(σ + α)
+ (1− τ)p

∑

i∈[n]

ai.

Finally we choose ε to be (recall t is between 1 and
2n; otherwise the problem is trivial)

ε =
1

A′
·



C ′
(

t− (1/2)
)

−
αn

2(σ + α)
+ (1− τ)p

∑

i∈[n]

ai





which can be computed efficiently and (by |A′| = Θ(σ))

|ε| ≤ (1/A′) ·
(

O(αpn/22n) +O(αn/σ)
)

= O(αpn/22n/σ) = o(1/σ).

Plugging in our choice of ε, we finally have

Rev2 − Rev1 = C ′(t∗ − t+ 1/2)±O(α2npn/2+1).

Note that C ′ = Ω(αpn/2) � O(α2npn/2+1). If t∗ ≥ t,
Solution 2 is strictly better than Solution 1; if t∗ ≤ t−1,
Solution 1 is strictly better. This finishes the proof of
Theorem 1.2.

5 Constant Number of Items

In this section we prove Theorem 1.3. Let F = F1×· · ·
×Fk be an instance of the bundle-pricing problem for
some constant number of items k and assume without
loss of generality that |support(Fi)| = m for all i ∈ [k].
In this case, there are mk possible valuation vectors (a
polynomial number), and d = 2k possible distinct bun-
dles (a constant number). The standard IP in this case
has a polynomial number of variables and constraints.
However, Integer Programming is NP-hard, so we will
use a different method to solve the problem in polyno-
mial time. For the rest of this section, we assume two
arbitrary orderings, one for the valuation vectors and
one for the bundles, and we will use vi to denote the
ith valuation vector, and B(j) to denote the jth bundle
and pj to denote its price.

We will argue that we can generate in polynomial
time a set of price vectors p that includes an optimal
one; we can then compute the expected revenue for each
of these vectors and pick the best one. To this end, we
consider a partitioning of the d-dimensional space of
possible price vectors p into cells, such that for all p
in the same cell, the buyer has the same behavior for
every vi, i.e., buys the same bundle, if any. Consider
the following set H of hyperplanes over p.

1. For each valuation vi and bundle B(j), the set H
includes

∑

`∈B(j) vi,` − pj = 0. (If the price vector
p is below the hyperplane, the buyer will not
consider bundle B(j) for valuation vi.)

2. For each valuation vi and each pair of bundles
B(j) and B(j′), the set H includes the hyperplane

∑

`∈B(j)

vi,` − pj =
∑

`∈B(j′)

vi,` − pj′ .

Note that for vi, the buyer prefers B(j) to B(j′) if
p is on one side of the hyperplane, she prefers
B(j′) to B(j) if p is on the other side, and if p lies
on the hyperplane itself then it depends on the
order between the prices pj , pj′ .

3. For each pair of bundles B(j) and B(j′), the set
H includes the hyperplane pj = pj′ .

These hyperplanes partition the space of prices into
cells, where a cell consists of all price vectors that have
the same relation to each of these hyperplanes, i.e., lie
in the same open half-space or on the hyperplane. We
can assume that for a valuation vi and price vector p,
if there is a tie both in utility and in the price between
some bundles, then the buyer selects a bundle according
to some fixed tie-breaking rule, for example she chooses
among the tied bundles the one with the smallest index
(the rule does not matter for the revenue). It follows
from the definition of the set H of hyperplanes, that for
every cell C and every valuation vi there is ki ∈ [d] such
that the buyer selects the same bundle B(ki) for every
price vector p in C, or buys no bundle (if they all have
negative utility). Let VC(j) be the set of valuations for
which the buyer selects bundle B(j) if the price vector
p ∈ C, and let

QC(j) = Pr
[

VC(j)
]

=
∑

vi∈VC(j)

Pr[vi]

be the probability that the buyer selects bundle B(j).
The supremum revenue that the seller can extract for a
price vector p in the cell C, can be computed by solv-
ing the LP of maximizing

∑

j QC(j) · pj , subject to p
belonging to the closure of the cell C, i.e., p satisfying
all the weak inequalities corresponding to the bounding
hyperplanes of C. By LP theory, the maximum value
of the LP is achieved at some vertex; even if the vertex
does not belong to C but is in the closure, the corre-
sponding price vector achieves this expected revenue (by
the maximum price tie breaking rule). The maximum
over all cells C gives the supremum revenue that can be
achieved by any price vector. Thus, the supremum rev-
enue is achieved at some vertex, i.e., at the intersection
of some d hyperplanes of the set H.

Therefore, we can compute an optimal solution by
generating all vertices and picking the best one. For
every subset of d = 2k hyperplanes of H, we solve the
corresponding linear system of equations to check if the
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hyperplanes intersect at a unique point p, and if p is
nonnegative (if a price is negative then p clearly cannot
be optimal). If so, compute the expected revenue of p by
examining each valuation vi and determining the bundle
selected for vi, if any. Choose among these price vectors
p the one that yields the maximum revenue. Since the
set H has a polynomial number of hyperplanes, and the
dimension d = 2k is constant, we only need to consider
a polynomial number of subsets to generate the set of
price vectors p. Because the number of valuations is also
polynomial, it takes polynomial time to compute the
expected revenue of each vector p. Hence the total time
is polynomial. This finishes the proof of Theorem 1.3.

6 Conclusions

In this work we studied the optimal bundle-pricing prob-
lem (or equivalently, the Revenue-Optimal Determinis-
tic Mechanism Design problem). We showed that the
problem is intractable (#P-hard) even when the (in-
dependent) item distributions have support size 2 and
the optimal solution has a very simple form of dis-
counted item-pricing: the seller prices the individual
items and offers also the grand bundle at a (possibly)
discounted price. Another consequence of the results is
that there is no ‘nice’ (easy-to-check) characterization
of when separate item pricing, or grand bundling ex-
tracts the maximum revenue DRev(F) achievable by
any bundle-pricing. On the positive side, we showed
that for i.i.d. distributions with support size 2, the max-
imum revenue Rev(F) achievable by any lottery pricing
can always be achieved by a discounted item-pricing,
and we can compute it in polynomial time. The prob-
lem can be also solved in polynomial time for a constant
number of items.

A number of interesting problems present them-
selves. First, we know from Babaioff et al. [BILW14]
that discounted item-pricing always achieves a constant
fraction (at least 1/6th) of the maximum revenue; what
is the constant that can always be guaranteed with re-
spect to the deterministic and randomized maximum
revenue? Second, we know that we can compute effi-
ciently an optimal item pricing, and it can be shown
that we can also compute an (1− ε)-approximately op-
timal grand bundle price; can we compute efficiently an
(1− ε)-approximately optimal discounted item pricing?
(We believe this is the case.) Third, besides extending
simple item-pricing with the grand bundle, it is more
generally natural to offer discounts on disjoint groups
of items, as in partition mechanisms. How powerful
are such partitioned discounted item-pricings, and can
we compute efficiently an (1−ε)-approximately optimal
solution of this type? Finally, regarding i.i.d. distri-
butions, we know that randomization can increase the

revenue for support size 3 in some cases (an example is
given by Hart and Nisan [HN12]). Are simple schemes
able to extract (approximately) the maximum revenue
DRev(F) achievable by any bundle pricing for general
i.i.d. distributions?
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