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1. Introduction

The algebra Sym of symmetric functions in infinitely many variables is important
in classical representation theory in part because it describes the characters of
representations of symmetric groups in characteristic 0. More precisely, there are
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2 S. Cautis et al.

isomorphisms

[e ) o
Sym = (P Z(CIS,)) = P Ko(CLSy-mod),

n=0 n=0
where Z(C[S,]) is the center of the group algebra, and Ky(C[S,]-mod) is the Grothendieck
group of the category of finite-dimensional representations. Since Z(C[S,]) is isomorphic
to the center of the category C[S,]-mod, the rightmost isomorphism says that two basic
decategorifications of the categories C[S,]-mod, the Grothendieck group and the center,
are isomorphic to each other.

It is fruitful to consider a structure of interest for symmetric functions and then try
to interpret it in the language of symmetric groups. For example, Gessinger realized
the Hopf algebra structure on Sym by considering the maps on characters induced by
induction and restriction [14]. Closely related to this Hopf algebra structure is the fact
that Sym is the underlying vector space of the canonical Fock space representation of the
Heisenberg algebra f, where generators of h act on the Grothendieck group as the maps
induced by induction and restriction between different symmetric groups. The algebra
of symmetric functions Sym thus becomes the canonical level one Fock space module,
which we denote by V) o, for the Heisenberg algebra.

The module V; ¢ can also be equipped with an action of the Virasoro algebra (see [13]
where an explicit action of the Virasoro on @, Z(C[S,]) is given). More generally, both
these actions are unified in the action of the W-algebra Wiio [23].

One of the aims of this paper is to explain how this action Wit on Vi o arises naturally
from a categorification of the Heisenberg algebra h. More precisely, Khovanov introduced
in [17] a monoidal category H whose Grothendieck group contains the Heisenberg algebra
h.1 Moreover, he defines an action of H on @ZOZO C[S;]-mod.

The main result of this paper is a calculation of the trace Tr(#) (or zeroth Hochschild
homology) of H and its action on the trace (or center) of @,y C[S,]-mod. More precisely,
we prove the following.

Theorem 1. There is an isomorphism Tr(H) = Witeo/I where 1 1is the two-sided
ideal generated by C —1 and w0,0-2 Moreover, the action of Tr(H) on the center of
EB;O:O CLSn]-mod is identified with the canonical level one representation V1,0 of Witoo-

The theorem gives a graphical construction of both Wi/ itself, and of its canonical
representation. As a corollary, any categorical representation of Khovanov’s Heisenberg
category H gives rise to a representation of Wiy /I. For example, a closely related
categorical action of H on the category of polynomial functors [15] allows us to realize a
Witoco-algebra action in this context.

From the point of view of Theorem 1, it is perhaps equally reasonable to refer to H
as a categorification of Wiis. The difference between this statement and the statement
that H categorifies the Heisenberg algebra is that we have made a different choice of

1Conjecturally7 there is an algebra isomorphism Ky(#H) = .

2The quotient of Wi, we see here is not exactly the same as the quotients of Wi, that have appeared
in closely related literature. For example, in [20], the quotient of Wj4o, which appears has wpg = %
instead of wg o = 0.
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W-algebras from Heisenberg categories 3

decategorification procedure. Note however that the question of constructing a monoidal
category whose Grothendieck group is Wi remains open.

In the process of identifying Tr(H) with Wi /I, we are also able to find natural
graphical realizations of the standard Heisenberg algebra generators. By contrast, in
the Grothendieck decategorification the standard Heisenberg generators do not admit
an obvious categorical lift and therefore an alternative presentation for the Heisenberg
algebra is required.

An analog of Theorem 1 (and of this difference between the Grothendieck group and the
trace) also arises in the context of quantum groups associated to type ADE Kac—Moody
algebras. Associated to an arbitrary symmetrizable Kac-Moody algebra g, a 2-category
U(g) was defined in [18] whose split Grothendieck group is isomorphic to the integral
form of Lusztig’s idempotent form of the quantum group U,(g). However, the trace of
the 2-category U(g) is then identified with the idempotent form of quantum current
algebra Uy (g[]) [4, 5, 21].

1.1. Further directions

More generally, one can associate a Heisenberg category Hr to any finite-dimensional
Frobenius algebra F. This is the categorical analog of the fact that one can associate a
Heisenberg algebra b to any Z-lattice L. If one takes the simplest Frobenius algebra,
namely the one-dimensional algebra C, then one recovers H, and for this reason we first
study the trace of H. In future work we plan to compute the traces of these more general
Heisenberg categories, and thus associate a W-algebra Wr to any Frobenius algebra F. Of
particular interest are the Heisenberg categories studied in [8] and associated to zig-zag
algebras (these categorify the Heisenberg algebras associated to quantum lattices of type
A, D, E). Via categorical vertex operators [6, 7] these Heisenberg categories were related
to categorified quantum groups. So one might expect their trace to be related to [3, 5]
or to W-algebras associated to quantum groups [12]. Finally, one may also consider the
trace on the categorification of twisted Heisenberg algebras such as the twisted version
of Khovanov’s category from [9]. In this particular case the trace should be related to
the twisted Wit algebra from [16].

In the recent work [19], the algebra W)« appears in relation to the skein module of the
torus. It could also be interesting to relate directly the appearance of Wi in Heisenberg
categorification to this skein module or to other invariants in quantum topology.

1.2. Outline

In order to prove that Tr(H) is a quotient of Wi, we follow the proof in [20] of the
isomorphism between a limit of spherical degenerate double affine Hecke algebras and a
quotient of Witeo- A complete set of generators and relations of the limit of spherical
degenerate double affine Hecke algebras was given in [1]. Composing the isomorphism
in [20] with the isomorphism from Theorem 1, we get a complete generators and relations
description of Tr(H). Crucial in this comparison is the relationship between H and the
degenerate affine Hecke algebra D H,. Roughly speaking, D H, appears in the morphism
spaces of the upper half of H. As a vector space Tr(D H,) was determined by Solleveld [22]
and this calculation plays a role in our computation of Tr(#).
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4 S. Cautis et al.

In §2, Khovanov’s Heisenberg algebra h and its associated category H are introduced
and its basic properties are reviewed. In § 3, the algebra Wi is defined, and some of its
important features are recalled. In §4, the trace of H is determined in terms of Wi .

2. The Heisenberg category H

2.1. The Heisenberg algebra and Fock space

Let b be the associative algebra over C with generators h, for n € Z — {0} with relations
[, hu]l = My, —n

Another way to present b is as follows. Set p™ = g™ =0 for n < 0. For n > 0 define
p"™ and g™ by

Zp(n)zn = exp Z h;ln " Zq(n)zn = exp Z ]/%Zn

n=0 n=1 n>=0 n=>1

In these generators the relations are:

p(n)p(m) — p p(n)

q(n)q(m) — q(m)q(n)

(n) (m) — Zp(m k) (n—k)
k=0

The Heisenberg algebra h has a natural representation F, known as the Fock space.
Let b C b denote the subalgebra generated by the ¢™ for n > 0. Let trivg denote the
trivial representation of h*, where all g™ (n > 0) act by zero. Then

F = Ind2+(triv0)

is called the Fock space representation of h. It inherits a Z grading F = ®,,eNF (m) by
declaring trivg to have degree zero, p™ degree n and g™ degree —n.

2.2. Heisenberg category H

In [17], Khovanov introduced a categorical framework for the Heisenberg algebra h. This
framework consists of a monoidal category H which is the Karoubi envelope of a monoidal
category H’ whose definition we now sketch (see [17] for more details).

The monoidal category H’ is generated by objects P and Q. We denote the monoidal
unit by 1 and the tensor product of objects by concatenating symbols so that P2Q =
P ® P ® Q. The generating objects P and Q can be represented diagrammatically by an
upward pointing strand and a downward pointing strand. Monoidal composition of such
objects is then given by sideways concatenation of diagrams. The space of morphisms
between products of P’s and Q’s is a C-algebra described by certain string diagrams with
relations. By convention, composition of morphisms is done vertically from the bottom
and going up.

The morphisms are generated by crossings, caps and cups as shown below

>< \J VAR W, ) (2.1)
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W-algebras from Heisenberg categories 5

Thus, for instance, the left crossing is a map in End(PP) while the right cap is a map
PQ — 1. These morphisms satisfy the following relations

8L
ALH AL
O - g>< e

Moreover, two morphisms which differ by planar isotopies are equal. Relation (2.2)
implies that there is a map C[S,] — End(P"). Since H is assumed to be idempotent
complete this means that we also get objects P, for any partition A  n, associated
with the corresponding minimal idempotent e, € C[S,]. Likewise, we also have Q® for
any A n. We will denote by (m) and (1) the unique one-part and m-part partitions
of m.

Let %2 and HS be the full subcategories of H generated by P and Q, respectively. Let
H° be the full subcategory of H generated by the monoidal unit 1.

Theorem 2 [17]. Inside H we have the following relations
(1) P® and PW commute for any partitions i, w;
(2) QW and QW commute for any partitions A, ju;
(3) QUPM = @, PI-HQI and QP = @, PU"HQI™);
mpd™ ~ pd™Qm amhn-1 AMpim) ~ pmyU™ (m-1U"™hH
(4) QWP pthQm g P Q and QP pmQtt) ¢ P Q .

Thus, at the level of Grothendieck groups we have a map h — Ko(#). This map is
known to be injective but it is not known if it is surjective.

2.3. The degenerate affine Hecke algebra

Inside H consider the element X; € End(P"), acting on the ith factor P, as illustrated
in the left-hand side of (2.5). In [17], this element was studied and it was encoded
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6 S. Cautis et al.

diagrammatically by a solid dot, as shown

= (2.5)

n [17], it was shown that these X;’s together with the symmetric group C[S,] C
End(P") generate a copy of the degenerate affine Hecke algebra. In particular, using
equation (2.2)—(2.4) the equations

XX KR e

follow. More precisely, denote a crossing of the ith and (i + 1)st strands by T;.

Proposition 3 [17]. We have the following relations inside Endy (P"):

TiXi=XinTi+1
XiT; =T Xix1+1
XiX; = X;X;
TP =1

LT =T;T; ifli—jl>1

LiTinTi =Ti1 Ti T

The algebra generated by T; fori =1,...,n—1 and X; for i =1, ..., n satisfying the
relations in Proposition 3 is the degenerate affine Hecke algebra DH,,.

We now define bubbles which are endomorphisms of 1= P° which can be tensored
with endomorphisms of P" to give new endomorphisms.

cn = @ ¢y = @ (2.7)

Proposition 4 [17, Proposition 2]. Forn > 0

n—1
Cn+1 = § CiCp—1—i-
i=0

Proposition 5 [17, Proposition 4]. There is an isomorphism of algebras
End(P") = DH,, ® C[cg, c1, .. .].
In particular, when n = 0 we have End(1) = C[cg, ¢y, .. .].
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W-algebras from Heisenberg categories 7

Let Jy., be the ideal of Endyy (P Q") generated by diagrams which contain at least
one arc connecting a pair of upper points.

Proposition 6 [17, Equation (19)]. There ezxists a short exact sequence
0 — Ju.n — Endyy (P"Q") - DH,, ® DH,” ® C[cg, c1,...] = O.

Furthermore, this sequence splits.

3. The algebra Wit

In this section, we define the W-algebra of interest and list several important properties.
This algebra is defined to be the universal enveloping algebra of a central extension of
differential operators on C*. The W-algebra, W} comes equipped with a Z-grading and
a compatible Zxo-filtration. We will also define a faithful irreducible representation of a
quotient of Wy 4.o. Both of these features will be crucial in proving that the W-algebra is
related to the trace of H. This section follows closely the exposition in [20, Appendix F].

Let Witoo be the C-associative algebra generated by w; for [ € Z and k € N and C
with relations that wg o and C are central, and

wix =1'DF (1, k) # (0, 0) (3.1)

(' exp(a D), * exp(BD)]
exp(—la) — exp(—kp)
1 —exp(a+ B)
where @ and $ are formal parameters, ¢ is the parameter on C* and D = t9;.
Note that for I € Z — {0} the set {w; o} generates a Heisenberg subalgebra because

= (exp(ka) —exp(IB)t' ™ exp(aD + BD) + 8/ —«

c (32

[wi,0, wk,0] =181,k C. (3.3)

We will need the following relations which are direct consequences of (3.2).

3

(w1, w1l = (k= Dwir,1 + Cé1.—k (3.4)

a b
a b
[w_14. wipl =) :(r)wo,a+b_r—§ (—1>S<S>wo,a+b_x+3a,o<—1>b+lc (3.5)
s=1

r=1 s=

k(k—1)
2

[wr0, wo 2]l = —2lw; —lzwlio. (3.7

C (3.6)

[wi, 1, wi,0] = kwigx,0 — 81,k

We define Virasoro elements

Ly =—wp1— %(H- Dwy,o.
Then it is easy to check that (3.2) gives the Virasoro relations
3

-1

C.
12

_ - )
[Li, Lyl = —Kk)Ljyx +81,—k
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8 S. Cautis et al.

wﬂ

Let W 1o0?

1400’ WH

oo b€ subalgebras of Wiioo generated as follows:

Wi i=Clwi sl > 1,k > 0)
WY, 1= C(C, w5 1 > 0})
Wi 1= Clw_y 51 > 1,k > 0).

This algebra has a Z-grading called the rank grading where wy x is in degree [ and C is
in degree 0. The algebra is also Zxo-filtered where wy 4 is in degree < k. Let Wl‘”+oo[r, < k]
denote the set of elements in Z-degree r and Zxo-degree < k where w € {<, >, 0, ¥}.

Denote the associated graded algebra of Wii with respect to the Zxo-filtration by
Witoo = 87 (Witoo).

Since the Z-grading on Wiio is compatible with the Zxo-filtering, the associated graded
W1+oo is (Z x Zxo)-graded. Let W1+oo[r k] denote the subspace of W _in bidegree
(r, k). Define a generating series for the graded dimension of we by

1+o00
1400

Pgo (tq) =7 dimW, [rkl'q"

rez kEZ}O

and W=

Proposition 7. The graded dimensions of w? oo

Ttoo are given by:

PW1>+OC l—[l_[ 1— gk Wiieo HH 1— gk

r>0k=>0 r<0k>0

Proof. The defining relations of Wiieo given in 3.2 imply that the associated graded
algebras W1> oo and W1<+oo are freely generated by the images of w; . The proposition
now follows easily since the image of w; ; has bidegree (I, k). O

Lemma 8 [20, Lemma F.5].

(1) Witoo is generated by w_1 0, wi,0, Wo,2-
(2) Wiis

(3) W1<+oo

is generated by wy; forl > 0.
is generated by w—1; forl >0

For ¢,d € C let C. 4 be a one-dimensional representation of w2
zero for (k,[) # (0,0), C acts by ¢ and w0 acts by d.

Let Mg := Indx;“ (Ce.a).

1400

oo where wy; acts by

Proposition 9 [2, 11]. The induced module M. 4 has a unique irreducible quotient Ve 4.
As a vector space V1o is isomorphic to Clw_1 9, w—20,...].

Proposition 10 [20, Proposition F.6]. The action of Witeo/(C —1,wp ) is faithful on
V]’().
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W-algebras from Heisenberg categories 9

Proof. This is [20, Proposition F.6] since their proof does not depend on how the central
elements C and w0 act. The proof uses the faithfulness of the action of the Heisenberg
algebra on Fock space together with the filtration on Wis. O

Lemma 11 [20, Lemma F.8]. The action of woa on Vi is given by the operator

Z (W—1,0W—k,0Wk+1,0 + W—1—k,0WI,0Wk,0) — WO, 1-
k.I>0

Proof. This is a straightforward computation using the relations of Wi and the

definition of Vj . For more details see the proof of [20, Lemma F.8]. There is a correction

term of —wy,; in the lemma because we take wp = 0 while in [20] it is taken to be
1

1 O
2

4. Trace of H

4.1. Definitions and conventions

The trace, or zeroth Hochschild homology, Tr(C) of a k-linear category C is the k-vector
space given by

) =| P c&x.Xx) /I,

XeOb(C)

where C(X, X) = End¢(X) and Z = Spany { fg — gf} where f and g run through all pairs
of morphisms f: X > Y, g: ¥ — X with X, Y € Ob(C). For a morphism f in C denote
its class in Tr(C) by [f]. The trace is invariant under passage to the Karoubi envelope
Kar(C).

Proposition 12 [5, Proposition 3.2]. The natural map Tr(Kar(C)) — Tr(C) induced by
inclusion of categories is an isomorphism.

Proposition 13 [4, Lemma 2.1]. Let C be a k-linear additive category. Let S C Ob(C) be
a subset such that every object in C is isomorphic to the direct sum of finitely many
copies of objects in S. Let C|s denote the full subcategory of C with Ob(C|s) = S. Then,
the inclusion functor C|s — C induces an isomorphism

Tr(C|s) = Tr(C) (4.1)

The trace of a general category is only a vector space. The monoidal structure of
H endows Tr(H) with a product. Given morphisms f: X — X’ and g: ¥ — Y’ then
f®g: XY - X'Y’ and we may define [ f][g] := [f ® g] so that the product in Tr(H) is
denoted by juxtaposition of classes in the trace. The algebra Tr(H) is unital with the
identity Idq of the monoidal unit 1 acting as the unit element.

Recall that a categorical representation of the category H is a k-linear category V and
a k-linear functor H — End(V) sending each object X to an endofunctor F(X): V — V.
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10 S. Cautis et al.

Each morphism f: X — Y is sent to a natural transformation of functors F(f): F(X) —
F(Y). A categorical representation gives rise to a representation

pr: Tr(H) — End(V) (4.2)

sending the class [f] € Tr(H) corresponding to a map f: X — X in H to the
endomorphism of the k-vector space Tr()) defined by sending ¢: U — U in Tr(V) to

pE(LDAYD = [FX)W) o F(fHHul = [F(Hu o F(X)()].

Here, note that F(f)y denotes the component of the natural transformation
F(f): F(X) = F(X):V — V corresponding to the object U € Ob(V). By naturality this
map is well defined.

The morphisms in any cyclic, or strictly pivotal, monoidal category can be described
using planar diagrammatics in which any two morphisms that differ by an isotopy are
equal. The monoidal category H is an example such a category. In this context, it is
natural to view the element [f] € Tr(H) by drawing f: X — X in an annulus and then
closing up the diagram for f.

T - g

The trace relations imposed by the quotient by Z = Spany { fg — gf} where f and g run
through all pairs of morphisms f: X — Y, g: ¥ — X with X, Y € Ob(H) is naturally
imposed by the topology:

by sliding diagrams around the annulus.
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W-algebras from Heisenberg categories 11

Let w € S,. We introduce a formal notation to denote elements in Tr(H). Define
hy ® (xfl o 'xén) = [fw;jl,..-,jn]
where fy. ;. j, € End(P") is given by:

fwijls---vjn =

The tensor product in our notation is strictly formal and is used to emphasize particular
elements with permutations at the bottom and some monomial in dots at the top.
Define ' '
h—w®(x]jl "'x#) = [f—w;j1 ..... j,,]

i, € End(Q") is given by:

.....

where f_,.j,

ha ® (6] X"y = h, ® (6]  x) = (4.3)

hon ® (]2l = g, @ (]! xil) =

The next lemma allows us to express the elements h, ® (x{1 ---x,{”) in terms of the
elements i, ® xll‘.

Lemma 14. Forn > 1 and 1 <i <n—1 we have

hin ®@%i =hepy Qxip1 £ (M @D (ht—iy @ D).

Proof. This is immediate from (2.6) and properties of the trace. O
The next lemma allows us to express generators [fy.j,..j,] in terms of the more
elementary generators i, ® p where p is a polynomial in variables xi, ..., x,.
Lemma 15. Let w € S, and (ji, ..., jr) a sequence of natural numbers. Then
[f:l:w;j|,...,jn] = Zdnl,..‘,nr (h:I:nl ® pnl) te (h:I:nr ® pn,)
where the sum is over sequences (ny, ..., n,) of natural numbers that sum to n, for some

coefficients dy,...n, € C and polynomials pp, in n; variables.
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12 S. Cautis et al.

Proof. We prove this by induction on j; + - - -+ j,. The base case where all of the j; equal
zero is trivial because then f,.;, . ;, is just an element in the symmetric group and thus
its class [ fuw: ..., j, ] in the trace is determined by its conjugacy class in S, which of course
could be written as a product of disjoint cycles.

Choose an element g € S, such that

—1
gwg = (sl .. 'Snlfl) e (Sn1+~-nr,1 . 'Sn1+~~n,-fl)~

Let p= x{l ~-x,{”. Thus, fu.j,...j, = pw. Now we conjugate this element by g to get
gpwg ' = (g.p)gwg™' + prwg™! where p; is a polynomial of degree less than jj +
-+++j, and g.p is some other polynomial of degree ji +---+ j,. The lemma follows

by applying induction to the second term and noting that in the first term gwg™' is a
product of cycles. O
Corollary 16. Let w € S, and (ji, ..., jr) a sequence of natural numbers. Then
l I
[frwijroiid = D ny.oony (B, @ X7) -+ (e, ® x7)

where the sum is over sequences (ni, ..., n,) of natural numbers that sum to n, for some
constants dy,...n, € C and some non-negative integers Iy, ..., I.

Proof. This follows from Lemmas 14 and 15. O]

4.2. Elements p™ and ¢™
In this section, we will see how the Heisenberg algebra h in the presentation given in

terms of p™, g™ from §2 appears in Tr(#).
Define p(”) ® 1 and q(") ® 1 in Tr(H) by

1
p(n) ®1= E Z [ fw:0,....0] (4'4)
weS,
1
g1 = - Z [f-w:0.....0] (4.5)
wes,

We depict the elements p(”) ® 1 and q(") ® 1 by

We have for example the relation (¢P @ D(pP®1) = (PP @) (g ®1)+1. The
product (¢P @ D(pM ®@1) is
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W-algebras from Heisenberg categories 13

Now, the graphical relations in H allow us to pull the inner circle outside as follows

..+.

The last term above can be simplified using the trace relation to isotope the cup around
the annulus creating a circle. Since a counterclockwise circle equals 1, the circle in the
last term above can be erased, leaving the identity endomorphism of the monoidal unit
in H, or the multiplicative identity 1 € Tr(H). On the other hand, the first term on the
right can be simplified by sliding in the outside circle to obtain

Thus, we end up with

..—i_1
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14 S. Cautis et al.

Theorem 17. The elements p™ ®1,¢q™ @1 forn e Z>o satisfy the relations:

PP ehP™en = (p™eh(p" el wmdd™” @™ el =" ehg" e

@ eDp™el =3 (" P ehE" e,
k>0

Proof. This follows fairly directly from the proof of the categorified statement in [17]
and its analogous statement in [8]. We sketch the details for the computation of (¢ ®
D(p™ ® 1). By definition (¢ ® )(p"™ @ 1) is

(n) (m (4.6)

Letting cfn’n = k!('Z) (Z) we get using a straightforward modification of [8, Equation 31]

that (4.6) is equal to:

= [

%

Sk [=F) ] [m—hK ] (4.7)
k

?mﬁ
~s/
Slide the top two rectangles and the k cups connecting them counterclockwise to the

bottom of the diagram and apply a modification of [8, Equation 32], to get that (4.7) is
equal to:
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W-algebras from Heisenberg categories 15

> | [o-0] [a=p]

0<I<k

By definition this is equal to Y, (p™ P @ 1)(¢" P @ 1). O

4.3. Some diagrammatic lemmas

For convenience, we work with classes [ f] of endomorphisms in Tr(#H) and omit the annuli
from our diagrammatic computations. The reader should keep in mind that all diagrams
inside of closed brackets are interpreted on the annulus.

Lemma 18. For any a > 1 we have the following identities

R e
a a f+eg=a—1

Proof. The first claim follows inductively from (2.6). The second claim follows from the
first after observing that a left twist curl is zero and the ¢} = 0. O

Lemma 19. For any a > 0 we have

(hem ®@x7)(hy, ®1), ifm>n>1;
) e @) (hy ® 1) —ncy, ifm=n;
] em @ xR ® 1) —nf; Cr(hp-m®xy), ifn>m,
g:

a—1

where the left side involves m downward strands and n upward strands.
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16 S. Cautis et al.

Proof. The claim follows by simplifying the diagram using the first equation in (2.3)

(4.10)
The second term unwinds substantially and simplifies to a diagram containing a left
twist curl if m > n. If m = n this term reduces to a counterclockwise bubble with a dots.
Finally, if n > m then the diagram reduces to —h,—, ® 1 together with a left twist curl
containing a dots inside the curl on the first strand. Reducing this dotted curl using (4.9)
shows that in this case the diagram reduces to —3 ¢y, | Cr(ln—m ® x7).

Each time the downward oriented strand is pulled through an upward oriented strand in
the bottom half of the first diagram in (4.10) the resolution term will simplify to a diagram
containing a left twist curl if m > n, to ¢, if m = n, and to the sum — Zf+g:a_1 Crhp—m®
x{) when n > m. Since there are n such upward oriented strands the result follows. [

Lemma 20. For any a > 0 we have

(h—m ®xil)(hn®1), me >n>=1;
(h—m ®x8)(hy ® 1) — 1y, ifm=n;
(h-m ®x{)(hy ® 1) _"f; Crhn—m ®xY), ifn>m,
JT8=
a—1

where the left side involves m downward strands and n upward strands.

Proof. By repeatedly applying the second equation in (2.3) together with the trace
relation it follows that
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W-algebras from Heisenberg categories 17

Then using triple point moves to slide the crossings in the middle third of the diagram
through the strands at the top third, the diagram becomes

Sliding one layer of crossings from the top third to the bottom third using the trace
relation gives

Applying the first equation in (2.3) in the bottom third of the diagram only one term
survives

since the second diagram can be simplified to one containing a left twist curl which is
zero. It is easy to see that the same thing happens as the left most downward oriented
strand at the bottom is pulled through all of the upward oriented lines.
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18 S. Cautis et al.

To further simplify the diagram, slide all of the crossings involving the second downward
oriented line from the top third of the diagram to the bottom third and simplify using
the first equation in (2.3) as above. Each time this equation is applied the resolution term
can be simplified so that it contains a left twist curl. Hence, all of these terms vanish and
we are left with the following

a

The result follows by Lemma 19. O

Lemma 21. For 1 <i <n and a > 0 the identity
[(xilTi—i-lTi+2 BTy T) (Tt - Topm) (T Tt - T)] = M ®xil

holds in the trace.

Proof. The left side of this relation can be expressed by the diagram

1 2 i i+l n+m

1 -1 i i+l n nt+m

The T;41...T, at the top can be reordered to T, ... T;+; by first sliding the T;1| around
the annulus using the trace relation and then back to the top of diagram using equations
(2.2) to produce T;17Ti+1T;i+3 ... T,. Next use the trace relation and equations (2.2) to
bring the crossings T;42T;+1 through the bottom of the diagram back to the top portion of
the diagram producing T; 43T 42Ti+1Ti+4 . . . T,. Continuing in this way all of the crossings
at the top third of the diagram can be reordered to produce

1 2 i i+l n+m

1 i—1 i i+l n n+m

where we have moved the entire top third of the diagram to the bottom using the trace
relation. It is now easy to see that using both relations in (2.2) together with the trace
relations simplifies the diagram to h,4, ® x{. O
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W-algebras from Heisenberg categories 19

4.4. A Heisenberg—Virasoro subalgebra

We exhibit generators of Tr(H) which satisfy the Heisenberg relations for the original

generators h,. There is another set of generators which satisfy Virasoro relations with

central charge 1. The Virasoro algebra naturally acts on the Heisenberg algebra and the

resulting semi-direct product algebra is known as a Heisenberg—Virasoro algebra. These

generators come from images of diagrams which contain at most one right-hand curl.
We recover the original Heisenberg generators by the following result.

Lemma 22. The elements h, ® 1 forn € 7 — {0} satisfy the following Heisenberg relations
[hm®1,h,®1] = nsm,—n-

Proof. For mn > 0 the underlying morphisms for (h, ® 1)(h, ® 1) and (h, ® 1)(h,, ® 1)
in the category H are in the same conjugacy class in S,1,,. Thus, their traces are equal.

Suppose then that m < 0 and n > 0. Then consider the diagram for (4, ® 1)(h, ® 1).
Using the trace relation with n applications of the second equation in (2.3) it is easy to
see that

which is equal to (b, ® 1)(h, ® 1) —né,,,» by Lemma 20. O

The next Lemma will roughly lead to ‘half’ of a Virasoro algebra.

Lemma 23. For m,n € Z with mn > 0,
[Am @ x1, hy @ x1] = (n —m) (hpgm @ x1).
Proof. Let 8, = h, ® x;. We prove by induction on m that [B,,, ,] = (n —m)By+,. The

case m = 1 has the following graphical proof.
Without loss of generality assume n > 0 so that

(hn ®@x1)(h1 ®x1) =

Then conjugating by 7, we have

2.6)
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20 S. Cautis et al.

The second term on the right-hand side is just —(h,4+; ® x1). The first term can be
simplified further by conjugating by T,,_1, sliding the dot using (2.6), and observing using
Lemma 21 that the crossing resolution term is also equal to — (k41 ® x1). Continuing this
procedure, conjugating by T,_», sliding the dot, and simplifying the crossing resolution
term using Lemma 21, we see that (h, ® x1)(h; ® x1) is equal to

L
(%

The first term can be simplified by sliding the lower dot

— n(hpt1 @ x1).

(/
(&

(/]
(%

[/
| 1%

+ (.‘
where the trace relation was used repeatedly on the second term to reorder the crossings
at the top of the diagram. The second term simplifies further using the trace relation
to reduce the number of crossings so that the second diagram is equal to (h,+1 ® x1),

completing the induction step.
Now consider the Jacobi identity:

[[:317 ﬁm—l]v ,Bn] + [[IBm—lv ﬁn]v ﬂl] + [[,Bn’ :31]7 ﬂm—l] =0.

Using the base case and the induction hypothesis this becomes
(m —=2)[Bm: Bul + (n —m 4+ D[Bnin-1, 1] + A =m)[Bny1, 1] =0.
Again by using the base case and the induction hypothesis this becomes
(m=2)[Bm, Bl + (n —m+ 12 —m —n)Bpin+ (1 —n)(m—n—2)Bp 1, =0.
It now follows easily that [B, B,] = (n —m) Bytn- O

We now have some relations leading to an action of a Virasoro algebra on a Heisenberg
algebra.
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W-algebras from Heisenberg categories 21
Lemma 24. Let m,n € Z with mn > 0. Then
[hy ®@x1, hp @1 =m(hpyn ®1).

Proof. We only consider the case that m and n are positive. The other case is similar.
Using the same method of proof as in Lemma 23 it is not difficult to show

(hm & 1) (hy @ x1)

— mh,,+m ® 1.

Then by sliding the crossings appearing in h;, to the left of those appearing in h,,, the
first term can be written as

which simplifies to (h, @ x1)(h, @ 1). O
Lemma 25. For integers m,n > 1 we have

nhy_m @1 ifn>m
[h7m®x1’hn®1]= ( n—m ) f
0 ifm>=n>1.

Proof. This is proven by direct computation.

hn @D (h_p®x1) =
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22 S. Cautis et al.

(4.11)
The second diagram is zero since the upper cup can be pulled to the bottom of the
diagram using the trace, thereby creating a left twist curl. Applying the same technique
inductively, the first downward oriented strand and its dot can be brought all the way to
the left of the diagram.

and the result claim follows by Lemma 20. O
Lemma 26. For integers m,n > 1 we have

2mhy_m 1) ifn>m>=1
[hp®x1,h_p ®1] =1 0 zfn:m}l

—mhy—m ®1) ifl<n<m.

Proof. For this proof let 8, = h, ® x; and o, = h, ® 1. We prove this by induction on
m. For m = 1 we give a graphical proof. Consider (h_1 ® 1)(h, ® x1)

@3)
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W-algebras from Heisenberg categories 23

+ hn—l ®1

where we used (4.9) to simplify the dotted left twist curl. Using the trace relation, the
second term above is also equal to h,_; ® 1. For the first term we use the first equation

in (2.3) to slide the upward strands to the left.

where the first equality holds since all the resolutions terms

contain left twist curls. Thus, we have proven the base case of our induction.
Graphically it is easy to see that for some constant y, —, that

[Bns ot—m] = Yn.—m@n—m-
In order to compute the constant y,, _,, consider the Jacobi identity
[Bn, [B=1, a1 11+ [B=1, [o—m1, Bull + [@—mi1, [Bn, B-111 = 0. (4.12)
Now applying Lemma 24, (4.12) becomes

(1 =m)[Bn, d—m]— Yn,—m+1 [B-1, Oln—m+1] +m+ D[Bu-1, a—m—H] =0.
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24 S. Cautis et al.

Thus,
VYn,—m+1 [B-1, g1l — (n + 1)anl,ferIOlnfm
[Bn,a—m] =
1—-m
_ n—m~+Dyu,—m+1 — @O+ D¥Vn—1,-m+1
- 1 —m n—m-
The lemma now easily follows by induction. O

Along with Lemma 23, the next lemma will lead to Virasoro relations.

Lemma 27. Let m and n be positive integers and T = min(m, n). Then
T—1
(hom @ x1, by @x11 = (14 m) My ®X1) = Y j(tn—j ® D(h_pms; ® ).
j=1

Proof. For this proof let o, = h, ® 1 and B, = h,, ® x;. We proceed by induction on m.
The base case is m = 1. The proof is similar to Lemma 26. We begin by using the first
equation in (2.3) and the trace relation.

23)

Using (4.9) the second term is equal to h,_; ® x;. For the first term we slide the dots
upward producing
A/

o

The second and third term are both equal to h,—1 ® x1. For the second diagram pull the
cup to the bottom of the diagram producing a right twist curl (which is just another
dot), then apply (4.9). Likewise, the third diagram simplifies using the trace relation.
To complete the proof of this claim we must slide the downward oriented line to the right
of the upward oriented strands using the first equation in (2.3). Crossing the downward
oriented strand past the ith upward oriented strand produces the following sum.
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W-algebras from Heisenberg categories 25

The second diagram contains a left twist curl with single interior dot. Using (4.9) with
a =1 to simplify this dotted curl, the second term above is equal to h,—| ® x;. The
crossing resolution term resulting from sliding the dot upward in the first term produces
a diagram containing a left twist curl, so that these terms all vanish. Continuing this
process of moving the downward strand to to the right using the first equation in (2.3)
and the dot slide equation we see that (h—1 ® x1)(h, ® x1) is equal to

|
|

completing the proof of m = 1 case.
Now assume the lemma is true for [8_,,+1, B,]. The Jacobi identity gives

0 =1[[B-1, B—m+1l, Bl + UB-m+1, Bnl, B-11+[[Bn, B-1], B—mt1]. (4.13)
By the base case and the inductive step (4.13) is:

m—2
0 =[B-1, B-mi1], Bul+ | (ntm = D1+ Y janje iy, Boi
j=1
+ (n+ DIB-m+1, Bn—1].

Another application of the base case and the inductive steps gives:

0=1[[B-1,B-ms1], Bl + n +m)(m —2) By

m—2
+ ) @it Bt = Bo1n O mi14))
j=1
m—2
+ 41D o1 mir- (4.14)
j=1

By Lemma 25, we move S_; and (4.14) becomes

0=1[[B=1, B=m+1], Bul + m+n)(m —2)B,_p,

m—2 m—2
+ Z Jon—jo_my1yjBo1— Z JOn— i B10 i1y
=1 =1
m—2 m—2
=D i = e jreomei + ) (1 Djon—jeompiy. (415)
=1 =1
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26 S. Cautis et al.

Again moving the element B_; to the right, using Lemma 25 (4.15) becomes

m—2

=[B-1, Bmt1), Bl + (m+n)m =2 Bum+ Y1+ Djen1-jo miis;
j=1

m—2 m—2
+ Z Jon—jot—my14jP—1— Z Jon—jo—mt1+jB-1

j=1 j=1
m—2 m—2

- Z J=m 41+ oy jo—mij— Z J = ) j_10—mti4j-
j=1 j=1

Simplifying the above gives
0=1[B-1, B-m+1], Bul + (m +n)(m —2)Bp_m

m—2 m—2
+ ) JG Do — Y J(=m A T+ oy
j=1 j=1

Combining the last two sums above gives
m—3
= [[B-1, B—m+1l, Bpl + (m +n)(m —2)Bp—p + Z(m —2)(J + Dan—1-jo—mt1+j
j=l1
+(m —2)ap_10_py1+(m—2)(m — Day_pp10—1.

Thus,
m—1
[[B=1, B—mt1]l, Bul = —(m =2) | (m+n)Bu—m — Z jaiz—ja—m+j
j=1
It follows from Lemma 23 that [S—1, B—m+1] = (—m 4+ 2)B_;,. Substituting this into the
above equation gives the desired result. O

Remark 28. A slight modification to the m = 1 argument of Lemma 27 can be used to
prove that for n, m > 1 the following relations:

[h ®x1,h1®xl Z Z hn+l®x1 j ]+1
j=2a+b=m—1
b+ ptd
+ Z hny1 ®xilx2 " — Z hnt1 ®xix2 s
a+b=p—1 c+d=m—1

[y @1, b @ x71 = (m = 20) (o @ X7)
n—1
+ Z(zn — D0 @x)(nim— @D = Y jlUtmyj @ x1)(hnj @ 1),
Jj=1 j=1
hold in Tr(H). Though we will not need these relations in Tr(#) in order to identify it with
a quotient of Wi, they can be helpful in computing explicit formulas for commutators.
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W-algebras from Heisenberg categories 27

We define:
1
L= 7‘ (ho @ (x1+---+x) (A#0)
Lo = ¢ (4.16)
bp=h_;®1.

Proposition 29. The elements L; for 1e€Z and by for 1#0 generate
a Heisenberg—Virasoro algebra with central charge one. That is

(b, by] = kép,—;

3 _
[Lka L[] = (k _Z)LkH + 12 (Sk,—l
[L;, bi] = —k(bryk).
Proof. This follows from Lemmas 22-27. O

4.5. Trace of the degenerate affine Hecke algebra

The trace of DH, may be computed by a theorem of Solleveld [22] which reduces
the problem to computing the trace of a semi-direct product via a spectral sequence
argument.

Theorem 30 [22, Theorem 3.4]. The trace of the degenerate affine Hecke algebra is
isomorphic to the trace of the semi-direct product of the symmetric group and a polynomial

algebra:
Tr(DH,) = Tr(S, x C[x1, ..., xs]).

Now let P(n) be the set of partitions of n and, for a partition A of n, let p;(A) be the
number of times the number i occurs in A.

Theorem 31 ([10, Theorem 3.1], [22, §1]). We have
Te(Sy x Clxr.....x D = @ Q) $7PClx]

rEP(n) i1
where SKC[x] is the space of Sy invariants of Clxy, ..., x¢].

Theorems 30 and 31 together determine the trace of the degenerate affine Hecke algebra.

Example 32. The degenerate affine Hecke algebra of rank two D H> is generated by the
group algebra of the symmetric group S> and the polynomial algebra Clxy, x2]. If 51 is
the generator of S, then the only additional relation is sjx; = xps1 + 1.

There are partitions A = (2) and A = (1, 1) of 2. By the above theorems Tr(DH>) is a
direct sum of subspaces

® SPCx] QB ® P Cx] = Clx] QB S2Clxy, x2].

i>1 i>1
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This corresponds to a splitting of the trace

C{x{'s1)aez=o @D S*Clx1, x2].

4.6. Tr(H) as a vector space
Lemma 33. If f, g € DH, with fg =1, then in fact f, g € C[S,] C DH,.

Proof. We consider the non-negative integral filtration on D H,,, with associated graded
gr(DH,) = C[S,] X Cl[xy, ..., x,]. The degree 0 part of this filtration is precisely C[S,].
Now gr(f)gr(g) = 1, which implies that gr(f) and gr(g) are in C[S,]. Thus, f and g are
in the degree 0 part of the filtration, as desired. O

Lemma 34. The indecomposable objects of H' are of the form P"Q" for m,n € Zxq.

Proof. An indecomposable object must be of the form P"Q" because a subsequence QP
produces a decomposition PQ & 1.

There is a morphism from P"Q" to P*Q’ if and only if m —n =a—b. Ifa+b £ m+n
then the composition PQ? — P"Q" — P*Q’ produces cups and caps or circles. By
Proposition 6 it follows that this composition cannot be the identity.

Now suppose there are maps f: P"Q" — P"Q" and g: P"Q" — P™Q" such that gf is
the identity. We claim that in fact gf is the identity, too. Since a composition containing
caps or cups cannot be the identity, Proposition 6 implies f is a monoidal composition
of f1 and f; where f1: P™ — P™ and f,: Q" — Q". Therefore, f] can be identified with
an element in DH,, and f> may be identified with an element in DH,”. Similarly, g is a
monoidal composition of g; and g, where g;: P — P™ and g>: Q" — Q", so that g can
be identified with an element in DH,, and g» may be identified with an element in D H," .
But now, by Lemma 33, fi and g must belong to C[S,,]. Since C[S),] is semi-simple,
g1 /1 is the identity if and only fg; is the identity. Thus, f is an isomorphism, and P"Q"
is indecomposable. O

Lemma 35. There is an isomorphism of vector spaces

Tr(H) = @ @ (X)Spi(“)C[x]@SPM)C[x] ® Clco, c1, . . ..
meZLzo weP(m) i1
neZ20 AEP(n) j=1

Proof. By Proposition 12, Tr(H) = Tr(H') so by the definition of Tr(H’) and by
Proposition 13 it suffices to consider endomorphisms of all indecomposable objects (m
products of P followed by n products of Q) modulo the ideal Z defined in §4.1. That is

Tr(H) = @ End(P"Q")/T.

m,n>0

Since any map from P"Q" — pm Q”/ with m # m’ or n # n’ must contain a cap or
cup, it is clear that the ideal Z is equal to the ideal J, , from Proposition 6 plus the
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ideal generated by fg — gf where f, g: P" Q" — P™Q". Using the trace relation together
with the relations in #, any map contained in the ideal J,, , can be reduced to a sum of
endomorphisms of P Q" for some m’, n’ that are not in the ideal Jm.n by induction on
the number of cap/cups in the diagram. Indeed, each cap/cup can be isotoped around
the annulus using the trace relation and relations in H to eventually create a curl or
circle, which can then be further reduced to diagrams containing fewer caps and cups.
By applying Proposition 6

Tr(H) = @ Tr(DH,, ® DH,’ ® C[co, c1, ...]).
m,n>0

The Lemma now follows from the results in §4.5. O

4.7. Towards the trace of H as an algebra

Denote by Tr” (H) (respectively Tr<(H)) the subalgebra of Tr(#) generated by #; ®x{‘
(respectively h_; ®x{‘) for I > 1,k > 0. Moreover, let Tro(’H) = Tr(H9).

Lemma 36. The algebra Tr(H) is Z-graded where h, ®fo 1s in degree r.

Proof. This is clear by an inspection of the defining relations of the category #H'. O

We call this Z-grading the rank grading because it is related to the degenerate affine
Hecke algebra associated to a Lie group of a particular rank.

Lemma 37. The algebra Tr(H) is Zxo-filtered where h, ®x{‘ is in degree k.

Proof. This follows from the fact that a dot may slide through a crossing plus or minus
a correction term which is a resolution of the crossing containing no dots. O

For w € {<, >, 0}, the associated graded of Tr*(H) with respect to the Zxo-filtration
will be denoted by gr Tr®(H). This is a (Z x Zx¢)-graded algebra. We denote the subspace
in degree (r, k) by gr Tr®(H)[r, k] and define the Poincaré series by

Progy(t, @)=Y Y dimgrTe(H)[r, klt"q*
reZkEZ;O

Corollary 38. These Poincaré series are given by

Pre>() = 1_[ 1_[ Pr<yy = 1_[ 1_[

r>0k>0 r<0k>0

Proof. We prove the first equality (the second follows similarly). Under the isomorphism
from Lemma 35 Tr~ (H) corresponds to

P & s (4.17)

n>0reP(n) i1
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Now SPiMC[x] = C[hy, ..., hp,o)] where the bidegree of the symmetric functions #; is
(IA], 7). It follows that the generating series of (4.17) is given by [];> #(¢’, ) where

q q° g

(-0 (U-ni-md) d-pa-oa-m
But ¢(q,t) is just the basic hypergeometric series 1¢o(0; ¢, ¢) which is known to equal

- —— The result follows. ]
]_[j20 1—qt/

¢(q.1) =1+

Lemma 39. For n > 0 we have

[h, @ x{, col = —n(h, @ x{)
hon ®x{, col = n(h_y ®x{).

Proof. By the ‘bubble moves’ [17, page 10] one could move a clockwise circle on the right
of an upwards pointing strand to the left of the strand at the cost of subtracting the
same diagram with the circle erased. Repeating this move n times to get the circle all
the way to the left gives the first part of the lemma.

The second part is proved in a similar fashion. O

Remark 40. Lemma 39 can be generalized to prove the more general identities

,
[y ® x{, ch] = Z(—l)j<;>njc(r)_] (hy®x{), and
j=I1

r

AN
[hon ®@x{, ch] = Z (j)nfc(’) T(h_y, ®x{).

j=1

Lemma 41. For n > 0 there are equalities
n—1
[y @ x{ 1] = 20y @23 + 3200 = ) (hj ® ¥ (o ® 1)
j=1
n—1
[hon®xf, 1l =2n(hy @x{TH + Y 20— )(h_j @x{)(h_pyj®1).
j=l1

Proof. For the first part we again use the ‘bubble moves’ [17, page 10] moving a clockwise
circle with a dot on the right of n upward pointing strands all the way to the left:

(hy @ x{)(c1) = (c1)(h, @ x{) — 2h,, ®x‘1’+1 —2h, @x{x2— -+ —2h, @ x{xp.
By Lemma 14, this is equal to
n—1
—2n(hy @ x{*)+ Y 20— j)(hj @ x{)(hy—j D 1).
j=1
The second part is proved in a similar fashion. O
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Lemma 42. For non-negative integers a and b there is an equality

a+b—2
[h— ®x'f, h1 ®x{] = Caqp + Z @+b—1—1D%cCarpr—i-
=0

Here we define c_.o = —1 and c_, =0 for n € N where n # 2.

Proof. The element (h; ® x{)(h—y ®xi’) is equal to

a

<
S

N Jat+b—1—j

a b _ 4.8 a Z J
5 Q

yo [N b1 i j

1
Y >3 >
j=0 gz j=0 at+b—1—j

which can be simplified further, again using equation (4.8). Thus,

(h1 @x{)(h—1 ®x7) = (h1 @ x{)(h_1 ®x]) = Cayp

b—latj—1 a—1j-1
- Z Z CkCayb—2—k — Z ngca+h—2—k~
=0 k=0 =0 k=0

Combining the last two double summations into a single summation gives the lemma. [
Lemma 43. Tr(H) is generated by h—1 ® 1, h1 ® 1, (co +c1).

Proof. By Lemmas 39 and 41, we have
ad(co+c)(h ®1) :=[(co+c1), @1 =2(h1 ®x1) +h1 ®1

allowing us to generate | ® xi.

By Lemma 24, we have ad”(h; ® x1)(h; ® 1) = n!(h, ® 1) allowing us to also generate
h,®1. Next we could generate #h, ®x]1‘ for all n > 1,k >0 inductively by using
Lemmas 39 and 41 to calculate [A, ®x{‘71, co+cil.

In a similar manner using Lemmas 39 and 41 we can generate h_, ® x{‘ forn>1,k>0.
In particular, we can generate h_; ®x{’ and h| ® x{. Finally we can generate c, for all
n > 0 using Lemma 42. U

4.8. A representation of the category H’

Let S;, denote the category whose objects are all (C[S,], C[S,]) bimodules for some r €
Z»( corresponding to induction and restriction functors. The morphisms between two
bimodules B and B’ is the space of bimodule maps between B and B’. Note that if the
bimodules B and B’ are not bimodules over the same algebra then the space of morphisms
is zero.
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For each n there is a functor F,: H — S,. The object P is mapped
to the (C[S,+1], C[S,])-bimodule C[S,+(]. The object Q is mapped to the
(C[S,-11, C[S,]-bimodule C[S,,] where we view C[S,—1] as embedded in CI[S,] by
mapping the simple transpositions s; to s; fori =1, ..., n —2. We then extend this action
monoidally. For details on how the functor F, acts on morphisms see [17, §3.3]. Let

V =P T1(S;) = @ Tr(CIS, ] — mod).

This is naturally a module for Tr(#) = Tr(#’) since the category S is a representation
of the category H. For the analogous statement for 2-categories see [3, §6.0.3].

Proposition 44. As a vector space V is isomorphic to C[h1 ®1,hp, ®1,...].

Proof. As a vector space Tr(C[S,]) is spanned by conjugacy classes of S, which in
turn is isomorphic to the span of irreducible characters of §,. Thus, V is spanned
by the irreducible characters of all symmetric groups. As an algebra under induction
it is generated by irreducible representations corresponding to single cycles. These are
precisely the elements Ay, ha, ... in Tr(C[S,]). O

Proposition 45. The Tr(H)-module V 1is irreducible.

Proof. It was proved in [17] that V categorifies Fock space for the Heisenberg algebra b.
Since § acts irreducibly on Fock space and b is a subalgebra of Tr(#), it follows that V
must be an irreducible Tr(H)-module. O]

In order to prove the next proposition we recall that the structure of Tr(#) as a vector
space was computed in §4.6. We follow closely the proof of [20, Proposition F.6] where
the faithfulness of Witoo/(C — 1, wg,0) on Vo is given.

Proposition 46. The action of Tr(H) on V is faithful.

Proof. In what follows we denote by Tr(#H)[r, < k] the set of elements in Z-degree r
and Zxo-degree < k. Let I be the annihilator of Tr(#H) in V. There is a filtration on
I: IpC I} C---. Since &, Tr(H)[r, < 0] is isomorphic to a Heisenberg algebra and it is
known that the Heisenberg algebra acts faithfully on V, it must be the case that

1IN0 (@, Tr(H)[r, < 0]) = {0}.

Thus, Ip = {0}. If we assume that I is non-zero then the minimal n such that I,, # {0} is
greater than zero.
Notice that for n > 1 that

(M1, Tr(H)[r, < n]] C Tr(H)[r+1,<n—-1].

It follows that for n > 1 that [I,,, Tr(H)[r, < 0]] = 0 so that each filtered component I, is
contained in the centralizer the @, Tr(H)[r, < 0] in Tr(H).
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W-algebras from Heisenberg categories 33

Now we compute the centralizer of @, Tr(H)[r, < 0] in Tr(#) and show that it must be
trivial. If g € Tr(H) then we let its image in the associated graded be denoted by g. It
follows from Lemma 35 that the associated graded is isomorphic to a polynomial algebra
Clh, ® xj] for r € Z,s € Zx( and (r,s) # (0,0). This algebra is bigraded with element
hy ® xi in degree (r, 5).

Consider the map for n > 1

o= [h®l,el: @Tr(%)[r nl/ Tr(H)[r, < n—1]
—>@Tr(7-{)[r n—11/Te(H)lr, < n —2].

The space Tr(H)[r, < n]/ Tr(H)[r, < n— 1] is the degree (r,n) piece of the associated
graded algebra. It is easy to see that

G (hy @ x{) = =kl (h14r ® X)),

Thus, the common kernel of the operators N; ker(g;) is zero if n > 1. This implies that
the centralizer of @, Tr(H)[r, < 0] in Tr(#) is contained in @, Tr(H)[r, < 0]. But this
subalgebra has trivial center. O

4.9. Tr(H) as an algebra

There is an isomorphism of vector spaces
1;: V=Cm®lhal,..]— Vi o=Clw_10,w-20,-..] (4.18)

where
(h, ®1)---(h;, ®1) = (w_y,0) - - (W_y,,0)-

Lemma 47. The map ¥ in (4.18) commutes with the action of Heisenberg subalgebras in
V and V1. That is for anyv e V

Y ((hy @ V) = w_y 0¥ (v).

Proof. Propositions 9 and 44 provide vector space realizations of V; o and V, respectively.
The lemma now follows easily from the definition of i and the Heisenberg relations
calculated in (3.3) and Lemma 22. O

Lemma 48. For any v € V we have 1/_/(cov) = —wo,u/_f(v).

Proof. This follows easily using (3.6) to compute [wog 1, wy 0], Lemma 39 to compute
[—co, hp, ® 1] and the definition of the map . O

Lemma 49. For any v € V we have @((cl 4+ co)v) = w()yzl/_/(v).
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Proof. By Lemma 41 and (4.16) [c1, hy, ® 1] = 2nL_,. It is well known that the Virasoro
operator 2nL_, acts on Fock space by n Zkez(hnfk Q@ D(hiy ® 1). Now it is easy to see
that the operator ¢; on V acts as

Z (@D @ D)(h—i—k @ 1) + (hi4x @ DN(h—1 @ ) (h—k ® 1)).
k,[>0

The result now follows from Lemma 11. O

Now we extend the map ¥ to a map
i Te(H) — Witeo/(C — 1, wo,0) (4.19)
by mapping generators

h_1®l—=wio hi®l—w_10 c1+co— wop2.
Lemma 50. The map ¥ is a map of Z-graded and Zxq-filtered algebras.

Proof. This follows since the actions of Tr(H) and Wiis/(C —1,wp) on V and Vi
respectively are faithful. O

Remark 51. The map ¥ maps the Virasoro subalgebra of Witso/(C — 1, wo) to the
Virasoro subalgebra of Tr(H) from Proposition 29.

Lemma 52. The map ¥ is surjective.

Proof. This follows directly from the definition of ¢ and Lemma 8 which states that
w1,0, W—1,0, Wo,2 generate Wiyoo. 0

Theorem 53. The map V¥ is an isomorphism of algebras.

Proof. We first show that i restricts to an isomorphism

YO TiO(H) — W0 /(C =1, wo ).

For some ag, ...,a;_1, by, ...,b;_1 € C we have
-1
" (m ®x+3 ah ®x]f)) —y (ad’ <¥> (h® 1))
k=0
=2""ad" (wo2)(w_1,0)
-1
= (—D'w_y, +Zbk(w—1,k)~ (4.20)
k=0

The first equality follows from repeated use of Lemmas 39 and 41. The second equality
follows from Lemma 49 and the third equality follows from [20, (F.9)]. So
-1

Y @x)) = (=D'w_11+ Y oxw_ix
k=0
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for some «y, ..., ;-1 € C. By Lemma 42,

-2
o ® L @x\1=3+) (—1—kekei—2x. (4.21)
k

Il
=)

Hence we have

-1
Y(lho1 ® 1, h1 @ x11) = [wi0, (1 @ x)H)] = [wLo, w_1, +Zakw—l,k:| .
k=0

By Lemma 3.5
l

l
[wi,0, w—1,4] = —lwo—1 — X; <r) wo,1—r — 1 (4.22)
r=

so that (4.21) and (4.22) give us

-1
Yler—a) = —lwo -1+ Y dewos—1 +d
k=0

for some dy, ...,d;—1,d € C. Thus, ¥ restricts to an isomorphism .
Next observe that

¥ (Tr™ (H)) C Wiso/(C — 1, w0)
Y(Tr=(H)) C WS oo/ (C — 1, wo,0).

Since

Tr(H) = Tr™ (1) @ T’ (H) @ Tr=(H)
Witoo/(C—1,w0,0) = Wipoo/(C — 1, w0.0) @ WP, oo /(C — 1, w,0) ® Wi 1 /(C — 1, wo,0)

it suffices to show that ¥ restricted to Tr™ (#) is an isomorphism (the restriction to Tr=(#)
is similar). Since we know that ¥ is surjective we just need that the graded dimensions
of Tr™(H) and W /(C —1,wo) are the same. This follows from Proposition 7 and
Corollary 38. O

4.10. The action of Tr(*) on the center

Recall, by Proposition 5, that the center of H is isomorphic to a polynomial algebra in
countably many variables:

Z(H) = Endy (1) = Clcg, c1,¢2, - .- ]-

Since all objects of H have biadjoints and all adjunctions in ‘H are cyclic, it follows that
the trace Tr(H) acts on Z(H) (see, for example, [3, §6] or [4, §9]). Graphically, an element
of the center X € Z(#H) can be represented by a closed diagram and an element of the
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trace by a diagram on the annulus:

-
- -~

AR

~
--------

This action of Tr(H) on Z(H) is given by placing the diagram for X in the interior of the
annulus

and interpreting the result as a new central element in Z(H). As a consequence of
Theorem 1 and its proof, we have the following.

Corollary 54. The algebra Tr(H) acts irreducibly and faithfully on Z(H). Under the
isomorphism Tr(H) = Witeo/I, this representation is isomorphic to the canonical level
one representation V1,0 of Witeo.

Proof. The proof that Tr(#) acts irreducibly and faithfully on Z(#) follows exactly as in
Propositions 45 and 46. Those propositions used the action of Tr(H) on Tr(C[S,]-mod),
but we could have equally well worked with the center of 7. The identification Endy (1) =
V1,0 follows immediately. O
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