
J. Inst. Math. Jussieu (2016), 1–37

doi:10.1017/S1474748016000189 c© Cambridge University Press 2016

1

W-ALGEBRAS FROM HEISENBERG CATEGORIES

SABIN CAUTIS1, AARON D. LAUDA2, ANTHONY M. LICATA3 AND

JOSHUA SUSSAN4

1Department of Mathematics, University of British Columbia, Vancouver,

Canada (cautis@math.ubc.ca)
2Department of Mathematics, University of Southern California, Los Angeles,

CA, USA (lauda@usc.edu)
3Mathematical Sciences Institute, Australian National University, Canberra,

Australia (anthony.licata@anu.edu.au)
4Department of Mathematics, CUNY Medgar Evers, Brooklyn, NY, USA

(jsussan@mec.cuny.edu)

(Received 22 January 2015; revised 15 April 2016; accepted 15 April 2016)

Abstract The trace (or zeroth Hochschild homology) of Khovanov’s Heisenberg category is identified

with a quotient of the algebra W1+∞. This induces an action of W1+∞ on the center of the categorified

Fock space representation, which can be identified with the action of W1+∞ on symmetric functions.

Keywords: Heisenberg algebra; categorification; W-algebras; Hochschild homology; trace; Heisenberg

category

2010 Mathematics subject classification: 81R10; 20C08; 17B65; 18D10

Contents

1 Introduction 1

2 The Heisenberg category H 4

3 The algebra W1+∞ 7

4 Trace of H 9

References 36

1. Introduction

The algebra Sym of symmetric functions in infinitely many variables is important
in classical representation theory in part because it describes the characters of
representations of symmetric groups in characteristic 0. More precisely, there are

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748016000189
Downloaded from https://www.cambridge.org/core. USC - Norris Medical Library, on 21 Apr 2018 at 03:29:37, subject to the Cambridge Core terms of use,

mailto:cautis@math.ubc.ca
mailto:lauda@usc.edu
mailto:anthony.licata@anu.edu.au
mailto:jsussan@mec.cuny.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748016000189
https://www.cambridge.org/core


2 S. Cautis et al.

isomorphisms

Sym ∼=
∞⊕

n=0

Z(C[Sn]) ∼=
∞⊕

n=0

K0(C[Sn]-mod),

where Z(C[Sn]) is the center of the group algebra, and K0(C[Sn]-mod) is the Grothendieck
group of the category of finite-dimensional representations. Since Z(C[Sn]) is isomorphic
to the center of the category C[Sn]-mod, the rightmost isomorphism says that two basic
decategorifications of the categories C[Sn]-mod, the Grothendieck group and the center,
are isomorphic to each other.

It is fruitful to consider a structure of interest for symmetric functions and then try
to interpret it in the language of symmetric groups. For example, Gessinger realized

the Hopf algebra structure on Sym by considering the maps on characters induced by
induction and restriction [14]. Closely related to this Hopf algebra structure is the fact
that Sym is the underlying vector space of the canonical Fock space representation of the

Heisenberg algebra h, where generators of h act on the Grothendieck group as the maps
induced by induction and restriction between different symmetric groups. The algebra
of symmetric functions Sym thus becomes the canonical level one Fock space module,
which we denote by V1,0, for the Heisenberg algebra.

The module V1,0 can also be equipped with an action of the Virasoro algebra (see [13]
where an explicit action of the Virasoro on

⊕∞
n=0 Z(C[Sn]) is given). More generally, both

these actions are unified in the action of the W-algebra W1+∞ [23].

One of the aims of this paper is to explain how this action W1+∞ on V1,0 arises naturally
from a categorification of the Heisenberg algebra h. More precisely, Khovanov introduced
in [17] a monoidal category H whose Grothendieck group contains the Heisenberg algebra
h.1 Moreover, he defines an action of H on

⊕∞
n=0 C[Sn]-mod.

The main result of this paper is a calculation of the trace Tr(H) (or zeroth Hochschild
homology) of H and its action on the trace (or center) of

⊕∞
n=0 C[Sn]-mod. More precisely,

we prove the following.

Theorem 1. There is an isomorphism Tr(H) ∼= W1+∞/I where I is the two-sided
ideal generated by C − 1 and w0,0.2 Moreover, the action of Tr(H) on the center of⊕∞

n=0 C[Sn]-mod is identified with the canonical level one representation V1,0 of W1+∞.

The theorem gives a graphical construction of both W1+∞/I itself, and of its canonical
representation. As a corollary, any categorical representation of Khovanov’s Heisenberg
category H gives rise to a representation of W1+∞/I . For example, a closely related
categorical action of H on the category of polynomial functors [15] allows us to realize a
W1+∞-algebra action in this context.

From the point of view of Theorem 1, it is perhaps equally reasonable to refer to H
as a categorification of W1+∞. The difference between this statement and the statement
that H categorifies the Heisenberg algebra is that we have made a different choice of

1Conjecturally, there is an algebra isomorphism K0(H) ∼= h.
2The quotient of W1+∞ we see here is not exactly the same as the quotients of W1+∞ that have appeared

in closely related literature. For example, in [20], the quotient of W1+∞ which appears has w0,0 = 1
2

instead of w0,0 = 0.
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W-algebras from Heisenberg categories 3

decategorification procedure. Note however that the question of constructing a monoidal
category whose Grothendieck group is W1+∞ remains open.

In the process of identifying Tr(H) with W1+∞/I , we are also able to find natural
graphical realizations of the standard Heisenberg algebra generators. By contrast, in
the Grothendieck decategorification the standard Heisenberg generators do not admit
an obvious categorical lift and therefore an alternative presentation for the Heisenberg
algebra is required.

An analog of Theorem 1 (and of this difference between the Grothendieck group and the

trace) also arises in the context of quantum groups associated to type ADE Kac–Moody
algebras. Associated to an arbitrary symmetrizable Kac–Moody algebra g, a 2-category
U(g) was defined in [18] whose split Grothendieck group is isomorphic to the integral
form of Lusztig’s idempotent form of the quantum group Uq(g). However, the trace of

the 2-category U(g) is then identified with the idempotent form of quantum current
algebra Uq(g[t]) [4, 5, 21].

1.1. Further directions

More generally, one can associate a Heisenberg category HF to any finite-dimensional
Frobenius algebra F . This is the categorical analog of the fact that one can associate a

Heisenberg algebra hL to any Z-lattice L. If one takes the simplest Frobenius algebra,
namely the one-dimensional algebra C, then one recovers H, and for this reason we first
study the trace of H. In future work we plan to compute the traces of these more general
Heisenberg categories, and thus associate a W-algebra WF to any Frobenius algebra F . Of

particular interest are the Heisenberg categories studied in [8] and associated to zig-zag
algebras (these categorify the Heisenberg algebras associated to quantum lattices of type
A, D, E). Via categorical vertex operators [6, 7] these Heisenberg categories were related

to categorified quantum groups. So one might expect their trace to be related to [3, 5]
or to W-algebras associated to quantum groups [12]. Finally, one may also consider the
trace on the categorification of twisted Heisenberg algebras such as the twisted version
of Khovanov’s category from [9]. In this particular case the trace should be related to

the twisted W1+∞ algebra from [16].
In the recent work [19], the algebra W1+∞ appears in relation to the skein module of the

torus. It could also be interesting to relate directly the appearance of W1+∞ in Heisenberg
categorification to this skein module or to other invariants in quantum topology.

1.2. Outline

In order to prove that Tr(H) is a quotient of W1+∞, we follow the proof in [20] of the
isomorphism between a limit of spherical degenerate double affine Hecke algebras and a
quotient of W1+∞. A complete set of generators and relations of the limit of spherical
degenerate double affine Hecke algebras was given in [1]. Composing the isomorphism
in [20] with the isomorphism from Theorem 1, we get a complete generators and relations
description of Tr(H). Crucial in this comparison is the relationship between H and the
degenerate affine Hecke algebra DHn . Roughly speaking, DHn appears in the morphism

spaces of the upper half of H. As a vector space Tr(DHn) was determined by Solleveld [22]
and this calculation plays a role in our computation of Tr(H).
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4 S. Cautis et al.

In § 2, Khovanov’s Heisenberg algebra h and its associated category H are introduced
and its basic properties are reviewed. In § 3, the algebra W1+∞ is defined, and some of its
important features are recalled. In § 4, the trace of H is determined in terms of W1+∞.

2. The Heisenberg category H

2.1. The Heisenberg algebra and Fock space

Let h be the associative algebra over C with generators hn for n ∈ Z−{0} with relations
[hm, hn] = mδm,−n .

Another way to present h is as follows. Set p(n) = q(n) = 0 for n < 0. For n > 0 define

p(n) and q(n) by∑
n>0

p(n)zn = exp

∑
n>1

h−n

n
zn

 ∑
n>0

q(n)zn = exp

∑
n>1

hn

n
zn

 .
In these generators the relations are:

p(n) p(m) = p(m) p(n)

q(n)q(m) = q(m)q(n)

q(n) p(m) =
∑
k>0

p(m−k)q(n−k).

The Heisenberg algebra h has a natural representation F , known as the Fock space.

Let h+ ⊂ h denote the subalgebra generated by the q(n) for n > 0. Let triv0 denote the
trivial representation of h+, where all q(n) (n > 0) act by zero. Then

F := Ind
h
h+(triv0)

is called the Fock space representation of h. It inherits a Z grading F = ⊕m∈NF(m) by

declaring triv0 to have degree zero, p(n) degree n and q(n) degree −n.

2.2. Heisenberg category H
In [17], Khovanov introduced a categorical framework for the Heisenberg algebra h. This

framework consists of a monoidal category H which is the Karoubi envelope of a monoidal
category H′ whose definition we now sketch (see [17] for more details).

The monoidal category H′ is generated by objects P and Q. We denote the monoidal

unit by 1 and the tensor product of objects by concatenating symbols so that P2 Q =
P ⊗ P ⊗ Q. The generating objects P and Q can be represented diagrammatically by an
upward pointing strand and a downward pointing strand. Monoidal composition of such
objects is then given by sideways concatenation of diagrams. The space of morphisms
between products of P’s and Q’s is a C-algebra described by certain string diagrams with
relations. By convention, composition of morphisms is done vertically from the bottom
and going up.

The morphisms are generated by crossings, caps and cups as shown below

(2.1)
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W-algebras from Heisenberg categories 5

Thus, for instance, the left crossing is a map in End(PP) while the right cap is a map
PQ→ 1. These morphisms satisfy the following relations

== (2.2)

= − = (2.3)

= 1. = 0. (2.4)

Moreover, two morphisms which differ by planar isotopies are equal. Relation (2.2)
implies that there is a map C[Sn] → End(Pn). Since H is assumed to be idempotent
complete this means that we also get objects P(λ), for any partition λ ` n, associated
with the corresponding minimal idempotent eλ ∈ C[Sn]. Likewise, we also have Q(λ) for

any λ ` n. We will denote by (m) and (1m) the unique one-part and m-part partitions
of m.

Let H> and H6 be the full subcategories of H generated by P and Q, respectively. Let
H0 be the full subcategory of H generated by the monoidal unit 1.

Theorem 2 [17]. Inside H we have the following relations

(1) P(λ) and P(µ) commute for any partitions λ,µ;

(2) Q(λ) and Q(µ) commute for any partitions λ,µ;

(3) Q(n)P(m) ∼=⊕k>0 P(m−k)Q(n−k) and Q(1n)P(1
m ) ∼=⊕k>0 P(1

m−k )Q(1n−k );

(4) Q(n)P(1
m ) ∼= P(1

m )Q(n)⊕P(1
m−1)Q(n−1) and Q(1n)P(m) ∼= P(m)Q(1n)⊕P(m−1)Q(1n−1).

Thus, at the level of Grothendieck groups we have a map h→ K0(H). This map is
known to be injective but it is not known if it is surjective.

2.3. The degenerate affine Hecke algebra

Inside H consider the element X i ∈ End(Pn), acting on the ith factor P, as illustrated
in the left-hand side of (2.5). In [17], this element was studied and it was encoded
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6 S. Cautis et al.

diagrammatically by a solid dot, as shown

= (2.5)

In [17], it was shown that these X i ’s together with the symmetric group C[Sn] ⊂
End(Pn) generate a copy of the degenerate affine Hecke algebra. In particular, using

equation (2.2)–(2.4) the equations

− = = − (2.6)

follow. More precisely, denote a crossing of the ith and (i + 1)st strands by Ti .

Proposition 3 [17]. We have the following relations inside EndH(Pn):

Ti X i = X i+1Ti + 1

X i Ti = Ti X i+1+ 1

X i X j = X j X i

T 2
i = 1

Ti T j = T j Ti if |i − j | > 1

Ti Ti+1Ti = Ti+1Ti Ti+1.

The algebra generated by Ti for i = 1, . . . , n− 1 and X i for i = 1, . . . , n satisfying the
relations in Proposition 3 is the degenerate affine Hecke algebra DHn .

We now define bubbles which are endomorphisms of 1 = P0 which can be tensored
with endomorphisms of Pn to give new endomorphisms.

cn = n c̃n = n
(2.7)

Proposition 4 [17, Proposition 2]. For n > 0

c̃n+1 =
n−1∑
i=0

c̃i cn−1−i .

Proposition 5 [17, Proposition 4]. There is an isomorphism of algebras

End(Pn) ∼= DHn ⊗C[c0, c1, . . .].
In particular, when n = 0 we have End(1) ∼= C[c0, c1, . . .].
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W-algebras from Heisenberg categories 7

Let Jm,n be the ideal of EndH′(PmQn) generated by diagrams which contain at least
one arc connecting a pair of upper points.

Proposition 6 [17, Equation (19)]. There exists a short exact sequence

0→ Jm,n → EndH′(PmQn)→ DHm ⊗ DHop
n ⊗C[c0, c1, . . .] → 0.

Furthermore, this sequence splits.

3. The algebra W1+∞

In this section, we define the W -algebra of interest and list several important properties.

This algebra is defined to be the universal enveloping algebra of a central extension of
differential operators on C∗. The W -algebra, W1+∞ comes equipped with a Z-grading and
a compatible Z>0-filtration. We will also define a faithful irreducible representation of a

quotient of W1+∞. Both of these features will be crucial in proving that the W -algebra is
related to the trace of H. This section follows closely the exposition in [20, Appendix F].

Let W1+∞ be the C-associative algebra generated by wl,k for l ∈ Z and k ∈ N and C
with relations that w0,0 and C are central, and

wl,k = t l Dk (l, k) 6= (0, 0) (3.1)

[t l exp(αD), tk exp(βD)]
= (exp(kα)− exp(lβ))t l+k exp(αD+βD)+ δl,−k

exp(−lα)− exp(−kβ)
1− exp(α+β) C (3.2)

where α and β are formal parameters, t is the parameter on C∗ and D = t∂t .
Note that for l ∈ Z−{0} the set {wl,0} generates a Heisenberg subalgebra because

[wl,0, wk,0] = lδl,−kC. (3.3)

We will need the following relations which are direct consequences of (3.2).

[wl,1, wk,1] = (k− l)wl+k,1+ k3− k
6

Cδl,−k (3.4)

[w−1,a, w1,b] =
a∑

r=1

(
a
r

)
w0,a+b−r −

b∑
s=1

(−1)s
(

b
s

)
w0,a+b−s + δa,0(−1)b+1C (3.5)

[wl,1, wk,0] = kwl+k,0− δl,−k
k(k− 1)

2
C (3.6)

[wl,0, w0,2] = −2lwl,1− l2wl,0. (3.7)

We define Virasoro elements

L̄l = −wl,1− 1
2 (l + 1)wl,0.

Then it is easy to check that (3.2) gives the Virasoro relations

[L̄l , L̄k] = (l − k)L̄l+k + δl,−k
l3− l

12
C.
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8 S. Cautis et al.

Let W>
1+∞,W 0

1+∞,W<
1+∞ be subalgebras of W1+∞ generated as follows:

W>
1+∞ := C〈wl,k; l > 1, k > 0〉

W 0
1+∞ := C〈C, w0,l; l > 0}〉

W<
1+∞ := C〈w−l,k; l > 1, k > 0〉.

This algebra has a Z-grading called the rank grading where wl,k is in degree l and C is
in degree 0. The algebra is also Z>0-filtered where wl,k is in degree 6 k. Let Wω

1+∞[r,6 k]
denote the set of elements in Z-degree r and Z>0-degree 6 k where ω ∈ {<,>, 0,∅}.

Denote the associated graded algebra of W1+∞ with respect to the Z>0-filtration by

W̃1+∞ = gr(W1+∞).

Since the Z-grading on W1+∞ is compatible with the Z>0-filtering, the associated graded
W̃1+∞ is (Z×Z>0)-graded. Let W̃ω

1+∞[r, k] denote the subspace of W̃ω
1+∞ in bidegree

(r, k). Define a generating series for the graded dimension of W̃ω
1+∞ by

PW̃ω
1+∞

(t, q) =
∑
r∈Z

∑
k∈Z>0

dim W̃ω
1+∞[r, k]tr qk .

Proposition 7. The graded dimensions of W̃>
1+∞ and W̃<

1+∞ are given by:

PW̃>
1+∞
=
∏
r>0

∏
k>0

1
1− tr qk , PW̃<

1+∞
=
∏
r<0

∏
k>0

1
1− tr qk .

Proof. The defining relations of W1+∞ given in 3.2 imply that the associated graded
algebras W̃>

1+∞ and W̃<
1+∞ are freely generated by the images of wl,k . The proposition

now follows easily since the image of wl,k has bidegree (l, k).

Lemma 8 [20, Lemma F.5].

(1) W1+∞ is generated by w−1,0, w1,0, w0,2.

(2) W>
1+∞ is generated by w1,l for l > 0.

(3) W<
1+∞ is generated by w−1,l for l > 0.

For c, d ∈ C let Cc,d be a one-dimensional representation of W>
1+∞ where wk,l acts by

zero for (k, l) 6= (0, 0), C acts by c and w0,0 acts by d.

Let Mc,d := Ind
W1+∞
W>

1+∞
(Cc,d).

Proposition 9 [2, 11]. The induced module Mc,d has a unique irreducible quotient Vc,d .
As a vector space V1,0 is isomorphic to C[w−1,0, w−2,0, . . .].

Proposition 10 [20, Proposition F.6]. The action of W1+∞/(C − 1, w0,0) is faithful on
V1,0.
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W-algebras from Heisenberg categories 9

Proof. This is [20, Proposition F.6] since their proof does not depend on how the central
elements C and w0,0 act. The proof uses the faithfulness of the action of the Heisenberg
algebra on Fock space together with the filtration on W1+∞.

Lemma 11 [20, Lemma F.8]. The action of w0,2 on V1,0 is given by the operator∑
k,l>0

(w−l,0w−k,0wk+l,0+w−l−k,0wl,0wk,0)−w0,1.

Proof. This is a straightforward computation using the relations of W1+∞ and the

definition of V1,0. For more details see the proof of [20, Lemma F.8]. There is a correction
term of −w0,1 in the lemma because we take w0,0 = 0 while in [20] it is taken to be
− 1

2 .

4. Trace of H

4.1. Definitions and conventions

The trace, or zeroth Hochschild homology, Tr(C) of a k-linear category C is the k-vector

space given by

Tr(C) =
 ⊕

X∈Ob(C)
C(X, X)

/ I,

where C(X, X) = EndC(X) and I = Spank{ f g− g f } where f and g run through all pairs
of morphisms f : X → Y , g : Y → X with X, Y ∈ Ob(C). For a morphism f in C denote
its class in Tr(C) by [ f ]. The trace is invariant under passage to the Karoubi envelope

K ar(C).

Proposition 12 [5, Proposition 3.2]. The natural map Tr(K ar(C))→ Tr(C) induced by
inclusion of categories is an isomorphism.

Proposition 13 [4, Lemma 2.1]. Let C be a k-linear additive category. Let S ⊂ Ob(C) be
a subset such that every object in C is isomorphic to the direct sum of finitely many

copies of objects in S. Let C|S denote the full subcategory of C with Ob(C|S) = S. Then,
the inclusion functor C|S → C induces an isomorphism

Tr(C|S) ∼= Tr(C) (4.1)

The trace of a general category is only a vector space. The monoidal structure of
H endows Tr(H) with a product. Given morphisms f : X → X ′ and g : Y → Y ′ then

f ⊗ g : XY → X ′Y ′ and we may define [ f ][g] := [ f ⊗ g] so that the product in Tr(H) is
denoted by juxtaposition of classes in the trace. The algebra Tr(H) is unital with the
identity I d1 of the monoidal unit 1 acting as the unit element.

Recall that a categorical representation of the category H is a k-linear category V and
a k-linear functor H→ End(V) sending each object X to an endofunctor F(X) : V → V.
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10 S. Cautis et al.

Each morphism f : X → Y is sent to a natural transformation of functors F( f ) : F(X)→
F(Y ). A categorical representation gives rise to a representation

ρF : Tr(H)→ End(V) (4.2)

sending the class [ f ] ∈ Tr(H) corresponding to a map f : X → X in H to the
endomorphism of the k-vector space Tr(V) defined by sending ψ : U → U in Tr(V) to

ρF ([ f ])([ψ]) = [F(X)(ψ) ◦ F( f )U ] = [F( f )U ◦ F(X)(ψ)].
Here, note that F( f )U denotes the component of the natural transformation
F( f ) : F(X)⇒ F(X) : V → V corresponding to the object U ∈ Ob(V). By naturality this
map is well defined.

The morphisms in any cyclic, or strictly pivotal, monoidal category can be described
using planar diagrammatics in which any two morphisms that differ by an isotopy are
equal. The monoidal category H is an example such a category. In this context, it is

natural to view the element [ f ] ∈ Tr(H) by drawing f : X → X in an annulus and then
closing up the diagram for f .

f 7→ f

The trace relations imposed by the quotient by I = Spank{ f g− g f } where f and g run
through all pairs of morphisms f : X → Y , g : Y → X with X, Y ∈ Ob(H) is naturally
imposed by the topology:

f

g

= g

f

by sliding diagrams around the annulus.
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W-algebras from Heisenberg categories 11

Let w ∈ Sn . We introduce a formal notation to denote elements in Tr(H). Define

hw⊗ (x j1
1 · · · x jn

n ) := [ fw; j1,..., jn ]
where fw; j1,..., jn ∈ End(Pn) is given by:

fw; j1,..., jn := w

· · ·

· · ·

j1 jn

The tensor product in our notation is strictly formal and is used to emphasize particular
elements with permutations at the bottom and some monomial in dots at the top.

Define
h−w⊗ (x j1

1 · · · x jn
n ) := [ f−w; j1,..., jn ]

where f−w; j1,..., jn ∈ End(Qn) is given by:

f−w; j1,..., jn := w

· · ·

· · ·

j1 jn

Of particular importance is the element σn = s1 · · · sn−1 ∈ Sn . We then abbreviate

hn ⊗ (x j1
1 · · · x jn

n ) := hσn ⊗ (x j1
1 · · · x jn

n ) =


. . .

. . .j1 j2 j3 jn
 (4.3)

h−n ⊗ (x j1
1 · · · x jn

n ) := h−σn ⊗ (x j1
1 · · · x jn

n ) =


. . .

. . .j1 j2 j3 jn


The next lemma allows us to express the elements hn ⊗ (x j1
1 · · · x jn

n ) in terms of the
elements hr ⊗ xk

1 .

Lemma 14. For n > 1 and 1 6 i 6 n− 1 we have

h±n ⊗ xi = h±n ⊗ xi+1± (h±i ⊗ 1)(h±(n−i)⊗ 1).

Proof. This is immediate from (2.6) and properties of the trace.

The next lemma allows us to express generators [ fw; j1,..., jn ] in terms of the more
elementary generators hr ⊗ p where p is a polynomial in variables x1, . . . , xr .

Lemma 15. Let w ∈ Sn and ( j1, . . . , jr ) a sequence of natural numbers. Then

[ f±w; j1,..., jn ] =
∑

dn1,...,nr (h±n1 ⊗ pn1) · · · (h±nr ⊗ pnr )

where the sum is over sequences (n1, . . . , nr ) of natural numbers that sum to n, for some
coefficients dn1,...,nr ∈ C and polynomials pni in ni variables.
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12 S. Cautis et al.

Proof. We prove this by induction on j1+ · · ·+ jn . The base case where all of the ji equal
zero is trivial because then fw; j1,..., jn is just an element in the symmetric group and thus
its class [ fw; j1,..., jn ] in the trace is determined by its conjugacy class in Sn which of course
could be written as a product of disjoint cycles.

Choose an element g ∈ Sn such that

gwg−1 = (s1 · · · sn1−1) · · · (sn1+···nr−1 · · · sn1+···nr−1).

Let p = x j1
1 · · · x jn

n . Thus, fw; j1,..., jn = pw. Now we conjugate this element by g to get
gpwg−1 = (g � p)gwg−1+ pLwg−1 where pL is a polynomial of degree less than j1+
· · ·+ jn and g � p is some other polynomial of degree j1+ · · ·+ jn . The lemma follows
by applying induction to the second term and noting that in the first term gwg−1 is a
product of cycles.

Corollary 16. Let w ∈ Sn and ( j1, . . . , jr ) a sequence of natural numbers. Then

[ f±w; j1,..., jn ] =
∑

dn1,...,nr (h±n1 ⊗ x l1
1 ) · · · (h±nr ⊗ x lr

1 )

where the sum is over sequences (n1, . . . , nr ) of natural numbers that sum to n, for some
constants dn1,...,nr ∈ C and some non-negative integers l1, . . . , lr .

Proof. This follows from Lemmas 14 and 15.

4.2. Elements p(n) and q(n)

In this section, we will see how the Heisenberg algebra h in the presentation given in

terms of p(n), q(n) from § 2 appears in Tr(H).
Define p(n)⊗ 1 and q(n)⊗ 1 in Tr(H) by

p(n)⊗ 1 = 1
n!
∑
w∈Sn

[ fw;0,...,0] (4.4)

q(n)⊗ 1 = 1
n!
∑
w∈Sn

[ f−w;0,...,0] (4.5)

We depict the elements p(n)⊗ 1 and q(n)⊗ 1 by

(n) (n)

We have for example the relation (q(1)⊗ 1)(p(1)⊗ 1) = (p(1)⊗ 1)(q(1)⊗ 1)+ 1. The
product (q(1)⊗ 1)(p(1)⊗ 1) is

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748016000189
Downloaded from https://www.cambridge.org/core. USC - Norris Medical Library, on 21 Apr 2018 at 03:29:37, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748016000189
https://www.cambridge.org/core


W-algebras from Heisenberg categories 13

Now, the graphical relations in H allow us to pull the inner circle outside as follows

= +

The last term above can be simplified using the trace relation to isotope the cup around
the annulus creating a circle. Since a counterclockwise circle equals 1, the circle in the
last term above can be erased, leaving the identity endomorphism of the monoidal unit

in H, or the multiplicative identity 1 ∈ Tr(H). On the other hand, the first term on the
right can be simplified by sliding in the outside circle to obtain

Thus, we end up with

= + 1
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14 S. Cautis et al.

Theorem 17. The elements p(n)⊗ 1, q(n)⊗ 1 for n ∈ Z>0 satisfy the relations:

(p(n)⊗ 1)(p(m)⊗ 1) = (p(m)⊗ 1)(p(n)⊗ 1) and(q(n)⊗ 1)(q(m)⊗ 1) = (q(m)⊗ 1)(q(n)⊗ 1)

(q(n)⊗ 1)(p(m)⊗ 1) =
∑
k>0

(p(m−k)⊗ 1)(q(n−k)⊗ 1).

Proof. This follows fairly directly from the proof of the categorified statement in [17]
and its analogous statement in [8]. We sketch the details for the computation of (q(n)⊗
1)(p(m)⊗ 1). By definition (q(n)⊗ 1)(p(m)⊗ 1) is

(m)(n) (4.6)

Letting ck
m,n = k!(mk )(nk) we get using a straightforward modification of [8, Equation 31]

that (4.6) is equal to:

∑
k

ck
m,n

(m)

(n− k)

k
(n)

(m− k)

(m)
k

(n)

(4.7)

Slide the top two rectangles and the k cups connecting them counterclockwise to the
bottom of the diagram and apply a modification of [8, Equation 32], to get that (4.7) is
equal to:
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W-algebras from Heisenberg categories 15

∑
06l6k

(n− k)(m− k) .

By definition this is equal to
∑

k(p
(m−k)⊗ 1)(q(n−k)⊗ 1).

4.3. Some diagrammatic lemmas

For convenience, we work with classes [ f ] of endomorphisms in Tr(H) and omit the annuli
from our diagrammatic computations. The reader should keep in mind that all diagrams

inside of closed brackets are interpreted on the annulus.

Lemma 18. For any a > 1 we have the following identities

a

− a = a −
a
=

∑
f+g=a−1

f g (4.8)

a = a−1 +
∑

f+g=a−3

c̃ f+2
g (4.9)

Proof. The first claim follows inductively from (2.6). The second claim follows from the
first after observing that a left twist curl is zero and the c̃1 = 0.

Lemma 19. For any a > 0 we have
. . .

. . .

. . .

. . .

. . . . . .

a


=


(h−m ⊗ xa

1 )(hn ⊗ 1), if m > n > 1;

(h−m ⊗ xa
1 )(hn ⊗ 1)− nc̃a, if m = n;

(h−m ⊗ xa
1 )(hn ⊗ 1)− n

∑
a−1

f+g=̃
c f (hn−m ⊗ xg

1 ), if n > m,

where the left side involves m downward strands and n upward strands.
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16 S. Cautis et al.

Proof. The claim follows by simplifying the diagram using the first equation in (2.3)

=


. . .

. . .

. . .

. . .

. . . . . .

a

−


. . .

. . .

. . .

. . .

. . . . . .

a

.

(4.10)
The second term unwinds substantially and simplifies to a diagram containing a left
twist curl if m > n. If m = n this term reduces to a counterclockwise bubble with a dots.

Finally, if n > m then the diagram reduces to −hn−m ⊗ 1 together with a left twist curl
containing a dots inside the curl on the first strand. Reducing this dotted curl using (4.9)
shows that in this case the diagram reduces to −∑ f+g=a−1 c̃ f (hn−m ⊗ xa

1 ).
Each time the downward oriented strand is pulled through an upward oriented strand in

the bottom half of the first diagram in (4.10) the resolution term will simplify to a diagram
containing a left twist curl if m > n, to c̃a if m = n, and to the sum−∑ f+g=a−1 c̃ f (hn−m ⊗
xa

1 ) when n > m. Since there are n such upward oriented strands the result follows.

Lemma 20. For any a > 0 we have . . .

. . .

. . .

. . .
a



=


(h−m ⊗ xa

1 )(hn ⊗ 1), if m > n > 1;
(h−m ⊗ xa

1 )(hn ⊗ 1)− nc̃a, if m = n;
(h−m ⊗ xa

1 )(hn ⊗ 1)− n
∑
a−1

f+g=̃
c f (hn−m ⊗ xg

1 ), if n > m,

where the left side involves m downward strands and n upward strands.

Proof. By repeatedly applying the second equation in (2.3) together with the trace
relation it follows that

 . . .

. . .

. . .

. . .
a


=


. . .

. . .

. . .

. . .

a

.
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W-algebras from Heisenberg categories 17

Then using triple point moves to slide the crossings in the middle third of the diagram
through the strands at the top third, the diagram becomes

=



. . .

. . .

. . .

. . .

. . . . . .

a

. . . . . .


=


. . .

. . .

. . .

. . .

. . . . . .

a

. . . . . .


Sliding one layer of crossings from the top third to the bottom third using the trace
relation gives

=


. . .. . .

. . .

. . . . . .

a

. . . . . .

=



. . .. . .

. . .

. . . . . .

a

. . . . . .


Applying the first equation in (2.3) in the bottom third of the diagram only one term

survives

=



. . .. . .

. . .

. . . . . .

a

. . . . . .


−



. . .. . .

. . .

. . . . . .

a

. . . . . .


since the second diagram can be simplified to one containing a left twist curl which is
zero. It is easy to see that the same thing happens as the left most downward oriented
strand at the bottom is pulled through all of the upward oriented lines.
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18 S. Cautis et al.

To further simplify the diagram, slide all of the crossings involving the second downward
oriented line from the top third of the diagram to the bottom third and simplify using
the first equation in (2.3) as above. Each time this equation is applied the resolution term
can be simplified so that it contains a left twist curl. Hence, all of these terms vanish and
we are left with the following

=


. . .

. . .

. . .

. . .

. . . . . .

a

.

The result follows by Lemma 19.

Lemma 21. For 1 6 i < n and a > 0 the identity

[(xa
1 Ti+1Ti+2 . . . Tn)(T1 . . . Tn)(Tn+1 . . . Tn+m)(TnTn−1 . . . Ti )] = hn+m ⊗ xa

1

holds in the trace.

Proof. The left side of this relation can be expressed by the diagram
. . .

. . .

. . .

. . .

. . .

. . .

1 2 i i+1 n+m

1 i−1 i i+1 n n+m

a


The Ti+1 . . . Tn at the top can be reordered to Tn . . . Ti+1 by first sliding the Ti+1 around
the annulus using the trace relation and then back to the top of diagram using equations

(2.2) to produce Ti+2Ti+1Ti+3 . . . Tn . Next use the trace relation and equations (2.2) to
bring the crossings Ti+2Ti+1 through the bottom of the diagram back to the top portion of
the diagram producing Ti+3Ti+2Ti+1Ti+4 . . . Tn . Continuing in this way all of the crossings

at the top third of the diagram can be reordered to produce . . .

. . .

. . .

. . .

. . .

. . .

1 2 i i+1 n+m

1 i−1 i i+1 n n+m

a


=


. . .

. . .

. . .

. . .

. . .

. . .

a


where we have moved the entire top third of the diagram to the bottom using the trace
relation. It is now easy to see that using both relations in (2.2) together with the trace
relations simplifies the diagram to hn+m ⊗ xa

1 .
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W-algebras from Heisenberg categories 19

4.4. A Heisenberg–Virasoro subalgebra

We exhibit generators of Tr(H) which satisfy the Heisenberg relations for the original
generators hn . There is another set of generators which satisfy Virasoro relations with
central charge 1. The Virasoro algebra naturally acts on the Heisenberg algebra and the
resulting semi-direct product algebra is known as a Heisenberg–Virasoro algebra. These
generators come from images of diagrams which contain at most one right-hand curl.

We recover the original Heisenberg generators by the following result.

Lemma 22. The elements hn ⊗ 1 for n ∈ Z−{0} satisfy the following Heisenberg relations

[hm ⊗ 1, hn ⊗ 1] = nδm,−n .

Proof. For mn > 0 the underlying morphisms for (hm ⊗ 1)(hn ⊗ 1) and (hn ⊗ 1)(hm ⊗ 1)
in the category H are in the same conjugacy class in Sn+m . Thus, their traces are equal.

Suppose then that m < 0 and n > 0. Then consider the diagram for (hn ⊗ 1)(hm ⊗ 1).
Using the trace relation with n applications of the second equation in (2.3) it is easy to
see that

(hn ⊗ 1)(hm ⊗ 1) =

 . . .

. . .

. . .

. . .


which is equal to (hm ⊗ 1)(hn ⊗ 1)− nδn,m by Lemma 20.

The next Lemma will roughly lead to ‘half’ of a Virasoro algebra.

Lemma 23. For m, n ∈ Z with mn > 0,

[hm ⊗ x1, hn ⊗ x1] = (n−m)(hn+m ⊗ x1).

Proof. Let βn = hn ⊗ x1. We prove by induction on m that [βm, βn] = (n−m)βm+n . The
case m = 1 has the following graphical proof.

Without loss of generality assume n > 0 so that

(hn ⊗ x1)(h1⊗ x1) =


. . .

. . .
 .

Then conjugating by Tn we have . . .

. . .


(2.6)

 . . .

. . .

 −
 . . .

. . .


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20 S. Cautis et al.

The second term on the right-hand side is just −(hn+1⊗ x1). The first term can be
simplified further by conjugating by Tn−1, sliding the dot using (2.6), and observing using
Lemma 21 that the crossing resolution term is also equal to −(hn+1⊗ x1). Continuing this
procedure, conjugating by Tn−2, sliding the dot, and simplifying the crossing resolution
term using Lemma 21, we see that (hn ⊗ x1)(h1⊗ x1) is equal to . . .

. . .


− n(hn+1⊗ x1).

The first term can be simplified by sliding the lower dot . . .

. . .


=

 . . .

. . .


+

 . . .

. . .



=


. . .

. . .
 +

 . . .

. . .


where the trace relation was used repeatedly on the second term to reorder the crossings

at the top of the diagram. The second term simplifies further using the trace relation
to reduce the number of crossings so that the second diagram is equal to (hn+1⊗ x1),
completing the induction step.

Now consider the Jacobi identity:

[[β1, βm−1], βn] + [[βm−1, βn], β1] + [[βn, β1], βm−1] = 0.

Using the base case and the induction hypothesis this becomes

(m− 2)[βm, βn] + (n−m+ 1)[βm+n−1, β1] + (1− n)[βn+1, βm−1] = 0.

Again by using the base case and the induction hypothesis this becomes

(m− 2)[βm, βn] + (n−m+ 1)(2−m− n)βm+n + (1− n)(m− n− 2)βm+n = 0.

It now follows easily that [βm, βn] = (n−m)βm+n .

We now have some relations leading to an action of a Virasoro algebra on a Heisenberg
algebra.
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W-algebras from Heisenberg categories 21

Lemma 24. Let m, n ∈ Z with mn > 0. Then

[hn ⊗ x1, hm ⊗ 1] = m(hm+n ⊗ 1).

Proof. We only consider the case that m and n are positive. The other case is similar.
Using the same method of proof as in Lemma 23 it is not difficult to show

(hm ⊗ 1)(hn ⊗ x1) =


. . .

. . .

. . .

. . .


=

 . . .

. . .

. . .

. . .


− mhn+m ⊗ 1.

Then by sliding the crossings appearing in hn to the left of those appearing in hm , the
first term can be written as

 . . .

. . .

. . .

. . .


=


. . .

. . .

. . .

. . .


which simplifies to (hn ⊗ x1)(hm ⊗ 1).

Lemma 25. For integers m, n > 1 we have

[h−m ⊗ x1, hn ⊗ 1] =
 n(hn−m ⊗ 1) if n > m

0 if m > n > 1.

Proof. This is proven by direct computation.

(hn ⊗ 1)(h−m ⊗ x1) =


. . .

. . .

. . .

. . .

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(2.3)

 . . .

. . .

. . .

. . .



=

 . . .

. . .

. . .

. . .


−

 . . .

. . .

. . .

. . .


(4.11)

The second diagram is zero since the upper cup can be pulled to the bottom of the
diagram using the trace, thereby creating a left twist curl. Applying the same technique
inductively, the first downward oriented strand and its dot can be brought all the way to
the left of the diagram.

=

 . . .

. . .

. . .

. . .


and the result claim follows by Lemma 20.

Lemma 26. For integers m, n > 1 we have

[hn ⊗ x1, h−m ⊗ 1] =


−2m(hn−m ⊗ 1) if n > m > 1

0 if n = m > 1

−m(hn−m ⊗ 1) if 1 6 n < m.

Proof. For this proof let βn = hn ⊗ x1 and αn = hn ⊗ 1. We prove this by induction on
m. For m = 1 we give a graphical proof. Consider (h−1⊗ 1)(hn ⊗ x1)


. . .

. . .
 (2.3)

 . . .

. . .

 +
 . . .

. . .


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W-algebras from Heisenberg categories 23

(2.6)

 . . .

. . .

 +
 . . .

. . .

 + hn−1⊗ 1

where we used (4.9) to simplify the dotted left twist curl. Using the trace relation, the
second term above is also equal to hn−1⊗ 1. For the first term we use the first equation
in (2.3) to slide the upward strands to the left. . . .

. . .


=

 . . .

. . .



=


. . .

. . .


where the first equality holds since all the resolutions terms . . .

. . .

. . .

. . .


contain left twist curls. Thus, we have proven the base case of our induction.

Graphically it is easy to see that for some constant γn,−m that

[βn, α−m] = γn,−mαn−m .

In order to compute the constant γn,−m consider the Jacobi identity

[βn, [β−1, α−m+1]] + [β−1, [α−m+1, βn]] + [α−m+1, [βn, β−1]] = 0. (4.12)

Now applying Lemma 24, (4.12) becomes

(1−m)[βn, α−m] − γn,−m+1[β−1, αn−m+1] + (n+ 1)[βn−1, α−m+1] = 0.
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24 S. Cautis et al.

Thus,

[βn, α−m] = γn,−m+1[β−1, αn−m+1] − (n+ 1)γn−1,−m+1αn−m

1−m

= (n−m+ 1)γn,−m+1− (n+ 1)γn−1,−m+1

1−m
αn−m .

The lemma now easily follows by induction.

Along with Lemma 23, the next lemma will lead to Virasoro relations.

Lemma 27. Let m and n be positive integers and T = min(m, n). Then

[h−m ⊗ x1, hn ⊗ x1] = (n+m)(hn−m ⊗ x1)−
T−1∑
j=1

j (hn− j ⊗ 1)(h−m+ j ⊗ 1).

Proof. For this proof let αn = hn ⊗ 1 and βn = hn ⊗ x1. We proceed by induction on m.
The base case is m = 1. The proof is similar to Lemma 26. We begin by using the first
equation in (2.3) and the trace relation.


. . .

. . .
 (2.3)

 . . .

. . .

 +
 . . .

. . .


Using (4.9) the second term is equal to hn−1⊗ x1. For the first term we slide the dots
upward producing . . .

. . .

 +
 . . .

. . .

 +
 . . .

. . .


The second and third term are both equal to hn−1⊗ x1. For the second diagram pull the
cup to the bottom of the diagram producing a right twist curl (which is just another

dot), then apply (4.9). Likewise, the third diagram simplifies using the trace relation.
To complete the proof of this claim we must slide the downward oriented line to the right

of the upward oriented strands using the first equation in (2.3). Crossing the downward
oriented strand past the ith upward oriented strand produces the following sum. . . .

. . .

. . .

. . .


+

 . . .

. . .

. . .

. . .


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W-algebras from Heisenberg categories 25

The second diagram contains a left twist curl with single interior dot. Using (4.9) with
a = 1 to simplify this dotted curl, the second term above is equal to hn−1⊗ x1. The
crossing resolution term resulting from sliding the dot upward in the first term produces
a diagram containing a left twist curl, so that these terms all vanish. Continuing this
process of moving the downward strand to to the right using the first equation in (2.3)
and the dot slide equation we see that (h−1⊗ x1)(hn ⊗ x1) is equal to . . .

. . .


+ (n+ 1)hn−1⊗ x1.

completing the proof of m = 1 case.
Now assume the lemma is true for [β−m+1, βn]. The Jacobi identity gives

0 = [[β−1, β−m+1], βn] + [[β−m+1, βn], β−1] + [[βn, β−1], β−m+1]. (4.13)

By the base case and the inductive step (4.13) is:

0 = [[β−1, β−m+1], βn] +
(n+m− 1)βn−m+1+

m−2∑
j=1

jαn− jα−m+1+ j , β−1


+ (n+ 1)[β−m+1, βn−1].

Another application of the base case and the inductive steps gives:

0 = [[β−1, β−m+1], βn] + (n+m)(m− 2)βn−m

+
m−2∑
j=1

j (αn− jα−m+1+ jβ−1−β−1αn− jα−m+1+ j )

+ (n+ 1)
m−2∑
j=1

jαn−1− jα−m+1+ j . (4.14)

By Lemma 25, we move β−1 and (4.14) becomes

0 = [[β−1, β−m+1], βn] + (m+ n)(m− 2)βn−m

+
m−2∑
j=1

jαn− jα−m+1+ jβ−1−
m−2∑
j=1

jαn− jβ−1α−m+1+ j

−
m−2∑
j=1

j (n− j)αn− j−1α−m+1+ j +
m−2∑
j=1

(n+ 1) jαn−1− jα−m+1+ j . (4.15)
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Again moving the element β−1 to the right, using Lemma 25 (4.15) becomes

0 = [[β−1, β−m+1], βn] + (m+ n)(m− 2)βn−m +
m−2∑
j=1

(n+ 1) jαn−1− jα−m+1+ j

+
m−2∑
j=1

jαn− jα−m+1+ jβ−1−
m−2∑
j=1

jαn− jα−m+1+ jβ−1

−
m−2∑
j=1

j (−m+ 1+ j)αn− jα−m+ j −
m−2∑
j=1

j (n− j)αn− j−1α−m+1+ j .

Simplifying the above gives

0 = [[β−1, β−m+1], βn] + (m+ n)(m− 2)βn−m

+
m−2∑
j=1

j ( j + 1)αn−1− jα−m+1+ j −
m−2∑
j=1

j (−m+ 1+ j)αn− jα−m+ j .

Combining the last two sums above gives

0 = [[β−1, β−m+1], βn] + (m+ n)(m− 2)βn−m +
m−3∑
j=1

(m− 2)( j + 1)αn−1− jα−m+1+ j

+ (m− 2)αn−1α−m+1+ (m− 2)(m− 1)αn−m+1α−1.

Thus,

[[β−1, β−m+1], βn] = −(m− 2)

(m+ n)βn−m −
m−1∑
j=1

jαn− jα−m+ j

 .
It follows from Lemma 23 that [β−1, β−m+1] = (−m+ 2)β−m . Substituting this into the
above equation gives the desired result.

Remark 28. A slight modification to the m = 1 argument of Lemma 27 can be used to
prove that for n,m > 1 the following relations:

[hn ⊗ x p
1 , h1⊗ xm

1 ] = −
n∑

j=2

∑
a+b=m−1

hn+1⊗ x p
1 xa

j xb
j+1

+
∑

a+b=p−1

hn+1⊗ xa
1 xb+m

2 −
∑

c+d=m−1

hn+1⊗ xc
1x p+d

2 ,

[hn ⊗ x1, hm ⊗ x2
1 ] = (m− 2n)(hn+m ⊗ x2

1)

+
n∑

j=1

(2n− j)(h j ⊗ x1)(hn+m− j ⊗ 1)−
n−1∑
j=1

j (hm+ j ⊗ x1)(hn− j ⊗ 1),

hold in Tr(H). Though we will not need these relations in Tr(H) in order to identify it with
a quotient of W1+∞, they can be helpful in computing explicit formulas for commutators.
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W-algebras from Heisenberg categories 27

We define:

Ll =
∣∣∣∣1l
∣∣∣∣ (h−l ⊗ (x1+ · · ·+ x|l|) (l 6= 0)

L0 = c0 (4.16)

bl = h−l ⊗ 1.

Proposition 29. The elements Ll for l ∈ Z and bl for l 6= 0 generate

a Heisenberg–Virasoro algebra with central charge one. That is

[bk, bl ] = kδk,−l

[Lk, Ll ] = (k− l)Lk+l +
k3− k

12
δk,−l

[Ll , bk] = −k(bl+k).

Proof. This follows from Lemmas 22–27.

4.5. Trace of the degenerate affine Hecke algebra

The trace of DHn may be computed by a theorem of Solleveld [22] which reduces
the problem to computing the trace of a semi-direct product via a spectral sequence

argument.

Theorem 30 [22, Theorem 3.4]. The trace of the degenerate affine Hecke algebra is

isomorphic to the trace of the semi-direct product of the symmetric group and a polynomial
algebra:

Tr(DHn) ∼= Tr(Sn nC[x1, . . . , xn]).
Now let P(n) be the set of partitions of n and, for a partition λ of n, let pi (λ) be the

number of times the number i occurs in λ.

Theorem 31 ([10, Theorem 3.1], [22, § 1]). We have

Tr(Sn nC[x1, . . . , xn]) ∼=
⊕
λ∈P(n)

⊗
i>1

S pi (λ)C[x]

where SkC[x] is the space of Sk invariants of C[x1, . . . , xk].
Theorems 30 and 31 together determine the trace of the degenerate affine Hecke algebra.

Example 32. The degenerate affine Hecke algebra of rank two DH2 is generated by the
group algebra of the symmetric group S2 and the polynomial algebra C[x1, x2]. If s1 is
the generator of S2 then the only additional relation is s1x1 = x2s1+ 1.

There are partitions λ = (2) and λ = (1, 1) of 2. By the above theorems Tr(DH2) is a

direct sum of subspaces⊗
i>1

S pi ((2))C[x]
⊕⊗

i>1

S pi ((1,1))C[x] ∼= C[x]
⊕

S2C[x1, x2].
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This corresponds to a splitting of the trace

C〈xa
1 s1〉a∈Z>0

⊕
S2C[x1, x2].

4.6. Tr(H) as a vector space

Lemma 33. If f, g ∈ DHn with f g = 1, then in fact f, g ∈ C[Sn] ⊂ DHn.

Proof. We consider the non-negative integral filtration on DHn , with associated graded

gr(DHn) ∼= C[Sn]oC[x1, . . . , xn]. The degree 0 part of this filtration is precisely C[Sn].
Now gr( f )gr(g) = 1, which implies that gr( f ) and gr(g) are in C[Sn]. Thus, f and g are
in the degree 0 part of the filtration, as desired.

Lemma 34. The indecomposable objects of H′ are of the form PmQn for m, n ∈ Z>0.

Proof. An indecomposable object must be of the form PmQn because a subsequence QP
produces a decomposition PQ⊕ 1.

There is a morphism from PmQn to PaQb if and only if m− n = a− b. If a+ b 6= m+ n
then the composition PaQb → PmQn → PaQb produces cups and caps or circles. By

Proposition 6 it follows that this composition cannot be the identity.
Now suppose there are maps f : PmQn → PmQn and g : PmQn → PmQn such that g f is

the identity. We claim that in fact g f is the identity, too. Since a composition containing
caps or cups cannot be the identity, Proposition 6 implies f is a monoidal composition

of f1 and f2 where f1 : Pm → Pm and f2 : Qn → Qn . Therefore, f1 can be identified with
an element in DHm and f2 may be identified with an element in DHop

n . Similarly, g is a
monoidal composition of g1 and g2 where g1 : Pm → Pm and g2 : Qn → Qn , so that g1 can

be identified with an element in DHm and g2 may be identified with an element in DHop
n .

But now, by Lemma 33, f1 and g1 must belong to C[Sm]. Since C[Sm] is semi-simple,
g1 f1 is the identity if and only f1g1 is the identity. Thus, f is an isomorphism, and PmQn

is indecomposable.

Lemma 35. There is an isomorphism of vector spaces

Tr(H) ∼=

 ⊕
m∈Z>0
n∈Z>0

⊕
µ∈P(m)
λ∈P(n)

⊗
i>1
j>1

S pi (µ)C[x]⊗ S p j (λ)C[x]

⊗C[c0, c1, . . .].

Proof. By Proposition 12, Tr(H) ∼= Tr(H′) so by the definition of Tr(H′) and by

Proposition 13 it suffices to consider endomorphisms of all indecomposable objects (m
products of P followed by n products of Q) modulo the ideal I defined in § 4.1. That is

Tr(H′) ∼=
⊕

m,n>0

End(PmQn)/I.

Since any map from Pm Qn → Pm′Qn′ with m 6= m′ or n 6= n′ must contain a cap or
cup, it is clear that the ideal I is equal to the ideal Jm,n from Proposition 6 plus the
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W-algebras from Heisenberg categories 29

ideal generated by f g− g f where f, g : Pm Qn → PmQn . Using the trace relation together
with the relations in H, any map contained in the ideal Jm,n can be reduced to a sum of
endomorphisms of Pm′Qn′ for some m′, n′ that are not in the ideal Jm,n by induction on
the number of cap/cups in the diagram. Indeed, each cap/cup can be isotoped around
the annulus using the trace relation and relations in H to eventually create a curl or
circle, which can then be further reduced to diagrams containing fewer caps and cups.
By applying Proposition 6

Tr(H) ∼=
⊕

m,n>0

Tr(DHm ⊗ DHop
n ⊗C[c0, c1, . . .]).

The Lemma now follows from the results in § 4.5.

4.7. Towards the trace of H as an algebra

Denote by Tr>(H) (respectively Tr<(H)) the subalgebra of Tr(H) generated by hl ⊗ xk
1

(respectively h−l ⊗ xk
1) for l > 1, k > 0. Moreover, let Tr0(H) := Tr(H0).

Lemma 36. The algebra Tr(H) is Z-graded where hr ⊗ xk
1 is in degree r .

Proof. This is clear by an inspection of the defining relations of the category H′.

We call this Z-grading the rank grading because it is related to the degenerate affine
Hecke algebra associated to a Lie group of a particular rank.

Lemma 37. The algebra Tr(H) is Z>0-filtered where hr ⊗ xk
1 is in degree k.

Proof. This follows from the fact that a dot may slide through a crossing plus or minus

a correction term which is a resolution of the crossing containing no dots.

For ω ∈ {<,>, 0}, the associated graded of Trω(H) with respect to the Z>0-filtration
will be denoted by gr Trω(H). This is a (Z×Z>0)-graded algebra. We denote the subspace
in degree (r, k) by gr Trω(H)[r, k] and define the Poincaré series by

PTrω(H)(t, q) =
∑
r∈Z

∑
k∈Z>0

dim gr Trω(H)[r, k]tr qk .

Corollary 38. These Poincaré series are given by

PTr>(H) =
∏
r>0

∏
k>0

1
1− tr qk PTr<(H) =

∏
r<0

∏
k>0

1
1− tr qk .

Proof. We prove the first equality (the second follows similarly). Under the isomorphism
from Lemma 35 Tr>(H) corresponds to⊕

n>0,λ∈P(n)

⊗
i>1

S pi (λ)C[x]. (4.17)
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30 S. Cautis et al.

Now S pi (λ)C[x] ∼= C[h1, . . . , h pi (λ)] where the bidegree of the symmetric functions hi is
(|λ|, i). It follows that the generating series of (4.17) is given by

∏
j>1 φ(q

j , t) where

φ(q, t) := 1+ q
(1− t)

+ q2

(1− t)(1− t2)
+ q3

(1− t)(1− t2)(1− t3)
+ · · ·

But φ(q, t) is just the basic hypergeometric series 1φ0(0; t, q) which is known to equal∏
j>0

1
1−qt j . The result follows.

Lemma 39. For n > 0 we have

[hn ⊗ xa
1 , c0] = −n(hn ⊗ xa

1 )

[h−n ⊗ xa
1 , c0] = n(h−n ⊗ xa

1 ).

Proof. By the ‘bubble moves’ [17, page 10] one could move a clockwise circle on the right
of an upwards pointing strand to the left of the strand at the cost of subtracting the
same diagram with the circle erased. Repeating this move n times to get the circle all

the way to the left gives the first part of the lemma.
The second part is proved in a similar fashion.

Remark 40. Lemma 39 can be generalized to prove the more general identities

[hn ⊗ xa
1 , cr

0] =
r∑

j=1

(−1) j
(

r
j

)
n j cr− j

0 (hn ⊗ xa
1 ), and

[h−n ⊗ xa
1 , cr

0] =
r∑

j=1

(
r
j

)
n j cr− j

0 (h−n ⊗ xa
1 ).

Lemma 41. For n > 0 there are equalities

[hn ⊗ xa
1 , c1] = −2n(hn ⊗ xa+1

1 )+
n−1∑
j=1

2(n− j)(h j ⊗ xa
1 )(hn− j ⊗ 1)

[h−n ⊗ xa
1 , c1] = 2n(h−n ⊗ xa+1

1 )+
n−1∑
j=1

2(n− j)(h− j ⊗ xa
1 )(h−n+ j ⊗ 1).

Proof. For the first part we again use the ‘bubble moves’ [17, page 10] moving a clockwise
circle with a dot on the right of n upward pointing strands all the way to the left:

(hn ⊗ xa
1 )(c1) = (c1)(hn ⊗ xa

1 )− 2hn ⊗ xa+1
1 − 2hn ⊗ xa

1 x2− · · ·− 2hn ⊗ xa
1 xn .

By Lemma 14, this is equal to

−2n(hn ⊗ xa+1
1 )+

n−1∑
j=1

2(n− j)(h j ⊗ xa
1 )(hn− j ⊗ 1).

The second part is proved in a similar fashion.
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Lemma 42. For non-negative integers a and b there is an equality

[h−1⊗ xb
1 , h1⊗ xa

1 ] = c̃a+b+
a+b−2∑

l=0

(a+ b− 1− l )̃clca+b−2−l .

Here we define c−2 = −1 and c−n = 0 for n ∈ N where n 6= 2.

Proof. The element (h1⊗ xa
1 )(h−1⊗ xb

1 ) is equal to a b

 =


a b

 (4.8)

 a
b
 − a−1∑

j=0

 j
a+b−1− j



=

 ab

 − b−1∑
j=0

 a+ j
b−1− j

 − a−1∑
j=0


j

a+b−1− j


which can be simplified further, again using equation (4.8). Thus,

(h1⊗ xa
1 )(h−1⊗ xb

1 ) = (h1⊗ xa
1 )(h−1⊗ xb

1 )− c̃a+b

−
b−1∑
j=0

a+ j−1∑
k=0

c̃kca+b−2−k −
a−1∑
j=0

j−1∑
k=0

c̃kca+b−2−k .

Combining the last two double summations into a single summation gives the lemma.

Lemma 43. Tr(H) is generated by h−1⊗ 1, h1⊗ 1, (c0+ c1).

Proof. By Lemmas 39 and 41, we have

ad(c0+ c1)(h1⊗ 1) := [(c0+ c1), h1⊗ 1] = 2(h1⊗ x1)+ h1⊗ 1

allowing us to generate h1⊗ x1.
By Lemma 24, we have adn(h1⊗ x1)(h1⊗ 1) = n!(hn ⊗ 1) allowing us to also generate

hn ⊗ 1. Next we could generate hn ⊗ xk
1 for all n > 1, k > 0 inductively by using

Lemmas 39 and 41 to calculate [hn ⊗ xk−1
1 , c0+ c1].

In a similar manner using Lemmas 39 and 41 we can generate h−n ⊗ xk
1 for n > 1, k > 0.

In particular, we can generate h−1⊗ xb
1 and h1⊗ xa

1 . Finally we can generate cn for all
n > 0 using Lemma 42.

4.8. A representation of the category H′

Let S ′n denote the category whose objects are all (C[Sr ],C[Sn]) bimodules for some r ∈
Z>0 corresponding to induction and restriction functors. The morphisms between two
bimodules B and B ′ is the space of bimodule maps between B and B ′. Note that if the
bimodules B and B ′ are not bimodules over the same algebra then the space of morphisms
is zero.
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For each n there is a functor F ′n : H′→ S ′n . The object P is mapped
to the (C[Sn+1],C[Sn])-bimodule C[Sn+1]. The object Q is mapped to the
(C[Sn−1],C[Sn])-bimodule C[Sn] where we view C[Sn−1] as embedded in C[Sn] by
mapping the simple transpositions si to si for i = 1, . . . , n− 2. We then extend this action
monoidally. For details on how the functor F ′n acts on morphisms see [17, § 3.3]. Let

V =
⊕

n

Tr(S ′n) =
⊕

n

Tr(C[Sn] −mod).

This is naturally a module for Tr(H) ∼= Tr(H′) since the category S ′n is a representation
of the category H. For the analogous statement for 2-categories see [3, § 6.0.3].

Proposition 44. As a vector space V is isomorphic to C[h1⊗ 1, h2⊗ 1, . . .].

Proof. As a vector space Tr(C[Sn]) is spanned by conjugacy classes of Sn which in

turn is isomorphic to the span of irreducible characters of Sn . Thus, V is spanned
by the irreducible characters of all symmetric groups. As an algebra under induction
it is generated by irreducible representations corresponding to single cycles. These are
precisely the elements h1, h2, . . . in Tr(C[Sn]).

Proposition 45. The Tr(H)-module V is irreducible.

Proof. It was proved in [17] that V categorifies Fock space for the Heisenberg algebra h.
Since h acts irreducibly on Fock space and h is a subalgebra of Tr(H), it follows that V
must be an irreducible Tr(H)-module.

In order to prove the next proposition we recall that the structure of Tr(H) as a vector
space was computed in § 4.6. We follow closely the proof of [20, Proposition F.6] where

the faithfulness of W1+∞/(C − 1, w0,0) on V1,0 is given.

Proposition 46. The action of Tr(H) on V is faithful.

Proof. In what follows we denote by Tr(H)[r,6 k] the set of elements in Z-degree r
and Z>0-degree 6 k. Let I be the annihilator of Tr(H) in V . There is a filtration on
I : I0 ⊂ I1 ⊂ · · · . Since ⊕r Tr(H)[r,6 0] is isomorphic to a Heisenberg algebra and it is
known that the Heisenberg algebra acts faithfully on V , it must be the case that

I ∩ (⊕r Tr(H)[r,6 0]) = {0}.
Thus, I0 = {0}. If we assume that I is non-zero then the minimal n such that In 6= {0} is
greater than zero.

Notice that for n > 1 that

[hl ⊗ 1,Tr(H)[r,6 n]] ⊂ Tr(H)[r + l,6 n− 1].
It follows that for n > 1 that [In,Tr(H)[r,6 0]] = 0 so that each filtered component In is
contained in the centralizer the ⊕r Tr(H)[r,6 0] in Tr(H).
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W-algebras from Heisenberg categories 33

Now we compute the centralizer of ⊕r Tr(H)[r,6 0] in Tr(H) and show that it must be
trivial. If g ∈ Tr(H) then we let its image in the associated graded be denoted by g. It
follows from Lemma 35 that the associated graded is isomorphic to a polynomial algebra
C[hr ⊗ x s

1] for r ∈ Z, s ∈ Z>0 and (r, s) 6= (0, 0). This algebra is bigraded with element

hr ⊗ x s
1 in degree (r, s).

Consider the map for n > 1

ζn = [hl ⊗ 1, •] :
⊕

r

Tr(H)[r,6 n]/Tr(H)[r,6 n− 1]

→
⊕

r

Tr(H)[r,6 n− 1]/Tr(H)[r,6 n− 2].

The space Tr(H)[r,6 n]/Tr(H)[r,6 n− 1] is the degree (r, n) piece of the associated
graded algebra. It is easy to see that

ζl(hr ⊗ xk
1 ) = −kl(hl+r ⊗ xk−1

1 ).

Thus, the common kernel of the operators ∩l ker(ζl) is zero if n > 1. This implies that

the centralizer of ⊕r Tr(H)[r,6 0] in Tr(H) is contained in ⊕r Tr(H)[r,6 0]. But this
subalgebra has trivial center.

4.9. Tr(H) as an algebra

There is an isomorphism of vector spaces

ψ̄ : V = C[h1⊗ 1, h2⊗ 1, . . .] → V1,0 = C[w−1,0, w−2,0, . . .] (4.18)

where

(hl1 ⊗ 1) · · · (hlr ⊗ 1) 7→ (w−l1,0) · · · (w−lr ,0).

Lemma 47. The map ψ̄ in (4.18) commutes with the action of Heisenberg subalgebras in
V and V1,0. That is for any v ∈ V

ψ̄((hr ⊗ 1)v) = w−r,0ψ̄(v).

Proof. Propositions 9 and 44 provide vector space realizations of V1,0 and V , respectively.

The lemma now follows easily from the definition of ψ̄ and the Heisenberg relations
calculated in (3.3) and Lemma 22.

Lemma 48. For any v ∈ V we have ψ̄(c0v) = −w0,1ψ̄(v).

Proof. This follows easily using (3.6) to compute [w0,1, wn,0], Lemma 39 to compute
[−c0, hn ⊗ 1] and the definition of the map ψ̄ .

Lemma 49. For any v ∈ V we have ψ̄((c1+ c0)v) = w0,2ψ̄(v).
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Proof. By Lemma 41 and (4.16) [c1, hn ⊗ 1] = 2nL−n . It is well known that the Virasoro
operator 2nL−n acts on Fock space by n

∑
k∈Z(hn−k ⊗ 1)(hk ⊗ 1). Now it is easy to see

that the operator c1 on V acts as∑
k,l>0

((hl ⊗ 1)(hk ⊗ 1)(h−l−k ⊗ 1)+ (hl+k ⊗ 1)(h−l ⊗ 1)(h−k ⊗ 1)).

The result now follows from Lemma 11.

Now we extend the map ψ̄ to a map

ψ : Tr(H)→ W1+∞/(C − 1, w0,0) (4.19)

by mapping generators

h−1⊗ 1 7→ w1,0 h1⊗ 1 7→ w−1,0 c1+ c0 7→ w0,2.

Lemma 50. The map ψ is a map of Z-graded and Z>0-filtered algebras.

Proof. This follows since the actions of Tr(H) and W1+∞/(C − 1, w0,0) on V and V1,0
respectively are faithful.

Remark 51. The map ψ maps the Virasoro subalgebra of W1+∞/(C − 1, w0,0) to the

Virasoro subalgebra of Tr(H) from Proposition 29.

Lemma 52. The map ψ is surjective.

Proof. This follows directly from the definition of ψ and Lemma 8 which states that

w1,0, w−1,0, w0,2 generate W1+∞.

Theorem 53. The map ψ is an isomorphism of algebras.

Proof. We first show that ψ restricts to an isomorphism

ψ0 : Tr0(H)→ W 0
1+∞/(C − 1, w0,0).

For some a0, . . . , al−1, b0, . . . , bl−1 ∈ C we have

ψ

(
h1⊗ x l

1+
l−1∑
k=0

ak(h1⊗ xk
1 )

)
= ψ

(
adl

(
c1+ c0

2

)
(h1⊗ 1)

)
= 2−ladl(w0,2)(w−1,0)

= (−1)lw−1,l +
l−1∑
k=0

bk(w−1,k). (4.20)

The first equality follows from repeated use of Lemmas 39 and 41. The second equality
follows from Lemma 49 and the third equality follows from [20, (F.9)]. So

ψ(h1⊗ x l
1) = (−1)lw−1,l +

l−1∑
k=0

αkw−1,k
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for some α0, . . . , αl−1 ∈ C. By Lemma 42,

[h−1⊗ 1, h1⊗ x l
1] = c̃l +

l−2∑
k=0

(l − 1− k )̃ckcl−2−k . (4.21)

Hence we have

ψ([h−1⊗ 1, h1⊗ x l
1]) = [w1,0, ψ(h1⊗ x l

1)] =
[
w1,0, w−1,l +

l−1∑
k=0

αkw−1,k

]
.

By Lemma 3.5

[w1,0, w−1,l ] = −lw0,l−1−
l∑

r=2

(
l
r

)
w0,l−r − 1 (4.22)

so that (4.21) and (4.22) give us

ψ(cl−2) = −lw0,l−1+
l−1∑
k=0

dkw0,k−1+ d

for some d0, . . . , dl−1, d ∈ C. Thus, ψ restricts to an isomorphism ψ0.
Next observe that

ψ(Tr>(H)) ⊂ W>
1+∞/(C − 1, w0,0)

ψ(Tr<(H)) ⊂ W<
1+∞/(C − 1, w0,0).

Since

Tr(H) = Tr>(H)⊗Tr0(H)⊗Tr<(H)
W1+∞/(C − 1, w0,0) = W>

1+∞/(C − 1, w0,0)⊗W 0
1+∞/(C − 1, w0,0)⊗W<

1+∞/(C − 1, w0,0)

it suffices to show that ψ restricted to Tr>(H) is an isomorphism (the restriction to Tr<(H)
is similar). Since we know that ψ is surjective we just need that the graded dimensions
of Tr>(H) and W>

1+∞/(C − 1, w0,0) are the same. This follows from Proposition 7 and
Corollary 38.

4.10. The action of Tr(H) on the center

Recall, by Proposition 5, that the center of H is isomorphic to a polynomial algebra in

countably many variables:

Z(H) = EndH(1) ∼= C[c0, c1, c2, . . . ].

Since all objects of H have biadjoints and all adjunctions in H are cyclic, it follows that
the trace Tr(H) acts on Z(H) (see, for example, [3, § 6] or [4, § 9]). Graphically, an element
of the center X ∈ Z(H) can be represented by a closed diagram and an element of the
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trace by a diagram on the annulus:

f = f ∈ Tr(H) X = g ∈ Z(H).

This action of Tr(H) on Z(H) is given by placing the diagram for X in the interior of the

annulus

f X

and interpreting the result as a new central element in Z(H). As a consequence of
Theorem 1 and its proof, we have the following.

Corollary 54. The algebra Tr(H) acts irreducibly and faithfully on Z(H). Under the
isomorphism Tr(H) ∼= W1+∞/I , this representation is isomorphic to the canonical level

one representation V1,0 of W1+∞.

Proof. The proof that Tr(H) acts irreducibly and faithfully on Z(H) follows exactly as in
Propositions 45 and 46. Those propositions used the action of Tr(H) on Tr(C[Sn]-mod),
but we could have equally well worked with the center of H. The identification EndH(1) ∼=
V1,0 follows immediately.
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