THE COLORED HOMFLYPT FUNCTION IS
¢-HOLONOMIC

STAVROS GAROUFALIDIS, AARON D. LAUDA, and THANG T. Q. LE

Abstract

We prove that the HOMFLYPT polynomial of a link colored by partitions with a fixed
number of rows is a q-holonomic function. By specializing to the case of knots col-
ored by a partition with a single row, it proves the existence of an (a,q) superpoly-
nomial of knots in 3-space, as was conjectured by string theorists. Our proof uses
skew-Howe duality that reduces the evaluation of web diagrams and their ladders
to a Poincaré—Birkhoff-Witt computation of an auxiliary quantum group of rank the
number of strings of the ladder diagram. The result is a concrete and algorithmic web
evaluation algorithm that is manifestly q-holonomic.
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1. Introduction

1.1. The colored Jones polynomial
The best-known quantum invariant of a knot or link L in 3-space is the Jones polyno-
mial Jy, which, when properly normalized, is a Laurent polynomial in a variable
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q with integer coefficients. Jones’s [29] discovery of this polynomial marked the
birth of quantum topology, and shortly afterward, a plethora of quantum invariants
of knots and links were discovered by Reshetikhin and Turaev (see [51] and also the
books [46], [54]).

Although Jones’s definition of the Jones polynomial came from the von Neumann
algebras and their subfactors, a connection between the Jones polynomial and the sim-
plest non-Abelian simple Lie algebra, sl,, and its representations was soon discov-
ered. More precisely, given a simple Lie algebra g, an irreducible (finite-dimensional)
representation V' (usually called a color in the physics literature), and a knot K, the
theory of ribbon categories (see [51], [54]) defines an invariant J I%(V) € Z[g*']. The
original construction of this invariant was a rational function in a fractional power
of g, and a normalization of this invariant was shown in [35] to be an element of
Z[q*?]. The Reshetikhin—Turaev construction extends to framed, oriented links as
well, each component of which is colored by an irreducible representation of g.

By specializing to sl, and using the well-known fact that there is one irreducible
representation £, of sl of dimension n + 1 for every natural number #, it follows
that a knot K gives rise to a sequence of polynomials J;([z (hn) € Z[g*!] for n =
0,1,2,.... This sequence, although infinite, satisfies some finiteness property which
in particular implies that it is determined by finitely many initial terms. (The number
of initial terms depends on the knot though.) More precisely, it was proven by the first
and third authors [19] that for every knot K there exists a recursion

ca(@", DI (hnta) + ca—1(q" I R> (hnsa—1) + -+ co(q", q) T 5> (hn)
=0 (1)

forall n € N, where d € N, ¢;(u,v) € QuE!, v forall j =0,...,d, and ¢4 # 0.
In this article, N denotes the set of all nonnegative integers. The recursion depends on
the knot, and although it is not unique, it can be chosen canonically.

Aside from the above-mentioned finiteness statement, the importance of this
minimal recursion (often called the /i-polynomial) is not a priori clear. Keeping in
mind that PSL(2, C) is the isometry group of orientation-preserving isometries of 3-
dimensional hyperbolic space, we see that there are at least two connections between
the ff—polynomial and hyperbolic geometry.

(a) Specializing the coefficients of the above recursion to ¢ = 1 is conjectured to
recover the defining polynomial for the SL(2, C)-character variety of the knot
complement, restricted to the boundary torus of the knot complement. This
so-called AJ conjecture is one link between the colored Jones polynomial and
the geometry of SL(2, C) representations (see [16], [36]).

(b) Such a recursion can be used to numerically compute several terms of the
asymptotics of the colored Jones polynomial at complex roots of unity, a fas-
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cinating story that connects quantum topology to hyperbolic geometry and
number theory. For a sample of computations, the reader may consult [17]
or [22].

Returning to recursion relations, we note that sequences that satisfy a recursion
relation of the form (1) are g-holonomic, a key concept introduced by Zeilberger [58].
The literature shows that g-holonomic functions enjoy several closure properties.
A key theorem of Wilf—Zeilberger [57, Theorem 5.1] is that a multisum of a g-proper
hypergeometric term (where we sum all but one variable) is g-holonomic. This the-
orem and the fact that quantum knot invariants are multisums of g-proper hyperge-
ometric terms (coming from structure constants of corresponding quantum groups)
explain why the quantum knot invariants are g-holonomic functions.

Converting the above statement into a theorem and a proof requires additional
work. To begin with, one needs to consider functions of several variables. For instance
the sl3-colored Jones polynomial of a knot or the sl,-colored Jones polynomial of a
2-component link is a function of two discrete variables. A definition of g-holonomic
functions of several variables was given by Sabbah [52], using the language of homo-
logical algebra. Sabbah used a theory of Hilbert dimension for modules over rings
generated by g-commuting variables and proved a key Bernstein inequality. A survey
of Zeilberger’s and Sabbah’s work was given by the first and third authors [20], where
detailed proofs and examples of g-holonomic functions were discussed. A summary
of the main definitions and properties of g-holonomic functions is given in Section 4.

1.2. The colored HOMFLYPT polynomial

Shortly after the discovery of the Jones polynomial, five groups independently dis-
covered a 2-variable polynomial, the HOMFLYPT polynomial W, that takes values
in the ring Q(g)[x*!] (see [12], [48]). Turaev [53] showed that the latter unifies the
quantum link invariants J Z[” (hi,...,h1), where hy = C" is the defining represen-
tation of sl,, as follows: for every n > 2 and every framed, oriented link L whose
components are colored by C”, we have

T (hyy . hy) = Wi xmgn.

Here J;, is a normalized version of J, (see Section 2).

Let &# denote the set of partitions A = (A1,45,...), where A; > A, >--->0
is a decreasing sequence of nonnegative natural numbers, all but finitely many zero.
As usual, a partition is presented by a Young diagram. Let &, be the set of parti-
tions with at most n — 1 rows. Irreducible representations of sl,, are parameterized by
partitions in &,_;, and we will identify a partition A € $#,_; with its corresponding
irreducible sl,,-module (which has highest weight A; see [15]). With this identifica-
tion, the partition %,, which has one row and a boxes, is the ath symmetric power
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of &1, and the partition e,, which has one column and a boxes, is the ath external
power of i1 = e;.

Wenzl [56], generalizing Turaev’s result, showed that the sl,-quantum link invari-
ants interpolate a 2-variable function in the following sense. If L is an oriented,
framed link with r ordered components and the A;’s are partitions with at most £
rows for i = 1,...,r, then there exists a 2-variable colored HOMFLYPT function
Wr(A1....,Ar) € Q(g)[x*!] such that for all natural numbers n with n > £ + 1 we
have

T3 Qe Ay = WL, A e=gn -

A detailed definition of the HOMFLYPT polynomial and its colored version in terms
of the HOMFLYPT polynomial of cables of the link is given in [41] and [42].

1.3. Statement of our results
The set 2 of all partitions has an involution defined by A — AT which transposes
columns and rows of a partition. The map ¢, : N® — £, given by

L—i+1

te(ny,....ng) =A1,..., ) € Py, where A; = Z nj,
j=1

is a bijection, and so is LZ Nt > ?J (where ?J is the set of all partitions with at
most £ columns) defined by LZ(H], coong) =y, ... n)t.

THEOREM 1.1
Suppose L is an oriented, framed link with r ordered components and £ a nonnegative
integer. Then, the functions

Weo() N> Q@' Wro() N = Qg)x*"]

are q-holonomic.

COROLLARY 1.2

For a framed, oriented knot K colored with partitions with a single row, the sequence
Wk (hg) fora=0,1,2,... is g-holonomic.

Some special cases of the above corollary are known. See Cherednik [7] for the
case of torus knots, Wedrich [55] for the case of 2-bridge knots, and Kawagoe [32]
for some 2-bridge knots and some pretzel knots.

On the set of all functions from N to Q(x, g) define two operators L, M by

LNH@=fla+D,  Mf)a)=q"f(a).
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Then LM = gML, and a recurrence for f has the form Pf = 0, where

d
P = ch(q,x,M)Lj, cj(qg,x,M) e Zlq,x, M].
=0

When nonzero recurrence for f exists, there are many of them, and there is a unique
one, up to sign, such that (i) d is minimal, (ii) the total degree in ¢, x, M, L is minimal,
and (iii) all the integer coefficients of P are coprimes (see [16], [36]). For a knot K,
we denote such a minimal recurrence for Wi (h,) by Ax (M, L,x,q).

Physicists have conjectured the existence of the 4-variable polynomial (see, e.g.,
[2], [24]) and have further conjectured that, when we set ¢ = 1, the correspond-
ing 3-variable polynomial Ax (M, L, x,1) is equal, after some universal (i.e., knot-
independent) change of variables, to a 3-variable polynomial that comes out of knot
contact homology (see [1], [45]). In the physics literature, Ax (M, L, Q, 1) is often
called the Q-deformed A-polynomial of a knot, and it appears in string theory in
the geometry of spectral curves, topological strings, matrix models, and M-theory
dualities. There is a lot of literature on this polynomial following the pioneering
work of Gukov, Fuji, Stosic, Sutkowski, and others. For a detailed discussion, see
[2], [9], [10], [13], [14], [19], [23], [24], and [25].

Remark 1.3
The proof of Theorem 1.1 implies that the function N x N"¢ — Z[¢*'] defined by
(n,m) € Nx N s (Wp, 0 (10)") (770) | x=gn
is g-holonomic in all £ + 1 variables. The latter was conjectured in [21].
1.4. An example
Suppose that K is the right-handed trefoil (see Figure 6) with O framing. Define
ag = xM®(x>M? — 1)(M* — ¢5x?),
a1 = (@ MPx* — x4g* £ MOg2x* + MSx* — MSg6x2
~ MOg2x? — MEx2 + MIO)(M* — ¢4x?),
ay = —x°q°(¢*M? = ) (M* — x?¢?).
Then for all m > 0,

ar Wi (hm+2) + a1 Wk (hm+1) + aoWi (hm) = 0. (2)

Remark 1.4
In [13], a conjectural formula for the colored HOMFLYPT function Wk (h,,) was
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given for the case in which K is the left-handed trefoil (and other torus knots). Based
on this conjectural formula, the authors of [13], using a computer program of Zeil-
berger [47], found a recurrence formula for Wk (h,,), which is different from (2) since
another normalization was used. In Appendix C, we will give a proof of (2).

1.5. Plan of the proof

The quantum group invariants require familiarity with category theory, the representa-

tion theory of quantum groups, and an understanding of the accompanying graphical

notation. In Section 2 we discuss three categories nRep ,, nWeb, and nLLad which are
related to representations of quantum groups as well as to a diagrammatic description
of links and their invariants. In Section 3 we discuss how to unify the sl,-link invari-
ants to one that is independent of n. In Section 4 we discuss the basic definitions,
examples, and properties of g-holonomic functions. In Section 5 we give the proof of

Theorem 1.1. The proof is concrete and algorithmic, with a detailed example for the

case of the right-handed trefoil given in Section 3.7. We summarize the steps here,

using the notation of the proof.

(a)  We start with a braid word representative 8 whose closure cl(f) is the link L.
The corresponding braid has m strands and a fixed number of letters. For the
trefoil, this is given in (36).

(b) The link is now given by joining to the braid the bottom and top part of the
closure consisting of cup/cap diagrams, respectively. We replace the bottom
part by a monomial in some operators E;, the braid word by a product of
Lusztig braid operators T;(b)*! defined in Section 3.4, and the top part by a
monomial in some operators F;. For the trefoil, this is given in (37).

(©) Each operator T;(b)*! is a sum (over the integers) of operators E; and F i
(see (29a)—(29Db)).

(d) The operators E; and F; satisfy the quantum group g-commutation relations
given in (14a)—(14d), and using those we can sort the above expressions by
moving all the E’s to the right and all the F’s to the left.

(e) The fact that the operators E; annihilate the last bit 1, corresponding to the
projection onto a highest weight determined from the link diagram, adds a
product of delta functions in our sum.

3] The requirement that all weights appearing in the sum be positive introduces
Heaviside functions into the sum, as explained in the proof of Proposition 5.2.

(g)  In this way, we obtain a multidimensional sum over the integers, whose sum-
mand is a product of extended g-binomial coefficients of linear forms (with
integer coefficients) of the summation variables times a sign raised to a linear
form of the summation variables. These sums are always terminating. For the
trefoil, this 6-dimensional sum is given in (39).
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(h) We show in Section 5.1 that such multisums are g-holonomic.

Hidden in the above algorithm is the quantum skew-Howe duality (see [5]), which
allows us to compute colored sl,-invariants by evaluating ladder diagrams in 2m
strands by using an auxiliary quantum group based on the Lie algebra gl,,,. Steps
(c)—(e) are exactly a Poincaré-Birkhoff—Witt computation on gl,,,,.

To avoid any confusion or misunderstanding, in an earlier article, the first author
[18] reduced the g-holonomicity of the colored HOMFLYPT polynomial to the g-
holonomicity of the evaluation of Murakami—Ohtsuki—Yamada (MQY) graphs and
observed that the latter would follow from the existence of a g-holonomic evaluation
algorithm for MOY graphs. Unfortunately, such an algorithm based on simplifications
of MOY graphs or web diagrams is yet to be found.

1.6. Computations and questions

With regard to the computation of the 4-variable polynomial of a knot, there are sev-
eral formulas for the HOMFLYPT polynomial of some links in the literature colored
by partitions with one row (see, e.g., [26], [27], [32], [44]). These formulas are mani-
festly g-holonomic, as follows by the fundamental theorem of Wilf—Zeilberger theory.
Using these formulas and Wilf—Zeilberger theory, one can sometimes compute the 4-
variable knot polynomial. For sample computations for the case of twist knots and
some torus knots, see [44].

The next question is inaccessible with our methods. A positive answer would
be useful in the study of Labastida—Marifio—Ooguri—Vafa (LMOV) (also known as
Bogomol’nyi-Prasad—Sommerfield (BPS)) invariants of links (see [34]). First, using
linearity extend the colored HOMFLYPT function to the case when the color of each
link component is a Z-linear combination of Young diagrams. Let p, =
St o(=D¥(k, 197F). Note that (k,147%) is a hook partition with one row with k
boxes and one column with a — k boxes.

Question 1.5
Is it true that the HOMFLYPT polynomial of a knot colored by p, is a g-holonomic
function of a?

2. Categories, links, and their invariants

Throughout the article, N, Z, and QQ denote the set of nonnegative integers, the set
of integers, and the set of rational numbers, respectively. We emphasize that our N
contains 0. Also n will denote an integer greater than or equal to 2. We will denote by
Q(g"/™) the field of rational functions in an indeterminate ¢'/" and denote by Q(q)
its subfield generated by g = (¢!/")". Also Z[g*!] C Q(g) will denote the ring of
Laurent polynomials in g with integer coefficients.
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In this section we will discuss three categories nRep ., nWeb, and nLad which
are connected by functors

\I']}’l FH
nLad — nWeb — nRep,. 3)

A ring homomorphism f : Q(g'/") — Q(g'/") (thought of as a homomorphism from
the empty set to the empty set) is the multiplication by a scalar, and we denote this
scalar by ev(f) € Q(q'/"). These categories are intimately related to diagrammatic
descriptions of framed tangles and of quantum groups.

2.1. The quantized enveloping algebras Uy (gl,,) and Ugy(sl,)
Consider the lattice Z" with the standard Euclidean inner product (-, -), and consider
the root vectors

@ =(0,...,0,1,—1,0,...,0) € Z",

with 1 on the i th position. The quantized enveloping algebra Uy (gl,,) is the associative
algebra over Q(¢q) generated by L;,i =1,...,n,and E;, F;,i =1,...,n—1, subject
to the relations

LoLp=Layp, Lo=1,
LoEj =q% "+ E;L,, LoFj =q%+'7% FiL,,

EPEiy1 — EiEipEi + Ei EP =0=FPFiy — FiFip Fi + Fn F2,

Ki—K!
EiFj_FjEi:(gijF’
EE;j=FE;E;, FiFj=F;F forli—j|>1

Here L, = L{'---Ly" fora = (a1.....a,) € 2", K; = L;L;},, and

.
El.(r) = E!/[r]!, Fi(r) = F//[r]!, where [r]!:= l_[ %
i1 474
There is a structure of a Hopf algebra on Uy (gl,,) with the coproduct and the antipode
(see, e.g., [6], [28], [38]).

The quantized enveloping algebra Uy (s[,) is the subalgebra of U, (gl,,) generated
by E;, F;, Kiil, i =1,...,n—1.Then U, (sl,) inherits a Hopf algebra structure from
that of Uy (gl,,).

A weight of Ug(gl,) (resp., Uy(sl,)) is an element a € Z" (resp., an element
a € Z" such that ) ; a; = 0). A Uy(sl,)-module V is called a weight module (or,
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perhaps better, a weighted module) if V = @, V4], where each a is a U (s, )-weight
and

Viap = {v € V| Ki(v) = g%},

For a partition A = (I1,...,lg) withly > [, > --- > 1, > 0 we call £ = length(1)
the length of A and |A| = ), /; the weight of A. Denote by A the conjugate of A,
which is the partition whose Young diagram is the transpose of that of A. For a thor-
ough treatment of partitions, see [39]. Finite-dimensional irreducible weight U, (sl )-
modules are parameterized by partitions A € J,_;, that is, partitions of length at most
n —1 (see, e.g., [6], [28]). For every A € #,_; denote by V), the corresponding irre-
ducible weight Uy (s[,)-module.

2.2. The category of U, (sl,)-modules and link invariants
The category nRep of finite-dimensional weight Uy (sl,)-modules is a ribbon cate-
gory (see [54]), where the braiding comes from the universal R-matrix. To be precise,
one needs to extend the ground field to Q(¢'/") so that the braiding and the ribbon
element can be defined.

By the theory of ribbon categories, for a framed, oriented link L in 3-space with
r ordered components and r objects V7, ..., V, of nRep, one can define an invariant

IV, V) € QgM).
IfAy,..., A, € P,_1, we use the notation

T A =T (Vo Vi),

It is known that a properly normalized version of le” (V1....,V,) belongs to Z[g*?]
(see [35], [40]). A special case of this integrality phenomenon is the following. Let £;;
be the linking number between the ith and the jth components of L, with £;; being
the framing of the i th component. Define

T2y, Ay = g i GilhllAsl sty ), &)

Then we have
T2 A, ) € Z[gEY. (5)
Not only is J Z[" (A1,...,A,) a Laurent polynomial in ¢, but it also enjoys the

following stability (with respect to the rank n) property.

PROPOSITION 2.1 (see [56])
There exists an invariant Wi, (A1, ..., Ar) € Q(q)[xT'] such that, for any n greater
than the length of any of the A ;’s, we have
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WL Ay Ar)vmgn = T3 (A1, Ap).

Usually, Wy, is called the colored HOMFLYPT function. The theorem was first
proved by Wenzl, using quantum group theory. For a detailed proof using skein theory,
see [37, Theorem 11.4.18]. The theorem also follows from our proof of Theorem 1.1
below. For the simplest case, when all partitions have one box, Proposition 2.1 was
first proved by Turaev [53].

Remark 2.2

The integrality (5) shows that the polynomial P = Wz (11,...,A,) € Q(g)[x*!] has
the property that P|y—4n € Z[g*'] for all integers n > 1. Such a polynomial P €
Q(g)[x*] is called g-integral and is studied in [4, Section 2.3].

Remark 2.3
Our Wy, (A1,...,A;) isequal to P(L * (Qy,,...,03,,)) in the notation of [42, Sec-
tion 6], with our ¢ and x equal to, respectively, s and v~ there.

2.3. Properties of the colored HOMFLYPT polynomial

Let A be the free Q-vector space with basis the set & of all Young diagrams, including
the empty one. Suppose that L is a framed, oriented link with r ordered components.
The invariant W (A1, ...,A,) can be extended to a Q-multilinear map

Wr: A” — Q(q)[x*"].

There is a Q-algebra structure on A which makes it isomorphic to the algebra of
symmetric functions (see, e.g., [39]). Under this isomorphism, a Young diagram A is
mapped to the Schur function S} corresponding to A.

We collect here some well-known properties of the quantum invariant Wy, .

PROPOSITION 2.4

Let L be a framed, oriented link in the 3-space with k ordered components.

(a) Suppose that L' is the same L with the components renumbered by a permu-
tation o of {1,...,k}. Then

Wi(Asee hr) = Wi Orots- - s Aor).

(b) Suppose that AL is the result of replacing the first component of L by two
copies of its parallel pushoff (using the framing). Then

WALV A Ag e Ay) = WA Ao Ay).
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(©) We have

We,o A = WA AN o (6)

Parts (a) and (b) follow from the corresponding properties for Ji (see [54]).
While (a) is trivial, (b) follows from the hexagon equation of the braiding in the
braided category. Part (c) is well known and has been discussed in many papers
(see, e.g., [34, (4.41)]). For completeness, we give proofs of parts (b) and (c) in
Appendix B.

2.4. The category nRep ,

Let e, be the partition whose Young diagram is a column with a boxes; that is, e, =
(1%) in the standard notation of partitions. The Uy (sl,)-module V,, with 1 <a <
n — 1 is called a fundamental U, (sl,)-module. We also use eg to denote the empty
Young diagram, which corresponds to the trivial U, (sl,)-module.

Let nRep , be the full subcategory of nRep whose objects are those isomorphic to
tensor products of the fundamental Uy (sl,)-modules. Then nRep,, inherits a ribbon
category structure from nRep.

The advantage of nRep, is that it has a remarkable presentation using planar
diagrams called spider webs, which are described in the next section. Since nRep is
the idempotent completion of nRep ., we do not lose much by working with nRep, .

2.5. The category nWeb
We describe here the category n'Web of sl,-webs, following Cautis, Kamnitzer, and
Morrison [5]. Recall that a pivotal monoidal category is a category with tensor prod-
ucts and a coherent notion of duality in which the double dual functor is naturally
isomorphic to the identity. The morphisms and the relations among morphisms of
such categories afford a diagrammatic description using planar diagrammatics. They
are essentially equivalent to the description of the Temperley—Lieb algebra for n = 2,
Kuperberg’s [33] spider webs (for n = 3), and the planar algebras of Jones [30]. They
are also closely related to the MOY graphs [43]. Standard references for pivotal cate-
gories include [54, Chapter XIJ, [31], and [11, Chapter 4.7].
An n-web is a compact subset Z of the horizontal strip R x [0, 1] with additional
data satisfying (i)—(iii).
@) Each connected component of X is either an oriented circle or a directed graph
(i.e., a finite 1-dimensional CW-complex) where the degree of each vertex is
1, 2, or 3. Every circle component and every edge is labeled by an integer in
[1,n—1].
(i1) The set 0Z of univalent vertices of Z is in the union of the top and bottom
lines of the strip, and Z \ 0Z is in the interior of the strip.
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(iii))  Up to isotopy there are two types of trivalent vertices and two types of biva-
lent vertices as in the following figure (with labeling of edges attached to the

B W

a

vertex):

The third and the fourth graphs depict bivalent vertices but not trivalent ver-
tices, because the small tag there is not officially an edge. The tag provides a
distinguished side and makes the bivalent vertices not rotationally symmetric.

We will declare isotopic webs to be equal. Let d_Z = (if',...,i*), where
i1,...,ix are the labels of the edges ending on the bottom line listed from left to
right, and let ¢ ; = + if the orientation at the jth ending point is upward and ¢; = —
otherwise. One defines d4+ Z exactly the same way, using the top line instead of the
bottom line.

The category nWeb is the pivotal monoidal Q(g!/")-linear category whose
objects are sequences in the symbols {1%, ..., (n — 1)®}. Given objects a, b of nWeb,
the set of morphisms Hom,wey(a, b) is the set of Q(g'/")-linear combinations of 7-
webs Z such that d_Z = a and 0+ Z = b, subject to certain local relations described
in [5, Section 2.2]. In [5], our nWeb is denoted by & p(SL,). The tensor product
Z1 ® Z, is obtained by placing Z» to the right of Z;. The composition Z;Z; is the
result of placing Z; atop Z», after an isotopy to make the top ends of Z, match the
bottom ends of Z;.

For example, the first diagram in (7) represents a morphism from a* ® b =
(@t,b™) — (a + b)*, and the second one represents a morphism from a~ ® b~ —
(a+b)".

The monoidal unit nWeb is the empty sequence. The planar isotopy condition
implies that the object a™ is dual to the object a~. The cap and cup morphisms

a

RN % ®

a

give rise tomaps at ® a~ — @ and @ — a~ ® a™ that realize this duality.

For simplicity we allow diagrams to carry labels of 0 and n with the understand-
ing that n-labeled edges connected to a trivalent vertex should be deleted and replaced
by a tag as in the cap and cup diagrams:
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n n—a a
- /,/J\\ \T/ _n-ga “ o
/,i(\ a a n—a B \\I//
a n—a n

and the remaining edges and loops labeled O or n should be deleted. Note that the
cap and cup diagrams coming from the duality a* with a~ arising from the pivotal
structure do not require tags.

The following are consequences of the relations among generators of sl,-webs:

i = (—1)* 1 (10)
n-a | = (11)
a« a

Remark 2.5

The tags appearing in n-webs (which do not appear in [43]) play an important role in
keeping track of the fact that, while (V,)* is isomorphic to V,,_,, this isomorphism
is not canonical. The tags in sl -webs keep track of these isomorphisms and contribute
signs that would have otherwise been missed by wrongly identifying the dual of a*
with (n —a)™.

2.6. An equivalence between nWeb and nRep ,
The main result of [5] is the construction of an equivalence, which is a Q(¢'/")-linear
pivotal functor,

I';, :nWeb — nRep

defined on objects by T'y(at) = V,, and T'y(a™) = (V,)*. The ribbon structure of
nRep, can be pulled back to make nWeb a ribbon category. In particular, we have a
braiding X, 5 :a ® b — b ® a for any two objects a, b of nWeb. For simple objects
a,b € [1,n — 1] we use the diagrams with crossings as in Figure 1 to denote the
braiding X, 5 and its inverse X b ‘11 The braiding allows us to introduce crossings in
diagrams representing morphisms of » Web.
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Figure 1. The braiding X, j (left) and its inverse X, ;

Suppose that D is a link diagram in the plane in general position with respect
to the height function, whose components are labeled by integers in [0,n — 1]. Then
D defines a morphism in the category nWeb from @ to . Since Hom,wen (9, 9) =
Q(g"'/™), the morphism D is determined by the scalar ev(D) € Q(¢'/"). The equiva-

lence T, shows that this scalar ev(D) is equal to the invariant J; tn (eays---,eq;); that
is,

I (eays- .. eq) = ev(D), (12)
where L is the framed link whose blackboard diagram is D and ay,...,a; are the

labels of the components of L.

2.7. The ladder category
We give the definition of the ladder category Lad,,, which is a diagrammatic presenta-
tion of Lusztig’s idempotent form Uq (gl,,) of the quantum group Uy (gl,,,). Typically,
Uq (gl,,,) is regarded as a QQ(¢q)-algebra where the unit is replaced by a system of mutu-
ally orthogonal idempotents 1, indexed by the weight lattice of gl,,. Using the quan-
tum skew-Howe duality, Cautis, Kamnitzer, and Morrison [5] showed that there is a
braided monoidal functor from the ladder category to the category n Web. We explain
how to use this result to calculate quantum Uy (sl )-invariants of links using ladders.
A ladder Z with m sides is a uni-trivalent graph drawn in the strip R x [0, 1], with
(1) m parallel vertical lines running from the bottom line to the top line of the
strip, oriented upward;
(i)  some number of oriented horizontal lines in the interior of the strip R x [0, 1],
called steps, connecting adjacent sides; and
(iii))  alabeling of each interval (steps or segments of sides) by integers such that the
signed sum of the labels at each trivalent vertex is zero. Here the sign of each
incoming vertex is positive, and the sign of each outgoing vertex is negative.
Let 0_Z (resp., 9+ Z) be the sequence of labels appearing on the bottom (resp.,
top) edge of the strip. Then 0_Z, 0+ Z € Z™ are considered as weights of U, (gl,,).
For example, see Figure 2.
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. A
A X
1 A
\& 1 1
2
A .
[~
1
A
A
2 1 1 2

Figure 2. A morphism in Lady4.

The category Lad,, is the Q(g)-linear category whose set of objects is Z™. Given
two objects a, b, the morphisms Homy 44, (@, b) is the set of all Q(g)-linear combi-
nations of ladders Z with m sides such that d_Z = a and d+Z = b, subject to the
relations described in (14a)—(14e) below.

The composition of morphisms is given by the vertical concatenation of ladders.
Note that Lad,, does not have dual objects and hence is not pivotal.

For an object a = (ay,...,a;) of Lad,,, for i such that 1 <i <m — 1, and for
reN,let E i(r) 1, and Fi(r) 1, denote the following ladders:

ai +r Ait1—T

ES

El'(r)la = ... A \ A ce. € HomLadm(a’a + V(Xj),

ai—1 ai di+1 ait2

Fi(r)lazz R S /)/ 4 .-+ €Homyyg,(a,a —ra;).

ai—1 a; i1 ai42

Here and in what follows, we draw the steps of a ladder by using slightly slanted
lines instead of horizontal lines such that the orientation of the step is upward. With
this convention we do not have to mark the orientation in a ladder diagram, since all
segments are oriented upward.

By comparing the sequences at the end of these ladders it is clear that
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o e L
() () () (13)
Flg=lgye; F;"” = layo; F," 14

When the specific weight is clear we will write E; instead of E; 1, and F; instead of
F;1,. For example, Fi(r) E_E.s)la means Fi(r)laﬂaj Ef-s)la.
With this convention, the relations of the morphisms of Lad,, are given by

min(r,s) (a o ) +r—s
" p® (i) T =8| ) )
EVF = ) [ . :|Fl.s E/ "1, (14a)
t=0
Ei")F}SMa = F}S)Ei(”la ifi #J, (14b)
EPED1,=EYE1, if|i — j| > 1, and likewise for the F’s, (14c)
EQEDL, = {r - S} ET*91,,  and likewise for the F’s, (14d)
r

EEjEil,=(E?E; + E;E?),
if i — j| =1, and likewise for the F'’s, (14e)
forallr,seN,1<i<m-—1,anda € Z™.

Recall that (a,«;) = a; — aj+; is the standard inner product on Z™, and the
quantum integers and factorial and binomial coefficients are defined by

[r] = =g —, reZ, (15a)
q—9q
r
=[] (15b)
k=1
1_[2 r S+1 >
r,se€Z,s >0, (150)
0 s < 0.

Remark 2.6

If k is a field and € is a k-linear category, then it gives rise to an algebra A(€) whose
underlying vector space is the direct sum of all Hom spaces (D, , Hom(a, b). The
product of x € Hom(b,a) and y € Hom(b’,a’) is defined to be zero unless b = a’,
in which case the product is defined to be the composite xy. In general, A(€) is a
k-algebra without unit. Since the relations (14a)—(14e) are the defining relations of
Lusztig’s idempotent algebra Uq (gl,,), A(Lad,,) = Uq (al,,).
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2.8. The Schur quotient, the highest weight ¥, and evaluation

Fix positive integers m and n. The Schur quotient nLad,, is defined to be the
Q(g"'/™)-linear category with set of objects all @ = (a1, ...,a,) € Z™ such that a €
[0,n]™, that is, 0 < a; <n for all i. The algebra of morphisms of nLad,, is the quo-
tient of the algebra of morphisms of Lad,,, with ground field extended to Q(g'/"),
by the two-sided ideal generated by all 1,’s with a ¢ [0, n]™. For example, Ei(r) 1g is
always 0 in nLad,, when r > n.

Let
O (n,m):= (n™,0™) e Z*™, (16)
often abbreviated by /. Considered as an object of nLady,,, ¥ is a highest weight
element for nLady,,, in the sense that forevery i = 1,...,2m — 1, we have
Eily =0, ly Fily o, = 0. A7)

This is because ¥ 4 «; has entries outside [0, n]. It follows that the algebra of endo-
morphisms of ¥ is isomorphic to the ground field Q(¢'/"). In other words, we have
an evaluation map

Vo m : HoMypad,,, (9, 9) = Q(g/™), X =eVpm(x)ly. (18)

2.9. Braiding for ladders

The category nLad,, does not have a tensor product and hence is not a monoidal cat-
egory. However, nLad := @fno:l nLad,, is monoidal. This category does not have
duals, since all webs are directed upward. But it is a braided monoidal category,
as follows. The objects of nLad are sequences a = (ay,...,a,) of integers a; €
[0,n]. Given two objects a = (ai,...,am,) and b = (b1, ...,bp), Hompraa(a,b) =
Homp,aq,, (@, b) if p =m and 0 otherwise.

The tensor product of objects a ® b is the horizontal concatenation of a and b
from left to right. A similar convention is used for morphisms.

In [5, Section 6] it is shown that nL.ad admits a braided monoidal category struc-
ture; that is, it has a braiding, which is a system of natural isomorphisms X, :
a ® b — b ® a satisfying the hexagon equations (see [51], [54]). The braiding for
nLad is constructed using Lusztig’s [38] braid elements. We also use the diagrams
with crossings in Figure 1 to denote the braiding X, , and its inverse Xa_’ll7 in the
category nLad,,.

When B is a braid on m strands and a = (ay,...,a,) € Z™, let Bl, €
Homyy,a4,, (@, B(a)) be the morphism described in Figure 3. Here S(a) is obtained
from a by applying the permutation corresponding to the braid 8. For example, 0,1,
and o;" 11,, where 0,-,0;1 are the ith standard braid generator and its inverse, are
depicted in Figure 3.
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ﬁlu =
ai am—1
. /
a; di+1 ai42 am
O‘i_l 1, = \
aj ai+1 ai+2 am

Figure 3. The morphisms 14, 0; 14, and Ui_l 4.

Then aiil 1, € Homyy,aa,, (@, 0i (a)). We record here the formula for the braidings
from [5]:

. . . X ai(li+
o la — (_l)az +aja;4 qaz— i 1 E (_q)—s Ei(r) Fi(s) 1(17 (19)
r,s>0
s—r=a;—a; 4

07, = (—1)% taiais gmait o Z (_Q)SEi(r)Fi(S)la- (20)
r,s>0
s—r=a;—a; 11

Note that the right-hand sides are finite sums, since Fi(r) and Ei(r) are 0 for r > n.
Also O’i_l 14 is obtained from o; 1, by the involution ¢ — ¢!

Remark 2.7

Originally, Lusztig [38, Section 5.2.1] defined the braiding and its inverses using triple
product formulas. The simplification of Lusztig’s formulas to double products in (19)-
(20) was first observed for ¢ = 1 by Chuang and Rouquier [8]. For general ¢, a proof
of this simplification can be found in [5, Lemma 6.1.1].

2.10. From ladders to webs
In [5, Section 5] it is proved that there is a Q(g'/")-linear functor

WV, m :nLad,, — nWeb
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bm

Figure 4. The standard closure of a braid § with four strands.

defined as follows. For an object a = (ay,...,an) of nLad,,, ¥, n(a) is obtained
from a by deleting 0’s and n’s from a and converting k to k. For a morphism f of
nLad,, which is a ladder, ¥, ,, (f) is the same f considered as an n-web, using the
convention about labelings 0 and #. This means edges connected to the label 0 should
be deleted from the diagrams, and those connected to the label n should be truncated
to the “tags” depicted in the last two diagrams in (7) as explained in (9). The existence
of W, ,, is a consequence of the quantum skew-Howe duality.

The functors ¥, ,, : nLad,, — nWeb, with all m, piece together to give a functor
W, : nLad — nWeb. By [5, Theorem 6.2.1], ¥, is a braided monoidal functor.

Suppose that 8 is a braid on m strands. We view f as a diagram with crossings
in the standard plane with strands oriented upward. Let cl(8) be the link diagram
obtained by closing f in the standard way (see Figure 4), and let L = L(f) be the
corresponding framed link. Assume L has r ordered components which are labeled
by integers ay,...,a, € [I,n—1].Leta = (ay,...,a,). Letby,..., by, be the induced
labeling of strands of 8 from left to right (at the bottom of ). Of course, each b; is
one of the a;’s.

Let Lcl(B, a), called the ladder closure of B, be the endomorphism of ¥ (n,m)
in the category nLad,,, given by the ladder described in Figure 5. Here the labels of
the strands of the braids are by, ..., b;,, which are determined by the labels a1, ..., a,
of the link L. All the dashed vertical lines of the m left-hand sides are labeled by n,
while all the dashed vertical lines of the m right-hand sides are labeled by 0. Then
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Figure 5. The ladder closure of a braid 8 with four strands with labels. Here ¢; =n — b; .

the remaining labels are uniquely determined by the rule that the signed sum at every
trivalent vertex is 0.

PROPOSITION 2.8
We have

eVam(Lel(B.a)) = Jp(ea, ... .. €a,).

Proof
Let L denote the closure of 8. We have that L is a link colored by a. Identities (10)
and (11) show that

W, (L,a) =Lcl(B,a).
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Since W, is a Q(g¢'/")-linear braided functor, we have
ev(Lel(B.a)) = ev(¥,(L,a))
=Jr(ea;s-.-.€a,),

where the second identity follows from (12). O

3. Introducing the variable x = ¢"

Proposition 2.8 allows one to calculate the quantum sl,-invariant of a link L for
each fixed n > 2. In this section, we introduce an algebra that allows us to unify
the quantum s, -invariants of links into Laurent polynomials of a variable x = ¢”.

3.1. Free associative algebra on E;, F;
Let

xm:{Els"'»Em—lvFl"-'aFm—l}’ (21)

and let 2, be the free associative unital Q(g)-algebra generated by X,,. For i =
l,...,m —1, define the divided powers by

ED = El /) €U, F = F//[r]! € U,
where [r]! is given by (15b). A Q(g)-basis of 2, can be described as follows. For
Y=M",....Y) e (Xy) and k = (kq,...,k,) € N" define
y® .=y 0yl |y,

Then the set of all ¥ ®), where Y; # Yiy1 and k; > 1, along with k = @, is a Q(q)-
basis of .

Note that, for each a € Z™, Y ®1, is a morphism in the category nLad,,. For
a,b € Z™ and n > 1, define the Q(g)-linear map

pZ’b : Q[m - Hoanadm (a5 b)s PZ,b(Y(k)) = laY(k)lb
The algebra 2, admits a natural Z™-grading, called weight, defined by
W(Fi)z_aiy W(Ei)zai.

Observe that p” b(Y(k)) =Ounlessa =b +w(¥®).

Let I be the two-sided ideal of 2 generated by E”, ), withi =1,...,m—1
and r > s. Itis clear that I,y C I;. Let §lm be the completion of 2(,,, with respect to
the nested sequence of ideals /5. Since pZ’b (Iy) =0if s > n, we can extend pZ,b to a
map, also denoted by pZ,b,

pZ,b A — Homypag,, (a,b).
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3.2. Convention on negative powers

The divided powers Ei(r) and Fl.(r) are defined for nonnegative integers r. It is con-
venient to extend them to negative powers by the following convention. For r < 0,
a € 7™, we use the following convention:

O _F®_o indl
E”=F"=0 inApy,
ENy=F"1,=0 inLady,.

With the above convention, (14a), (14b), and (14d) can be rewritten in the fol-
lowing form. For all r,s € Z and i # j, we have the following identities in Lad,,:

O g6 N | @) Fr =5 pen

ECF la—Z[ A A 22)
teZ

EPFO 1, =FYEN 1, 23)

) () rts| Lo+s) ) () s | oo+s)
EVE]” 1a={ ) j|El.’ Na. F,.SFi’L,:[ . ]Fi’ Mg (29
3.3. Evaluation

Fix positive integers n,m. Recall that ¥ given by (16) is an object of nLad,,,, and
recall the evaluation map (18). This gives rise to an evaluation map

€Vp © ﬁ2m g Q(ql/n)’ evn(X) ‘= eVym (pg,ﬂ(x))‘ (25)

Given a monomial z in E;, F;, the element ev, (z) can be calculated by a simple
algorithm moving each divided power in E; appearing in z to the right by using (22)
and (23). Note that we are not moving divided powers of E; past divided powers
of E;. Since the E;’s annihilate the weight 1y, all that remains after sliding all the
E;’s to the right is a sum of products of the quantum binomials produced from the
application of (22). For details see the example in Section 3.7 and Proposition 5.2.

Suppose that ¥ = (Yq,...,Y;) € (Xom)* and b = (b, ...,by) € Z¥. There is
an easy case when ev, (Y ®)) = 0, namely, when 15Y ® 14 factors through a weight
with a negative component. The weight of ¥ ) is denoted by

w(¥ @) = (wi (YD), wam (Y P)) € Z2™.
We say Y ®) has negative weight if W (Y ®) < 0 for some j with m < j < 2m. For
anindex i, 1 <i <k, define the ith tail Tail; (Y, b) by

Tail; (Y, b) = v;&)y, 0t .y B0,

We say (Y, b) is tail-negative if there is an index i, 1 <i <k, such that Tail; (Y, b)
has negative weight.
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LEMMA 3.1
Suppose that (Y, b) is tail-negative. Then ev, (Y ®)) = 0 for all n.

Proof
Note that Y )1, factors through Tail; (Y, b)1y € Homyaaz (i, 9), where

w = w(Tail; (Y, b)) + 0.

Suppose that w; (Tail; (Y,b)) < 0 for some j >m and 1 <i < k. We have u; =
w(Tail; (Y,0)) + ¥; = w;(Tail;(Y,b)) < 0. By definition, Tail;(Y,b)ly = 0 in
Lad},,. Hence, Y ® 15 = 0 in Lad},,,. O

The tail-negative condition can be characterized by the function

2m k
J¥.b):= [] []He(w;(Taili(¥.D))). (26)
j=m+1li=1
where
He(x) 1 ifx>0, 27
e(x) =
0 ifx<0,

denotes the Heaviside function. Note that

) — {o if (Y, b) is tail-negative, 08)

1 otherwise.

3.4. Braiding in 2A

Suppose that a = (ay,...,am) €Z™ and 1 <i <m — 1. Let
Tl(a) — (_l)ai +aiai+1qai Z(_q)—s El_(5+ai+1_ai)Fi(S) c é\[’ (29a)
SEZL
Ti_l ((Z) — (_l)ai+aiai+1q—ai Z(_Q)SEZ'(S+ai+l_ai)Fi(S) c é\[ (29b)
SEZL

Recall that we use the convention Ei(r) = Fi(r) =0 if r < 0. Note that 7! (a) is
obtained from T;(a) by the involution ¢ — ¢~'. From (19) and (20) it follows that,
for e = 1,

4idi41

oflag=q" % 7 Tf(a)l, innLad,,. (30)

1
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3.5. Special functions
Let Y = (Yq....,Y;) € (X)X, A function H : Z" — 2, is called Y -special if

H(a) = Z(_1)5’1(a,S)qu(a,S)Y(f(a,S))7 (31)
seZt

where

. g1 :Z" " — Zis quadratic, that is, given by a polynomial with integer coeffi-
cients of total degree at most 2,

. g2 : 7't — 7 is linear, and

. f 12"+ — 7F is affine such that f(a,-) : Z! — ZF is injective for every
aeZk.

The injectivity property ensures that the right-hand side of (31) defines an element
in 2A,,,. The next lemma is easy to verify.

LEMMA 3.2

(a) The functions T;, Ti_1 72" — Ay, given by (29a) and (29b) are (E;, F;)-
special.

(b) Suppose that f : 7% — 77 is a linear function. Then the function H : ¥ —
A given by

H(a) = y (f@)

is Y -special.
(¢c) IfH’isY’-special and H" is Y"-special, then H' H" is Y' x Y"-special.

3.6. Unifying the sl,-link invariant
Fora = (ay,...,a;) € Z", let ||a||c be the usual norm defined by ||a||cc = max; |a;].

PROPOSITION 3.3
Suppose that L is a framed, oriented link in 3-space with r ordered components which
is the closure of a braid with m strands. Then there exist a sequence Y of letters in
Xom and a Y -special function H : 77 — é\lz,n such that, for all integers ay,...,a, €
[0,n — 1], we have

le”(eal,...,ear):evn(H(al,...,a,)). 32)

Moreover, (Y, f(a,s)) is tail-negative whenever ||s|co > ||@||co. Here f(a,s) is the
function appearing in the presentation (31) of H.

Proof
Let L be the closure of a braid § € By, as in Figure 4, and let a = (a4, ...,a,) e N".
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Suppose that 1™ ® f, the braid (in B;,,) obtained by adding m straight strands to the
left of B, has a presentation

1m®,3=ofll---08’, ijem+1,....2m—1},e; e{xl}forj=1,....t, (33)

it

where o; is the ith standard generator of the braid group (see Figure 1). Here 7 is the
number of crossings of §.

Write b = (by,...,by) and ¢ = (¢, Cm—1,...,¢1) to denote the sequences of
labels labeling the ladder closure Lcl(8,a) as in Figure 5, so that ¢; = n — b; and
each b; is one of (ay,...,a,). The horizontal lines at the bottom and the top of the

braid S decompose Lcl(f) into three morphisms in nLad,,:

Lel(B.a) = Cap,, (a)(Le ® B15)Cup,, (a).

Each part can be written in a form that does not depend on n.
Indeed, the lower morphism Cup,, (a) is a composition of Fi( /) for various i, j .
Hence,

Cupy, (@) = V(@)1 @,m),

where V,, (@) € 2,,, is the product of several Fi(bj s, Explicitly,

1 T r®0 2O o
Vo= T [( TT lrd)ree]
ke[l,m] e[l k—1]
where
— <«—
l_[ Xi i = X1 X2 X[, 1_[ Xi 1= XpXk—1""*X1.

i€[1,k] i€[1,k]

Then, as a function of a, V,,(a) is a special function (see Lemma 3.2).
Similarly, the top morphism

Cap,, (@) =Am(a)l.gp = 119(n,m)Am (@)legp
is a special function. Explicitly,

0 [eto T1 om0 260
Am@ = [T [ER0 [T EEND]
ke[1,m] ielk—1]

Now consider the middle morphism 1, ® B1. Using (33) and (30), we have

AN g
le ® Blp = g~ n =i Lil%i% 2, (a)z5(a) - 2 (a) L c@p
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where
zj(@) =T/ (01,410, (c,D)).
Using (29a) and (29b) for TijEl (b), we see that z; is a special function. Let
H(a) = Am(a)z1(a)z2(a) -zt (@)Vm(a). (34)

Then H : ZF — §l2m is a product of special functions and, hence, is a special function
(see Lemma 3.2). By (30), we have

Lel(B,a) = g~ 2i 4ii%ia) 1y H (a)1y.

Applying the evaluation map ev,, to both sides and using Proposition 2.8 and the
normalization (4) of J1, for the left-hand side, we obtain that

fL(eal,...,eak) =ev,(H(a)).

This proves (32).
Let us have a closer look at the formula of H. By (29a) and (29b), z; has the
form
(a,s;) eihjas;) p(fi@s;) -(s;)
zj= Y (=1)E@s)gehite sf)Eijj TUET (35)

S EL

where g; is a quadratic function and / j, f; are linear functions. From (34), it follows

that H has a presentation (31), where s = (s1,...,5;), and
—_
Y(f(a,s)) — Am(a)( l_[ Ei(jf-/ (a’s'/))Fi(;'/))Vm(a).
JelLz]

Assume that ||$]|co > ||@]l0o; that is, there is [ such that |s;| > ||a]leo. We can
assume that s; > 0, since otherwise s; < 0 and the factor Figsl ) on the right-hand side

of (35) is 0. We will show that the i;th component of the weight of Figsl )2 is negative,
where

—
c=( T[] EV“7F V@,
jell+1.1]
This will prove that (Y, f(a,s)) is tail-negative, since i; > m. Note that
w(z) = w(z141(a) -+ z/(@)\Vm(@)) = (cm —n,...,c1 —n,b"),
where b’ is a permutation of b. Since |6’ ||oo = |6 ]lco = [|@]| 00, We have
wi, (F*Dz) = —s; + (b');, <0,

which completes the proof of the proposition. O
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Figure 6. The ladder closure of braid f = 013 .

Remark 3.4
Our evaluation algorithm should be closely related to the variant of skew-Howe dual-
ity defined for so-called doubled Schur algebras in [50] and [49].

3.7. An example: The trefoil knot
Before we proceed further, let us illustrate Proposition 3.3 by computing the invariant
of the trefoil and draw some useful conclusions regarding the g-holonomicity of the
invariant.

We take

ﬂ:of’:ololol, m=2, ¥ = (n,n,0,0). (36)

Then L = cl(B) is the right-handed trefoil knot, colored by a € NN [0,n — 1] (see
Figure 6).
By Proposition 3.3 and (34), we obtain that J3 l[” (eq) = evy(H(a)), where

H(a)= EYEPEPEX (T3) KO FO FOF®, 37)

where T3 = T5(n —a,n —a,a, a). Using (29a), we replace each occurrence of 75 by
a sum over the integers and obtain the triple sum formula
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H(a) — Z (_q)s1+S2+S3 Eéa)Efa) E:ga) Eéa) (Egsl)F;Sl)E:gSZ) F3(S2)

51,82,S3€Z

x ESYV PPV FO FO FOF®, (38)

This is an explicit form of special function for H.

Next, we use the commutation rules given in (22)—(24) to sort the expression of
H(a)ly, moving all the E’s to the right and all the F’s to the left. Every time we
move Ei(r) (from the left) past an Fi(s) (from the right), we obtain a 1-dimensional
sum over the integers. Then, use (17) to add some delta functions in the sum. Finally,
(53), which is explained later in the proof of Proposition 5.2, tells us to add Heaviside
functions He(k) (see Section 4). Doing so, we eventually get the following formula
for the quantum sl,-invariant of the trefoil colored by e, (the details are given in
Appendix A):

Tiea) = H 3 () CrH I He(a — 5))He(a — s2)He(a — 53)

S€Z°

x He(a + s1 + 52 — s4)He(a + 52 + 53 — s5)He(7)
y S2+ 81 || S2+S3 ([T +52+ 56|51 +S52—54 T
S4 S5 Se S1 S1+ 82— 854
X|:S2+S3—S5i||: T :||: a i||:n—r:|7 (39)
53 S)+8s3—8s5||la—1 a

where T =51 + 55 + 53 — 54 — 55 — S and s = (s1,...,5¢) € Z°. Keep in mind the
convention that [7] =0 if s <0.
Let us end this example with some observations. The above formula has the form

Ji"(ea) =) F(a.s). (40)

SEZO

where F(a, s) is a finite product of factors of the following shapes:
0 (EA@,

(i)  He(A(a,s)),

(ili)  quantum binomial [ggzg],

(iv)  quantum binomial ["Jl;él(as’)s)] = [q’;;f;(’;’)s)], where for s, € Z we define
xS 0 if ] <0, @)
I | +;;f;g_“‘+"_l if 1 >0.



THE COLORED HOMFLYPT FUNCTION IS ¢g-HOLONOMIC 425

Here A(a,s) and B(a, s) are Z-linear functions. Moreover, for each integer value of
a and n, the sum on the right-hand side of (40) is terminating in the sense that only a
finite number of terms are nonzero. The number of terms are bounded by a polynomial
function of a.

We will show that a similar formula exists for any framed, oriented link colored
with e, . But before we do so, let us recall g-holonomic functions.

4. g-Holonomic functions

q-Holonomic functions of one variable were introduced in the seminal paper of Zeil-
berger [58]. The class of g-holonomic functions resembles in several ways the class
of holonomic D-modules, as acknowledged by conversations of Zeilberger and Bern-
stein prior to the introduction of holonomic functions (see [58]). An extension of the
definition to g-holonomic functions with several variables was given by Sabbah [52],
using the language of homological algebra. In this section we will review the defini-
tion of g-holonomic functions of several variables, give examples, and list the closure
properties of this class under some operations. Our exposition follows Zeilberger,
Sabbah, and the survey paper of the first and third authors [20].

We should point out, however, that the precise definition of g-holonomic func-
tions is not used in the proof of Theorem 1.1. If the reader wishes to take as a black
box the examples of g-holonomic functions given below and their closure properties,
then they can skip this section altogether and still deduce the proof of Theorem 1.1.

4.1. The quantum Weyl algebra

Let V denote a fixed (not necessarily finitely generated) 4-module, where A =
Z[g*']. For a natural number r, let S,(V) be the set of all functions f :Z" — V
and S, 4+ (V) the set of functions f :N" — V.Fori = 1,...,r consider the operators
L; and M; which act on functions f € S, (V) by

L fH(ny,....nj,...,np)= f(ny,....n; +1,...,0,), (42)
(M,-f)(nl,...,nr)=qnif(n1,...,nr). (43)

It is clear that L; and M; are invertible operators that satisty the g-commutation rela-
tions

MiMjZMJ'Mi, (4421)
LiL; =L;L;. (44b)
L,‘Mj = qgi’j Mj L,‘, (440)

foralli,j=1,...,r.
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Definition 4.1

The r-dimensional quantum Weyl algebra W, is the /-algebra generated by Llil e
LEL ML, L. ME!D subject to the relations (44a)—(44c). Let W, ;- be the subalgebra
of W, generated by the nonnegative powers of M, L ;.

Given f € S, (V), the annihilator Ann( /) (a left W,-module) is defined by
Ann(f)={P e W,|Pf =0}. (45)

This gives rise to a cyclic W,-module M, defined by My =W, f C S,(V), and
isomorphic to W, /Ann( f).

4.2. Definition of q-holonomic functions
In this section we follow closely the work of Sabbah [52]. Let N be a finitely gener-
ated W, , -module. Consider the increasing filtration ¥ on W, 1 given

Fn Wy = {A-span of all monomials M*L? with o, f € N"

with total degree at most n}. (46)

The filtration ¥ on W,  induces an increasing filtration on N, defined by ¥, N =
FuW, 1+ - N. Note that ¥, W, 1 and, consequently, ¥, N are finitely generated -4-
modules for all natural numbers n. An analogue of Hilbert’s theorem for this non-
commutative setting holds: the dimension of the Q(g)-vector space Q(q) ® 4 Fn N
is a polynomial in n, for big enough n. The degree of this polynomial is called the
dimension of N and is denoted by d(N).

In [52, Theorem 1.5.3] Sabbah proved that d(N) = 2r — codim(N ), where

codim(N) = min{j € N|Ext}, , (N, W, ) #0}.

Sabbah also proved that d(N) > r if N is nonzero and does not have monomial tor-
sion. Here a monomial torsion is a monomial P in W, 4 such that Px = 0 for a cer-
tain nonzero x € N. Itis easy to see that N embeds in the W,-module W, Qvy,. n N
if and only if N has no monomial torsion. Throughout the article, we will assume that
all W, 4 -modules do not have monomial torsion.

Definition 4.2

(a) A W, y-module N is g-holonomic if N = 0 or N is finitely generated, does
not have monomial torsion, and d(N) =r.

(b) Anelement f € N, where N is a W, -module, is g-holonomic over W,  if
W, + - f is a g-holonomic W, 4 -module.
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The above definition defines g-holonomic W, 4 -modules, and our next task is
to define g-holonomic W,-modules. Let M be a nonzero finitely generated left W, -
module. Following [52, Section 2.1], the codimension and dimension of M are
defined in terms of homological algebra by

codim(M) = min{j eN| Ext{;Vr (M, W,) # 0}, dim(M) = 2r — codim(M).

The key Bernstein inequality (proved by Sabbah [52, Theorem 2.1.1] in the g-
case) asserts that if M # 0 is a finitely generated W,-module, then dim(M) > r.

Definition 4.3

(a) A W,-module M is g-holonomic if either M = 0 or M is finitely generated
and dim(M) =r.

(b) An element f € M, where M is a W,-module, is ¢g-holonomic over W, if
W, - f is a g-holonomic W,-module.

Next we compare g-holonomic modules over W, versus over W, ;.. The fol-
lowing proposition was proven in [20, Section 3]. Next we compare g-holonomic
modules over W, versus over W, 1, using Sabbah [52, Corollary 2.1.4].

PROPOSITION 4.4
Suppose that f € M, where M is a W,-module. Then f is q-holonomic over W, if
and only if it is q-holonomic over W, ..

The next corollary is taken from [20, Section 3].

COROLLARY 4.5
If f € S:(V) is g-holonomic and g € Sy (V) is its restriction to N, then g is q-
holonomic.

Remark 4.6
The definition of g-holonomic #A-modules can be extended to ¢g-holonomic R-mod-
ules, where R is the ring (and also an #A-module)

R =Q(q)[x*]. 47
Proposition 4.4 and Theorems 4.7 and 4.8 below hold after replacing 4 by R.
4.3. Properties of q-holonomic functions

In this section we summarize some closure properties of g-holonomic functions,
whose proofs can be found in [20, Section 5].
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THEOREM 4.7

Suppose that f, g € S, (V') are q-holonomic functions. Then, the following hold.
(a) f + g is q-holonomic.

(b) fg is q-holonomic.

(c) Restriction. For a fixed a € Z, the function g € Sy—1 (V') defined by

g(nla-"snr—l) = f(n17-~-7nr—lsa)

is q-holonomic.
(d)  Extension. The function h € S, 11(V) defined by

h(n17-~-,nr+1)=f(nlv---,nr)

is g-holonomic.
(e) Linear substitution. If A € GL(r,Z) and f € S, (V) is q-holonomic, so is the
composition [ o A€ S, (V).

Let S,—1,1(V) denote the set of all functions f : Z" — V such that, for every
(ny,....n,—1) €Z™Y, f(ny,...,n,) =0 for all but a finite number of n,’s.

THEOREM 4.8
(a) Suppose that f € Sy—1,1(V) is g-holonomic. Then, g € Sy—1(V), defined by

gny,....np—1) = Z f(ny,....n;.),

ny€Z

is g-holonomic.
(b)  Suppose that f € S,(V) is g-holonomic. Then h € S, +1(V), defined by

b
h(nl,...,nr_l,a,b)z Zf(nlvn27~-~’nr)a (48)

nr=a

is q-holonomic.

4.4. Elementary q-holonomic functions

A function g : Z° — 7 is affine if there is an (r x s)-matrix A with integer entries

and b € Z" such that g(a) = Aa + b. If b = 0, then such a function is called linear.
A function f : Z" — Q(q)[x*!] is called an elementary block if f is a finite

product of compositions of a linear function Z" — Z* (for s = 1,2) with one of the

following functions:

) 7 — Zg*'.k — (=¥, or k — ¢, or k — He(k),
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()  Z*—Z[g*'). (k.1) = (=D¥ or (k,1) = 8k, or (k1) — [¥], or (k,]) —
[x;k]_

Observe tlhat functions of the form (i) or (ii) above are g-holonomic (see [20]). Con-
sider the function f(ny,n,) = (—1)"1"2, Its annihilator ideal contains the monic
operators Lf — 1 and L% — 1, which generate a g-holonomic ideal (see [20, Theo-
rem 7.2(a)]); hence, f is g-holonomic.

A function f :Z" — Q(q)[x*!] is called elementary if it can be presented by a
terminating sum

f@="7Y"gab),

bez!

where g : Z¥*! — Q(g)[x*"] is an elementary block. Here “the sum is terminating”
means that for each a there are only a finite number of b’s such that g(a,b) # 0.
Theorems 4.7 and 4.8 imply the following.

COROLLARY 4.9
Every elementary block and every elementary function is q-holonomic.

5. Proof of Theorem 1.1

5.1. Evaluation of monomials is q-holonomic
Forn € Z, leteval, : Q(¢q)[x*!] = Q(g) be the Q(g)-algebra homomorphism defined
by

eval, (f) = flx=gn- (49)

The next lemma recovers an element of Q(g)[x*!] from its evaluations.

LEMMA 5.1

Suppose that f.g € Q(q)[xT"] satisfy eval,(f) = eval,(g) for infinitely many n.
Then f = g.

Proof
This follows from the fact that a Laurent polynomial in x has at most k roots, where
k is the difference between the highest order and the lowest order in x. O

Let X = (Xy,...,Xx) be a sequence of elements of the set X, from (21).
Recall that, for b = (by,...,b) € 7K, the monomial X ® € 2,,, and its weight are
defined in Section 3.1. By convention, X ®) = 0 if one of the b;’s is negative. The
goal of this section is to calculate
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evu (X D) =ev(19XP1y),

where & = (n™,0™) € Z>™.

PROPOSITION 5.2
Suppose that X = (X1, ..., Xx) is a sequence of elements of the set X,. There exists
a unique function

Ox 1 ZF - Q(q)[x*']
such that, for all b € 7k neN,
eva (X @) = eval, (Qx (). (50)

Moreover, Qx is an elementary function given by

Ox(b)= ) Fx(b,)) (51)

jez!

for a certain | € N and elementary block Fx : ZF — Q(q)[x*"]. In addition,
(1) Fx(b,j)=0ifljllco > IPlloo (Which implies that the sum (51) is terminat-

ing), and

(i)  Fx(b,j) =0 if (X,b) is tail-negative or if one of the components of b is
negative.

Proof

The uniqueness follows from Lemma 5.1. Let us prove the existence. The idea is to
move the E;’s to the right of the F;’s by using (22) and (23) (this creates a sum of
a product of ¢-binomials) and then use (17), which creates a product of §-functions.
Besides, we insert Heaviside functions to make the sum terminating. The result is an
elementary function. Now we give the details of the proof.

Let I <k be the maximal index such that X; € {E1, ..., E2;;—1}. We use induc-
tion on k and then induction on /. If k = 0, then the statement is obvious.

For fixed k, we use induction on /, beginning with / = k and going down.

(a) Suppose that [ = k. Recall that ¢ = (n™,0™). Using (17), we have

X®O1y =6, oY1y,

where Y = (X1,...,Xx—1) and b’ = (by,...,br_1). For Y the statement holds. De-
fine

Fx(b,j):=Fy(b',j)8p0.  Qx(b)=Y_ Fx(b, ).

jez!
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Then Fx (b, j) is an elementary summand. Both statements (i) and (ii) for Fx (b, j)
follow immediately from those for Fy (b’, j). Then Qx is an elementary g-holonomic
function, and (50) holds.

(b) Suppose that / < k. Assume that X; = E, and X;4; = Fs. LetY = (Y1,...,
Yy) be the sequence defined by Y; = X; for all i’s except for those such that ¥; =
Xi+1 and Y741 = X;. By induction, the statement holds for Y, and we can define an
elementary summand Fy (b, j) for (b, j) € Z*¥*!. Consider two cases.

Case 1. r # s. Because E,Fy; = FyE,, we have X® = y®) where b’ is
obtained from b by swapping the /th and (/ + 1)th components. This case is reduced
to the case of Y by defining Fx (b, j) = Fy (b', j).

Case 2: r = s. We have

b,
x® = Xleft(Efbl)Fr( H—l))Xright’

where
—_— —_
b; b,
Xiett = 1_[ XJ(- 2 Xiight = 1—[ X,(~ .
jel,i-1] Jell+2,k]

We have Xiionily € Homyyad,,, (9, ), where

k
pw=04+wXign) =0 — Y bja;,.
j=I+2

Here the index i; is defined so that X; = F;, for j > [. Using (14a), we have

,or) +br—b bry1— -
x®1, =Y [(M r) z ! l+1] X FOH O EG0x, 1,
tEZ

ZZ[(I"(’var)_i_bl_bl-‘rl] Y(b/)lﬂ, (52)

t
tEL

where b" = (b1,...,b;) such that b; = b; for all i’s except for i =1,/ + 1, with
by =bj41 —t,b;,, =b; —t.Clearly b’ is a linear function of (b, 7).
Note that (¢, &) = né(r,m). From the definition of u,

{.ar) + by — by 4y = né(r.m) + Lin(b).

where Lin(b) = (W(Xsignt), &tr) + by — by4q is a Z-linear form of b. For j € 71,
we write j = (j’,1); that is, ¢ is the last component of j. For b € Z* and j € Z!*1,
define

[¥Ln®) | Fy (b, j)H(X.b) ifr =m,

53
[Ln® | Fy (b, j)H(X,b)  ifr #m, (53)

Fx(b,j)={
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where # (X, b), defined by (26), is an elementary function of b.

Then Fx (b, j) is an elementary function. Let us prove (i) and (ii), which claim
Fx (b, j) = 0 under certain conditions. If # < 0, then the first factor on the right-hand
side of (53) is 0. Hence, we will assume ¢ > 0 in what follows.

(i) Suppose that ||j[loc > [[b]loo- Then either || j'[loc > [[b]loo oF |¢] > [|]|oo- In
the first case, || j'|lco > |6]loo = [|#’]lco> and Fy (b’, j') = 0. In the latter case,
the /th component of 5" is negative. By (ii) we have Fy (b’, j') = 0. Hence,
Fy(b,j) =0.

(i)  First assume that one of the components of b is negative. Then one of the
components of b’ is negative. Hence, Fy (b', j') = 0, implying Fx (b, j) = 0.

Now assume that (X, b) is tail-negative. Then the third factor on the right-hand
side of (53) is 0. Hence, Fx (b, j) =0.

Let us prove (50). If (X,b) is tail-negative, then both sides of (50) are 0, by
Lemma 3.1 and the property of # (X, b). Assume now that (X, b) is not tail-negative.
Then # (X, b) = 1, and (50) follows from (52), (53), and the identity (50) applicable
to Y. This completes the proof of the proposition. O

5.2. Coloring with partitions with one column

THEOREM 5.3
Suppose L is an oriented, framed link with r ordered components. There exists a
unique function

01N = Qg)lx*]
such that, for any integern > 2 and a = (a1,...,a,) e N" N [0,n —1]",

T3 (Cays - €a,) = evaly (Q1(a)), oY

Moreover, Q1 is elementary and, hence, a q-holonomic function.

Proof

The uniqueness follows from Lemma 5.1. Let us prove the existence. Suppose that L
is the closure of a braid 8 on m strands, as in Section 3.5. By Proposition 3.3, there
exists a sequence X = (Xq,..., Xy) of elements from E;, F; withi =1,...,2m —1
and linear functions g1, g : Z" " — Z and f : Z" ! — Z* such that

jz[n (ea;.- .. ’ear) — Z (_l)gl(a,s)qu(a,s)evn (X(f(a,s)))'

SeZ!

By Proposition 5.2, there exists an elementary summand function Fy : Z¥*! —
Q(g)[x*!] such that
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fi‘”’ (Caror-nnrea) = Z(_1)g1(a,s)qg2(a,S)evaln(Z Fx (f(a,s),j)).

sezt jen!

By Proposition 5.2(i),

FX(f(avS)’./)ZO if ||J||OO> Hf(avs)”w (55)

When [|s||co > [l@]lcos (X, f(a,s)) is tail-negative (see Proposition 3.3). Hence,
by Proposition 5.2(ii),

Fx(f(a.5).j) =0 if slloc > lla]lco- (56)

Then (55) and (56) imply that the sum

Qr(a):=) Y (~1)$1@Ig82@IF(f(a,s), )

seZ! jez!

is terminating for each a € Z". Then Q is elementary g-holonomic, and (54) holds.
O

Remark 5.4
By our construction, Q vanishes in Z" \ N”".

Remark 5.5
Theorem 5.3 gives an alternative construction of the colored HOMFLYPT polyno-
mial W of a framed, oriented link colored by partitions with one column. By the
uniqueness,

Orlai,...,ar)=Wr(eq,,....€q,).

5.3. The Jacobi—Trudi formula
In this section we explain how to extend the g-holonomicity of the HOMFLYPT poly-
nomial of a link colored by partitions with one row to the case of partitions with a
fixed number of rows. The key idea is the Jacobi—Trudi formula, which expresses the
Schur function s, of a partition A € £, considered as an element of the algebra A, as
a determinant of a matrix whose entries are partitions with one row. Observe that for
partitions with one row (resp., one column) we have sy = hg (resp., s(1a)y = €q).
The Jacobi-Trudi formula (see [39]) states that if A = (A1,...,4¢) € P¢, then
in A,

12
Sy = det((ek;r—‘,-j—i)i,j:l)’
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where the right-hand side is an (£ x £)-determinant, with the convention ¢y = 1 and
ey = 0 for n < 0. For example, if A is a partition with three rows with A1, A5, and A3
boxes, then we have

SA1, A2, Az = T €A +2€A,€A3—2 T €A +1€Ar+1€A3—2 T €1, 4+2€1,-1€13—1
—€3,€Ar+1€13—1 — €A +1€2,—1€45 T ha €p€h5.

Let L denote a framed, oriented link L with r ordered components, and choose
a partition A € $; and partitions u5,..., ir. Then, Proposition 2.4(c) implies that

WL(/'\'vl*’le-"vlfLr)

= Z sgn(O) WL (€n, 40(1) =1 > @hpta(€)—ts M1s- s hr), (57)

o ESymy

where L’ is the link obtained from L by replacing the first framed component of L
by £ of its parallels.

5.4. Proof of Theorem 1.1

Fix a framed, oriented link L with r ordered components. By using the symmetry
of the HOMFLYPT polynomial from Proposition 2.4(c), it suffices to show that the
colored HOMFLYPT polynomial of L, colored by partitions with at most £ rows, is
g-holonomic. Said differently, it suffices to show that the function Wy, o (LZ)’ Nt
Q(q)[x*"] is g-holonomic. Let A = (A1,..., A,¢) € N"¢. Using (57), we have

(WLo () = Y sgn(@)WaL(€ sy ) - 2 € o)y
o

where the sum is over o = (01, ...,0;) € (Symy)", sgn(c) = sgn(oy) ---sgn(o,), AL
is the link with r£ components obtained from L by replacing each component with
its £th parallel, and f5; : 7't — 7, are affine. Theorem 4.7(a) and 4.7(¢) together with
Theorem 5.3 imply that Wy, o (L;f)’ is a sum of g-holonomic functions and, thus, is
g-holonomic. This concludes the proof of Theorem 1.1. U

Appendices

A. The formula for the invariant of the trefoil
In this section we give the omitted details of how (38) implies (39). We start with (38)
and observe that

Z (_q)—(sl +52+S3)E§a)E§a) E:ga) Eéa) E:S,SI)FB(SI)E:S,SZ) F3(52) E§53)F3(53)

51,82,S3€Z

x Y FO FDED 1 m00
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— Z (_q)—(s1+sz+S3)E§a)E§a) E:ga) Eéa) (Egsl)F;Sl)E:gSZ) F3(S2) E:E’S%)
$1,82,S3€Z
X F3(S3)1(n—a,n—a,a,a))F2(a) F3(a)F1(a)F2(a)1(n,n,0,0)v (58)
where we used (13) to include the idempotent in the middle term (and the fact that

(n,n,0,0) —aoy —2aa; —aoz = (n —a,n —a,a,a)). The term in parentheses can
be simplified as follows:

E:E,SI)F:,'(Sl)Egsz)F3(s2)(E:§S3)F3(s3)1(n—a,n—a,a,a))

(14a)E(SI)F(SI)F(SZ)E(SZ)F(S3)E(S3)1(n —an—a.a.a)

(1=3)(F3(SI)E§S1) 1(n—a,n—a,tl,a))F3(S2) E:(),SZ) F3(S3) E:S,SS)

(léa) F3(SI)E§51)F3(32) EZESZ) F3(~"3) E§S3)1(n—a,n—a,a,a)

(13)
F(SI)l (n—a,n—a,a+sy,a— sl)E(SI)F(SZ)l(n —a,n—a,a+s»,a— sz)E(SZ)

X F3(S3)1(n—a,n—a,a+S3,a—S3)E§SB)
3.0
He(a — s1)He(a — s2)He(a — 53) Fy" (ESY FE2 L ma n—a.atso,a—s5))

X (E_S,SZ) Fg,(S3) 1 (n—a,n—a,a+S3,a—S3))E§S3)

(14a)He(a —s1)He(a — so)He(a — s3) Z |:S2 + S1:| |:S2 + S3:|

Sa.55 S4 S5
X F?,(Sl)(F?fsz_S4)E:§S1_S4)1(n—a,n—a,a+52,tl—j‘2))

X (F3(S3_SS) E§S2_S5) 1(n—a,n—a,a+33,a—S3))E§S3) 1(n—a,n—a,a,a)

(13 He(a — 51)He(a — s,)He(a — 53) Z |:SZ + S1:| |:sZ + 53:| F3(s1)

54,55 54 §5

(s2—54)
X F3 1(n—a,n—a,a+s1+sz—S4,a—s1—sz+S4)
(s1—54) (s3—55)
X (E3 F3 1(n—a,n—a,a+sz+S3—ss,a—sz—S3+S5))

% Eész—SS)E?ES:‘) 1(n_a,n—a,a,fl)

(3—1)He(a —s1)He(a — sp)He(a — s3)He(a + s1 + 52 — s4)He(a + 52 + 53 — 55)

82+ 81 [ 52+ 53 | L(s1) o (52—54) ; (51 —54)

54,85 54
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(s3—55)

X F3 1(n—a,n—a,a+s3+sz—s5,a—S3—sz+ss))
(s2—55) 1 (s3)

x E3 E3 " N(n-a,n-a,a,a)

(2o He(a — s1)He(a — s2)He(a — s3)He(a + 51 + 52 — s4)He(a + s2 + 53 — 55)

S+ 81 || 852+ 83 (|51 +250 4+ 53— 54 — 55 (s1)

54,55,56
« F3(52—S4) (F3(S3—S5—Se) Egsl—S4—Se))E§S2—S5)E§S3) Ln—an—a.a.a)

< 1)He(a —s1)He(a — so)He(a — s3)He(a + s1 + 52 — 54)

x He(a + 5o + 53 — s5)He(a + s1 + 52 + 53 — 4 — 55 — S¢)

» Z So+ 81 || 852+ 83|81+ 250+ 53— 54 — 55
S5 S6

54,585,586
> (F3(51)F3(S2—S4) F3(33_55_56))(E§51_54_56) Egsz—ss) E§S3))1(n—a,n—a,a,a)

(D He(a — s1)He(a — s»)He(a — s3)He(a + 51 + 52 — 54)

x He(a + 52 + 53 — s5)He(a + s1 + 52 + 53 — 54 — 55 — S¢)

% Z Sy + 851 Sy + 853 S1+2S2+S3—S4—S5
S5 Se6

54,585,856

% S1+ 82 —84 || 81+ 82+ 853 —854—55— 56
S1 81+ 852 — 84

% §2 53 =S5 || $1 + 852 + 53 — 854 — 855 — S¢
S3 Sy + 853 — 85
(s1+s2+53—54—55—5¢6) (51 +52+53—54—55—5¢6)
X F3 E3 1(n—a,n—a,a,a)-

Then to complete the computation of Yg(a)1ly from (58), set T = 51 + 55 + 53 — 54 —
s5 — S¢ for simplicity, and use the above computation to simplify each term in the sum
from (58)

w0 O)E(a)E(a)E(a)E(a)F(n+S2+S3 S4—85— s6)E(S1+Sz+S3—S4—SS 56)

<O OO 00
= B B B FO)E FO O FOE 00

(l4b) E(“)E(a)E(a)(F(T)E(a))(F(a)E(T))F(a)F(a)F(a)l(n 1.,0.0)
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(13) E(a)E(a)(E(a)F(T)l(n —anta— r))E(a)F(a)(E(r)F(a)](n —ana 0))F(a)F(a)

(l4a) Z |: i||: j|E(a)E(a)(F(r pz)E(a 172)1(" —anta— r))

P1,P2

X B FO OB ) PO

— Z T 1 (E(a)E(a)F(r pz))E(a pz)E(a)F(a)F(a r1)
pipa LP2 1P

X (E:gt_pl)Fl(a) Fz(a))lﬂ

(14b) Z |: :||: :|1 (F(r pz)E(a)E(a))E(a pz)E(a)F(a)F(a p1)

p1,p2

X (Fl(a) Fz(a) E:(,'r_pl))lly

_ T (t=p2)\ (@) (@) (@=p2) (@) (@) =(a—p1) (@) (@)

=> (1s F} VESVEWES ESY Y Fy FYE]
P2 || 1

P1,D02

x (5 1y)

(17) Z |: :| |: :|(11981— pz)E(a)E(a)E(a p2)E(a)F(a)F(a PI)F(a)
DP1:P2

X an (81:,171 1ﬁ)

(13)E(a)E(a)E(a T)(E(G)F(a)l%(n —anta— r))F(a T)F(G)F(a)l

14
( a)Z |: :| (a)E(a)E(a r)(F(a S7)E(a S7)1(n amra—)
x F O F@DE@,
_ Z |:n; T:| E;a) (Efa)Ega—r)Fz(a—s7))(E§a—S7)F3(a—f) Fl(a))Fz(a) 119
(123) Z |:ns—7 T] E;a) (Fz(a—S7)E§a) E;a—r))(F;a—T)

X Fl(a) E;a_”))Fz(a) 119
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13) n—rt _ _
23 [ i
7
57
« Fs‘(a—r) Fl(a) (Eéa—w) F2(a) 1)

(142) Z |:n -1 |:” — 87 |:n - S7:| (119F2(a7S77v2) Eéa—vz))Efa) Egafr)
U2

N v
§7,V1,02 7 !

« FS(a—r) Fl(a)(Fz(a—vl)Eéa—ﬁ—vl)]19)

_ Z []’l — T} n— S7} n— 57} (10Fz(a—S7—vz))E§a—v2)Ega)E:gd—T) F3(d—1')
S7 U1 V2

§7,V1,02

> Fl(a)Fz(a_vl)(Eéa_”_vl)119)
n—rt n—s n—s _ _ _
(2) Z |: :| |: 7:| |: 7:|(1198v2,a—s7)E§a vz)Eia)Ega r)FF](a 7)
S7 U1 1%)
§7,V1,V2
X Fl(a) Fz(a_vl)((gvl,a—ﬁlﬂ)

n— n—s n—s _ _
_ Z |: ‘L’j| |: 7j| |: 7i| E§S7)E§a)E?(,a r)F3(a 1:)1_71(a)F2(S7)119
S7 a—Sy a—Sy

57
(13) n—rt n—sy n—sy _ _
= Z |: Ny :| |:Cl — S7i| |:a — S7] E§S7) El(a)(E'JEa V F;a 7:)](’1—01Jl-Hl—s7,S7,0))
57

x FOFE 1y
(142) Z n—t|[n—=37||n—357]||87 E(S7)E(a)

57,03 S7 a—Sy a—Sy U3 2 !
X (Fs'(a_r_v3)Ega_r_v3)1(n—a,n+a—S7,S7,0))F1(a) F2(S7)119

2
(1i3) Z n—tfin—s8y $7 (119Fa(a—r—v3))E§ﬁ)Efa)Fl(a)Fz(ﬁ)
s7.03 L S7 i _LZ —S7_ U3

« (Ega—r—v3) 15)

2
a7 n—tfln—s N
- Z |: j| |: 7:| |:U7j| (1195”3’0—1)E§S7)E§a) F1(a)F2(s7)(5v3,a—t119)
3

57,03 57 a=45
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2
(13) n—t(ln—ys7 87 (s7) ( (@) (@) (s7)
= E E EXF 7 1 e F.
|: 57 :||:a_s7i| |:a—r:| 2 ( 1 1 ‘(nn S7,S7,0)) 2

57

2
(ﬁa) Z n—rt n—sy S7 Ny E(s7)
Ny a—S7 a—T V4 2
87,04

X (F ST 1 nmy.00.0) By 1

2

(14b) n—tln—s7 57 87 (a—va)y 17 (s7) (s7)  (a—va)

= 15 F ES"F. E 1
Z[ 5 Ma—ﬁ} [%JM” PR

§7,V4

2
O TN T T T ST EE 1, (59)
p §7 a—s7| |la—r7 a

Tracing through this computation we have placed the symbol M4 to indicate places
where we must introduce Heaviside functions, so the end result should be multiplied
by He(t). The Heaviside functions He(a — t)He(a — s7)He(s7 — a) are implied by
the definition of quantum binomial coefficients from (15c¢). Thus, s7 = @ and the sum
simplifies to

n—rt n—a n—a a a (@) ~(a)
He(":)|: 4 :||: 0 ]|: 0 j||:a_l_:||:aj|1(n,n,0,0)E2a an L(1,n,0,0)

n—rt a
= He(f)|: a j| |:a _ ‘L':| ](n,n,0,0) Eéa) Fz(a)l(n,n,O,O)

(142) n—-rt a n _ _
= He(1) Z { a :| |:a — r} [UJ Lonm,0,0 F "V ES ™" 1y n 0.0
v6

(g)He(T) |:n ; t:| |:a i ‘[j| |:Z:| Ly
D He(r) [” ; T} [a " T} 1y. (60)

By putting it all together, the a-colored trefoil evaluates to (39).

B. Proof of Propositions 2.4(b) and 2.4(c)

For a compact oriented surface (possibly with boundary) X, let §(X) be the HOM-
FLYPT skein algebra of X, as defined in [3] and [42]. Recall that, as a Q(x,q)-
module, §(X) is generated by oriented links diagrams on ¥ modulo the regular iso-
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A Xwe) |

|
o

and the relation that a disjoint trivial knot can be removed from a diagram at the
-1
X—X

topy, the two relations

expense of multiplication with Z——. The product L; L, of two links diagrams is
obtained by placing L atop L,. When X is a disk, §(X) = Q(¢, x) viaamap L —
(L), where (L) is a framed version of the HOMFLYPT polynomial.

The HOMFLYPT skein algebra of the annulus contains the subalgebra €1 gen-
erated by the closure of all braids. It is known that €7 is isomorphic to the algebra of

symmetric functions (with ground ring Q(q, x)). Under this isomorphism, the Schur
function s, of a partition A corresponds to a certain skein element Q, which will
be recalled later. The relation with the colored HOMFLYPT polynomial is as fol-
lows. For an oriented link diagram L on the disk with r ordered components and for
partitions A; fori =1,...,r, we have

WL(At,..ooAr) = (L% (Qa,..... Q1)) (61)

Here, L * (Qy,,...,Q,,) is the Q(q, x)-linear combination of link diagrams on
the disk obtained by replacing the ith component of L by Q,.. The above equal-
ity implies Proposition 2.4(b).

Leto : Q(x,q) — Q(x, g) denote the Q-algebra automorphism given by o (x) =
x,0(q) = —¢~!. One can easily check that o extends to a Q-linear automorphism of
&(X) for any X by setting o (L) := L for any link diagram L on X. It is easy to see
that if y is an element of the HOMFLYPT skein algebra of the disk, then

a((y) ={e() (62)

LEMMA B.1
For any partition A one has

a(0x) = 0. (63)

Proof
Aiston and Morton [3] gave a geometric description of Q) in terms of closures of
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braids. Let us recall this formula for partitions with one row /i, = (a) or one column
eq = (1%) from [3, p. 11]:

Z q' ™oy, Qua)=— Y (¢ Yo, (64)

nESyma ”GS)’ma

Qw =

Here, for a permutation 7w of Sym,,, w, denotes the positive braid corresponding to
7, and @, € € denotes the closure of w,. Moreover, a, is given by [3, p. 14] as

[] ¢/ [hook(ij)]. (65)
(i./)€h

where hook(ij) is the hook length of the cell (i, j) of the partition A.

From (64) and (65) one can readily check that 0(Q)) = Q(14), proving the
lemma for the case A = h, = (a). The case of general A can be proved similarly,
using explicit formulas of Q) as described in [3]. Alternatively, one can reduce the
general case to the case of one row as follows. The two Jacobi—Trudi formulas

sp=det((ha;4j-0)f ;1) Sar =det((ex,+-0)F=1);
together with the case A = h,, imply the lemma for general partitions. O

Suppose that L is an oriented link diagram L on the disk with r ordered compo-
nents, and suppose that A; fori = 1,...,r are partitions. We have

o(We(Ar.....A)) =0 ((L*(Q3,.....04,))) by (61)
=(0(L*(Qx,,....024,))) by (62)
=(L*(0(Qx));---.0(04,))
=(L *(Qﬂ,-. Q,ﬂ)) by (63)

=wr At ah.

This concludes the proof of Proposition 2.4(c). O

C. The recursion for the colored HOMFLYPT of the trefoil
Let A € #,_1 be a partition of length at most n — 1. We also use A to denote the
corresponding Uy (sl,)-module. For every positive integer k, the theory of ribbon
categories gives a representation J : By — Aut(A®¥), where By is the braid group
on k strands and Aut(A®¥) is the group of Uy (s1,)-linear automorphisms of A%k
Suppose that 8 € B, is a braid on m strands, and suppose that L = cl(f) is
the oriented, framed link obtained by closing § in the standard way, with blackboard
framing. Then
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A®m
JLAA,..) =1y (J(B)). (66)
where for a Uy (sl,)-linearmap f: V — V,
try () =t(fg V).

Here the right-hand side is the usual trace of f'g acting on V, and g € U,(sl,) is the
so-called charm element whose exact formula is not needed here. In particular, for
a finite-dimensional weight U (sl,)-module V', the quantum dimension dim, (V) :=
Ju (V) (where U is the unknot) is

dimg (V) := tr} (id) = tr(g. V).

Let o be the standard generator of B, (see X, of Figure 1). Then J(o) is
defined by the universal R-matrix, and the action of J(o) on h;%z can be calculated
as follows. The decomposition of h;%z into irreducible Uy (s[,,)-modules has the form

m
2
h;% = @l’l’m,ks
k=0

where [, x is the partition (2m — k,k). Since J(o) is Uy (sl,)-linear, the Schur
lemma shows that there are scalars ¢,, x € Q(q'/") such that on 182,

m
J©)],02 = D cmiidy,, ;- (67)
k=0

One of the axioms of the ribbon structure of U (s(,,) is that
T lvew = (ry' ® ry )rvew, (63)

where r is the ribbon element, which belongs to the center of a certain completion of
Uy (sl,) and acts on any finite-dimensional weight Uy (sl,)-module (see [46], [54]).
Geometrically, r = Jr, where T is the trivial 1-1 tangle with framing 1, and its action
on A is known (see, e.g., [35, (1.7)]):

rly, =r(d)idy, wherer(d) = gtAt2e), (69)

Here (-,-) is the inner product on the weight space of U, (sl,) normalized such that
each root has square length 2, and 2p is the sum of all positive roots.
Using (68) in the square of (67), we get

(Cm,k)2 = r(l/‘m,k)r(hm)ig
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Taking the square root and using (69), one gets the value of (¢, £ ), up to sign £1.
The sign can be determined by noting that, when ¢ = 1, J(o) is the permutation,
J(0)(x1 ® x2) = x2 ® x1. Eventually, we get

Cmk = (_l)kq—mz/nqmz—ka-i-kz—k. (70)

Suppose that Ty is the link closure of 6%, which is a torus link of type (2, ). By (66)
and the decomposition (67),

m
Tr, () = " I, () = ™7™ (€ o) dimg (1 1)
k=0

m

2_ 2_ .
( 1)skqs(m 2mk+k=—k) dlmq( ,k)
0

k=
m
_ N5k stm?—2mk+k2—k) [ Xik =21 [x:2m —k —1
_];)( D74 [ k H 2m—k
2m —2k + 1]
-_ 71
2m—k+1] 71

where x = ¢”. In the last equality we use the well-known formula for the quantum
dimension (see, e.g., [41, (11)]), which was first established by Reshetikhin. The
right-hand side of (71) gives a formula for W7, (hy,). When s = 3, we get another
formula of Wr, for the trefoil, which is simpler than the one given in Section 3.7,
since it is a 1-dimensional sum.

For odd s, let 70} be the torus knot 7, with O framing. Then, adjusting the framing,
from (71) we get

W (i) =X S kg2 [’“ ‘e 2} [’“ ke 1}

= k 2m —k
[2m — 2k + 1]
-_ . 72
2m—k+1] (72)

Using the Zeilberger algorithm (see [47]), we get the recurrence relation for ng (hm)
as described in Section 1.4. ’

Acknowledgments. We wish to thank Christian Blanchet, Kenichi Kawagoe, and Hugh
Morton for helpful discussions and Scott Morrison for numerous conversations.
Garoufalidis’s work was supported in part by National Science Foundation (NSF)
grant DMS-14-06419. Lauda’s work was supported in part by NSF grant DMS-
1255334, by the John Templeton Foundation, and by a Swiss Mathematics of Physics,



444 GAROUFALIDIS, LAUDA, and LE

National Center of Competence in Research grant from the Swiss National Science
Foundation. Lé’s work was supported in part by NSF grant DMS-14-06419.

References

[1] M. AGANAGIC, T. EKHOLM, L. NG, and C. VAFA, Topological strings, D-model, and
knot contact homology, Adv. Theor. Math. Phys. 18 (2014), 827-956.
MR 3277674. (401)

[2] M. AGANAGIC and C. VAFA, Large N duality, mirror symmetry, and a Q-deformed
A-polynomial for knots, preprint, arXiv:1204.4709v4 [hep-th]. (401)
[31] A. K. AISTON and H. R. MORTON, Idempotents of Hecke algebras of type A, J. Knot

Theory Ramifications 7 (1998), 463—487. MR 1633027.
DOI 10.1142/S0218216598000243. (439, 440, 441)

4] A.BELIAKOVA, Q. CHEN, and T. T. Q. LE, On the integrality of the
Witten-Reshetikhin-Turaev 3-manifold invariants, Quantum Topol. § (2014),
99-141. MR 3176311. DOI 10.4171/QT/48. (406)

[5] S. CAUTIS, J. KAMNITZER, and S. MORRISON, Webs and quantum skew Howe duality,
Math. Ann. 360 (2014), 351-390. MR 3263166.
DOI 10.1007/s00208-013-0984-4. (403, 407, 408, 409, 410, 413, 414, 415)

[6] V. CHARI and A. PRESSLEY, A Guide to Quantum Groups, Cambridge Univ. Press,
Cambridge, 1994. MR 1300632. (404, 405)

[7] I. CHEREDNIK, DAHA-Jones polynomials of torus knots, Selecta Math. (N.S.) 22
(2016), 1013-1053. MR 3477341. DOI 10.1007/s00029-015-0210-1. (400)

[8] J. CHUANG and R. ROUQUIER, Derived equivalences for symmetric groups and

sly-categorification, Ann. of Math. (2) 167 (2008), 245-298. MR 2373155.
DOI 10.4007/annals.2008.167.245. (414)

[9] T. DIMOFTE and S. GUKOV, Refined, motivic, and quantum, Lett. Math. Phys. 91
(2010), 1-27. MR 2577296. DOI 10.1007/s11005-009-0357-9. (401)

[10] N. M. DUNFIELD, S. GUKOV, and J. RASMUSSEN, The superpolynomial for knot
homologies, Experiment. Math. 15 (2006), 129-159. MR 2253002. (401)

[11] P. ETINGOF, S. GELAKI, D. NIKSHYCH, and V. OSTRIK, Tensor Categories, Math.
Surveys Monogr. 205, Amer. Math. Soc., Providence, 2015. MR 3242743.
DOI 10.1090/surv/205. (407)

[12] P. FREYD, D. YETTER, J. HOSTE, W. B. R. LICKORISH, K. MILLETT, and A. OCNEANU,
A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12
(1985), 239-246. MR 0776477. DOI 10.1090/S0273-0979-1985-15361-3. (399)

[13] H. FUJL, S. GUKOV, and P. SULKOWSKI, Super- A-polynomial for knots and BPS states,
Nuclear Phys. B 867 (2013), 506-546. MR 2992793.
DOI 10.1016/j.nuclphysb.2012.10.005. (401, 402)

[14] H. FUJI, S. GUKOV, P. SULKOWSKI, and H. AWATA, Volume conjecture: Refined and
categorified, Adv. Theor. Math. Phys. 16 (2012), 1669-1777. MR 3065082.
(401)

[15] W. FULTON and J. HARRIS, Representation Theory, Grad. Texts in Math. 129, Springer,
New York, 1991. MR 1153249. DOI 10.1007/978-1-4612-0979-9. (399)



THE COLORED HOMFLYPT FUNCTION IS ¢g-HOLONOMIC 445

[16] S. GAROUFALIDIS, “On the characteristic and deformation varieties of a knot” in
Proceedings of the Casson Fest, Geom. Topol. Monogr. 7, Geom. Topol. Publ.,
Coventry, R.I., 2004, 291-309. MR 2172488. DOI 10.2140/gtm.2004.7.291.
(398, 401)

[17] ——, Quantum knot invariants, preprint, arXiv:1201.3314v3 [math.GT]. (399)

[18]

, The colored HOMFLY polynomial is q-holonomic, preprint,
arXiv:1211.6388v1 [math.GT]. (403)

[19] S. GAROUFALIDIS and T. T. Q. LE, The colored Jones function is q-holonomic, Geom.
Topol. 9 (2005), 1253-1293. MR 2174266. DOI 10.2140/gt.2005.9.1253. (398,
401)

[20] , A survey of q-holonomic functions, Enseign. Math. 62 (2016), 501-525.

MR 3692896. (399, 425, 427, 429)

[21] S. GAROUFALIDIS and R. VAN DER VEEN, A generating series for
Murakami-Ohtsuki-Yamada graph evaluations, Acta Math. Vietnam. 39 (2014),
529-539. MR 3292581. DOI 10.1007/s40306-014-0081-0. (401)

[22] S. GAROUFALIDIS and D. ZAGIER, Quantum modularity of the Kashaev invariant,
preprint, 2013. (399)
[23] S. GUKOV and L. SABERI, “Lectures on knot homology and quantum curves” in

Topology and Field Theories, Contemp. Math. 613, Amer. Math. Soc.,
Providence, 2014, 41-78. MR 3221290. DOI 10.1090/conm/613/12235. (401)

[24] S. GUKOV, A. SCHWARZ, and C. VAFA, Khovanov-Rozansky homology and topological
strings, Lett. Math. Phys. 74 (2005), 53-74. MR 2193547.

DOI 10.1007/s11005-005-0008-8. (401)

[25] S. GUKOV and M. STOSIC, “Homological algebra of knots and BPS states” in
Proceedings of the Freedman Fest, Geom. Topol. Monogr. 18, Geom. Topol.
Publ., Coventry, R.I1., 2012, 309-367. MR 3084243.

DOI 10.2140/gtm.2012.18.309. (401)

[26] H. ITOYAMA, A. MIRONOV, A. MOROZOV, and A. MOROZOV, Character expansion for
HOMFLY polynomials, 1I1: All 3-strand braids in the first symmetric
representation, Internat. J. Modern Phys. A 27 (2012), no. 1250099.

MR 2958629. DOI 10.1142/S0217751X12500996. (403)

[27] ———, HOMFLY and superpolynomials for figure eight knot in all symmetric and
antisymmetric representations, J. High Energy Phys. 2012, no. 131.

MR 2967690. (403)

[28] J. C. JANTZEN, Lectures on Quantum Groups, Grad. Stud. in Math. 6, Amer. Math.
Soc., Providence, 1996. MR 1359532. (404, 405)

[29] V. E.R. JONES, Hecke algebra representations of braid groups and link polynomials,
Ann. of Math. (2) 126 (1987), 335-388. MR 0908150. DOI 10.2307/1971403.
(398)

[30] , Planar algebras, I, preprint, arXiv:math/9909027v1 [math.QA]. (407)

[31] C. KASSEL, M. ROSSO, and V. TURAEV, Quantum Groups and Knot Invariants, Panor.

Syntheses 5, Soc. Math. France, Paris, 1997. MR 1470954. (407)



446

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

GAROUFALIDIS, LAUDA, and LE

K. KAWAGOE, On the formulae for the colored HOMFLY polynomials, J. Geom. Phys.
106 (2016), 143—154. MR 3508910. DOI 10.1016/j.geomphys.2016.02.012.
(400, 403)

G. KUPERBERG, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996),
109-151. MR 1403861. (407)

J. LABASTIDA, M. MARINO, and C. VAFA, Knots, links and branes at large N, J. High
Energy Phys. 2000, no. 7. MR 1806596. DOI 10.1088/1126-6708/2000/11/007.
(403, 407)

T.T. Q. LE, Integrality and symmetry of quantum link invariants, Duke Math. J. 102
(2000), 273-306. MR 1749439. DOI 10.1215/S0012-7094-00-10224-4. (398,
405, 442)

, The colored Jones polynomial and the A-polynomial of knots, Adv. Math. 207
(2006), 782-804. MR 2271986. DOI 10.1016/j.2im.2006.01.006. (398, 401)

S. G. LUKAC, Homfly skeins and the Hopf link, Ph.D. dissertation, University of
Liverpool, Liverpool, UK, 2001. (406)

G. LUSZTIG, Introduction to Quantum Groups, reprint of the 1994 edition, Mod.
Birkhiduser Class., Birkhduser/Springer, New York, 2010. MR 2759715.

DOI 10.1007/978-0-8176-4717-9. (404, 413, 414)

I. G. MACDONALD, Symmetric functions and Hall polynomials, with contributions by
A. Zelevinsky, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York,
1995. MR 1354144. (405, 406, 433)

G. MASBAUM and H. WENZL, Integral modular categories and integrality of quantum
invariants at roots of unity of prime order, J. Reine Angew. Math. 505 (1998),
209-235. MR 1662260. DOI 10.1515/crll.1998.505.209. (405)

H. R. MORTON and S. G. LUKAC, The Homfly polynomial of the decorated Hopf link,
J. Knot Theory Ramifications 12 (2003), 395-416. MR 1983094.

DOI 10.1142/S0218216503002536. (400, 443)

H. R. MORTON and P. MANCHON, Geometrical relations and plethysms in the Homfly
skein of the annulus, J. Lond. Math. Soc. (2) 78 (2008), 305-328. MR 2439627.
DOI 10.1112/jlms/jdn026. (400, 406, 439)

H. MURAKAMI, T. OHTSUKI, and S. YAMADA, Homfly polynomial via an invariant of
colored plane graphs, Enseign. Math. (2) 44 (1998), 325-360. MR 1659228.
(407, 409)

S. NAWATA, P. RAMADEVI, ZODINMAWIA, and X. SUN, Super-A-polynomials for twist
knots, J. High Energy Phys. 2012, no. 157. MR 3036447. (403)

L. NG, Framed knot contact homology, Duke Math. J. 141 (2008), 365-406.

MR 2376818. DOI 10.1215/S0012-7094-08-14125-0. (401)

T. OHTSUKI, Quantum Invariants, Ser. Knots Everything 29, World Sci., River Edge,
NJ.,2002. MR 1881401. (398, 442)

M. PETKOVSEK, H. S. WILF, and D. ZEILBERGER, 4 = B, A K Peters, Wellesley,
Mass., 1996. MR 1379802. (402, 443)

J.H. PRZYTYCKI and P. TRACZYK, Conway algebras and skein equivalence of links,
Proc. Amer. Math. Soc. 100 (1987), 744-748. MR 0894448.

DOI 10.2307/2046716. (399)




THE COLORED HOMFLYPT FUNCTION IS ¢g-HOLONOMIC 447

[49] H. QUEFFELEC and A. SARTORI, HOMFLY-PT and Alexander polynomials from a
doubled Schur algebra, to appear in Quantum Topol., preprint,
arXiv:1412.3824v1 [math.QA]. (423)

[50] , Mixed quantum skew Howe duality and link invariants of type A, preprint,
arXiv:1504.01225v2 [math.RT]. (423)

[51] N. Y. RESHETIKHIN and V. G. TURAEV, Ribbon graphs and their invariants derived
from quantum groups, Comm. Math. Phys. 127 (1990), 1-26. MR 1036112.
(398, 413)

[52] C. SABBAH, “Systemes holonomes d’équations aux g-différences” in D-Modules and

Microlocal Geometry (Lisbon, 1990), de Gruyter, Berlin, 1993, 125-147.
MR 1206016. (399, 425, 426, 427)

[53] V. G. TURAEV, The Yang-Baxter equation and invariants of links, Invent. Math. 92
(1988), 527-553. MR 0939474. DOI 10.1007/BF01393746. (399, 406)

, Quantum Invariants of Knots and 3-Manifolds, de Gruyter Stud. Math. 18, de
Gruyter, Berlin, 1994. MR 1292673. (398, 405, 407, 413, 442)

[55] P. WEDRICH, g-holonomic formulas for colored HOMFLY polynomials of 2-bridge
links, preprint, arXiv:1410.3769v1 [math.GT]. (400)

[54]

[56] H. WENZL, Representations of braid groups and the quantum Yang-Baxter equation,
Pacific J. Math. 145 (1990), 153-180. MR 1066402. (400, 405)
[57] H. S. WILF and D. ZEILBERGER, An algorithmic proof theory for hypergeometric

(ordinary and “q”) multisum/integral identities, Invent. Math. 108 (1992),
575-633. MR 1163239. DOI 10.1007/BF02100618. (399)

[58] D. ZEILBERGER, A holonomic systems approach to special functions identities,
J. Comput. Appl. Math. 32 (1990), 321-368. MR 1090884.
DOI 10.1016/0377-0427(90)90042-X. (399, 425)

Garoufalidis
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA;

stavros @math.gatech.edu; http://www.math.gatech.edu/~stavros

Lauda
Department of Mathematics, University of Southern California, Los Angeles, California, USA;
adlauda@gmail.com; http://www-bcf.usc.edu/~lauda/Aaron_Laudas_Page/Home.html

Lé
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA;
letu@math.gatech.edu; http://www.math.gatech.edu/~letu






