58th Annual IEEE Symposium on Foundations of Computer Science

Boolean Unateness Testing with O(n**) Adaptive Queries

Xi Chen
Department of Computer Science
Columbia University
New York, USA
Email: xichen@cs.columbia.edu

Abstract—We give an adaptive algorithm that tests whether
an unknown Boolean function f: {0,1}" — {0, 1} is unate (i.e.
every variable of f is either non-decreasing or non-increasing)
or e-far from unate with one-sided error and O(n*/*/¢?) many
queries. This improves on the best adaptive O(n/¢)-query algo-
rithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova
and Seshadhri [1] when 1/¢ < n'/%. Combined with the Q(n)-
query lower bound for non-adaptive algorithms with one-sided
error of [2], [3], we conclude that adaptivity helps for the testing
of unateness with one-sided error. A crucial component of our
algorithm is a new subroutine for finding bi-chromatic edges in
the Boolean hypercube called adaptive edge search.

Keywords-property testing; unateness;

I. INTRODUCTION

A Boolean function f: {0,1}" — {0,1} is monotone if
every variable of f is non-decreasing, and is unate if every
variable of f is either non-decreasing or non-increasing (or
equivalently, there exists a string » € {0,1}"™ such that
g(z) = f(x@r) is monotone, where & denotes the bit-wise
XOR). Both problems of testing monotonicity and unateness
were first introduced in [4]. The goal is to design an algo-
rithm that decides whether an unknown f : {0,1}™ — {0,1}
has the property being tested or is far from having the
property (see Section II for the formal definition) with as few
queries as possible. After a sequence of developments from
the past few years [5], [6], [7], [8], [9], [10], [2], the query
complexity of non-adaptive algorithms for monotonicity has
been pinned down at ©(n'/?); for adaptive monotonicity
testing, there remains a gap between O(n'/2) and Q(n'/3).
The query complexity of testing unateness, however, is less
well-understood.

The seminal work of [4] gave an O(n3/2/¢)-query algo-
rithm for testing unateness of Boolean functions. It proceeds
by sampling O(n3/2/¢) edges' of {0,1}™ uniformly at ran-
dom and rejects only when it sees a so-called edge violation
— a pair of edges (z,y) and (2’,y’) in the same direction

A pair of points (z,y) in {0, 1}™ is an edge in the Boolean hypercube
if ©; # y; at exactly one coordinate ¢ € [n]. We will refer to ¢ as the
direction of (x,y). An edge (z,y) along direction ¢ is bi-chromatic (in f)
if f(z) # f(y); it is monotone if it is bi-chromatic and has f(z) = x;; it
is anti-monotone if it is bi-chromatic but not monotone.

0272-5428/17 $31.00 © 2017 IEEE
DOI 10.1109/FOCS.2017.85

Erik Waingarten
Department of Computer Science
Columbia University
New York, USA
Email: eaw@cs.columbia.edu

868

Jinyu Xie
Department of Computer Science
Columbia University
New York, USA
Email: jinyu@cs.columbia.edu

such that one is monotone while the other is anti-monotone.
By definition the existence of an edge violation ensures that
the unknown function is not unate and thus, the algorithm
has one-sided error (i.e., it always accepts a unate function);
we refer to such algorithms as one-sided. This algorithm is
also non-adaptive (i.e., all queries can be made at once). For
the correctness, [4] showed that after sampling O(n3/2/¢)
edges an edge violation is found with high probability when
f is e-far from unate.

Recently [11] obtained the first improvement to the upper
bound of [4] with an O(n log n/e€)-query adaptive, one-sided
algorithm. Later, [12] generalized the algorithm to work for
real-valued functions over the n-dimensional hypergrid, i.e.,
f: [m]™ — R. The current best upper bounds for testing the
unateness of Boolean functions are O((n/e€)log(n/e)) for
non-adaptive algorithms [13], [1], and O(n/¢) for adaptive
algorithms [1] (with a logarithmic advantage). Both algo-
rithms work for real-valued functions and are shown to be
optimal for real-valued functions in [1].

On the lower bound side, [12] was the first to give a lower
bound on testing unateness by showing that a non-adaptive
algorithm with one-sided error must make Q(+/n/€) queries.
Then [2] showed that unateness testing of Boolean functions
requires Q(n?/3) queries for adaptive algorithms with two-
sided error, which implies a polynomial gap between testing
monotonicity and unateness for Boolean functions.? For non-
adaptive algorithms with one-sided error, [2] and [3] showed
that (n) queries are necessary (for some constant € > 0),
which implies the algorithm of [13], [1] is optimal among
non-adaptive, one-sided algorithms for Boolean functions.

Our Contribution. Generally, the power of adaptivity in
property testing of Boolean functions is not yet well under-
stood. Taking the examples of monotonicity and unateness,
the current best algorithms are both non-adaptive? (ignoring
polylogarithmic factors); polynomial gaps remain between
known bounds for the complexity of adaptive algorithms.

__ >The conference version of the paper included a weaker lower bound of
Q(/n) for testing unateness. Recently the authors improved it to Q(n2/3)
and have updated its full version available as arXiv:1702.06997.

3For real-valued functions, [1] showed that adaptivity helps by a logari-
thmic factor.

@co‘n%EEuter
psoaety

Adaptive

Non-adaptive

Upper bounds

O(n®/%) (this work)

O(n) [1]

Lower bounds

Q(n?/3) 2]

Q(n) (one-sided) [2], [3]

Figure 1.

The main result of this work is an adaptive and one-sided
algorithm with O(n?/*/€?) queries for the unateness testing
of Boolean functions.

Theorem 1. There is an O(n3/*/€2)-query *, adaptive
algorithm with the following property: Given an € > 0 and
query access to an unknown f: {0,1}" — {0,1}, it always
returns “unate” if f is unate and returns “non-unate”
with probability at least 2/3 if f is e-far from unate.

Compared to the £(n) lower bound for non-adaptive and
one-sided algorithms [2], Theorem 1 implies that adaptivity
helps by a polynomial factor for one-sided algorithms. Addi-
tionally, compared to the lower bound of Q(n/e€) for unate-
ness testing of real-valued functions over {0,1}" [1], our
result shows that Boolean functions are polynomially easier
to test than real-valued functions. The current known upper
and lower bounds for testing unateness of Boolean functions
with € = ©(1) are summarized in the Figure 1.

Our new algorithm is heavily inspired by the work of [7]
where they obtained a directed analogue of an isoperimetric
inequality of Talagrand [14] and employed it to reveal strong
connections between the structure of anti-monotone edges of
a Boolean function and its distance to monotonicity. In par-
ticular, their new inequality implies that when f is far from
monotone, there must exist a highly regular bipartite graph
of certain size that consists of only anti-monotone edges of
f. The analysis of our algorithm relies on this implication.
(See more discussion later in Section I-A.)

A recent work of [15] introduced the notion of “rounds”
of adaptivity to quantify the degree of adaptivity used by a
property testing algorithm. We notice that our algorithm can
be implemented using only two rounds of adaptivity.

A. Binary search versus adaptive edge search

We give some high-level ideas behind our main algorithm.
First, it outputs “non-unate” only when an edge violation is
found and thus, it is one-sided and our analysis focuses on
showing that, given a function that is e-far from unate, the
algorithm finds an edge violation with high probability.

Recall that an edge violation occurs when a pair of bi-
chromatic edges collide, i.e., they are in the same direction ¢
but one is monotone and the other is anti-monotone. Thus, an
algorithm may proceed by designing a subroutine for finding

4See (4) for the hidden polylogarithmic factor; we have made no effort
to optimize the polynomial dependence on logn and log(1/e).

869

Current knowledge on upper and lower bounds for testing unateness. We consider the regime where € = O(1).

bi-chromatic edges and invoking it multiple times in hopes
of finding a collision. A subroutine for finding bi-chromatic
edges that has been widely used in Boolean function prop-
erty testing (e.g., [16], [9], [11]) is binary search (see an
illustration in Figure 2):

1) Find z,y € {0,1}" with f(x) # f(y), and let
S={ien]:x; #v}

2) Pick a subset S" C S of size |S|/2, let z = x(5) 5
and query f(z).

3) If f(2) = f(x), let x + z; if f(2) = f(y), let
y < z. Repeat until (z,y) is an edge.

Clearly, the above procedure, when initiated with =, y: f(z)
f(y), will always return a bi-chromatic edge along some
direction 7 € S with O(logn) many queries. One can choose
to randomize the subroutine by drawing x and y uniformly
at random at the beginning and then drawing the subset .S’
uniformly at random from S in each round. Given an f, the
binary search subroutine naturally induces a distribution over
bi-chromatic edges of f. A high-level question is: Can one
analyze this distribution for functions f that are e-far from
unate? Can this strategy yield better algorithms for finding
an edge violation?

While we do not analyze the binary search subroutine as
described above in this paper, we introduce a new kind of
edge search strategy, which we call adaptive edge search and
denote by AE-SEARCH. It is a crucial component of our al-
gorithm and allows for a relatively straightforward analysis.
It takes two inputs, a point € {0,1}" and a nonempty set
S C [n],® and aims to find a bi-chromatic edge (z, ac(i)) for
some i € S (using O(logn) queries only). The subroutine
AE-SEARCH proceeds as follows:

1) Sample L = O(logn) subsets T3,..., T, C S of
size |S|/2 uniformly, and query each f(z(T%)).

2) Consider all T;’s with f(x(T)) £ f(x). If the
intersection of such 7}’s consists of exactly one index
i €S, query f(x¥) and output i if f(z?) # f(x)
(meaning that a bi-chromatic edge (x,z(")) along
direction ¢ has been found); otherwise return “fail.”

SWe use 2(5") € {0, 1}™ to denote the point obtained from z by flipping
its coordinates in S’; we also write z(® for ({1,

61t is not important for the moment but later we will always choose the
size of S to be smaller than /n.

Figure 2. Pictorial representation of one step of the binary search strategy
for finding an bi-chromatic edge. The hypercube {0, 1}™ is represented as
the diamond. Points and y are given with f(z) =0 and f(y) = 1, and
a particular path represents flipping variables in S one at a time. Finally,
z =25 corresponds to picking some z between x and y; in this case,
f(z) =1, so y would be updated to z.

See Figure 3 for a pictorial representation of AE-SEARCH.
While AE-SEARCH does not always returns a bi-chromatic
edge (unlike the binary search), its behavior is much easier
to analyze. Informally, when (2, (")) is a bi-chromatic edge
and i € S (otherwise AE-SEARCH can never return), we
show that AE-SEARCH(z, S) returns ¢ with high probability
if (1) most T C S of size |S|/2 with i ¢ T have f(z(7)) =
f(x), and (2) most T C S of size |S|/2 with i € T have
fz™) = f(x®) # f(x). (See Figure 3.)

With the adaptive edge search in hand, the proof of Theo-
rem 1 proceeds in two steps. For the first step, we show that
when f is far from unate, there must be “many” bi-chromatic
edges (z,2(") such that running AE-SEARCH on z paired
with a random set S C [n] containing i would lead to the
discovery of (z,z(")) with high probability. There are a lot
of technical details hidden in the word “many”: (i) subsets
S C [n] of different sizes contribute differently (intuitively,
the larger S is, it is more likely for .S to contain 7 when S is
drawn from [n] uniformly at random); (ii) we need to balance
the contribution from monotone and anti-monotone edges in
the same direction by taking their minimum. Intuitively, it
will not help us find an edge violation if AE-SEARCH works
well over many bi-chromatic edges along a direction ¢, but
all these edges turn out to be monotone. Following the high-
level discussion above, we formally introduce the notion of
SCORE:r and SCORE; for a Boolean function in Section IV
(to measure the performance of AE-SEARCH) and show that

>
i€[n

when f is e-far from unate. The proof of (1) is omitted here
and can be found in the full version of this paper. It heavily
relies on the directed isoperimetric inequality of [7] and its
combinatorial implications for functions far from monotone.

min { SCORE], SCORE] } = Q(e?),
]

ey

870

In the second step of the proof, we present an algorithm
that keeps calling AE-SEARCH (strategically) and show that
it finds an edge violation with high probability, given (1). At
a high level, it starts by sampling an S C [n] of certain size
and a sequence of M points {z;} from {0, 1}". Then it runs
AE-SEARCH(z;, S) for each ¢ and keeps the directions of
monotone edges found in set A. Next it samples M subsets
T; C S of certain size and M points {y;} and use them to
run AE-SEARCH(y;, T;) for each i. Similarly, it keeps the
directions of anti-monotone edges found in B. Finally, the
algorithm outputs “non-unate” if AN B # (), i.e., an edge
violation is found; otherwise, it outputs “unate”.

The tricky part is the choices of sizes of sets S and T;
as well as the parameter M. For technical reasons our algo-
rithm is split into two cases, depending on how the Q(¢2) in
(1) is achieved, e.g., what scale of min{SCORE; , SCORE; }
contributes the most in the sum. The parameters are chosen
differently in the two cases (case 2 needs one more param-
eter K) and their proofs use slightly different techniques.

Organization. We introduce the AE-SEARCH subroutine
in Section III. Next we introduce the notion of scores and
state (1) in Lemma 2 in Section IV. We present the algorithm
and its analysis in Section V, assuming Lemma 2. The proof
of Lemma 2 can be found in the full version of the paper.

II. PRELIMINARIES

We reserve bold font letters such as T and x for random
variables. Given n > 1, we write [n] to denote {1,...,n}.
Given a point z in the Boolean hypercube {0,1}" and S C
[n], we let 2(5) denote the string obtained from z by flipping
each entry z; with i € S. When S = {i} is a singleton, we
write z(?) instead of z({"}) for convenience. Given z and y
in {0,1}", x ®y € {0,1}"™ denotes their bit-wise XOR.

We define the distance between two Boolean functions f
and g: {0,1}™ — {0, 1} using the uniform distribution:

dist(f,g) == Pr [f(x)# g(x)].

x~{0,1}™
The distance of a function f to unateness is then defined as
the minimum value of dist(f, g) over all unate functions g.
We say f is e-far from unate if its distance to unateness is
at least ¢, or equivalently, dist(f,g) > € for all unate g.
We say that an algorithm tests the unateness of Boolean
functions if, given € and query access to a Boolean function
/> (1) it ouputs “unate” with probability at least 2/3 when f
is unate; and (2) it outputs “non-unate” with probability at
least 2/3 when f is e-far from unate. We say the algorithm
is one-sided if it always outputs “unate” when f is unate.
Recall that an edge violation of unateness for f consists of
two bi-chromatic edges along the same direction, one being
monotone and the other being anti-monotone. All algorithms
discussed in this paper output “non-unate” only when an
edge violation is found among the queries they made. We
commonly refer to edge violations simply as violations.

NENGS

Figure 3. Pictorial representation of the adaptive edge search subroutine,
AE-SEARCH(z, S), for finding a bi-chromatic edge. We consider the case
when (z, z(*)) is a bi-chromatic edge in the direction i with f(z) = 0 and
i € S. The two sub-cubes in the picture above correspond to points that
agree with = outside of S\ {4}, and points that agree with «() outside of
S\ {4}, respectively. The points z(7¢) sampled in AE-SEARCH(z, S) lie
in one of the sub-cubes according to whether i € Ty or not. Under certain
conditions one can show that with high probability, all sets T}’s satisfying
f(@Te)) =1 lie in the right sub-cube and furthermore, their intersection
is exactly {4}. In this case, AE-SEARCH(z, S) returns :.

The total influence Iy of a Boolean function f is the num-
ber of bi-chromatic edges of f divided by 2. We combine
a lemma from [7] and a unateness testing algorithm of [1]
to find an edge violation in a function of high total influence
using O(y/n) queries only. The proof is omitted, and can be
found in the full version of the paper.

Lemma 1. There is an 5(ﬁ)-query and non-adaptive
algorithm that, given any function f: {0,1}™ — {0,1}
with Iy > 6+/n, finds an edge violation of f to unateness
with probability at least 2/3.

Given Lemma 1, it suffices for us to give an O(n®/4/¢2)-
query algorithm that can find a violation in any function that
is e-far from unate and satisfies I; < 6y/n.

III. ADAPTIVE EDGE SEARCH

In this section, we introduce a subroutine called adaptive
edge search (i.e., AE-SEARCH) which will be heavily used
in our main algorithm for testing unateness. We present the
subroutine in Figure 4. It has query access to a Boolean func-
tion f: {0,1}" — {0,1} and takes two inputs: z € {0,1}"
is a point in the hypercube and S C [n] is a nonempty set
of even size.

871

Subroutine AE-SEARCH(z, S)

Input: Query access to f: {0,1}" — {0,1}, a point

x € {0,1}", and a nonempty set S C [n] of even size.
Output: Either an i € S with f(2(?)) # f(x), or “fail”

1) Query f(x) and set b + f(z).

2) If |S| = 2, pick one coordinate 4 € S uniformly at
random. Query f(z(®) and return 4 if f(z(®) # b;
otherwise return “fail.”

3) Sample L = [4logn] subsets Tq,..., Ty C S of
size |S|/2 uniformly at random. Query f(z(T*)) and
set the output to be by for each ¢. Let C C S where

¢€[L]: be#b

(C = 0 by default if b, = b for all £). If C = {3}
for some index ¢, query f (z(®)) and return % if
f(z®) #£ b; otherwise return “fail.”

C= T,

Figure 4. Description of the adaptive edge search subroutine.

The goal of AE-SEARCH(z, S) is to find an index i € S
such that (2, 2(") is a bi-chromatic edge in f. It returns an
index i € S if it finds one (note that AE-SEARCH always
checks and makes sure that (z, 2(*)) is bi-chromatic before it
outputs 7), or returns “fail” if it fails to find one (which does
not necessarily mean that none of the edges (z, z(i)), i€ 8,
are bi-chromatic). While a naive search would consider each
i € S and query each f(z("), as well as f(z), incurring a
cost of |S|+1 queries that can be expensive when S is large,
AE-SEARCH(z, S) only uses L + 2 = O(logn) queries, as
we set L = [4logn] in Figure 4. We record the following
simple observation that follows easily from the description
of AE-SEARCH.

Fact 1. AE-SEARCH(z, S) makes O(logn) queries and
returns either an index i or “fail.” Whenever it returns an
i, we have i € S and (x,x")) is a bi-chromatic edge in f.

We analyze the performance of AE-SEARCH in detail in
the full version (as part of the proof of Lemma 2 that we
omit). Informally, we show that under the assumption that f
is far from unate, AE-SEARCH(z,.S) succeeds in finding a
bi-chromatic edge (x, 2(")) for some i € S for “many” input
pairs (z,.5) with high probability. This is summarized using
the notion of scores (see the next section) in Lemma 2.

IV. SCORES

In this section, we use AE-SEARCH to introduce the no-
tion of scores for monotone and anti-monotone edges of a
Boolean function f. We start with some notation.

Consider a fixed Boolean function f: {0,1}" — {0,1}.
For each i € [n], let E;" denote the set of monotone edges
in direction ¢ and E;” denote the set of anti-monotone edges

in direction 4. Let

A= 1o (12%)] = €t108m)

be a parameter which will be used in the rest of the paper.
Given i € [n] and j € [A], we let

= {Sc\{i}:IS|=2 —1}.
We need the following definitions:

Definition 1 (Good pairs). Let (2, 2")) be a monotone
edge in E; for some i € [n] and let S be a set in P; j for
some j € [A]. We say (z,S) is a good pair for E;" if
AE-SEARCH(z, S U {i}) returns i with probability at least
1/2 (i.e., running the adaptive edge search subroutine over
x and S U {i} would help us discover the monotone edge
(z,2®) in E;" with probability at least 1/2).

By definition (z, S) can be a good pair for E;" only if the
edge (z,2*") is monotone. On the other hand, if (z, (") is
monotone then (z,.S) is always a good pair for all S € P; ;.
This simply follows from the fact that, since |S U {i}| = 2,
AE-SEARCH(z, SU{i}) will pick ¢ with probability 1/2 on
line 2 and find the monotone edge (z,z(").

Next we use good pairs to define strong points.

Definition 2 (Strong points). A point x € {0,1}"™ with
(z,20) € B} is said to be j-strong (or a j-strong point)
for E;f, for some j € [A], if (x,S) is a good pair for E;
for at least 3/4 of S € P; ;.

Consider an z that is j-strong for E;r . If we sample a set
S from P; ; uniformly and run AE-SEARCH(z, SU{i}), we
will discover (x,z()) € E;" with probability (3/4)(1/2) =
3/8. Note that if (z,2()) is monotone, then x is always
1-strong. We also extend both definitions of good pairs and
strong points to E;”, so we may consider a good pair (z, S)
for E; as well as a point x which is j-strong for £;”, when
(z,2®) € E; is an anti-monotone edge.

For each i € [n] and j € [A], let SCOREJr be the fraction
of points that are j-strong for E;"

number of j-strong points for £
271

SCORE]; = € [0,1].
Intuitively, the higher SCORE;" ; 18, it becomes easier to find
a monotone edge in direction z using AE-SEARCH with 27-
sized sets (]S U {i}| = 27) without using too many queries.

Finally we define SCORE;" for each i € [n] as (recall that
we have 27 < \/n/logn by the choice of A)

2 0,1 2
—— % clo,1].
e o
Note that SCORE:fj’s are adjusted in (2) by weights 27/\/n
before taking the maximum. Roughly speaking, this is done
to reflect the fact that with the same SCORE;", the larger j

SCORE;" = max ¢ SCORE]; -
JelA] '

’L_]’

872

is, the easier it becomes to find an edge in E;r using sets of
size 2 in AE-SEARCH. Consider a point z € {0, 1}" that is
j-strong for E;". As noted earlier, if an algorithm draws S
~ Py unlformly and runs AE-SEARCH(z, S U {i}), it will
discover (x, 2(")) with probability at least 3/8. However, the
situation we will encounter later is that the algorithm only
knows j but not i. So from the algorithm’s perspective, the
point x has a bi-chromatic edge (z, x(i)), for some %, but it
does now know which ¢ it is. A natural attempt is then to run
AE-SEARCH(x, S) with an S’ of size 2/ sampled from [n]
uniformly at random, with the hope that 1) S’ contains ¢ and
2) S\ {i} € P, ; forms a good pair with z. As j increases,
it becomes easier for S’ ~ [n] to contain the unknown index
1. This is the reason why the weight grows as j grows.
We also extend the scores to SCORE, ;, SCORE; for ;.

A. Plan for the proof of Theorem 1

Let f: {0,1}" — {0,1} be a Boolean function that is e-
far from unate. Our goal is to present an O(n®/4/e2)-query
algorithm which finds an edge violation of f with probability
at least 2/3. By Lemma 1, we may assume without loss of
generality that f in addition satisfies Iy < 64/n.

We rely on the following technical lemma for the scores
of f. Its proof can be found in the full version of the paper.

Lemma 2. If f: {0,1}" — {0,1} is e-far from unate and
satisfies Iy < 6+/n, then we have
(> N E))

We present our O(n3/%/e2)-query (adaptive) algorithm in
the next section and show that, given any f that satisfies (3),
it finds an edge violation of f with probability at least 2/3.

62

n
> min {SCORE]", SCORE; } > Q
i=1

log8 n

V. MAIN ALGORITHM AND ITS ANALYSIS

We describe our main algorithm and show that, given any
function f: {0,1}" — {0,1} that satisfies (3), it uses

0 ”3/41 16, 1002 — O(nd3/4/e2 4
L lognlog’(n/e)) = O /) (4)
queries and finds a violation with probability at least 2/3.

A. Preparation: Bucketing scores

We start with some preparation for the algorithm. First we
use standard bucketing techniques to make (3) easier to use
(while only losing a polylogarithmic factor in the sum).

Recall that

27
SCORE; = max { SCORE; ;- — » and
JE[A] Jo\/n
S S 2
CORE; = ma CORE; .+ — /.
© T em { i ﬁ}

We will say that the ith direction is of type-(t,), for some
t,r € [A], if we have
¢

SCORE]” = SCORE}, - —, and
> \/ﬁ
27‘
SCORE; = SCORE; . - —=.
» \/ﬁ

Since A = O(log n), there are only O(log®n) types. By (3)
we know that there is a pair (¢,r) such that

> min {SCORE], SCORE; } = Q (
i:type-(t, 1)

€2
. (5
log'? n) ©)

In the rest of the section, we fix such a type (¢, r). (Looking
ahead, we may assume that our algorithm knows (¢,7) as it
can afford to try all O(log®n) possible pairs of (t,7).)

Let I* C [n] be the set of all type-(¢,r) directions. We
next divide I* into [2log(n/e)] buckets according to

min { SCORE;, SCORE; }.
An 7 € I* lies in the k-th bucket if it satisfies

1
. + —
% < min { SCORE;", SCORE; } < o1

Note that some ¢ € I* may not lie in any bucket when
min {SCORE;“7 SCORE;} < €2 /n?;

however, all such i € I* in total contribute at most O(€? /n)
to the LHS of (5), which is negligible compared to its RHS.
Since k has [2log(n/e)] = O(log(n/€)) possibilities, there
exists an h such that

>

i€1*: bucket h

min { SCORE;", SCORE; }

(g togira)

We fix such an h in the rest of the section (due to the same
reason we may assume that the algorithm knows h), and let
I C I* be the indices of I* in bucket A.

To simplify the notation, we let H = 2" and

662

is at least

(6)

~2 _
s
log™" n - log(n/e)

where we use € to hide the polylogarithmic factor in € and
n, and c¢ is some constant which ensures

> min {SCORE]", SCORE; } > €.
el
Given that H = 2", we have
1/H < min {SCORE;", SCORE; } < 2/H
for each i € I, and |I| - (2/H) > €2 from (6). This implies
H < 2|I|/& = O(n/e?)

873

since |I| < n. Moreover, using
1/H < SCORE]" = SCORE;, - (2°/v/n) < 2/v/n,

we have H2! > \/n and similarly, H2" > /n.
We summarize the discussion with the following lemma.

Lemma 3. Suppose that f satisfies (3). Then there exist
t,r € [Al, H=0(n/€e?) as a power of 2 with H2', H2"
> \/n, and a nonempty I C [n] of size |I| > Hé?/2 such
that every i € I satisfies

min {SCORE;", SCORE; }

m'n{SCORE+ 2! SCORE; T}e{l 2}
=m it i T |
' n T\/n H H

B. Preparation: Informative sets

We introduce more notation and then state Lemma 4 that
will be heavily used in the analysis of the main algorithm.
We defer the proof of Lemma 4 to Subsection V-F. Below
t,r and H are considered as fixed parameters, and [is a set
of indices that satisfies the condition of Lemma 3. We further
assume that t > r; all our discussion below holds when ¢t < r
by switching the roles of ¢ and 7 (and E; and E;). We start
with some useful notation related to good pairs.

Recall (, S) is a good pair for E;" (or E;) if (z,2(") is
a monotone edge (or anti-monotone edge, respectively) and
AE-SEARCH(z, S U {i}) returns ¢ with probability at least
1/2. Given an S € P; ;, let

GOoOoD-SET; (S) = {z : (z,5) is a good pair for E;" },
GOOD-SET; (S) = {z : (z,5) is a good pair for E; }.

We also use

_ |GooD-SET] (9)|
2n

_ |GooD-SET; (9)|
2n

GoOD-FRAC] (S) and

GoOD-FRAC; (5)

to denote the fractions.

Recall z € {0,1}" is j-strong for E; (or E;) if (x, S) is
a good pair for E;" (or E;) for at least 3/4 of sets S € P; ;.
Given an ¢ € I, we let STRONGZ-+ denote the set of ¢-strong
points for E;", and let STRONG; denote the set of r-strong
points for ;. By Lemma 3, we have

Jr
+ _ |STRONG/| Vvn
SCORE;, = o = > 7o and @)
_ |STRONG; | vn
SCORE;, = on — > o

We define the following two parameters o and (3, which
will be very important for the algorithm:

72! -2

and (=

They measure the expectations of |I NS| and |I N'T|, when
S is a random subset of [n] of size 2¢ and T is a subset of
[n] of size 2", both drawn uniformly at random.

Finally we introduce the notion of informative sets.

Definition 3 (Informative Sets). We say a set S € P, for
some i € I is informative for the ith coordinate if both of
the following two conditions hold:

1) GOOD-FRAC] (S) > 0.1-€%/(ay/n); and

2) GooDp-FrAc; (T) > 0.1-¢2/(Bv/n) for at least
0.1-fraction of (2" — 1)-sized subsets T of S. We
refer to T U {i} as an i-revealing set when T has
GooD-FrRAC; (T) > 0.1-€2/(By/n).

Additionally, we say the set S'U{i} is i-informative if S is
informative for the ith coordinate.

To gain some intuition, if the algorithm is given S € P; ;
for some ¢ € I that is informative for the 7th coordinate, it
can use S and ¢ to find a violation along ¢ as follows:

1) Sample O(a+/n/€?) points x € {0,1}" uniformly
and run AE-SEARCH(x, S U {i}).

2) Sample a subset T C S of size 2" — 1, sample
O(B+/n/e?) points y € {0,1}" uniformly at
random, and then run AE-SEARCH(y, T U {i}).

We get a violation if we find a monotone edge in direction ¢
in step 1 and an anti-monotone edge in direction ¢ in step 2.
By Definition 3, this occurs with probability 2(1). Now of
course the algorithm does not have knowledge of S and 4,
so we need to incorporate other ideas; however, the intuition
is that informative sets can help reveal edge violations of f
efficiently using the AE-SEARCH subroutine.

The key will be to show that there are many informative
sets for each ¢ € I, which we do in the following lemma
using standard averaging arguments, but delay its proof to
Section V-F.

Lemma 4. For each i € I, at least 1/8 of sets S € P,
are informative for the ith coordinate.

C. Cases of the main algorithm

We are now ready to describe the main algorithm (which
is one-sided and returns “non-unate” only when it finds an
edge violation of unateness). As mentioned earlier we focus
on the case when f satisfies (3) and show that for any such f,
the algorithm finds an edge violation with probability at least
2/3. We assume that the algorithm knows all the parameters
r,t and H from Lemma 3 (algorithmically, we just try all
possibilities for these parameters, which will incur a factor
of O(log®n - log(n/e)) in the final query complexity). Let
I C [n] be the set promised in Lemma 3 (note that algorithm
has no knowledge about I). We also assume that £ > r; if
not one can switch the roles of monotone and anti-monotone
edges by running the algorithm on g(z) = f(z © 1™).

874

Subroutine A1g—Case-1, handling the case o > log2 n
Input: Query access to f: {0,1}" — {0,1}
Output: Either “unate,” or two edges that form a violation.

Repeat the following O(1) times:

1y
2)

Sample uniformly an S of size 2¢ from [n).
Repeat M times:

— Sample an x € {0,1}" uniformly at random
and run AE-SEARCH(x, S).

3) Let A be the set of ¢ € [n] such that a monotone

edge in direction ¢ is found.

4) Repeat M times:

— Sample uniformly a subset T C S of size 27
and y € {0,1}", and run AE-SEARCH(y, T).

5) Let B be the set of ¢ € [n] such that an

anti-monotone edge in direction ¢ is found.

6) If AN B # (), output an edge violation found.

If no edge violation is found on line 6, output “unate.”

Figure 5. Description of Alg-Case~-1 for Case 1 of the algorithm.

The algorithm is divided into two cases: o > log® n and
o < log?n. In each case, we present an algorithm, analyze
its query complexity, and show that it finds an edge violation
with high probability for this case. Although the algorithm
does not know the exact value of «, it can simply run both,
which incurs another factor of 2 in the query complexity.

D. Case 1: o > log®n

In this case, we expect a random set S of size 2t to have
intersection with (the unknown) I of size at least log2 n. The
algorithm, A1g—-Case-1, is presented in Figure 5 with the
following parameter:

M|

3
= - log n—‘ .
Fact 2 (Query complexity). The number of queries used
by Alg-Case-1 is (using a < \/n)

O(1) - 2M - O(log n) = O (\/@%4”)

:o<)

Correctness: Below we show that Alg-Case—1 finds
a violation with high probability. We split the proof into two
lemmas. The first one, Lemma 5, shows that each time we
sample S at the beginning of an iteration, a certain condition
for S holds with constant probability. The second, Lemma 6,

n3/4 log'* n - log(n/e)
2

€

shows that when S satisfies this condition, the algorithm can
find a violation with high probability in that iteration.

Lemma 5. Let S be a subset of size 2¢ sampled from [n]
uniformly at random, and let Is C I NS be the set of
1 € INS such that S is i-informative. Then we have

a/10 < |Ig| < 4o
with probability Q(1).
Proof: Recall that « is the expected size of INS. As a

result of a > log® n, the fraction of S C [n] of size 2¢ with
|S N I| > 4a is at most exp(—Q(log®n)). Let

S={Scn]:|S|=2"and |SNI| <4a}.

We define a bipartite graph H*: vertices on the two sides
correspond to [and S; (4,.5) is an edge if S is i-informative.
By Lemma 4, the degree of each ¢ € I is at least

n—1

1 2 n 1 o
§|Pi,t| —exp (—Q(log™ n)) (2t> 2 §|Pi’t| 9 (Qt - 1)

Let v denote the fraction of S € S (among S) with degree at
least «/10 in H*. On the one hand, the number of edges in
H* is at least (counting from the I-side; using |S| < (;))

n—1 1
. >
()

1
9
On the other hand, the number of edges is at most (counting
from the S-side)

2t 1
Il - I-Z .18 = = - alS).
1 11-= 18] = 5 -al$]

39y 1
o+ (1— (a/10) = a|S]- (2 + =).
3181 e+ (1= IS fa/10) =il (5 + 5)
As aresult, v = Q(1). Since S consists of (1—o(1))-fraction
of all sets S C [n] of size 2, the set S sampled in Step 1 of
Alg-Case-1 lies in S and has degree between «/10 and
4o with probability at least £2(1). [|

Lemma 6. Suppose Alg—Case—1 samples a set S, and
let Is C I NS be the set of i such that S is i-informative.
If /10 < |Ig| < 4o, then Blg—Case-1 finds an edge
violation with probability 1 — o(1) in that iteration.

The proof of the lemma is divided into simple claim. We
consider a fixed S C [n] of size 2¢ such that a/10 < |Ig| <
4a. We let Alg—Case—1 run up to Step 3, and let

A= ‘Aﬂ]5'|.

Claim 1. After M iterations of Step 2 in Alg—Case—-1,
A > /o with probability 1 — o(1).

Proof: Divide the M iterations into v/« batches, each of
M/a=Q <@ -log3n>
€

rounds of Step 2. For batch ¢, we let X, denote the indicator
random variable for the event that at the beginning of the /th

®)

875

batch, |A N Is| < v/a, and the ¢th batch fails to discover a
monotone edge along a new direction 4 in Ig\ A. We prove
that all X, are 0 with probability 1 —o(1). The lemma then
follows, since when all X, are 0, we have either (1) one of
the X is 0 because |A N Ig| > /a at the beginning of the
/th batch, in which case we are done, or (2) every X, is 0
because a new direction is discovered in the ¢th batch, from
which we can also conclude that |A N Ig| > /a at the end.
Suppose that at the start of the £th batch, |ANTg| < v/a.
Then consider the auxiliary bipartite graph H*: vertices on
the left-hand side consist of all points = € {0,1}"; vertices
on the right-hand side consist of indices of Is; an edge (z, 1)
is present if x and S\ {i} forms a good pair for E;".
Notice that every vertex on the right-hand side has degree
at least 0.1-¢2/(ay/n) - 2" and every vertex on the left-hand
side has degree at most 2 (because (z,4) is an edge only if
AE-SEARCH(z, S) returns (z, (")) with probability at least
1/2). Thus, the fraction of points on the left-hand side which
are connected to at least one vertex on right-hand side that

is currently not in A is at least
01-¢2 1 _ |Is] 01-€ 1 €
(115 - va) 2L Lo ML OLE L g ()
ay/n 2 2 Vn

2 adn 3 =
By (8), we discover a new index in Ig during the ith batch
with probability at least 1 — exp(—£(log® n)). We can then
apply a union bound over the y/a < n'/* batches.]

Assume that at the end of Step 3, we have obtained set A
with A = |[ANIg| > y/a. We move on to prove that in Step
4, we will discover an anti-monotone edge which, together
with a monotone edge from Step 2, forms an edge violation.
We divide the proof into two cases. The first two claims
correspond to the case when 8 > alog2 n/A, and the next
two claims correspond to the case when 8 < alog®n/\.

Claim 2. Suppose 3 > alog? n/\. Let A be a fixed set
after running up to Step 4 of Alg-Case—1 satisfying
|ANIs| = X\> \/a. Then with probability at least Q(1)
over the draw of a 2"-sized random subset T of S, the
number of indices i € AN Ig such that T is i-revealing

is at least 5/(100+/cv).

Proof: First we let T denote the following set:
T={TCS:|T|=2"and [TNANIs| <4X-B/a}.

The expectation of |[T N ANIg| when T is a random subset
of S of size 2" is at most \ - /c. Since A - B/ > log®n
(by assumption), 7~ consists of all but an exp(—Q(log®n))-
fraction of subsets of S of size 2.

Next, consider a bipartite graph H*: vertices on the LHS
correspond to i € ANIg; vertices on the RHS correspond to
T €T, (i,T)is an edge if T is i-revealing. Since i € ANIg,
S is i-informative and thus, the degree of each 4 is at least

t t
01(2—1 1<2—1).
27 — 2r —1

1) — exp (~Q(log?) @t) >

=20

We show below that many sets 7' € 7 have degree at least
AB/(100«). To this end, we let «y be the fraction of T' € T
on the RHS which have degree at least A3/(100c) (among
all 2"-subsets of S). Then
2t 2t —1
(1)

)0)

As 2t /2" = /3, canceling the factors we obtain v = Q(1).
This shows that at least {2(1)-fraction of the 2"-subsets of .S
have degree at least \3/(100«) > (5/(100/cv). [|

Claim 3. Suppose that § > alog?n/\ and |ANIg| = A
> \J/a. After M iterations of Step 4 in Alg—Case—1, we
have AN B # 0 with probability at least 1 — o(1).

ANB

A8y L
100a = 20

Proof: Note that with probability Q(1), we have
ITNANIs| > B/(100y/a).

Similar to the proof of Claim 1, we let H* denote a bipartite
graph: vertices on the LHS correspond to points = € {0, 1}";
vertices on the RHS correspond to indices ¢ € TN AN Is;
(z,7) are connected if (z,T \ {i}) forms a good pair for
E;". Note that each 7 on the RHS has degree at least

0.1-&/(8vn) - 2"

each x on the LHS has degree at most 2. Hence the fraction
of points on the left-hand size which are connected to points
0.1-€ 1 €

on the right-hand side is at least
. 2= ——
100/ Byn 2 Van)’
By our choice of M, Alg-Case-1 finds an edge violation
with probability at least 1 — o(1). [|

~2

This finishes the case of 5 > odog2 n/\. Next we work
on the case when § < alog? n/\.

Claim 4. Suppose 3 < alog? n/\. Let A be a fixed set
after running up to Step 4 of Alg-Case~—1 satisfying
|[ANIg| = A > v/a. Then with probability at least
Q(B/(v/alog? n) over the draw of a 2"-sized random
subset 'T' of S, there is at least one index i € ANIg
such that 'T is i-revealing.

Proof: First we let T denote the following set:
T={TCS:|T|=2"and [TNANIg| < 4log2n}.

As |[ANIg| = A, the expectation of |ANIgNT| when T is
a random 2"-subset of S is at most A\S/a < log2 n. Thus, T
consists of all but an exp(—Q(log® n))-fraction of subsets of
S of size 27.

We consider a bipartite graph H*: vertices on its LHS are
indices i € ANIg; vertices on its RHS are sets T € T; (¢,T)

876

is an edge if T is i-revealing. Note that since i € ANIg, S
is ¢-informative and thus, the degree of each 1 is at least
2t —1

0.1<2T - 1) — exp (—Q(log” n)) <§t> > 2 (;t B 1)

=20
On the other hand, the degree of each vertex on the RHS is
at most 4 log® n. Hence the fraction of vertices on the RHS
(among all 2"-subsets of S) that are not isolated is at least

1 /2t -1 A
|Am[5|.< > 2752
20\2" — 1) ~ 20a-4log®n

e

Valog*n
where the second inequality used A > /a.

1 1

. 4log® n . (gi

)

Claim 5. Suppose that 5 < alog®n/\ and |AN Is| = A
> a. After M iterations of Step 4 in Alg—-Case-1, we
have AN B # () with probability at least 1 — o(1).

Proof: Tt follows from Claim 4 that, with probability at
least Q(3/(y/a'log? n)), there exists an i € AN Ig such that
1 € T and T is ¢-revealing. When such a 7" is sampled, since
T is i-revealing, there exist at least 0.1-¢2/(8+/n)-2" many
y’s for which AE-SEARCH(y,T) returns an anti-monotone
edge in direction ¢ with probability at least 1/2. Thus, with

probability at least
~2 ~2
(oo va) = (o o)

€
Valog®n Byn JVan -log’n
over the draw of T, y, and the randomness of AE-SEARCH,

we find a violation to unateness. This finishes the proof by
our choice of the parameter M.]

E. Case 2: o < log*n

In this case, we expect a random subset S of size 2¢ and
a random subset T of size 2" (recall that » < t) to have a
relatively small intersection with (the unknown) /. We can
actually achieve an O(v/n/€?) query complexity in this case.
The algorithm, A1g-Case-2, is presented in Figure 6 with
the following parameters:

K:[W and M:P\/ﬁélog”]

Both K and M are Q(logn) using o < log®n, o = |I]2%/n,
|I| > He?/2 and H2! > \/n from Lemma 3.

log®n

[e%

Fact 3 (Query Complexity). The number of queries used
by Alg-Case-2 is

vn-log’n
€2

K-(M+M)-O(logn):0<

Subroutine A1g—Case-2, handling the case o < logn
Input: Query access to f: {0,1}" — {0,1}
Output: Either “unate,” or two edges that form a violation.

Repeat the following K times:

1y
2)

Sample uniformly an S of size 2¢ from [n].
Repeat M times:

— Sample an x € {0, 1}" uniformly at random
and run AE-SEARCH(x, S).

3) Let A be the set of ¢ € [n] such that a monotone

edge in direction ¢ is found.

4) Repeat M times:

— Sample uniformly a T C S of size 2" and a
y € {0,1}", and run AE-SEARCH(y, T).

5) Let B be the set of 7 € [n] such that an

anti-monotone edge in direction ¢ is found.

6) If AN B # (), return an edge violation found.

If no violation is found on line 6, return “unate.”

Figure 6. Description of Alg-Case-2 for Case 2 of the algorithm.

Correctness: Below we show that Alg-Case—2 finds
an edge violation with high probability. We further divide the
proof into two lemmas. The first lemma obtains a sufficient
condition for finding an edge violation for f, and the second
shows that the condition is satisfied with high probability.

Lemma 7. Suppose Alg—Case—2 starts with a set S that
is i-informative for some i € 1. Then during this iteration,
it finds an edge violation for f along the ith direction with
probability at least 1 — o(1).

Proof: Let 8" = S\ {i} € P, . Since S’ is informative
for the ith coordinate, we have

G

o

€

Bvn

for at least 0.1-fraction of (2" —1)-sized 77 C S’. We show
below that i € ANDB at the end of the loop with probability
at least 1 — o(1).

First by the definition of good pairs, every time an x sam-
pled in Step 2 lies in GOOD-SET; (S’), AE-SEARCH(x, S)
outputs the monotone edge (z, x(i)) with probability at least
1/2. Using our choice of M, we have ¢ € A at the end of
Step 3 in this loop with probability at least 1 — o(1).

Next, the number of (2" — 1)-sized subsets 7" of S’ that
satisfy (9) is at least

2t —1
0.1- :
<2r - 1>

and

GoOD-FrRAC; (S") > 0.1 - 9)

Goobp-Frac; (T") > 0.1 -

877

As a result, 7" U {i} from such 7" consist of at least an
t t r
20/ () =2 () =2 (2)
2r —1 27 2t «
fraction of 2"-subsets of S. When such a 7" U{i} is sampled
in Step 4, the fraction of y that can help us discover an anti-
monotone edge in direction ¢ using AE-SEARCH(y, T"U{i})
is at least 2(€?/(3/n)). Thus we observe an anti-monotone
edge in direction i with probability at least (€2 /a+/n) over
the draw of each pair of T and y in Step 4. So by our choice
of M, we observe such a violation with probability at least
1 — o(1). This finishes the proof of the lemma. [|

Lemma 8. The probability of a random 2*-sized subset S
being i-informative for some i € I is at least Q(c/log® n).

Proof: We lowerbound the number of subsets S C [n]
of size 2! that are i-informative for some i € I.
Using o < log2 n, the fraction of 2-subsets S with

|SNI|>4log”n
is at most exp(—Q(log®n)). Next we let
S={Sc[n]:|S|=2"and [SNI| < 4log’n}

and consider the following auxiliary bipartite graph H*: ver-
tices on the LHS are ¢ € I; vertices on the RHS are S € S;
a pair (4,.5) is an edge if S contains ¢ and is i-informative.
Thus, it suffices to show that many S € S on the RHS of
H* are not isolated.

Using Lemma 4, for each i € I, at least 1/8 of S" € P; ;
are informative for the ith direction. If S’ € P, ; is one such
set then (¢,.5" U {i}) is an edge when S’ U {i} € S. So the
degree of ¢ is at least

1
L Pl e (0o m) () = 2(Pu)
n—1

-o((55)

On the other hand, each S € S has degree at most 4 log? n,

since |S N I| < 4log®n for every S € S. Thus, the number

of vertices on the RHS that are not isolated is at least
n—1

«Q

1 | 1] (n -1))
1]-Q . Q . .

! ((2t1>> 4log®n ~ <log2n 2t —1
As a result, the probability of a random 2!-sized set S being

n—1
9 |I| (2t71) Yol <
2 T (n - 2

logn (5) log®n
By our choice of K, a set S that is i-informative for some
i € I is sampled in the K loops with probability 1 — o(1).

i-informative for some ¢ € I is at least
This finishes the proof of the lemma.]
By Lemma 7 a violation is found with probability 1 — o(1).

F. Proof of Lemma 4

Proof: Let vy denote the fraction of S € P, ; that are not
informative for the ¢th coordinate. Then by definition, at least
one of the two conditions must hold:

1) At least (y/2)-fraction of S € P;; have

&

ay/n’
2) At least (y/2)-fraction of S € P;; have at least
0.9-fraction of (2" — 1)-sized subsets T' C S with

e2
<01 -——.
Bvn

Below we show that v < 5/8 in the first case, and v < 7/8
in the second case.

We start with the first case, where at least /2 fraction of
S € P, have (10). Consider the following two methods of
sampling a pair (x,S) which is not good for E}':

GooD-FRrRAC; (S) < 0.1 - (10

GooD-FrRAC; (T)

o We first sample x from STRONG; and then sample S
from P; +, both uniformly at random.

o We first sample S from P;; and then sample x from
STRONG;", both uniformly at random.

The probabilities of sampling a pair (x, S) that is not good
for E;" under the two methods are the same since both are
equal to the fraction of (z,.S) that are not good among

STRONG; x P; ;.

Using the first way of sampling, the probability that (x, S)
is not good is at most 1/4, since each = € STRONG;" has at
least (3/4)-fraction of S € P; such that (x,S) is a good
pair. Using the second method, on the other hand, we have

on (0 1 f})
. v Tavn Y
Pr |(x,S) is not good| > — -1 >=-038
[8) good] > 2 |STRONG; | | ~ 2

where we used H < 2|I|/€? and thus,
~

|STRONG] | VI Vvnet €
2n T OH2t T 22t 2a/n’
Combining both inequalities, we obtain that v < 5/8.
Now we handle the second case using a similar argument,
by sampling a pair (x, T) that is not good for E; using the
following two methods:

o We first sample x from STRONG; , S from P; 4,
and then sample T C S of size 2" — 1, which is
essentially sampling T uniformly from P; ;.

o We first sample S € P; ; uniformly at random, and
then sample a subset T C S of size 2" — 1 uniformly
at random, and finally we sample x from STRONG; .

878

Similarly to the first case, the probability of sampling a pair
(x,T) that is not good is at most 1/4 using the first method.
Using the second method, we have

on (0.1 G)
; g G
P ,T) is not good| > 0.9 — - _ N\ PVvRJ
* (6o good] 2 2 |STRONG; |
Y
> —=-0.9-0.8.
-2

Combining the two inequalities, we obtain that v < 7/8. H

ACKNOWLEDGMENT

We thank Rocco Servedio and Li-Yang Tan for countless
discussions and suggestions. This work is supported in part
by NSF CCF-1149257, CCF-1423100 and the NSF Graduate
Research Fellowship under Grant No. DGE-16-44869.

REFERENCES

[1] R. Baleshzar, D. Chakrabarty, R. K. S. Pallavoor, S. Raskhod-
nikova, and C. Seshadhri, “Optimal unateness testers for real-
values functions: Adaptivity helps,” in Proceedings of the
44th International Colloquium on Automata, Languages and
Programming, 2017.

[2] X. Chen, E. Waingarten, and J. Xie, “Beyond Talagrand

functions: New lower bounds for testing monotonicity and

unateness,” in Proceedings of the 49th ACM Symposium on

the Theory of Computing, 2017.

[3] R. Baleshzar, D. Chakrabarty, R. K. S. Pallavoor, S. Raskhod-

nikova, and C. Seshadhri, “A lower bound for nonadaptive,

one-sided error testing of unateness of Boolean functions over

the hypercube,” preprint arXiv:1706.00053, 2017.

[4] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and

A. Samordinsky, “Testing monotonicity,” Combinatorica,

vol. 20, no. 3, pp. 301-337, 2000.

[5] D. Chakrabarty and C. Seshadhri, “An optimal lower bound

for monotonicity testing over hypergrids,” Theory of Comput-

ing, vol. 10, no. 17, pp. 453-464, 2014.

[6] X. Chen, R. A. Servedio, and L.-Y. Tan, “New algorithms and

lower bounds for monotonicity testing,” in Proceedings of the

55th Annual IEEE Symposium on Foundations of Computer

Science, 2014.

[7]1 S. Khot, D. Minzer, and M. Safra, “On monotonicity testing

and Boolean isoperimetric type theorems,” in Proceedings

of the 56th Annual IEEE Symposium on Foundations of

Computer Science, 2015.

X. Chen, A. De, R. A. Servedio, and L.-Y. Tan, “Boolean
function monotonicity testing requires (almost) n'/? non-
adaptive queries,” in Proceedings of the 47th ACM Symposium
on the Theory of Computing, 2015.

[9] A.Belovs and E. Blais, “A polynomial lower bound for testing
monotonicity,” in Proceedings of the 48th ACM Symposium
on the Theory of Computing, 2016.

(10]

(1]

[12]

[13]

D. Chakrabarty and S. Comandur, “An o(n) monotonicity
tester for Boolean functions over the hypercube,” SIAM
Journal on Computing, vol. 45, no. 2, pp. 461-472, 2016.

S. Khot and I. Shinkar, “An O(n) queries adaptive tester for
unateness,” in Approximation, Randomization and Combina-
torial Optimization. Algorithms and Techniques, 2016.

R. Baleshzar, M. Murzabulatov, R. K. S. Pallavoor, and
S. Raskhodnikova, “Testing unateness of real-valued func-
tions,” preprint arXiv:1608.07652, 2016.

D. Chakrabarty and C. Seshadhri, “A O(n) non-adaptive
tester for unateness,” preprint arXiv:1608.06980, 2016.

879

(14]

[15]

[16]

M. Talagrand, “Isoperimetry, logarithmic Sobolev inequalities
on the discrete cube, and Margulis’ graph connectivity theo-
rem,” Geometric and Functional Analysis, vol. 3, no. 3, pp.
295-314, 1993.

C. L. Canonne and T. Gur, “An adaptivity hierarchy theorem
for property testing,” in Proceedings of the 32nd Computa-
tional Complexity Conference, 2017.

E. Blais, “Testing juntas nearly optimally,” in Proceedings of
the 41st ACM Symposium on the Theory of Computing, 2009.

