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Abstract—We give an adaptive algorithm that tests whether
an unknown Boolean function f : {0, 1}n →{0, 1} is unate (i.e.
every variable of f is either non-decreasing or non-increasing)
or ε-far from unate with one-sided error and Õ(n3/4/ε2) many
queries. This improves on the best adaptive O(n/ε)-query algo-
rithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova

and Seshadhri [1] when 1/ε � n1/4. Combined with the Ω̃(n)-
query lower bound for non-adaptive algorithms with one-sided
error of [2], [3], we conclude that adaptivity helps for the testing
of unateness with one-sided error. A crucial component of our
algorithm is a new subroutine for finding bi-chromatic edges in
the Boolean hypercube called adaptive edge search.

Keywords-property testing; unateness;

I. INTRODUCTION

A Boolean function f : {0, 1}n → {0, 1} is monotone if

every variable of f is non-decreasing, and is unate if every

variable of f is either non-decreasing or non-increasing (or

equivalently, there exists a string r ∈ {0, 1}n such that

g(x) = f(x⊕r) is monotone, where ⊕ denotes the bit-wise

XOR). Both problems of testing monotonicity and unateness

were first introduced in [4]. The goal is to design an algo-

rithm that decides whether an unknown f : {0, 1}n → {0, 1}
has the property being tested or is far from having the

property (see Section II for the formal definition) with as few

queries as possible. After a sequence of developments from

the past few years [5], [6], [7], [8], [9], [10], [2], the query

complexity of non-adaptive algorithms for monotonicity has

been pinned down at Θ̃(n1/2); for adaptive monotonicity

testing, there remains a gap between Õ(n1/2) and Ω̃(n1/3).
The query complexity of testing unateness, however, is less

well-understood.

The seminal work of [4] gave an O(n3/2/ε)-query algo-

rithm for testing unateness of Boolean functions. It proceeds

by sampling O(n3/2/ε) edges1 of {0, 1}n uniformly at ran-

dom and rejects only when it sees a so-called edge violation

— a pair of edges (x, y) and (x′, y′) in the same direction

1A pair of points (x, y) in {0, 1}n is an edge in the Boolean hypercube
if xi �= yi at exactly one coordinate i ∈ [n]. We will refer to i as the
direction of (x, y). An edge (x, y) along direction i is bi-chromatic (in f )
if f(x) �= f(y); it is monotone if it is bi-chromatic and has f(x) = xi; it
is anti-monotone if it is bi-chromatic but not monotone.

such that one is monotone while the other is anti-monotone.

By definition the existence of an edge violation ensures that

the unknown function is not unate and thus, the algorithm

has one-sided error (i.e., it always accepts a unate function);

we refer to such algorithms as one-sided. This algorithm is

also non-adaptive (i.e., all queries can be made at once). For

the correctness, [4] showed that after sampling O(n3/2/ε)
edges an edge violation is found with high probability when

f is ε-far from unate.

Recently [11] obtained the first improvement to the upper

bound of [4] with an O(n log n/ε)-query adaptive, one-sided

algorithm. Later, [12] generalized the algorithm to work for

real-valued functions over the n-dimensional hypergrid, i.e.,

f : [m]n → R. The current best upper bounds for testing the

unateness of Boolean functions are O((n/ε) log(n/ε)) for

non-adaptive algorithms [13], [1], and O(n/ε) for adaptive

algorithms [1] (with a logarithmic advantage). Both algo-

rithms work for real-valued functions and are shown to be

optimal for real-valued functions in [1].

On the lower bound side, [12] was the first to give a lower

bound on testing unateness by showing that a non-adaptive

algorithm with one-sided error must make Ω(
√
n/ε) queries.

Then [2] showed that unateness testing of Boolean functions

requires Ω̃(n2/3) queries for adaptive algorithms with two-

sided error, which implies a polynomial gap between testing

monotonicity and unateness for Boolean functions.2 For non-

adaptive algorithms with one-sided error, [2] and [3] showed

that Ω̃(n) queries are necessary (for some constant ε > 0),

which implies the algorithm of [13], [1] is optimal among

non-adaptive, one-sided algorithms for Boolean functions.

Our Contribution. Generally, the power of adaptivity in

property testing of Boolean functions is not yet well under-

stood. Taking the examples of monotonicity and unateness,

the current best algorithms are both non-adaptive3 (ignoring

polylogarithmic factors); polynomial gaps remain between

known bounds for the complexity of adaptive algorithms.

2The conference version of the paper included a weaker lower bound of
Ω̃(

√
n) for testing unateness. Recently the authors improved it to Ω̃(n2/3)

and have updated its full version available as arXiv:1702.06997.
3For real-valued functions, [1] showed that adaptivity helps by a logari-

thmic factor.
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Adaptive Non-adaptive

Upper bounds Õ(n3/4) (this work) O(n) [1]

Lower bounds Ω̃(n2/3) [2] Ω̃(n) (one-sided) [2], [3]

Figure 1. Current knowledge on upper and lower bounds for testing unateness. We consider the regime where ε = Θ(1).

The main result of this work is an adaptive and one-sided

algorithm with Õ(n3/4/ε2) queries for the unateness testing

of Boolean functions.

Theorem 1. There is an Õ(n3/4/ε2)-query 4, adaptive

algorithm with the following property: Given an ε > 0 and

query access to an unknown f : {0, 1}n → {0, 1}, it always

returns “unate” if f is unate and returns “non-unate”

with probability at least 2/3 if f is ε-far from unate.

Compared to the Ω̃(n) lower bound for non-adaptive and

one-sided algorithms [2], Theorem 1 implies that adaptivity

helps by a polynomial factor for one-sided algorithms. Addi-

tionally, compared to the lower bound of Ω(n/ε) for unate-

ness testing of real-valued functions over {0, 1}n [1], our

result shows that Boolean functions are polynomially easier

to test than real-valued functions. The current known upper

and lower bounds for testing unateness of Boolean functions

with ε = Θ(1) are summarized in the Figure 1.

Our new algorithm is heavily inspired by the work of [7]

where they obtained a directed analogue of an isoperimetric

inequality of Talagrand [14] and employed it to reveal strong

connections between the structure of anti-monotone edges of

a Boolean function and its distance to monotonicity. In par-

ticular, their new inequality implies that when f is far from

monotone, there must exist a highly regular bipartite graph

of certain size that consists of only anti-monotone edges of

f . The analysis of our algorithm relies on this implication.

(See more discussion later in Section I-A.)

A recent work of [15] introduced the notion of “rounds”

of adaptivity to quantify the degree of adaptivity used by a

property testing algorithm. We notice that our algorithm can

be implemented using only two rounds of adaptivity.

A. Binary search versus adaptive edge search

We give some high-level ideas behind our main algorithm.

First, it outputs “non-unate” only when an edge violation is

found and thus, it is one-sided and our analysis focuses on

showing that, given a function that is ε-far from unate, the

algorithm finds an edge violation with high probability.

Recall that an edge violation occurs when a pair of bi-

chromatic edges collide, i.e., they are in the same direction i
but one is monotone and the other is anti-monotone. Thus, an

algorithm may proceed by designing a subroutine for finding

4See (4) for the hidden polylogarithmic factor; we have made no effort
to optimize the polynomial dependence on logn and log(1/ε).

bi-chromatic edges and invoking it multiple times in hopes

of finding a collision. A subroutine for finding bi-chromatic

edges that has been widely used in Boolean function prop-

erty testing (e.g., [16], [9], [11]) is binary search (see an

illustration in Figure 2):

1) Find x, y ∈ {0, 1}n with f(x) �= f(y), and let

S = {i ∈ [n] : xi �= yi}.
2) Pick a subset S′ ⊂ S of size |S|/2, let z = x(S′),5

and query f(z).

3) If f(z) = f(x), let x ← z; if f(z) = f(y), let

y ← z. Repeat until (x, y) is an edge.

Clearly, the above procedure, when initiated with x, y: f(x)
�= f(y), will always return a bi-chromatic edge along some

direction i ∈ S with O(log n) many queries. One can choose

to randomize the subroutine by drawing x and y uniformly

at random at the beginning and then drawing the subset S′

uniformly at random from S in each round. Given an f , the

binary search subroutine naturally induces a distribution over

bi-chromatic edges of f . A high-level question is: Can one

analyze this distribution for functions f that are ε-far from

unate? Can this strategy yield better algorithms for finding

an edge violation?

While we do not analyze the binary search subroutine as

described above in this paper, we introduce a new kind of

edge search strategy, which we call adaptive edge search and

denote by AE-SEARCH. It is a crucial component of our al-

gorithm and allows for a relatively straightforward analysis.

It takes two inputs, a point x ∈ {0, 1}n and a nonempty set

S ⊆ [n], 6 and aims to find a bi-chromatic edge (x, x(i)) for

some i ∈ S (using O(log n) queries only). The subroutine

AE-SEARCH proceeds as follows:

1) Sample L = O(log n) subsets T1, . . . , TL ⊂ S of

size |S|/2 uniformly, and query each f(x(T�)).

2) Consider all T�’s with f(x(T�)) �= f(x). If the

intersection of such T�’s consists of exactly one index

i ∈ S, query f(x(i)) and output i if f(x(i)) �= f(x)
(meaning that a bi-chromatic edge (x, x(i)) along

direction i has been found); otherwise return “fail.”

5We use x(S′) ∈ {0, 1}n to denote the point obtained from x by flipping
its coordinates in S′; we also write x(i) for x({i}).

6It is not important for the moment but later we will always choose the
size of S to be smaller than

√
n.
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Figure 2. Pictorial representation of one step of the binary search strategy
for finding an bi-chromatic edge. The hypercube {0, 1}n is represented as
the diamond. Points x and y are given with f(x) = 0 and f(y) = 1, and
a particular path represents flipping variables in S one at a time. Finally,
z = x(S′) corresponds to picking some z between x and y; in this case,
f(z) = 1, so y would be updated to z.

See Figure 3 for a pictorial representation of AE-SEARCH.

While AE-SEARCH does not always returns a bi-chromatic

edge (unlike the binary search), its behavior is much easier

to analyze. Informally, when (x, x(i)) is a bi-chromatic edge

and i ∈ S (otherwise AE-SEARCH can never return i), we

show that AE-SEARCH(x, S) returns i with high probability

if (1) most T ⊂ S of size |S|/2 with i /∈ T have f(x(T )) =
f(x), and (2) most T ⊂ S of size |S|/2 with i ∈ T have

f(x(T )) = f(x(i)) �= f(x). (See Figure 3.)

With the adaptive edge search in hand, the proof of Theo-

rem 1 proceeds in two steps. For the first step, we show that

when f is far from unate, there must be “many” bi-chromatic

edges (x, x(i)) such that running AE-SEARCH on x paired

with a random set S ⊂ [n] containing i would lead to the

discovery of (x, x(i)) with high probability. There are a lot

of technical details hidden in the word “many”: (i) subsets

S ⊂ [n] of different sizes contribute differently (intuitively,

the larger S is, it is more likely for S to contain i when S is

drawn from [n] uniformly at random); (ii) we need to balance

the contribution from monotone and anti-monotone edges in

the same direction by taking their minimum. Intuitively, it

will not help us find an edge violation if AE-SEARCH works

well over many bi-chromatic edges along a direction i, but

all these edges turn out to be monotone. Following the high-

level discussion above, we formally introduce the notion of

SCORE
+
i and SCORE

−
i for a Boolean function in Section IV

(to measure the performance of AE-SEARCH) and show that

∑

i∈[n]

min
{

SCORE
+
i , SCORE

−
i

}
= Ω̃(ε2), (1)

when f is ε-far from unate. The proof of (1) is omitted here

and can be found in the full version of this paper. It heavily

relies on the directed isoperimetric inequality of [7] and its

combinatorial implications for functions far from monotone.

In the second step of the proof, we present an algorithm

that keeps calling AE-SEARCH (strategically) and show that

it finds an edge violation with high probability, given (1). At

a high level, it starts by sampling an S ⊂ [n] of certain size

and a sequence of M points {xi} from {0, 1}n. Then it runs

AE-SEARCH(xi, S) for each i and keeps the directions of

monotone edges found in set A. Next it samples M subsets

Ti ⊆ S of certain size and M points {yi} and use them to

run AE-SEARCH(yi, Ti) for each i. Similarly, it keeps the

directions of anti-monotone edges found in B. Finally, the

algorithm outputs “non-unate” if A ∩ B �= ∅, i.e., an edge

violation is found; otherwise, it outputs “unate”.

The tricky part is the choices of sizes of sets S and Ti

as well as the parameter M . For technical reasons our algo-

rithm is split into two cases, depending on how the Ω̃(ε2) in

(1) is achieved, e.g., what scale of min{SCORE
−
i , SCORE

+
i }

contributes the most in the sum. The parameters are chosen

differently in the two cases (case 2 needs one more param-

eter K) and their proofs use slightly different techniques.

Organization. We introduce the AE-SEARCH subroutine

in Section III. Next we introduce the notion of scores and

state (1) in Lemma 2 in Section IV. We present the algorithm

and its analysis in Section V, assuming Lemma 2. The proof

of Lemma 2 can be found in the full version of the paper.

II. PRELIMINARIES

We reserve bold font letters such as T and x for random

variables. Given n ≥ 1, we write [n] to denote {1, . . . , n}.

Given a point x in the Boolean hypercube {0, 1}n and S ⊂
[n], we let x(S) denote the string obtained from x by flipping

each entry xi with i ∈ S. When S = {i} is a singleton, we

write x(i) instead of x({i}) for convenience. Given x and y
in {0, 1}n, x⊕ y ∈ {0, 1}n denotes their bit-wise XOR.

We define the distance between two Boolean functions f
and g : {0, 1}n → {0, 1} using the uniform distribution:

dist(f, g) := Pr
x∼{0,1}n

[
f(x) �= g(x)

]
.

The distance of a function f to unateness is then defined as

the minimum value of dist(f, g) over all unate functions g.

We say f is ε-far from unate if its distance to unateness is

at least ε, or equivalently, dist(f, g) ≥ ε for all unate g.

We say that an algorithm tests the unateness of Boolean

functions if, given ε and query access to a Boolean function

f , (1) it ouputs “unate” with probability at least 2/3 when f
is unate; and (2) it outputs “non-unate” with probability at

least 2/3 when f is ε-far from unate. We say the algorithm

is one-sided if it always outputs “unate” when f is unate.

Recall that an edge violation of unateness for f consists of

two bi-chromatic edges along the same direction, one being

monotone and the other being anti-monotone. All algorithms

discussed in this paper output “non-unate” only when an

edge violation is found among the queries they made. We

commonly refer to edge violations simply as violations.
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x(i)

x(S)

x(T�)’s

x(T�)’s

x(S\{i})

Figure 3. Pictorial representation of the adaptive edge search subroutine,
AE-SEARCH(x, S), for finding a bi-chromatic edge. We consider the case
when (x, x(i)) is a bi-chromatic edge in the direction i with f(x) = 0 and
i ∈ S. The two sub-cubes in the picture above correspond to points that
agree with x outside of S \ {i}, and points that agree with x(i) outside of
S \ {i}, respectively. The points x(T�) sampled in AE-SEARCH(x, S) lie
in one of the sub-cubes according to whether i ∈ T� or not. Under certain
conditions one can show that with high probability, all sets T�’s satisfying
f(x(T�)) = 1 lie in the right sub-cube and furthermore, their intersection
is exactly {i}. In this case, AE-SEARCH(x, S) returns i.

The total influence If of a Boolean function f is the num-

ber of bi-chromatic edges of f divided by 2n. We combine

a lemma from [7] and a unateness testing algorithm of [1]

to find an edge violation in a function of high total influence

using Õ(
√
n) queries only. The proof is omitted, and can be

found in the full version of the paper.

Lemma 1. There is an Õ(
√
n)-query and non-adaptive

algorithm that, given any function f : {0, 1}n → {0, 1}
with If > 6

√
n, finds an edge violation of f to unateness

with probability at least 2/3.

Given Lemma 1, it suffices for us to give an Õ(n3/4/ε2)-
query algorithm that can find a violation in any function that

is ε-far from unate and satisfies If ≤ 6
√
n.

III. ADAPTIVE EDGE SEARCH

In this section, we introduce a subroutine called adaptive

edge search (i.e., AE-SEARCH) which will be heavily used

in our main algorithm for testing unateness. We present the

subroutine in Figure 4. It has query access to a Boolean func-

tion f : {0, 1}n → {0, 1} and takes two inputs: x ∈ {0, 1}n
is a point in the hypercube and S ⊆ [n] is a nonempty set

of even size.

Subroutine AE-SEARCH(x, S)
Input: Query access to f : {0, 1}n → {0, 1}, a point

x ∈ {0, 1}n, and a nonempty set S ⊆ [n] of even size.

Output: Either an i ∈ S with f(x(i)) �= f(x), or “fail.”

1) Query f(x) and set b ← f(x).

2) If |S| = 2, pick one coordinate i ∈ S uniformly at

random. Query f(x(i)) and return i if f(x(i)) �= b;
otherwise return “fail.”

3) Sample L = �4 log n� subsets T1, . . . ,TL ⊂ S of

size |S|/2 uniformly at random. Query f(x(T�)) and

set the output to be b� for each �. Let C ⊂ S where

C =
⋂

�∈[L] : b� �=b

T�

(C = ∅ by default if b� = b for all �). If C = {i}
for some index i, query f(x(i)) and return i if

f(x(i)) �= b; otherwise return “fail.”

Figure 4. Description of the adaptive edge search subroutine.

The goal of AE-SEARCH(x, S) is to find an index i ∈ S
such that (x, x(i)) is a bi-chromatic edge in f . It returns an

index i ∈ S if it finds one (note that AE-SEARCH always

checks and makes sure that (x, x(i)) is bi-chromatic before it

outputs i), or returns “fail” if it fails to find one (which does

not necessarily mean that none of the edges (x, x(i)), i ∈ S,

are bi-chromatic). While a naive search would consider each

i ∈ S and query each f(x(i)), as well as f(x), incurring a

cost of |S|+1 queries that can be expensive when S is large,

AE-SEARCH(x, S) only uses L+ 2 = O(log n) queries, as

we set L = �4 log n� in Figure 4. We record the following

simple observation that follows easily from the description

of AE-SEARCH.

Fact 1. AE-SEARCH(x, S) makes O(log n) queries and

returns either an index i or “fail.” Whenever it returns an

i, we have i ∈ S and (x, x(i)) is a bi-chromatic edge in f .

We analyze the performance of AE-SEARCH in detail in

the full version (as part of the proof of Lemma 2 that we

omit). Informally, we show that under the assumption that f
is far from unate, AE-SEARCH(x, S) succeeds in finding a

bi-chromatic edge (x, x(i)) for some i ∈ S for “many” input

pairs (x, S) with high probability. This is summarized using

the notion of scores (see the next section) in Lemma 2.

IV. SCORES

In this section, we use AE-SEARCH to introduce the no-

tion of scores for monotone and anti-monotone edges of a

Boolean function f . We start with some notation.

Consider a fixed Boolean function f : {0, 1}n → {0, 1}.

For each i ∈ [n], let E+
i denote the set of monotone edges

in direction i and E−
i denote the set of anti-monotone edges
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in direction i. Let

Λ =

⌊
log2

( √
n

log n

)⌋
= Θ(logn)

be a parameter which will be used in the rest of the paper.

Given i ∈ [n] and j ∈ [Λ], we let

Pi,j =
{
S ⊂ [n] \ {i} : |S| = 2j − 1

}
.

We need the following definitions:

Definition 1 (Good pairs). Let (x, x(i)) be a monotone

edge in E+
i for some i ∈ [n] and let S be a set in Pi,j for

some j ∈ [Λ]. We say (x, S) is a good pair for E+
i if

AE-SEARCH(x, S ∪ {i}) returns i with probability at least

1/2 (i.e., running the adaptive edge search subroutine over

x and S ∪ {i} would help us discover the monotone edge

(x, x(i)) in E+
i with probability at least 1/2).

By definition (x, S) can be a good pair for E+
i only if the

edge (x, x(i)) is monotone. On the other hand, if (x, x(i)) is

monotone then (x, S) is always a good pair for all S ∈ Pi,1.

This simply follows from the fact that, since |S ∪ {i}| = 2,

AE-SEARCH(x, S∪{i}) will pick i with probability 1/2 on

line 2 and find the monotone edge (x, x(i)).
Next we use good pairs to define strong points.

Definition 2 (Strong points). A point x ∈ {0, 1}n with

(x, x(i)) ∈ E+
i is said to be j-strong (or a j-strong point)

for E+
i , for some j ∈ [Λ], if (x, S) is a good pair for E+

i

for at least 3/4 of S ∈ Pi,j .

Consider an x that is j-strong for E+
i . If we sample a set

S from Pi,j uniformly and run AE-SEARCH(x,S∪{i}), we

will discover (x, x(i)) ∈ E+
i with probability (3/4)(1/2) =

3/8. Note that if (x, x(i)) is monotone, then x is always

1-strong. We also extend both definitions of good pairs and

strong points to E−
i , so we may consider a good pair (x, S)

for E−
i as well as a point x which is j-strong for E−

i , when

(x, x(i)) ∈ E−
i is an anti-monotone edge.

For each i ∈ [n] and j ∈ [Λ], let SCORE
+
i,j be the fraction

of points that are j-strong for E+
i :

SCORE
+
i,j =

number of j-strong points for E+
i

2n
∈ [0, 1].

Intuitively, the higher SCORE
+
i,j is, it becomes easier to find

a monotone edge in direction i using AE-SEARCH with 2j-

sized sets (|S ∪ {i}| = 2j) without using too many queries.

Finally we define SCORE
+
i for each i ∈ [n] as (recall that

we have 2j ≤ √
n/ log n by the choice of Λ)

SCORE
+
i = max

j∈[Λ]

{
SCORE

+
i,j ·

2j√
n

}
∈ [0, 1]. (2)

Note that SCORE
+
i,j’s are adjusted in (2) by weights 2j/

√
n

before taking the maximum. Roughly speaking, this is done

to reflect the fact that with the same SCORE
+
i,j , the larger j

is, the easier it becomes to find an edge in E+
i using sets of

size 2j in AE-SEARCH. Consider a point x ∈ {0, 1}n that is

j-strong for E+
i . As noted earlier, if an algorithm draws S

∼ Pi,j uniformly and runs AE-SEARCH(x,S∪ {i}), it will

discover (x, x(i)) with probability at least 3/8. However, the

situation we will encounter later is that the algorithm only

knows j but not i. So from the algorithm’s perspective, the

point x has a bi-chromatic edge (x, x(i)), for some i, but it

does now know which i it is. A natural attempt is then to run

AE-SEARCH(x,S′) with an S′ of size 2j sampled from [n]
uniformly at random, with the hope that 1) S′ contains i and

2) S′ \ {i} ∈ Pi,j forms a good pair with x. As j increases,

it becomes easier for S′ ∼ [n] to contain the unknown index

i. This is the reason why the weight grows as j grows.

We also extend the scores to SCORE
−
i,j , SCORE

−
i for E−

i .

A. Plan for the proof of Theorem 1

Let f : {0, 1}n → {0, 1} be a Boolean function that is ε-
far from unate. Our goal is to present an Õ(n3/4/ε2)-query

algorithm which finds an edge violation of f with probability

at least 2/3. By Lemma 1, we may assume without loss of

generality that f in addition satisfies If ≤ 6
√
n.

We rely on the following technical lemma for the scores

of f . Its proof can be found in the full version of the paper.

Lemma 2. If f : {0, 1}n → {0, 1} is ε-far from unate and

satisfies If ≤ 6
√
n, then we have

n∑

i=1

min
{

SCORE
+
i , SCORE

−
i

}
≥ Ω

(
ε2

log8 n

)
. (3)

We present our Õ(n3/4/ε2)-query (adaptive) algorithm in

the next section and show that, given any f that satisfies (3),

it finds an edge violation of f with probability at least 2/3.

V. MAIN ALGORITHM AND ITS ANALYSIS

We describe our main algorithm and show that, given any

function f : {0, 1}n → {0, 1} that satisfies (3), it uses

O

(
n3/4

ε2
· log16 n · log2(n/ε)

)
= Õ(n3/4/ε2) (4)

queries and finds a violation with probability at least 2/3.

A. Preparation: Bucketing scores

We start with some preparation for the algorithm. First we

use standard bucketing techniques to make (3) easier to use

(while only losing a polylogarithmic factor in the sum).

Recall that

SCORE
+
i = max

j∈[Λ]

{
SCORE

+
i,j ·

2j√
n

}
and

SCORE
−
i = max

j∈[Λ]

{
SCORE

−
i,j ·

2j√
n

}
.
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We will say that the ith direction is of type-(t, r), for some

t, r ∈ [Λ], if we have

SCORE
+
i = SCORE

+
i,t ·

2t√
n
, and

SCORE
−
i = SCORE

−
i,r ·

2r√
n
.

Since Λ = O(log n), there are only O(log2 n) types. By (3)

we know that there is a pair (t, r) such that

∑

i:type-(t, r)

min
{

SCORE
+
i , SCORE

−
i

}
= Ω

(
ε2

log10 n

)
. (5)

In the rest of the section, we fix such a type (t, r). (Looking

ahead, we may assume that our algorithm knows (t, r) as it

can afford to try all O(log2 n) possible pairs of (t, r).)
Let I∗ ⊆ [n] be the set of all type-(t, r) directions. We

next divide I∗ into �2 log(n/ε)� buckets according to

min
{

SCORE
+
i , SCORE

−
i

}
.

An i ∈ I∗ lies in the k-th bucket if it satisfies

1

2k
≤ min

{
SCORE

+
i , SCORE

−
i

}
≤ 1

2k−1
.

Note that some i ∈ I∗ may not lie in any bucket when

min
{

SCORE
+
i , SCORE

−
i

}
≤ ε2/n2;

however, all such i ∈ I∗ in total contribute at most O(ε2/n)
to the LHS of (5), which is negligible compared to its RHS.

Since k has �2 log(n/ε)� = O(log(n/ε)) possibilities, there

exists an h such that
∑

i∈I∗: bucket h

min
{

SCORE
+
i , SCORE

−
i

}

is at least

Ω

(
ε2

log10 n · log(n/ε)

)
. (6)

We fix such an h in the rest of the section (due to the same

reason we may assume that the algorithm knows h), and let

I ⊆ I∗ be the indices of I∗ in bucket h.

To simplify the notation, we let H = 2h and

ε̃2 =
cε2

log10 n · log(n/ε)
,

where we use ε̃ to hide the polylogarithmic factor in ε and

n, and c is some constant which ensures
∑

i∈I

min
{

SCORE
+
i , SCORE

−
i

}
≥ ε̃2.

Given that H = 2h, we have

1/H ≤ min
{

SCORE
+
i , SCORE

−
i

}
≤ 2/H

for each i ∈ I , and |I| · (2/H) ≥ ε̃2 from (6). This implies

H ≤ 2|I|/ε̃2 = O(n/ε̃2)

since |I| ≤ n. Moreover, using

1/H ≤ SCORE
+
i = SCORE

+
i,t · (2t/

√
n) ≤ 2t/

√
n,

we have H2t ≥ √
n and similarly, H2r ≥ √

n.

We summarize the discussion with the following lemma.

Lemma 3. Suppose that f satisfies (3). Then there exist

t, r ∈ [Λ], H = O(n/ε̃2) as a power of 2 with H2t, H2r

≥ √
n, and a nonempty I ⊆ [n] of size |I| ≥ Hε̃2/2 such

that every i ∈ I satisfies

min
{

SCORE
+
i , SCORE

−
i

}

= min

{
SCORE

+
i,t ·

2t√
n
, SCORE

−
i,r ·

2r√
n

}
∈
[
1

H
,
2

H

]
.

B. Preparation: Informative sets

We introduce more notation and then state Lemma 4 that

will be heavily used in the analysis of the main algorithm.

We defer the proof of Lemma 4 to Subsection V-F. Below

t, r and H are considered as fixed parameters, and I is a set

of indices that satisfies the condition of Lemma 3. We further

assume that t ≥ r; all our discussion below holds when t < r
by switching the roles of t and r (and E+

i and E−
i ). We start

with some useful notation related to good pairs.

Recall (x, S) is a good pair for E+
i (or E−

i ) if (x, x(i)) is

a monotone edge (or anti-monotone edge, respectively) and

AE-SEARCH(x, S ∪ {i}) returns i with probability at least

1/2. Given an S ∈ Pi,j , let

GOOD-SET
+
i (S) =

{
x : (x, S) is a good pair for E+

i

}
,

GOOD-SET
−
i (S) =

{
x : (x, S) is a good pair for E−

i

}
.

We also use

GOOD-FRAC
+
i (S) =

|GOOD-SET
+
i (S)|

2n
and

GOOD-FRAC
−
i (S) =

|GOOD-SET
−
i (S)|

2n

to denote the fractions.

Recall x ∈ {0, 1}n is j-strong for E+
i (or E−

i ) if (x, S) is

a good pair for E+
i (or E−

i ) for at least 3/4 of sets S ∈ Pi,j .

Given an i ∈ I , we let STRONG
+
i denote the set of t-strong

points for E+
i , and let STRONG

−
i denote the set of r-strong

points for E−
i . By Lemma 3, we have

SCORE
+
i,t =

|STRONG
+
i |

2n
≥

√
n

H · 2t and (7)

SCORE
−
i,r =

|STRONG
−
i |

2n
≥

√
n

H · 2r .

We define the following two parameters α and β, which

will be very important for the algorithm:

α =
|I| · 2t

n
and β =

|I| · 2r
n

.
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They measure the expectations of |I ∩S| and |I ∩T|, when

S is a random subset of [n] of size 2t and T is a subset of

[n] of size 2r, both drawn uniformly at random.

Finally we introduce the notion of informative sets.

Definition 3 (Informative Sets). We say a set S ∈ Pi,t for

some i ∈ I is informative for the ith coordinate if both of

the following two conditions hold:

1) GOOD-FRAC
+
i (S) ≥ 0.1 · ε̃2/(α√n); and

2) GOOD-FRAC
−
i (T ) ≥ 0.1 · ε̃2/(β√n) for at least

0.1-fraction of (2r − 1)-sized subsets T of S. We

refer to T ∪ {i} as an i-revealing set when T has

GOOD-FRAC
−
i (T ) ≥ 0.1 · ε̃2/(β√n).

Additionally, we say the set S ∪ {i} is i-informative if S is

informative for the ith coordinate.

To gain some intuition, if the algorithm is given S ∈ Pi,t

for some i ∈ I that is informative for the ith coordinate, it

can use S and i to find a violation along i as follows:

1) Sample O(α
√
n/ε̃2) points x ∈ {0, 1}n uniformly

and run AE-SEARCH(x, S ∪ {i}).
2) Sample a subset T ⊆ S of size 2r − 1, sample

O(β
√
n/ε̃2) points y ∈ {0, 1}n uniformly at

random, and then run AE-SEARCH(y,T ∪ {i}).
We get a violation if we find a monotone edge in direction i
in step 1 and an anti-monotone edge in direction i in step 2.

By Definition 3, this occurs with probability Ω(1). Now of

course the algorithm does not have knowledge of S and i,
so we need to incorporate other ideas; however, the intuition

is that informative sets can help reveal edge violations of f
efficiently using the AE-SEARCH subroutine.

The key will be to show that there are many informative

sets for each i ∈ I , which we do in the following lemma

using standard averaging arguments, but delay its proof to

Section V-F.

Lemma 4. For each i ∈ I , at least 1/8 of sets S ∈ Pi,t

are informative for the ith coordinate.

C. Cases of the main algorithm

We are now ready to describe the main algorithm (which

is one-sided and returns “non-unate” only when it finds an

edge violation of unateness). As mentioned earlier we focus

on the case when f satisfies (3) and show that for any such f ,

the algorithm finds an edge violation with probability at least

2/3. We assume that the algorithm knows all the parameters

r, t and H from Lemma 3 (algorithmically, we just try all

possibilities for these parameters, which will incur a factor

of O(log2 n · log(n/ε)) in the final query complexity). Let

I ⊆ [n] be the set promised in Lemma 3 (note that algorithm

has no knowledge about I). We also assume that t ≥ r; if

not one can switch the roles of monotone and anti-monotone

edges by running the algorithm on g(x) = f(x⊕ 1n).

Subroutine Alg-Case-1, handling the case α ≥ log2 n
Input: Query access to f : {0, 1}n → {0, 1}
Output: Either “unate,” or two edges that form a violation.

Repeat the following O(1) times:

1) Sample uniformly an S of size 2t from [n].

2) Repeat M times:

– Sample an x ∈ {0, 1}n uniformly at random

and run AE-SEARCH(x,S).

3) Let A be the set of i ∈ [n] such that a monotone

edge in direction i is found.

4) Repeat M times:

– Sample uniformly a subset T ⊆ S of size 2r

and y ∈ {0, 1}n, and run AE-SEARCH(y,T).

5) Let B be the set of i ∈ [n] such that an

anti-monotone edge in direction i is found.

6) If A ∩B �= ∅, output an edge violation found.

If no edge violation is found on line 6, output “unate.”

Figure 5. Description of Alg-Case-1 for Case 1 of the algorithm.

The algorithm is divided into two cases: α ≥ log2 n and

α < log2 n. In each case, we present an algorithm, analyze

its query complexity, and show that it finds an edge violation

with high probability for this case. Although the algorithm

does not know the exact value of α, it can simply run both,

which incurs another factor of 2 in the query complexity.

D. Case 1: α ≥ log2 n

In this case, we expect a random set S of size 2t to have

intersection with (the unknown) I of size at least log2 n. The

algorithm, Alg-Case-1, is presented in Figure 5 with the

following parameter:

M =

⌈√
αn

ε̃2
· log3 n

⌉
.

Fact 2 (Query complexity). The number of queries used

by Alg-Case-1 is (using α ≤ √
n)

O(1) · 2M ·O(log n) = O

(√
αn · log4 n

ε̃2

)

= O

(
n3/4 · log14 n · log(n/ε)

ε2

)
.

Correctness: Below we show that Alg-Case-1 finds

a violation with high probability. We split the proof into two

lemmas. The first one, Lemma 5, shows that each time we

sample S at the beginning of an iteration, a certain condition

for S holds with constant probability. The second, Lemma 6,

874



shows that when S satisfies this condition, the algorithm can

find a violation with high probability in that iteration.

Lemma 5. Let S be a subset of size 2t sampled from [n]
uniformly at random, and let IS ⊆ I ∩ S be the set of

i ∈ I ∩ S such that S is i-informative. Then we have

α/10 ≤ |IS| ≤ 4α

with probability Ω(1).

Proof: Recall that α is the expected size of I ∩S. As a

result of α ≥ log2 n, the fraction of S ⊂ [n] of size 2t with

|S ∩ I| > 4α is at most exp(−Ω(log2 n)). Let

S =
{
S ⊂ [n] : |S| = 2t and |S ∩ I| ≤ 4α

}
.

We define a bipartite graph H∗: vertices on the two sides

correspond to I and S; (i, S) is an edge if S is i-informative.

By Lemma 4, the degree of each i ∈ I is at least

1

8
|Pi,t| − exp

(
−Ω(log2 n)

)(n

2t

)
≥ 1

9
|Pi,t| =

1

9

(
n− 1

2t − 1

)

Let γ denote the fraction of S ∈ S (among S) with degree at

least α/10 in H∗. On the one hand, the number of edges in

H∗ is at least (counting from the I-side; using |S| ≤
(
n
2t

)
)

|I| · 1
9
·
(
n− 1

2t − 1

)
≥ 1

9
· |I| · 2

t

n
· |S| = 1

9
· α|S|.

On the other hand, the number of edges is at most (counting

from the S-side)

γ|S| · 4α+ (1− γ)|S| · (α/10) = α|S| ·
(
39γ

40
+

1

10

)
.

As a result, γ = Ω(1). Since S consists of (1−o(1))-fraction

of all sets S ⊂ [n] of size 2t, the set S sampled in Step 1 of

Alg-Case-1 lies in S and has degree between α/10 and

4α with probability at least Ω(1).

Lemma 6. Suppose Alg-Case-1 samples a set S, and

let IS ⊆ I ∩ S be the set of i such that S is i-informative.

If α/10 ≤ |IS | ≤ 4α, then Alg-Case-1 finds an edge

violation with probability 1− o(1) in that iteration.

The proof of the lemma is divided into simple claim. We

consider a fixed S ⊂ [n] of size 2t such that α/10 ≤ |IS | ≤
4α. We let Alg-Case-1 run up to Step 3, and let

λ = |A ∩ IS |.
Claim 1. After M iterations of Step 2 in Alg-Case-1,

λ ≥ √
α with probability 1− o(1).

Proof: Divide the M iterations into
√
α batches, each of

M/
√
α = Ω

(√
n

ε̃2
· log3 n

)
(8)

rounds of Step 2. For batch �, we let X� denote the indicator

random variable for the event that at the beginning of the �th

batch, |A ∩ IS | <
√
α, and the �th batch fails to discover a

monotone edge along a new direction i in IS \A. We prove

that all X� are 0 with probability 1− o(1). The lemma then

follows, since when all X� are 0, we have either (1) one of

the X� is 0 because |A∩ IS | ≥
√
α at the beginning of the

�th batch, in which case we are done, or (2) every X� is 0
because a new direction is discovered in the �th batch, from

which we can also conclude that |A∩ IS | ≥
√
α at the end.

Suppose that at the start of the �th batch, |A∩ IS | <
√
α.

Then consider the auxiliary bipartite graph H∗: vertices on

the left-hand side consist of all points x ∈ {0, 1}n; vertices

on the right-hand side consist of indices of IS ; an edge (x, i)
is present if x and S \ {i} forms a good pair for E+

i .

Notice that every vertex on the right-hand side has degree

at least 0.1 · ε̃2/(α√n) ·2n and every vertex on the left-hand

side has degree at most 2 (because (x, i) is an edge only if

AE-SEARCH(x, S) returns (x, x(i)) with probability at least

1/2). Thus, the fraction of points on the left-hand side which

are connected to at least one vertex on right-hand side that

is currently not in A is at least

(
|IS | −

√
α
)
· 0.1 · ε̃

2

α
√
n

· 1
2
≥ |IS |

2
· 0.1 · ε̃

2

α
√
n

· 1
2
= Ω

(
ε̃2√
n

)
.

By (8), we discover a new index in IS during the ith batch

with probability at least 1− exp(−Ω(log3 n)). We can then

apply a union bound over the
√
α ≤ n1/4 batches.

Assume that at the end of Step 3, we have obtained set A
with λ = |A∩ IS | ≥

√
α. We move on to prove that in Step

4, we will discover an anti-monotone edge which, together

with a monotone edge from Step 2, forms an edge violation.

We divide the proof into two cases. The first two claims

correspond to the case when β ≥ α log2 n/λ, and the next

two claims correspond to the case when β < α log2 n/λ.

Claim 2. Suppose β ≥ α log2 n/λ. Let A be a fixed set

after running up to Step 4 of Alg-Case-1 satisfying

|A ∩ IS | = λ ≥ √
α. Then with probability at least Ω(1)

over the draw of a 2r-sized random subset T of S, the

number of indices i ∈ A ∩ IS such that T is i-revealing

is at least β/(100
√
α).

Proof: First we let T denote the following set:

T =
{
T ⊆ S : |T | = 2r and |T ∩A ∩ IS | ≤ 4λ · β/α

}
.

The expectation of |T∩A∩ IS | when T is a random subset

of S of size 2r is at most λ · β/α. Since λ · β/α ≥ log2 n
(by assumption), T consists of all but an exp(−Ω(log2 n))-
fraction of subsets of S of size 2r.

Next, consider a bipartite graph H∗: vertices on the LHS

correspond to i ∈ A∩IS ; vertices on the RHS correspond to

T ∈ T ; (i, T ) is an edge if T is i-revealing. Since i ∈ A∩IS ,

S is i-informative and thus, the degree of each i is at least

0.1

(
2t − 1

2r − 1

)
− exp

(
−Ω(log2 n)

)(2t

2r

)
≥ 1

20

(
2t − 1

2r − 1

)
.
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We show below that many sets T ∈ T have degree at least

λβ/(100α). To this end, we let γ be the fraction of T ∈ T
on the RHS which have degree at least λβ/(100α) (among

all 2r-subsets of S). Then

γ

(
2t

2r

)
4λβ

α
+ (1− γ)

(
2t

2r

)
λβ

100α
≥ λ

1

20

(
2t − 1

2r − 1

)
.

As 2t/2r = α/β, canceling the factors we obtain γ = Ω(1).
This shows that at least Ω(1)-fraction of the 2r-subsets of S
have degree at least λβ/(100α) ≥ β/(100

√
α).

Claim 3. Suppose that β ≥ α log2 n/λ and |A ∩ IS | = λ
≥ √

α. After M iterations of Step 4 in Alg-Case-1, we

have A ∩B �= ∅ with probability at least 1− o(1).

Proof: Note that with probability Ω(1), we have

|T ∩A ∩ IS | ≥ β/(100
√
α).

Similar to the proof of Claim 1, we let H∗ denote a bipartite

graph: vertices on the LHS correspond to points x ∈ {0, 1}n;

vertices on the RHS correspond to indices i ∈ T ∩A ∩ IS ;

(x, i) are connected if (x, T \ {i}) forms a good pair for

E−
i . Note that each i on the RHS has degree at least

0.1 · ε̃2/(β√n) · 2n;

each x on the LHS has degree at most 2. Hence the fraction

of points on the left-hand size which are connected to points

on the right-hand side is at least

β

100
√
α
· 0.1 · ε̃

2

β
√
n

· 1
2
= Ω

(
ε̃2√
αn

)
.

By our choice of M , Alg-Case-1 finds an edge violation

with probability at least 1− o(1).

This finishes the case of β ≥ α log2 n/λ. Next we work

on the case when β < α log2 n/λ.

Claim 4. Suppose β < α log2 n/λ. Let A be a fixed set

after running up to Step 4 of Alg-Case-1 satisfying

|A ∩ IS | = λ ≥ √
α. Then with probability at least

Ω(β/(
√
α log2 n) over the draw of a 2r-sized random

subset T of S, there is at least one index i ∈ A ∩ IS
such that T is i-revealing.

Proof: First we let T denote the following set:

T =
{
T ⊂ S : |T | = 2r and |T ∩A ∩ IS | ≤ 4 log2 n

}
.

As |A∩ IS | = λ, the expectation of |A∩ IS ∩T| when T is

a random 2r-subset of S is at most λβ/α < log2 n. Thus, T
consists of all but an exp(−Ω(log2 n))-fraction of subsets of

S of size 2r.

We consider a bipartite graph H∗: vertices on its LHS are

indices i ∈ A∩IS ; vertices on its RHS are sets T ∈ T ; (i, T )

is an edge if T is i-revealing. Note that since i ∈ A∩ IS , S
is i-informative and thus, the degree of each i is at least

0.1

(
2t − 1

2r − 1

)
− exp

(
−Ω(log2 n)

)(2t

2r

)
≥ 1

20

(
2t − 1

2r − 1

)
.

On the other hand, the degree of each vertex on the RHS is

at most 4 log2 n. Hence the fraction of vertices on the RHS

(among all 2r-subsets of S) that are not isolated is at least

|A ∩ IS | ·
1

20

(
2t − 1

2r − 1

)
· 1

4 log2 n
· 1(

2t

2r

) ≥ λβ

20α · 4 log2 n

≥ Ω

(
β√

α log2 n

)

where the second inequality used λ ≥ √
α.

Claim 5. Suppose that β < α log2 n/λ and |A ∩ IS | = λ
≥ √

α. After M iterations of Step 4 in Alg-Case-1, we

have A ∩B �= ∅ with probability at least 1− o(1).

Proof: It follows from Claim 4 that, with probability at

least Ω(β/(
√
α log2 n)), there exists an i ∈ A∩IS such that

i ∈ T and T is i-revealing. When such a T is sampled, since

T is i-revealing, there exist at least 0.1 · ε̃2/(β√n) ·2n many

y’s for which AE-SEARCH(y, T ) returns an anti-monotone

edge in direction i with probability at least 1/2. Thus, with

probability at least

Ω

(
β√

α log2 n
· ε̃2

β
√
n

)
= Ω

(
ε̃2√

αn · log2 n

)

over the draw of T, y, and the randomness of AE-SEARCH,

we find a violation to unateness. This finishes the proof by

our choice of the parameter M .

E. Case 2: α < log2 n

In this case, we expect a random subset S of size 2t and

a random subset T of size 2r (recall that r ≤ t) to have a

relatively small intersection with (the unknown) I . We can

actually achieve an Õ(
√
n/ε2) query complexity in this case.

The algorithm, Alg-Case-2, is presented in Figure 6 with

the following parameters:

K =

⌈
log3 n

α

⌉
and M =

⌈
α
√
n · log n
ε̃2

⌉
.

Both K and M are Ω(logn) using α < log2 n, α = |I|2t/n,

|I| ≥ Hε̃2/2 and H2t ≥ √
n from Lemma 3.

Fact 3 (Query Complexity). The number of queries used

by Alg-Case-2 is

K · (M +M) ·O(log n) = O

(√
n · log5 n

ε̃2

)
.
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Subroutine Alg-Case-2, handling the case α < log2 n
Input: Query access to f : {0, 1}n → {0, 1}
Output: Either “unate,” or two edges that form a violation.

Repeat the following K times:

1) Sample uniformly an S of size 2t from [n].

2) Repeat M times:

– Sample an x ∈ {0, 1}n uniformly at random

and run AE-SEARCH(x,S).

3) Let A be the set of i ∈ [n] such that a monotone

edge in direction i is found.

4) Repeat M times:

– Sample uniformly a T ⊆ S of size 2r and a

y ∈ {0, 1}n, and run AE-SEARCH(y,T).

5) Let B be the set of i ∈ [n] such that an

anti-monotone edge in direction i is found.

6) If A ∩B �= ∅, return an edge violation found.

If no violation is found on line 6, return “unate.”

Figure 6. Description of Alg-Case-2 for Case 2 of the algorithm.

Correctness: Below we show that Alg-Case-2 finds

an edge violation with high probability. We further divide the

proof into two lemmas. The first lemma obtains a sufficient

condition for finding an edge violation for f , and the second

shows that the condition is satisfied with high probability.

Lemma 7. Suppose Alg-Case-2 starts with a set S that

is i-informative for some i ∈ I . Then during this iteration,

it finds an edge violation for f along the ith direction with

probability at least 1− o(1).

Proof: Let S′ = S \ {i} ∈ Pi,t. Since S′ is informative

for the ith coordinate, we have

GOOD-FRAC
+
i (S

′) ≥ 0.1 · ε̃2

α
√
n

and (9)

GOOD-FRAC
−
i (T

′) ≥ 0.1 · ε̃2

β
√
n

for at least 0.1-fraction of (2r − 1)-sized T ′ ⊂ S′. We show

below that i ∈ A∩B at the end of the loop with probability

at least 1− o(1).
First by the definition of good pairs, every time an x sam-

pled in Step 2 lies in GOOD-SET
+
i (S

′), AE-SEARCH(x, S)
outputs the monotone edge (x, x(i)) with probability at least

1/2. Using our choice of M , we have i ∈ A at the end of

Step 3 in this loop with probability at least 1− o(1).
Next, the number of (2r − 1)-sized subsets T ′ of S′ that

satisfy (9) is at least

0.1 ·
(
2t − 1

2r − 1

)
.

As a result, T ′ ∪ {i} from such T ′ consist of at least an

Ω

((
2t − 1

2r − 1

)/(
2t

2r

))
= Ω

(
2r

2t

)
= Ω

(
β

α

)

fraction of 2r-subsets of S. When such a T ′∪{i} is sampled

in Step 4, the fraction of y that can help us discover an anti-

monotone edge in direction i using AE-SEARCH(y, T ′∪{i})
is at least Ω(ε̃2/(β

√
n)). Thus we observe an anti-monotone

edge in direction i with probability at least Ω(ε̃2/α
√
n) over

the draw of each pair of T and y in Step 4. So by our choice

of M , we observe such a violation with probability at least

1− o(1). This finishes the proof of the lemma.

Lemma 8. The probability of a random 2t-sized subset S

being i-informative for some i ∈ I is at least Ω(α/log2 n).

Proof: We lowerbound the number of subsets S ⊂ [n]
of size 2t that are i-informative for some i ∈ I .

Using α < log2 n, the fraction of 2t-subsets S with

|S ∩ I| ≥ 4 log2 n

is at most exp(−Ω(log2 n)). Next we let

S =
{
S ⊂ [n] : |S| = 2t and |S ∩ I| ≤ 4 log2 n

}

and consider the following auxiliary bipartite graph H∗: ver-

tices on the LHS are i ∈ I; vertices on the RHS are S ∈ S;

a pair (i, S) is an edge if S contains i and is i-informative.

Thus, it suffices to show that many S ∈ S on the RHS of

H∗ are not isolated.

Using Lemma 4, for each i ∈ I , at least 1/8 of S′ ∈ Pi,t

are informative for the ith direction. If S′ ∈ Pi,t is one such

set then (i, S′ ∪ {i}) is an edge when S′ ∪ {i} ∈ S . So the

degree of i is at least

1

8
· |Pi,t| − exp

(
−Ω(log2 n)

)(n

2t

)
= Ω

(
|Pi,t|

)

= Ω

((
n− 1

2t − 1

))
.

On the other hand, each S ∈ S has degree at most 4 log2 n,

since |S ∩ I| ≤ 4 log2 n for every S ∈ S . Thus, the number

of vertices on the RHS that are not isolated is at least

|I| · Ω
((

n− 1

2t − 1

))
· 1

4 log2 n
≥ Ω

( |I|
log2 n

·
(
n− 1

2t − 1

))
.

As a result, the probability of a random 2t-sized set S being

i-informative for some i ∈ I is at least

Ω

(
|I|

log2 n
·
(
n−1
2t−1

)
(
n
2t

)
)

= Ω

(
α

log2 n

)
.

This finishes the proof of the lemma.

By our choice of K, a set S that is i-informative for some

i ∈ I is sampled in the K loops with probability 1− o(1).
By Lemma 7 a violation is found with probability 1− o(1).
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F. Proof of Lemma 4

Proof: Let γ denote the fraction of S ∈ Pi,t that are not

informative for the ith coordinate. Then by definition, at least

one of the two conditions must hold:

1) At least (γ/2)-fraction of S ∈ Pi,t have

GOOD-FRAC
+
i (S) < 0.1 · ε̃2

α
√
n
; (10)

2) At least (γ/2)-fraction of S ∈ Pi,t have at least

0.9-fraction of (2r − 1)-sized subsets T ⊆ S with

GOOD-FRAC
−
i (T ) < 0.1 · ε̃2

β
√
n
.

Below we show that γ ≤ 5/8 in the first case, and γ ≤ 7/8
in the second case.

We start with the first case, where at least γ/2 fraction of

S ∈ Pi,t have (10). Consider the following two methods of

sampling a pair (x,S) which is not good for E+
i :

• We first sample x from STRONG
+
i and then sample S

from Pi,t, both uniformly at random.

• We first sample S from Pi,t and then sample x from

STRONG
+
i , both uniformly at random.

The probabilities of sampling a pair (x,S) that is not good

for E+
i under the two methods are the same since both are

equal to the fraction of (x, S) that are not good among

STRONG
+
i × Pi,t.

Using the first way of sampling, the probability that (x,S)
is not good is at most 1/4, since each x ∈ STRONG

+
i has at

least (3/4)-fraction of S ∈ Pi,t such that (x, S) is a good

pair. Using the second method, on the other hand, we have

Pr
[
(x,S) is not good

]
≥ γ

2

⎛
⎝1−

2n
(
0.1 ε̃2

α
√
n

)

|STRONG
+
i |

⎞
⎠ ≥ γ

2
· 0.8

where we used H ≤ 2|I|/ε̃2 and thus,

|STRONG
+
i |

2n
≥

√
n

H2t
≥

√
nε̃2

2|I|2t =
ε̃2

2α
√
n
.

Combining both inequalities, we obtain that γ ≤ 5/8.

Now we handle the second case using a similar argument,

by sampling a pair (x,T) that is not good for E−
i using the

following two methods:

• We first sample x from STRONG
−
i , S from Pi,t,

and then sample T ⊆ S of size 2r − 1, which is

essentially sampling T uniformly from Pi,r.

• We first sample S ∈ Pi,t uniformly at random, and

then sample a subset T ⊆ S of size 2r − 1 uniformly

at random, and finally we sample x from STRONG
−
i .

Similarly to the first case, the probability of sampling a pair

(x,T) that is not good is at most 1/4 using the first method.

Using the second method, we have

Pr
[
(x,T) is not good

]
≥ 0.9 · γ

2
·

⎛
⎝1−

2n
(
0.1 ε̃2

β
√
n

)

|STRONG
−
i |

⎞
⎠

≥ γ

2
· 0.9 · 0.8.

Combining the two inequalities, we obtain that γ ≤ 7/8.
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