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Abstract
We prove that the HOMFLYPT polynomial of a link colored by partitions with a fixed
number of rows is a q-holonomic function. By specializing to the case of knots col-
ored by a partition with a single row, it proves the existence of an .a; q/ superpoly-
nomial of knots in 3-space, as was conjectured by string theorists. Our proof uses
skew-Howe duality that reduces the evaluation of web diagrams and their ladders
to a Poincaré–Birkhoff–Witt computation of an auxiliary quantum group of rank the
number of strings of the ladder diagram. The result is a concrete and algorithmic web
evaluation algorithm that is manifestly q-holonomic.
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1. Introduction

1.1. The colored Jones polynomial
The best-known quantum invariant of a knot or link L in 3-space is the Jones polyno-
mial JL, which, when properly normalized, is a Laurent polynomial in a variable
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q with integer coefficients. Jones’s [29] discovery of this polynomial marked the
birth of quantum topology, and shortly afterward, a plethora of quantum invariants
of knots and links were discovered by Reshetikhin and Turaev (see [51] and also the
books [46], [54]).

Although Jones’s definition of the Jones polynomial came from the von Neumann
algebras and their subfactors, a connection between the Jones polynomial and the sim-
plest non-Abelian simple Lie algebra, sl2, and its representations was soon discov-
ered. More precisely, given a simple Lie algebra g, an irreducible (finite-dimensional)
representation V (usually called a color in the physics literature), and a knot K , the
theory of ribbon categories (see [51], [54]) defines an invariant J g

K.V / 2 ZŒq
˙1�. The

original construction of this invariant was a rational function in a fractional power
of q, and a normalization of this invariant was shown in [35] to be an element of
ZŒq˙2�. The Reshetikhin–Turaev construction extends to framed, oriented links as
well, each component of which is colored by an irreducible representation of g.

By specializing to sl2 and using the well-known fact that there is one irreducible
representation hn of sl2 of dimension nC 1 for every natural number n, it follows
that a knot K gives rise to a sequence of polynomials J sl2

K .hn/ 2 ZŒq˙1� for n D
0; 1; 2; : : : . This sequence, although infinite, satisfies some finiteness property which
in particular implies that it is determined by finitely many initial terms. (The number
of initial terms depends on the knot though.) More precisely, it was proven by the first
and third authors [19] that for every knot K there exists a recursion

cd .q
n; q/J

sl2
K .hnCd /C cd�1.q

n; q/J
sl2
K .hnCd�1/C � � � C c0.q

n; q/J
sl2
K .hn/

D 0 (1)

for all n 2N, where d 2N, cj .u; v/ 2QŒu˙1; v˙1� for all j D 0; : : : ; d , and cd ¤ 0.
In this article, N denotes the set of all nonnegative integers. The recursion depends on
the knot, and although it is not unique, it can be chosen canonically.

Aside from the above-mentioned finiteness statement, the importance of this
minimal recursion (often called the OA-polynomial) is not a priori clear. Keeping in
mind that PSL.2;C/ is the isometry group of orientation-preserving isometries of 3-
dimensional hyperbolic space, we see that there are at least two connections between
the OA-polynomial and hyperbolic geometry.
(a) Specializing the coefficients of the above recursion to q D 1 is conjectured to

recover the defining polynomial for the SL.2;C/-character variety of the knot
complement, restricted to the boundary torus of the knot complement. This
so-called AJ conjecture is one link between the colored Jones polynomial and
the geometry of SL.2;C/ representations (see [16], [36]).

(b) Such a recursion can be used to numerically compute several terms of the
asymptotics of the colored Jones polynomial at complex roots of unity, a fas-
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cinating story that connects quantum topology to hyperbolic geometry and
number theory. For a sample of computations, the reader may consult [17]
or [22].

Returning to recursion relations, we note that sequences that satisfy a recursion
relation of the form (1) are q-holonomic, a key concept introduced by Zeilberger [58].
The literature shows that q-holonomic functions enjoy several closure properties.
A key theorem of Wilf–Zeilberger [57, Theorem 5.1] is that a multisum of a q-proper
hypergeometric term (where we sum all but one variable) is q-holonomic. This the-
orem and the fact that quantum knot invariants are multisums of q-proper hyperge-
ometric terms (coming from structure constants of corresponding quantum groups)
explain why the quantum knot invariants are q-holonomic functions.

Converting the above statement into a theorem and a proof requires additional
work. To begin with, one needs to consider functions of several variables. For instance
the sl3-colored Jones polynomial of a knot or the sl2-colored Jones polynomial of a
2-component link is a function of two discrete variables. A definition of q-holonomic
functions of several variables was given by Sabbah [52], using the language of homo-
logical algebra. Sabbah used a theory of Hilbert dimension for modules over rings
generated by q-commuting variables and proved a key Bernstein inequality. A survey
of Zeilberger’s and Sabbah’s work was given by the first and third authors [20], where
detailed proofs and examples of q-holonomic functions were discussed. A summary
of the main definitions and properties of q-holonomic functions is given in Section 4.

1.2. The colored HOMFLYPT polynomial
Shortly after the discovery of the Jones polynomial, five groups independently dis-
covered a 2-variable polynomial, the HOMFLYPT polynomial W , that takes values
in the ring Q.q/Œx˙1� (see [12], [48]). Turaev [53] showed that the latter unifies the
quantum link invariants J sln

L .h1; : : : ; h1/, where h1 D Cn is the defining represen-
tation of sln, as follows: for every n � 2 and every framed, oriented link L whose
components are colored by Cn, we have

QJ
sln
L .h1; : : : ; h1/DWLjxDqn :

Here QJL is a normalized version of JL (see Section 2).
Let P denote the set of partitions � D .�1; �2; : : : /, where �1 � �2 � � � � � 0

is a decreasing sequence of nonnegative natural numbers, all but finitely many zero.
As usual, a partition is presented by a Young diagram. Let Pn�1 be the set of parti-
tions with at most n� 1 rows. Irreducible representations of sln are parameterized by
partitions in Pn�1, and we will identify a partition � 2 Pn�1 with its corresponding
irreducible sln-module (which has highest weight �; see [15]). With this identifica-
tion, the partition ha, which has one row and a boxes, is the ath symmetric power
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of h1, and the partition ea, which has one column and a boxes, is the ath external
power of h1 D e1.

Wenzl [56], generalizing Turaev’s result, showed that the sln-quantum link invari-
ants interpolate a 2-variable function in the following sense. If L is an oriented,
framed link with r ordered components and the �i ’s are partitions with at most `
rows for i D 1; : : : ; r , then there exists a 2-variable colored HOMFLYPT function
WL.�1; : : : ; �r/ 2Q.q/Œx

˙1� such that for all natural numbers n with n � `C 1 we
have

QJ
sln
L .�1; : : : ; �r/DWL.�1; : : : ; �r/jxDqn :

A detailed definition of the HOMFLYPT polynomial and its colored version in terms
of the HOMFLYPT polynomial of cables of the link is given in [41] and [42].

1.3. Statement of our results
The set P of all partitions has an involution defined by � 7! �� which transposes
columns and rows of a partition. The map �` WN`!P` given by

�`.n1; : : : ; n`/D .�1; : : : ; �`/ 2P`; where �i D
`�iC1X
jD1

nj ;

is a bijection, and so is ��
`
W N`! P

�

`
(where P

�

`
is the set of all partitions with at

most ` columns) defined by ��
`
.n1; : : : ; n`/D .�`.n1; : : : ; n`//

�.

THEOREM 1.1
SupposeL is an oriented, framed link with r ordered components and ` a nonnegative
integer. Then, the functions

WL ı .�`/
r WNr`!Q.q/Œx˙1�; WL ı .�

�

`
/r WNr`!Q.q/Œx˙1�

are q-holonomic.

COROLLARY 1.2
For a framed, oriented knotK colored with partitions with a single row, the sequence
WK.ha/ for aD 0; 1; 2; : : : is q-holonomic.

Some special cases of the above corollary are known. See Cherednik [7] for the
case of torus knots, Wedrich [55] for the case of 2-bridge knots, and Kawagoe [32]
for some 2-bridge knots and some pretzel knots.

On the set of all functions from N to Q.x; q/ define two operators L;M by

.Lf /.a/D f .aC 1/; .Mf /.a/D qaf .a/:
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Then LMD qML, and a recurrence for f has the form Pf D 0, where

P D

dX
jD0

cj .q; x;M/Lj ; cj .q; x;M/ 2 ZŒq; x;M�:

When nonzero recurrence for f exists, there are many of them, and there is a unique
one, up to sign, such that (i) d is minimal, (ii) the total degree in q;x;M;L is minimal,
and (iii) all the integer coefficients of P are coprimes (see [16], [36]). For a knot K ,
we denote such a minimal recurrence for WK.ha/ by AK.M;L;x; q/.

Physicists have conjectured the existence of the 4-variable polynomial (see, e.g.,
[2], [24]) and have further conjectured that, when we set q D 1, the correspond-
ing 3-variable polynomial AK.M;L;x; 1/ is equal, after some universal (i.e., knot-
independent) change of variables, to a 3-variable polynomial that comes out of knot
contact homology (see [1], [45]). In the physics literature, AK.M;L;Q; 1/ is often
called the Q-deformed A-polynomial of a knot, and it appears in string theory in
the geometry of spectral curves, topological strings, matrix models, and M-theory
dualities. There is a lot of literature on this polynomial following the pioneering
work of Gukov, Fuji, Stosic, Sułkowski, and others. For a detailed discussion, see
[2], [9], [10], [13], [14], [19], [23], [24], and [25].

Remark 1.3
The proof of Theorem 1.1 implies that the function N�Nr`! ZŒq˙1� defined by

.n; Em/ 2N�Nr` 7!
�
WL ı .�`/

r
�
. Em/jxDqn

is q-holonomic in all r`C 1 variables. The latter was conjectured in [21].

1.4. An example
Suppose that K is the right-handed trefoil (see Figure 6) with 0 framing. Define

a0 D xM6.x2M2 � 1/.M4 � q6x2/;

a1 D q.q
8M2x4 � x4q4CM6q2x4CM6x4 �M6q6x2

�M6q2x2 �M8x2CM10/.M4 � q4x2/;

a2 D � x
5q6.q4M2 � 1/.M4 � x2q2/:

Then for all m� 0,

a2WK.hmC2/C a1WK.hmC1/C a0WK.hm/D 0: (2)

Remark 1.4
In [13], a conjectural formula for the colored HOMFLYPT function WK.hm/ was
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given for the case in which K is the left-handed trefoil (and other torus knots). Based
on this conjectural formula, the authors of [13], using a computer program of Zeil-
berger [47], found a recurrence formula forWK.hm/, which is different from (2) since
another normalization was used. In Appendix C, we will give a proof of (2).

1.5. Plan of the proof
The quantum group invariants require familiarity with category theory, the representa-
tion theory of quantum groups, and an understanding of the accompanying graphical
notation. In Section 2 we discuss three categories nRep^, nWeb, and nLad which are
related to representations of quantum groups as well as to a diagrammatic description
of links and their invariants. In Section 3 we discuss how to unify the sln-link invari-
ants to one that is independent of n. In Section 4 we discuss the basic definitions,
examples, and properties of q-holonomic functions. In Section 5 we give the proof of
Theorem 1.1. The proof is concrete and algorithmic, with a detailed example for the
case of the right-handed trefoil given in Section 3.7. We summarize the steps here,
using the notation of the proof.
(a) We start with a braid word representative ˇ whose closure cl.ˇ/ is the link L.

The corresponding braid has m strands and a fixed number of letters. For the
trefoil, this is given in (36).

(b) The link is now given by joining to the braid the bottom and top part of the
closure consisting of cup/cap diagrams, respectively. We replace the bottom
part by a monomial in some operators Ei , the braid word by a product of
Lusztig braid operators Ti .b/˙1 defined in Section 3.4, and the top part by a
monomial in some operators Fj . For the trefoil, this is given in (37).

(c) Each operator Ti .b/˙1 is a sum (over the integers) of operators Ei and Fj
(see (29a)–(29b)).

(d) The operators Ei and Fj satisfy the quantum group q-commutation relations
given in (14a)–(14d), and using those we can sort the above expressions by
moving all the E’s to the right and all the F ’s to the left.

(e) The fact that the operators Ei annihilate the last bit 1# , corresponding to the
projection onto a highest weight determined from the link diagram, adds a
product of delta functions in our sum.

(f) The requirement that all weights appearing in the sum be positive introduces
Heaviside functions into the sum, as explained in the proof of Proposition 5.2.

(g) In this way, we obtain a multidimensional sum over the integers, whose sum-
mand is a product of extended q-binomial coefficients of linear forms (with
integer coefficients) of the summation variables times a sign raised to a linear
form of the summation variables. These sums are always terminating. For the
trefoil, this 6-dimensional sum is given in (39).
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(h) We show in Section 5.1 that such multisums are q-holonomic.
Hidden in the above algorithm is the quantum skew-Howe duality (see [5]), which

allows us to compute colored sln-invariants by evaluating ladder diagrams in 2m
strands by using an auxiliary quantum group based on the Lie algebra gl2m. Steps
(c)–(e) are exactly a Poincaré–Birkhoff–Witt computation on gl2m.

To avoid any confusion or misunderstanding, in an earlier article, the first author
[18] reduced the q-holonomicity of the colored HOMFLYPT polynomial to the q-
holonomicity of the evaluation of Murakami–Ohtsuki–Yamada (MOY) graphs and
observed that the latter would follow from the existence of a q-holonomic evaluation
algorithm for MOY graphs. Unfortunately, such an algorithm based on simplifications
of MOY graphs or web diagrams is yet to be found.

1.6. Computations and questions
With regard to the computation of the 4-variable polynomial of a knot, there are sev-
eral formulas for the HOMFLYPT polynomial of some links in the literature colored
by partitions with one row (see, e.g., [26], [27], [32], [44]). These formulas are mani-
festly q-holonomic, as follows by the fundamental theorem of Wilf–Zeilberger theory.
Using these formulas and Wilf–Zeilberger theory, one can sometimes compute the 4-
variable knot polynomial. For sample computations for the case of twist knots and
some torus knots, see [44].

The next question is inaccessible with our methods. A positive answer would
be useful in the study of Labastida–Mariño–Ooguri–Vafa (LMOV) (also known as
Bogomol’nyi–Prasad–Sommerfield (BPS)) invariants of links (see [34]). First, using
linearity extend the colored HOMFLYPT function to the case when the color of each
link component is a Z-linear combination of Young diagrams. Let pa DPa
kD0.�1/

k.k; 1a�k/. Note that .k; 1a�k/ is a hook partition with one row with k
boxes and one column with a� k boxes.

Question 1.5
Is it true that the HOMFLYPT polynomial of a knot colored by pa is a q-holonomic
function of a?

2. Categories, links, and their invariants
Throughout the article, N, Z, and Q denote the set of nonnegative integers, the set
of integers, and the set of rational numbers, respectively. We emphasize that our N
contains 0. Also n will denote an integer greater than or equal to 2. We will denote by
Q.q1=n/ the field of rational functions in an indeterminate q1=n and denote by Q.q/

its subfield generated by q D .q1=n/n. Also ZŒq˙1� � Q.q/ will denote the ring of
Laurent polynomials in q with integer coefficients.
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In this section we will discuss three categories nRep^, nWeb, and nLad which
are connected by functors

nLad
‰n
! nWeb

�n
! nRep^: (3)

A ring homomorphism f WQ.q1=n/!Q.q1=n/ (thought of as a homomorphism from
the empty set to the empty set) is the multiplication by a scalar, and we denote this
scalar by ev.f / 2 Q.q1=n/. These categories are intimately related to diagrammatic
descriptions of framed tangles and of quantum groups.

2.1. The quantized enveloping algebras Uq.gln/ and Uq.sln/
Consider the lattice Zn with the standard Euclidean inner product h�; �i, and consider
the root vectors

˛i D .0; : : : ; 0; 1;�1; 0; : : : ; 0/ 2 Z
n;

with 1 on the i th position. The quantized enveloping algebra Uq.gln/ is the associative
algebra over Q.q/ generated by Li , i D 1; : : : ; n, and Ei ;Fi , i D 1; : : : ; n�1, subject
to the relations

LaLb DLaCb; L0 D 1;

LaEj D q
aj�ajC1EjLa; LaFj D q

ajC1�ajFjLa;

E
.2/
i EiC1 �EiEiC1Ei CEiC1E

.2/
i D 0D F

.2/
i FiC1 �FiFiC1Fi CFiC1F

.2/
i ;

EiFj �FjEi D ıij
Ki �K

�1
i

q � q�1
;

EiEj DEjEi ; FiFj D FjFi for ji � j j> 1:

Here La DL
a1
1 � � �L

an
n for aD .a1; : : : ; an/ 2 Zn, Ki DLiL�1iC1, and

E
.r/
i DE

r
i =Œr�Š;F

.r/
i D F

r
i =Œr�Š; where Œr�Š WD

rY
jD1

qj � q�j

q � q�1
:

There is a structure of a Hopf algebra on Uq.gln/ with the coproduct and the antipode
(see, e.g., [6], [28], [38]).

The quantized enveloping algebra Uq.sln/ is the subalgebra of Uq.gln/ generated
byEi ;Fi ;K˙1i , i D 1; : : : ; n�1. Then Uq.sln/ inherits a Hopf algebra structure from
that of Uq.gln/.

A weight of Uq.gln/ (resp., Uq.sln/) is an element a 2 Zn (resp., an element
a 2 Zn such that

P
i ai D 0). A Uq.sln/-module V is called a weight module (or,
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perhaps better, a weighted module) if V D
L
a VŒa�, where each a is a Uq.sln/-weight

and

VŒa� D
®
v 2 V jKi .v/D q

h˛i ;aiv
¯
:

For a partition �D .l1; : : : ; l`/ with l1 � l2 � � � � � l` > 0 we call `D length.�/
the length of � and j�j D

P
i li the weight of �. Denote by �� the conjugate of �,

which is the partition whose Young diagram is the transpose of that of �. For a thor-
ough treatment of partitions, see [39]. Finite-dimensional irreducible weight Uq.sln/-
modules are parameterized by partitions � 2Pn�1, that is, partitions of length at most
n� 1 (see, e.g., [6], [28]). For every � 2 Pn�1 denote by V� the corresponding irre-
ducible weight Uq.sln/-module.

2.2. The category of Uq.sln/-modules and link invariants
The category nRep of finite-dimensional weight Uq.sln/-modules is a ribbon cate-
gory (see [54]), where the braiding comes from the universal R-matrix. To be precise,
one needs to extend the ground field to Q.q1=n/ so that the braiding and the ribbon
element can be defined.

By the theory of ribbon categories, for a framed, oriented link L in 3-space with
r ordered components and r objects V1; : : : ; Vr of nRep, one can define an invariant

J
sln
L .V1; : : : ; Vr/ 2Q.q

1=n/:

If �1; : : : ; �r 2Pn�1, we use the notation

J
sln
L .�1; : : : ; �r/D J

sln
L .V�1 ; : : : ; V�r /:

It is known that a properly normalized version of J slnL .V1; : : : ; Vr/ belongs to ZŒq˙2�

(see [35], [40]). A special case of this integrality phenomenon is the following. Let `ij
be the linking number between the i th and the j th components of L, with `i i being
the framing of the i th component. Define

QJ
sln
L .�1; : : : ; �r/D q

1
n

P
i;j `ij j�i jj�j jJ

sln
L .�1; : : : ; �r/: (4)

Then we have

QJ
sln
L .�1; : : : ; �r/ 2 ZŒq

˙1�: (5)

Not only is QJ sln
L .�1; : : : ; �r/ a Laurent polynomial in q, but it also enjoys the

following stability (with respect to the rank n) property.

PROPOSITION 2.1 (see [56])
There exists an invariant WL.�1; : : : ; �r / 2 Q.q/Œx˙1� such that, for any n greater
than the length of any of the �j ’s, we have
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WL.�1; : : : ; �r/jxDqn D QJ
sln
L .�1; : : : ; �r/:

Usually, WL is called the colored HOMFLYPT function. The theorem was first
proved by Wenzl, using quantum group theory. For a detailed proof using skein theory,
see [37, Theorem 11.4.18]. The theorem also follows from our proof of Theorem 1.1
below. For the simplest case, when all partitions have one box, Proposition 2.1 was
first proved by Turaev [53].

Remark 2.2
The integrality (5) shows that the polynomial P DWL.�1; : : : ; �r/ 2Q.q/Œx˙1� has
the property that P jxDqn 2 ZŒq˙1� for all integers n > 1. Such a polynomial P 2
Q.q/Œx˙1� is called q-integral and is studied in [4, Section 2.3].

Remark 2.3
Our WL.�1; : : : ; �r/ is equal to P.L � .Q�1 ; : : : ;Q�r // in the notation of [42, Sec-
tion 6], with our q and x equal to, respectively, s and v�1 there.

2.3. Properties of the colored HOMFLYPT polynomial
Letƒ be the free Q-vector space with basis the set P of all Young diagrams, including
the empty one. Suppose that L is a framed, oriented link with r ordered components.
The invariant WL.�1; : : : ; �r/ can be extended to a Q-multilinear map

WL Wƒ
r !Q.q/Œx˙1�:

There is a Q-algebra structure on ƒ which makes it isomorphic to the algebra of
symmetric functions (see, e.g., [39]). Under this isomorphism, a Young diagram � is
mapped to the Schur function S� corresponding to �.

We collect here some well-known properties of the quantum invariant WL.

PROPOSITION 2.4
Let L be a framed, oriented link in the 3-space with k ordered components.
(a) Suppose that L0 is the same L with the components renumbered by a permu-

tation � of ¹1; : : : ; kº. Then

WL0.�1; : : : ; �r/DWL.��1; : : : ; ��r/:

(b) Suppose that �L is the result of replacing the first component of L by two
copies of its parallel pushoff (using the framing). Then

W�L.�
0
1; �
00
1; �2; : : : ; �r/DWL.�

0
1�
00
1; �2; : : : ; �r/:
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(c) We have

WL.�1; : : : ; �r/DWL.�
�
1; : : : ; �

�
r /jq!�q�1 : (6)

Parts (a) and (b) follow from the corresponding properties for JL (see [54]).
While (a) is trivial, (b) follows from the hexagon equation of the braiding in the
braided category. Part (c) is well known and has been discussed in many papers
(see, e.g., [34, (4.41)]). For completeness, we give proofs of parts (b) and (c) in
Appendix B.

2.4. The category nRep^
Let ea be the partition whose Young diagram is a column with a boxes; that is, ea D
.1a/ in the standard notation of partitions. The Uq.sln/-module Vea with 1 � a �
n � 1 is called a fundamental Uq.sln/-module. We also use e0 to denote the empty
Young diagram, which corresponds to the trivial Uq.sln/-module.

Let nRep^ be the full subcategory of nRep whose objects are those isomorphic to
tensor products of the fundamental Uq.sln/-modules. Then nRep^ inherits a ribbon
category structure from nRep.

The advantage of nRep^ is that it has a remarkable presentation using planar
diagrams called spider webs, which are described in the next section. Since nRep is
the idempotent completion of nRep^, we do not lose much by working with nRep^.

2.5. The category nWeb
We describe here the category nWeb of sln-webs, following Cautis, Kamnitzer, and
Morrison [5]. Recall that a pivotal monoidal category is a category with tensor prod-
ucts and a coherent notion of duality in which the double dual functor is naturally
isomorphic to the identity. The morphisms and the relations among morphisms of
such categories afford a diagrammatic description using planar diagrammatics. They
are essentially equivalent to the description of the Temperley–Lieb algebra for nD 2,
Kuperberg’s [33] spider webs (for nD 3), and the planar algebras of Jones [30]. They
are also closely related to the MOY graphs [43]. Standard references for pivotal cate-
gories include [54, Chapter XI], [31], and [11, Chapter 4.7].

An n-web is a compact subset Z of the horizontal strip R� Œ0; 1� with additional
data satisfying (i)–(iii).
(i) Each connected component ofX is either an oriented circle or a directed graph

(i.e., a finite 1-dimensional CW-complex) where the degree of each vertex is
1, 2, or 3. Every circle component and every edge is labeled by an integer in
Œ1; n� 1�.

(ii) The set @Z of univalent vertices of Z is in the union of the top and bottom
lines of the strip, and Z n @Z is in the interior of the strip.
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(iii) Up to isotopy there are two types of trivalent vertices and two types of biva-
lent vertices as in the following figure (with labeling of edges attached to the
vertex):

b

aC b

a

aC b

a b a

n� a

a

n� a

(7)

The third and the fourth graphs depict bivalent vertices but not trivalent ver-
tices, because the small tag there is not officially an edge. The tag provides a
distinguished side and makes the bivalent vertices not rotationally symmetric.

We will declare isotopic webs to be equal. Let @�Z D .i
"1
1 ; : : : ; i

"k
k
/, where

i1; : : : ; ik are the labels of the edges ending on the bottom line listed from left to
right, and let "j DC if the orientation at the j th ending point is upward and "j D�
otherwise. One defines @CZ exactly the same way, using the top line instead of the
bottom line.

The category nWeb is the pivotal monoidal Q.q1=n/-linear category whose
objects are sequences in the symbols ¹1˙; : : : ; .n�1/˙º. Given objects a; b of nWeb,
the set of morphisms HomnWeb.a; b/ is the set of Q.q1=n/-linear combinations of n-
webs Z such that @�Z D a and @CZ D b, subject to certain local relations described
in [5, Section 2.2]. In [5], our nWeb is denoted by Sp.SLn/. The tensor product
Z1 ˝Z2 is obtained by placing Z2 to the right of Z1. The composition Z1Z2 is the
result of placing Z1 atop Z2, after an isotopy to make the top ends of Z2 match the
bottom ends of Z1.

For example, the first diagram in (7) represents a morphism from aC ˝ bC D

.aC; bC/! .aC b/C, and the second one represents a morphism from a� ˝ b�!

.aC b/�.
The monoidal unit nWeb is the empty sequence. The planar isotopy condition

implies that the object aC is dual to the object a�. The cap and cup morphisms

a

a
(8)

give rise to maps aC˝ a�!; and ;! a�˝ aC that realize this duality.
For simplicity we allow diagrams to carry labels of 0 and n with the understand-

ing that n-labeled edges connected to a trivalent vertex should be deleted and replaced
by a tag as in the cap and cup diagrams:
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n� a

n

a

D
n� aa

n� a

n

a

D
n� a a

(9)

and the remaining edges and loops labeled 0 or n should be deleted. Note that the
cap and cup diagrams coming from the duality aC with a� arising from the pivotal
structure do not require tags.

The following are consequences of the relations among generators of sln-webs:

a

n� a

D .�1/a.n�a/

a

n� a

(10)

a

a

n� a D

a

a

(11)

Remark 2.5
The tags appearing in n-webs (which do not appear in [43]) play an important role in
keeping track of the fact that, while .Vea/

� is isomorphic to Ven�a , this isomorphism
is not canonical. The tags in sln-webs keep track of these isomorphisms and contribute
signs that would have otherwise been missed by wrongly identifying the dual of aC

with .n� a/C.

2.6. An equivalence between nWeb and nRep^
The main result of [5] is the construction of an equivalence, which is a Q.q1=n/-linear
pivotal functor,

�n W nWeb! nRep^

defined on objects by �n.aC/D Vea and �n.a�/D .Vea/
�. The ribbon structure of

nRep^ can be pulled back to make nWeb a ribbon category. In particular, we have a
braiding Xa;b W a˝ b! b˝ a for any two objects a; b of nWeb. For simple objects
a; b 2 Œ1; n � 1� we use the diagrams with crossings as in Figure 1 to denote the
braiding Xa;b and its inverse X�1

b;a
. The braiding allows us to introduce crossings in

diagrams representing morphisms of nWeb.
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Xa;b D

a b

b a

X�1b;a D

ab

ba

Figure 1. The braiding Xa;b (left) and its inverse X�1
b;a

.

Suppose that D is a link diagram in the plane in general position with respect
to the height function, whose components are labeled by integers in Œ0; n� 1�. Then
D defines a morphism in the category nWeb from ; to ;. Since HomnWeb.;;;/D

Q.q1=n/, the morphism D is determined by the scalar ev.D/ 2Q.q1=n/. The equiva-
lence �n shows that this scalar ev.D/ is equal to the invariant J sln

L .ea1 ; : : : ; eak /; that
is,

J
sln
L .ea1 ; : : : ; eak /D ev.D/; (12)

where L is the framed link whose blackboard diagram is D and a1; : : : ; ak are the
labels of the components of L.

2.7. The ladder category
We give the definition of the ladder category Ladm, which is a diagrammatic presenta-
tion of Lusztig’s idempotent form PUq.glm/ of the quantum group Uq.glm/. Typically,
PUq.glm/ is regarded as a Q.q/-algebra where the unit is replaced by a system of mutu-
ally orthogonal idempotents 1a indexed by the weight lattice of glm. Using the quan-
tum skew-Howe duality, Cautis, Kamnitzer, and Morrison [5] showed that there is a
braided monoidal functor from the ladder category to the category nWeb. We explain
how to use this result to calculate quantum Uq.sln/-invariants of links using ladders.

A ladderZ withm sides is a uni-trivalent graph drawn in the strip R� Œ0; 1�, with
(i) m parallel vertical lines running from the bottom line to the top line of the

strip, oriented upward;
(ii) some number of oriented horizontal lines in the interior of the strip R� Œ0; 1�,

called steps, connecting adjacent sides; and
(iii) a labeling of each interval (steps or segments of sides) by integers such that the

signed sum of the labels at each trivalent vertex is zero. Here the sign of each
incoming vertex is positive, and the sign of each outgoing vertex is negative.

Let @�Z (resp., @CZ) be the sequence of labels appearing on the bottom (resp.,
top) edge of the strip. Then @�Z;@CZ 2 Zm are considered as weights of Uq.glm/.
For example, see Figure 2.
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2112

2013

1

1

2

1

1

1

Figure 2. A morphism in Lad4.

The category Ladm is the Q.q/-linear category whose set of objects is Zm. Given
two objects a; b, the morphisms HomLadm.a; b/ is the set of all Q.q/-linear combi-
nations of ladders Z with m sides such that @�Z D a and @CZ D b, subject to the
relations described in (14a)–(14e) below.

The composition of morphisms is given by the vertical concatenation of ladders.
Note that Ladm does not have dual objects and hence is not pivotal.

For an object aD .a1; : : : ; am/ of Ladm, for i such that 1 � i �m� 1, and for
r 2N, let E.r/i 1a and F .r/i 1a denote the following ladders:

E
.r/
i 1a WD : : : : : :

ai�1 ai aiC1 aiC2

ai C r aiC1 � r

r

2HomLadm.a; aC r˛i /;

F
.r/
i 1a WD : : : : : :

ai�1 ai aiC1 aiC2

ai � r aiC1C r

r

2HomLadm.a; a� r˛i /:

Here and in what follows, we draw the steps of a ladder by using slightly slanted
lines instead of horizontal lines such that the orientation of the step is upward. With
this convention we do not have to mark the orientation in a ladder diagram, since all
segments are oriented upward.

By comparing the sequences at the end of these ladders it is clear that
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E
.r/
i 1a D 1aCr˛iE

.r/
i D 1aCr˛iE

.r/
i 1a;

F
.r/
i 1a D 1a�r˛iF

.r/
i D 1a�r˛iF

.r/
i 1a:

(13)

When the specific weight is clear we will write Ei instead of Ei1a and Fi instead of
Fi1a. For example, F .r/i E

.s/
j 1a means F .r/i 1aCs˛jE

.s/
j 1a.

With this convention, the relations of the morphisms of Ladm are given by

E
.r/
i F

.s/
i 1a D

min.r;s/X
tD0

"
ha;˛i i C r � s

t

#
F
.s�t/
i E

.r�t/
i 1a; (14a)

E
.r/
i F

.s/
j 1a D F

.s/
j E

.r/
i 1a if i ¤ j , (14b)

E
.r/
i E

.s/
j 1a DE

.s/
j E

.r/
i 1a if ji � j j> 1, and likewise for the F ’s, (14c)

E
.s/
i E

.r/
i 1a D

"
r C s

r

#
E
.rCs/
i 1a; and likewise for the F ’s, (14d)

EiEjEi1a D .E
.2/
i Ej CEjE

.2/
i /1a

if ji � j j D 1, and likewise for the F ’s, (14e)

for all r; s 2N, 1� i �m� 1, and a 2 Zm.
Recall that ha;˛i i D ai � aiC1 is the standard inner product on Zm, and the

quantum integers and factorial and binomial coefficients are defined by

Œr�D
qr � q�r

q � q�1
; r 2 Z; (15a)

Œr�ŠD

rY
kD1

Œk�; r � 0; (15b)

"
r

s

#
D

´Qr
kDr�sC1Œk�

Œs�Š
r; s 2 Z; s � 0;

0 s < 0:
(15c)

Remark 2.6
If k is a field and C is a k-linear category, then it gives rise to an algebra A.C/ whose
underlying vector space is the direct sum of all Hom spaces

L
a;b Hom.a; b/. The

product of x 2 Hom.b; a/ and y 2 Hom.b0; a0/ is defined to be zero unless b D a0,
in which case the product is defined to be the composite xy. In general, A.C/ is a
k-algebra without unit. Since the relations (14a)–(14e) are the defining relations of
Lusztig’s idempotent algebra PUq.glm/, A.Ladm/Š PUq.glm/.
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2.8. The Schur quotient, the highest weight # , and evaluation
Fix positive integers m and n. The Schur quotient nLadm is defined to be the
Q.q1=n/-linear category with set of objects all aD .a1; : : : ; am/ 2 Zm such that a 2
Œ0; n�m, that is, 0� ai � n for all i . The algebra of morphisms of nLadm is the quo-
tient of the algebra of morphisms of Ladm, with ground field extended to Q.q1=n/,
by the two-sided ideal generated by all 1a’s with a … Œ0; n�m. For example, E.r/i 1a is
always 0 in nLadm when r > n.

Let

#.n;m/ WD .nm; 0m/ 2 Z2m; (16)

often abbreviated by # . Considered as an object of nLad2m, # is a highest weight
element for nLad2m, in the sense that for every i D 1; : : : ; 2m� 1, we have

Ei1# D 0; 1#Fi1#C˛i D 0: (17)

This is because # C ˛i has entries outside Œ0; n�. It follows that the algebra of endo-
morphisms of # is isomorphic to the ground field Q.q1=n/. In other words, we have
an evaluation map

evn;m WHomnLad2m.#;#/
'
!Q.q1=n/; x D evn;m.x/1# : (18)

2.9. Braiding for ladders
The category nLadm does not have a tensor product and hence is not a monoidal cat-
egory. However, nLad WD

L1
mD1 nLadm is monoidal. This category does not have

duals, since all webs are directed upward. But it is a braided monoidal category,
as follows. The objects of nLad are sequences a D .a1; : : : ; am/ of integers ai 2
Œ0; n�. Given two objects a D .a1; : : : ; am/ and b D .b1; : : : ; bp/, HomnLad.a; b/ D

HomnLadm.a; b/ if pDm and 0 otherwise.
The tensor product of objects a ˝ b is the horizontal concatenation of a and b

from left to right. A similar convention is used for morphisms.
In [5, Section 6] it is shown that nLad admits a braided monoidal category struc-

ture; that is, it has a braiding, which is a system of natural isomorphisms Xa;b W
a ˝ b! b ˝ a satisfying the hexagon equations (see [51], [54]). The braiding for
nLad is constructed using Lusztig’s [38] braid elements. We also use the diagrams
with crossings in Figure 1 to denote the braiding Xa;b and its inverse X�1

a;b
in the

category nLadm.
When ˇ is a braid on m strands and a D .a1; : : : ; am/ 2 Zm, let ˇ1a 2

HomnLadm.a;ˇ.a// be the morphism described in Figure 3. Here ˇ.a/ is obtained
from a by applying the permutation corresponding to the braid ˇ. For example, �i1a
and ��1i 1a, where �i ; ��1i are the i th standard braid generator and its inverse, are
depicted in Figure 3.
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ˇ1a D

a1 a2 am�1 am

:::

:::

ˇ

�i1a D

a1 ai�1 ai aiC1 amaiC2

::: :::

��1i 1a D

a1 ai�1 ai aiC1 amaiC2

::: :::

Figure 3. The morphisms ˇ1a , �i1a , and ��1i 1a .

Then �˙1i 1a 2HomnLadm.a; �i .a//. We record here the formula for the braidings
from [5]:

�i1a D .�1/
aiCaiaiC1qai�

aiaiC1
n

X
r;s�0

s�rDai�aiC1

.�q/�sE
.r/
i F

.s/
i 1a; (19)

��1i 1a D .�1/
aiCaiaiC1q�aiC

aiaiC1
n

X
r;s�0

s�rDai�aiC1

.�q/sE
.r/
i F

.s/
i 1a: (20)

Note that the right-hand sides are finite sums, since F .r/i and E.r/i are 0 for r > n.
Also ��1i 1a is obtained from �i1a by the involution q! q�1.

Remark 2.7
Originally, Lusztig [38, Section 5.2.1] defined the braiding and its inverses using triple
product formulas. The simplification of Lusztig’s formulas to double products in (19)–
(20) was first observed for q D 1 by Chuang and Rouquier [8]. For general q, a proof
of this simplification can be found in [5, Lemma 6.1.1].

2.10. From ladders to webs
In [5, Section 5] it is proved that there is a Q.q1=n/-linear functor

‰n;m W nLadm! nWeb
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b1 b2 bm�1 bm

:::

:::

ˇ

Figure 4. The standard closure of a braid ˇ with four strands.

defined as follows. For an object a D .a1; : : : ; am/ of nLadm, ‰n;m.a/ is obtained
from a by deleting 0’s and n’s from a and converting k to kC. For a morphism f of
nLadm which is a ladder, ‰n;m.f / is the same f considered as an n-web, using the
convention about labelings 0 and n. This means edges connected to the label 0 should
be deleted from the diagrams, and those connected to the label n should be truncated
to the “tags” depicted in the last two diagrams in (7) as explained in (9). The existence
of ‰n;m is a consequence of the quantum skew-Howe duality.

The functors‰n;m W nLadm! nWeb, with allm, piece together to give a functor
‰n W nLad! nWeb. By [5, Theorem 6.2.1], ‰n is a braided monoidal functor.

Suppose that ˇ is a braid on m strands. We view ˇ as a diagram with crossings
in the standard plane with strands oriented upward. Let cl.ˇ/ be the link diagram
obtained by closing ˇ in the standard way (see Figure 4), and let LD L.ˇ/ be the
corresponding framed link. Assume L has r ordered components which are labeled
by integers a1; : : : ; ar 2 Œ1; n�1�. Let aD .a1; : : : ; ar/. Let b1; : : : ; bm be the induced
labeling of strands of ˇ from left to right (at the bottom of ˇ). Of course, each bi is
one of the aj ’s.

Let Lcl.ˇ; a/, called the ladder closure of ˇ, be the endomorphism of #.n;m/
in the category nLad2m given by the ladder described in Figure 5. Here the labels of
the strands of the braids are b1; : : : ; bm, which are determined by the labels a1; : : : ; ar
of the link L. All the dashed vertical lines of the m left-hand sides are labeled by n,
while all the dashed vertical lines of the m right-hand sides are labeled by 0. Then
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Figure 5. The ladder closure of a braid ˇ with four strands with labels. Here ci D n� bi .

the remaining labels are uniquely determined by the rule that the signed sum at every
trivalent vertex is 0.

PROPOSITION 2.8
We have

evn;m
�
Lcl.ˇ; a/

�
D JL.ea1 ; : : : ; ear /:

Proof
Let L denote the closure of ˇ. We have that L is a link colored by a. Identities (10)
and (11) show that

‰n.L;a/D Lcl.ˇ; a/:
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Since ‰n is a Q.q1=n/-linear braided functor, we have

ev
�
Lcl.ˇ; a/

�
D ev

�
‰n.L;a/

�
D JL.ea1 ; : : : ; ear /;

where the second identity follows from (12).

3. Introducing the variable x D qn

Proposition 2.8 allows one to calculate the quantum sln-invariant of a link L for
each fixed n � 2. In this section, we introduce an algebra that allows us to unify
the quantum sln-invariants of links into Laurent polynomials of a variable x D qn.

3.1. Free associative algebra on Ei ;Fj
Let

Xm D ¹E1; : : : ;Em�1;F1; : : : ;Fm�1º; (21)

and let Am be the free associative unital Q.q/-algebra generated by Xm. For i D
1; : : : ;m� 1, define the divided powers by

E
.r/
i WDE

r
i =Œr�Š 2Am; F

.r/
i WD F

r
i =Œr�Š 2Am;

where Œr�Š is given by (15b). A Q.q/-basis of Am can be described as follows. For
Y D .Y1; : : : ; Yr/ 2 .Xm/

r and k D .k1; : : : ; kr/ 2Nr define

Y .k/ WD Y
.k1/
1 Y

.k2/
2 � � �Y .kr /r :

Then the set of all Y .k/, where Yi ¤ YiC1 and ki � 1, along with k D ;, is a Q.q/-
basis of Am.

Note that, for each a 2 Zm, Y .k/1a is a morphism in the category nLadm. For
a; b 2 Zm and n > 1, define the Q.q/-linear map

pna;b WAm!HomnLadm.a; b/; pna;b.Y
.k//D 1aY

.k/1b:

The algebra Am admits a natural Zm-grading, called weight, defined by

w.Fi /D�˛i ; w.Ei /D ˛i :

Observe that pn
a;b
.Y .k//D 0 unless aD bCw.Y .k//.

Let Is be the two-sided ideal of A generated by E.r/i ;F
.r/
i , with i D 1; : : : ;m� 1

and r � s. It is clear that IsC1 � Is . Let bAm be the completion of Am with respect to
the nested sequence of ideals Is . Since pn

a;b
.Is/D 0 if s > n, we can extend pn

a;b
to a

map, also denoted by pn
a;b

,

pna;b W
bAm!HomnLadm.a; b/:
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3.2. Convention on negative powers
The divided powers E.r/i and F .r/i are defined for nonnegative integers r . It is con-
venient to extend them to negative powers by the following convention. For r < 0,
a 2 Zm, we use the following convention:

E
.r/
i D F

.r/
i D 0 in bAm;

E
.r/
i 1a D F

.r/
i 1a D 0 in Ladm:

With the above convention, (14a), (14b), and (14d) can be rewritten in the fol-
lowing form. For all r; s 2 Z and i ¤ j , we have the following identities in Ladm:

E
.r/
i F

.s/
i 1a D

X
t2Z

"
ha;˛i i C r � s

t

#
F
.s�t/
i E

.r�t/
i 1a; (22)

E
.r/
i F

.s/
j 1a D F

.s/
j E

.r/
i 1a; (23)

E
.s/
i E

.r/
i 1a D

"
r C s

r

#
E
.rCs/
i 1a; F

.s/
i F

.r/
i 1a D

"
r C s

r

#
F
.rCs/
i 1a: (24)

3.3. Evaluation
Fix positive integers n;m. Recall that # given by (16) is an object of nLad2m, and
recall the evaluation map (18). This gives rise to an evaluation map

evn WbA2m!Q.q1=n/; evn.x/ WD evn;m
�
pn#;#.x/

�
: (25)

Given a monomial z in Ei ;Fj , the element evn.z/ can be calculated by a simple
algorithm moving each divided power in Ei appearing in z to the right by using (22)
and (23). Note that we are not moving divided powers of Ei past divided powers
of Ej . Since the Ei ’s annihilate the weight 1# , all that remains after sliding all the
Ei ’s to the right is a sum of products of the quantum binomials produced from the
application of (22). For details see the example in Section 3.7 and Proposition 5.2.

Suppose that Y D .Y1; : : : ; Yk/ 2 .X2m/
k and b D .b1; : : : ; bk/ 2 Zk . There is

an easy case when evn.Y .b//D 0, namely, when 1#Y .b/1# factors through a weight
with a negative component. The weight of Y .b/ is denoted by

w.Y .b//D
�
w1.Y

.b//; : : : ;w2m.Y
.b//

�
2 Z2m:

We say Y .b/ has negative weight if wj .Y .b// < 0 for some j with m< j � 2m. For
an index i , 1� i � k, define the i th tail Taili .Y; b/ by

Taili .Y; b/D Y
.bi /
i Y

.biC1/

iC1 � � �Y
.bk/

k
:

We say .Y; b/ is tail-negative if there is an index i , 1 � i � k, such that Taili .Y; b/
has negative weight.
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LEMMA 3.1
Suppose that .Y; b/ is tail-negative. Then evn.Y .b//D 0 for all n.

Proof
Note that Y .b/1# factors through Taili .Y; b/1# 2HomLadn

2m
.�;#/, where

�Dw
�
Taili .Y; b/

�
C #:

Suppose that wj .Taili .Y; b// < 0 for some j > m and 1 � i � k. We have �j D
w.Taili .Y; b// C #j D wj .Taili .Y; b// < 0. By definition, Taili .Y; b/1# D 0 in
Ladn2m. Hence, Y .b/1# D 0 in Ladn2m.

The tail-negative condition can be characterized by the function

H .Y; b/ WD

2mY
jDmC1

kY
iD1

He
�
wj
�
Taili .Y; b/

��
; (26)

where

He.x/D

´
1 if x � 0;

0 if x < 0;
(27)

denotes the Heaviside function. Note that

H .Y; b/D

´
0 if .Y; b/ is tail-negative,

1 otherwise.
(28)

3.4. Braiding in bA
Suppose that aD .a1; : : : ; am/ 2 Zm and 1� i �m� 1. Let

Ti .a/D .�1/
aiCaiaiC1qai

X
s2Z

.�q/�sE
.sCaiC1�ai /

i F
.s/
i 2

bA; (29a)

T �1i .a/D .�1/aiCaiaiC1q�ai
X
s2Z

.�q/sE
.sCaiC1�ai /

i F
.s/
i 2

bA: (29b)

Recall that we use the convention E.r/i D F
.r/
i D 0 if r < 0. Note that T �1i .a/ is

obtained from Ti .a/ by the involution q! q�1. From (19) and (20) it follows that,
for "D˙1,

�"i 1a D q
�"
aiaiC1
n T "i .a/1a in nLadm: (30)
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3.5. Special functions
Let Y D .Y1; : : : ; Yk/ 2 .Xm/

k . A function H W Zr !bAm is called Y -special if

H.a/D
X
s2Zt

.�1/g1.a;s/qg2.a;s/Y .f .a;s//; (31)

where
� g1 W Z

rCt ! Z is quadratic, that is, given by a polynomial with integer coeffi-
cients of total degree at most 2,

� g2 W Z
rCt ! Z is linear, and

� f W ZrCt ! Zk is affine such that f .a; �/ W Zt ! Zk is injective for every
a 2 Zk .

The injectivity property ensures that the right-hand side of (31) defines an element
in bAm. The next lemma is easy to verify.

LEMMA 3.2
(a) The functions Ti ; T �1i W Zm ! bAm given by (29a) and (29b) are .Ei ;Fi /-

special.
(b) Suppose that f W Zk ! Zr is a linear function. Then the function H W Zk !bAm given by

H.a/D Y .f .a//

is Y -special.
(c) If H 0 is Y 0-special and H 00 is Y 00-special, then H 0H 00 is Y 0 � Y 00-special.

3.6. Unifying the sln-link invariant
For aD .a1; : : : ; ar/ 2 Zr , let kak1 be the usual norm defined by kak1 Dmaxi jai j.

PROPOSITION 3.3
Suppose thatL is a framed, oriented link in 3-space with r ordered components which
is the closure of a braid with m strands. Then there exist a sequence Y of letters in
X2m and a Y -special function H W Zr !bA2m such that, for all integers a1; : : : ; ar 2
Œ0; n� 1�, we have

QJ
sln
L .ea1 ; : : : ; ear /D evn

�
H.a1; : : : ; ar/

�
: (32)

Moreover, .Y;f .a; s// is tail-negative whenever ksk1 > kak1. Here f .a; s/ is the
function appearing in the presentation (31) of H .

Proof
Let L be the closure of a braid ˇ 2Bm as in Figure 4, and let aD .a1; : : : ; ar/ 2Nr .



THE COLORED HOMFLYPT FUNCTION IS q-HOLONOMIC 421

Suppose that 1m˝ˇ, the braid (in B2m) obtained by adding m straight strands to the
left of ˇ, has a presentation

1m˝ˇD �
"1
i1
� � ��

"t
it
; ij 2 ¹mC 1; : : : ; 2m� 1º, "j 2 ¹˙1º for j D 1; : : : ; t , (33)

where �i is the i th standard generator of the braid group (see Figure 1). Here t is the
number of crossings of ˇ.

Write b D .b1; : : : ; bm/ and c D .cm; cm�1; : : : ; c1/ to denote the sequences of
labels labeling the ladder closure Lcl.ˇ; a/ as in Figure 5, so that ci D n � bi and
each bi is one of .a1; : : : ; ar/. The horizontal lines at the bottom and the top of the
braid ˇ decompose Lcl.ˇ/ into three morphisms in nLad2m:

Lcl.ˇ; a/D Capm.a/.1c ˝ ˇ1b/Cupm.a/:

Each part can be written in a form that does not depend on n.

Indeed, the lower morphism Cupm.a/ is a composition of F
.bj /

i for various i; j .
Hence,

Cupm.a/D Vm.a/1#.n;m/;

where Vm.a/ 2A2m is the product of several F
.bj /

i ’s. Explicitly,

Vm.a/D
�!Y

k2Œ1;m�

h�  �Y
i2Œ1;k�1�

.F
.bk/

mCk
F
.bk/

m�k
/
�
F .bk/m

i
;

where

�!Y
i2Œ1;k�

xi WD x1x2 � � �xk;
 �Y
i2Œ1;k�

xi WD xkxk�1 � � �x1:

Then, as a function of a, Vm.a/ is a special function (see Lemma 3.2).
Similarly, the top morphism

Capm.a/Dƒm.a/1c˝b D 1#.n;m/ƒm.a/1c˝b

is a special function. Explicitly,

ƒm.a/D
 �Y

k2Œ1;m�

h
E.bk/m

�!Y
i2Œ1;k�1�

.E
.bk/

mCk
E
.bk/

m�k
/
i
:

Now consider the middle morphism 1c ˝ ˇ1b . Using (33) and (30), we have

1c ˝ ˇ1b D q
� 1n

P
ij `ij aiaj z1.a/z2.a/ � � �zt .a/1c˝b;
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where

zj .a/D T
"j
ij

�
�ijC1 � � ��it .c; b/

�
:

Using (29a) and (29b) for T˙1i .b/, we see that zj is a special function. Let

H.a/Dƒm.a/z1.a/z2.a/ � � �zt .a/Vm.a/: (34)

ThenH W Zk!bA2m is a product of special functions and, hence, is a special function
(see Lemma 3.2). By (30), we have

Lcl.ˇ; a/D q�
1
n

P
ij `ij aiaj 1#H.a/1# :

Applying the evaluation map evn to both sides and using Proposition 2.8 and the
normalization (4) of QJL for the left-hand side, we obtain that

QJL.ea1 ; : : : ; eak /D evn
�
H.a/

�
:

This proves (32).
Let us have a closer look at the formula of H . By (29a) and (29b), zj has the

form

zj D
X
sj2Z

.�1/gj .a;sj /q"jhj .a;sj /E
.fj .a;sj //

ij
F
.sj /

ij
; (35)

where gj is a quadratic function and hj ; fj are linear functions. From (34), it follows
that H has a presentation (31), where s D .s1; : : : ; st /, and

Y .f .a;s// Dƒm.a/
� �!Y
j2Œ1;t�

E
.fj .a;sj //

ij
F
.sj /

ij

�
Vm.a/:

Assume that ksk1 > kak1; that is, there is l such that jsl j > kak1. We can
assume that sl > 0, since otherwise sl < 0 and the factor F .sl /il

on the right-hand side

of (35) is 0. We will show that the il th component of the weight of F .sl /il
z is negative,

where

z D
� �!Y
j2ŒlC1;t�

E
.fj .a;sj //

ij
F
.sj /

ij

�
Vm.a/:

This will prove that .Y;f .a; s// is tail-negative, since il >m. Note that

w.z/Dw
�
zlC1.a/ � � �zt .a/Vm.a/

�
D .cm � n; : : : ; c1 � n; b

0/;

where b0 is a permutation of b. Since kb0k1 D kbk1 D kak1, we have

wil .F
.sl /
il

z/D�sl C .b
0/il < 0;

which completes the proof of the proposition.
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Figure 6. The ladder closure of braid ˇD �31 .

Remark 3.4
Our evaluation algorithm should be closely related to the variant of skew-Howe dual-
ity defined for so-called doubled Schur algebras in [50] and [49].

3.7. An example: The trefoil knot
Before we proceed further, let us illustrate Proposition 3.3 by computing the invariant
of the trefoil and draw some useful conclusions regarding the q-holonomicity of the
invariant.

We take

ˇD �31 D �1�1�1; mD 2; # D .n;n; 0; 0/: (36)

Then LD cl.ˇ/ is the right-handed trefoil knot, colored by a 2 N \ Œ0; n � 1� (see
Figure 6).

By Proposition 3.3 and (34), we obtain that QJ sln
31
.ea/D evn.H.a//, where

H.a/DE
.a/
2 E

.a/
1 E

.a/
3 E

.a/
2 .T3/

3F
.a/
2 F

.a/
3 F

.a/
1 F

.a/
2 ; (37)

where T3 D T3.n� a;n� a;a; a/. Using (29a), we replace each occurrence of T3 by
a sum over the integers and obtain the triple sum formula
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H.a/D
X

s1;s2;s32Z

.�q/s1Cs2Cs3E
.a/
2 E

.a/
1 E

.a/
3 E

.a/
2 .E

.s1/
3 F

.s1/
3 E

.s2/
3 F

.s2/
3

�E
.s3/
3 F

.s3/
3 /F

.a/
2 F

.a/
3 F

.a/
1 F

.a/
2 : (38)

This is an explicit form of special function for H .
Next, we use the commutation rules given in (22)–(24) to sort the expression of

H.a/1# , moving all the E’s to the right and all the F ’s to the left. Every time we
move E.r/i (from the left) past an F .s/i (from the right), we obtain a 1-dimensional
sum over the integers. Then, use (17) to add some delta functions in the sum. Finally,
(53), which is explained later in the proof of Proposition 5.2, tells us to add Heaviside
functions He.k/ (see Section 4). Doing so, we eventually get the following formula
for the quantum sln-invariant of the trefoil colored by ea (the details are given in
Appendix A):

QJ
sln
L .ea/D

"
n

a

#X
s2Z6

.�q/�.s1Cs2Cs3/He.a� s1/He.a� s2/He.a� s3/

�He.aC s1C s2 � s4/He.aC s2C s3 � s5/He.	/

�

"
s2C s1

s4

#"
s2C s3

s5

#"
	 C s2C s6

s6

#"
s1C s2 � s4

s1

#"
	

s1C s2 � s4

#

�

"
s2C s3 � s5

s3

#"
	

s2C s3 � s5

#"
a

a� 	

#"
n� 	

a

#
; (39)

where 	 D s1 C s2 C s3 � s4 � s5 � s6 and s D .s1; : : : ; s6/ 2 Z6. Keep in mind the
convention that

�
r
s

�
D 0 if s < 0.

Let us end this example with some observations. The above formula has the form

QJ
sln
L .ea/D

X
s2Z6

F.a; s/; (40)

where F.a; s/ is a finite product of factors of the following shapes:
(i) .˙q/A.a;s/,
(ii) He.A.a; s//,
(iii) quantum binomial

�
A.a;s/
B.a;s/

�
,

(iv) quantum binomial
�
nCA.a;s/
B.a;s/

�
D
�
qnIA.a;s/
B.a;s/

�
, where for s; l 2 Z we define"

xI s

l

#
D

´
0 if l < 0;Ql
jD1

xqs�jC1�x�1q�sCj�1

qj�q�j
if l � 0:

(41)



THE COLORED HOMFLYPT FUNCTION IS q-HOLONOMIC 425

Here A.a; s/ and B.a; s/ are Z-linear functions. Moreover, for each integer value of
a and n, the sum on the right-hand side of (40) is terminating in the sense that only a
finite number of terms are nonzero. The number of terms are bounded by a polynomial
function of a.

We will show that a similar formula exists for any framed, oriented link colored
with ea. But before we do so, let us recall q-holonomic functions.

4. q-Holonomic functions
q-Holonomic functions of one variable were introduced in the seminal paper of Zeil-
berger [58]. The class of q-holonomic functions resembles in several ways the class
of holonomicD-modules, as acknowledged by conversations of Zeilberger and Bern-
stein prior to the introduction of holonomic functions (see [58]). An extension of the
definition to q-holonomic functions with several variables was given by Sabbah [52],
using the language of homological algebra. In this section we will review the defini-
tion of q-holonomic functions of several variables, give examples, and list the closure
properties of this class under some operations. Our exposition follows Zeilberger,
Sabbah, and the survey paper of the first and third authors [20].

We should point out, however, that the precise definition of q-holonomic func-
tions is not used in the proof of Theorem 1.1. If the reader wishes to take as a black
box the examples of q-holonomic functions given below and their closure properties,
then they can skip this section altogether and still deduce the proof of Theorem 1.1.

4.1. The quantum Weyl algebra
Let V denote a fixed (not necessarily finitely generated) A-module, where A D

ZŒq˙1�. For a natural number r , let Sr.V / be the set of all functions f W Zr ! V

and Sr;C.V / the set of functions f WNr ! V . For i D 1; : : : ; r consider the operators
Li and Mi which act on functions f 2 Sr.V / by

.Lif /.n1; : : : ; ni ; : : : ; nr/D f .n1; : : : ; ni C 1; : : : ; nr/; (42)

.Mif /.n1; : : : ; nr/D q
nif .n1; : : : ; nr/: (43)

It is clear that Li and Mj are invertible operators that satisfy the q-commutation rela-
tions

MiMj DMjMi ; (44a)

LiLj D LjLi ; (44b)

LiMj D q
ıi;jMjLi ; (44c)

for all i; j D 1; : : : ; r .
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Definition 4.1
The r -dimensional quantum Weyl algebra Wr is the A-algebra generated by L˙11 ; : : : ;

L˙1r ;M˙11 ; : : : ;M˙1r subject to the relations (44a)–(44c). Let Wr;C be the subalgebra
of Wr generated by the nonnegative powers of Mj ;Lj .

Given f 2 Sr.V /, the annihilator Ann.f / (a left Wr -module) is defined by

Ann.f /D ¹P 2Wr jPf D 0º: (45)

This gives rise to a cyclic Wr -module Mf , defined by Mf DWrf � Sr.V /, and
isomorphic to Wr=Ann.f /.

4.2. Definition of q-holonomic functions
In this section we follow closely the work of Sabbah [52]. Let N be a finitely gener-
ated Wr;C-module. Consider the increasing filtration F on Wr;C given

FnWr;C D ¹A-span of all monomials M˛Lˇ with ˛;ˇ 2Nr

with total degree at most nº: (46)

The filtration F on Wr;C induces an increasing filtration on N , defined by FnN D

FnWr;C � N . Note that FnWr;C and, consequently, FnN are finitely generated A-
modules for all natural numbers n. An analogue of Hilbert’s theorem for this non-
commutative setting holds: the dimension of the Q.q/-vector space Q.q/˝A FnN

is a polynomial in n, for big enough n. The degree of this polynomial is called the
dimension of N and is denoted by d.N /.

In [52, Theorem 1.5.3] Sabbah proved that d.N /D 2r � codim.N /, where

codim.N /Dmin
®
j 2N j Extj

Wr;C
.N;Wr;C/¤ 0

¯
:

Sabbah also proved that d.N /� r if N is nonzero and does not have monomial tor-
sion. Here a monomial torsion is a monomial P in Wr;C such that Px D 0 for a cer-
tain nonzero x 2N . It is easy to see that N embeds in the Wr -module Wr ˝Wr;C

N

if and only ifN has no monomial torsion. Throughout the article, we will assume that
all Wr;C-modules do not have monomial torsion.

Definition 4.2
(a) A Wr;C-module N is q-holonomic if N D 0 or N is finitely generated, does

not have monomial torsion, and d.N /D r .
(b) An element f 2N , where N is a Wr;C-module, is q-holonomic over Wr;C if

Wr;C � f is a q-holonomic Wr;C-module.
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The above definition defines q-holonomic Wr;C-modules, and our next task is
to define q-holonomic Wr -modules. Let M be a nonzero finitely generated left Wr -
module. Following [52, Section 2.1], the codimension and dimension of M are
defined in terms of homological algebra by

codim.M/Dmin
®
j 2N j Extj

Wr
.M;Wr/¤ 0

¯
; dim.M/D 2r � codim.M/:

The key Bernstein inequality (proved by Sabbah [52, Theorem 2.1.1] in the q-
case) asserts that if M ¤ 0 is a finitely generated Wr -module, then dim.M/� r .

Definition 4.3
(a) A Wr -module M is q-holonomic if either M D 0 or M is finitely generated

and dim.M/D r .
(b) An element f 2M , where M is a Wr -module, is q-holonomic over Wr if

Wr � f is a q-holonomic Wr -module.

Next we compare q-holonomic modules over Wr versus over Wr;C. The fol-
lowing proposition was proven in [20, Section 3]. Next we compare q-holonomic
modules over Wr versus over Wr;C, using Sabbah [52, Corollary 2.1.4].

PROPOSITION 4.4
Suppose that f 2M , where M is a Wr -module. Then f is q-holonomic over Wr if
and only if it is q-holonomic over Wr;C.

The next corollary is taken from [20, Section 3].

COROLLARY 4.5
If f 2 Sr.V / is q-holonomic and g 2 Sr;C.V / is its restriction to Nr , then g is q-
holonomic.

Remark 4.6
The definition of q-holonomic A-modules can be extended to q-holonomic R-mod-
ules, where R is the ring (and also an A-module)

RDQ.q/Œx˙1�: (47)

Proposition 4.4 and Theorems 4.7 and 4.8 below hold after replacing A by R.

4.3. Properties of q-holonomic functions
In this section we summarize some closure properties of q-holonomic functions,
whose proofs can be found in [20, Section 5].
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THEOREM 4.7
Suppose that f;g 2 Sr.V / are q-holonomic functions. Then, the following hold.
(a) f C g is q-holonomic.
(b) fg is q-holonomic.
(c) Restriction. For a fixed a 2 Z, the function g 2 Sr�1.V / defined by

g.n1; : : : ; nr�1/D f .n1; : : : ; nr�1; a/

is q-holonomic.
(d) Extension. The function h 2 SrC1.V / defined by

h.n1; : : : ; nrC1/D f .n1; : : : ; nr/

is q-holonomic.
(e) Linear substitution. If A 2 GL.r;Z/ and f 2 Sr.V / is q-holonomic, so is the

composition f ıA 2 Sr.V /.

Let Sr�1;1.V / denote the set of all functions f W Zr ! V such that, for every
.n1; : : : ; nr�1/ 2 Z

r�1, f .n1; : : : ; nr/D 0 for all but a finite number of nr ’s.

THEOREM 4.8
(a) Suppose that f 2 Sr�1;1.V / is q-holonomic. Then, g 2 Sr�1.V /, defined by

g.n1; : : : ; nr�1/D
X
nr2Z

f .n1; : : : ; nr/;

is q-holonomic.
(b) Suppose that f 2 Sr.V / is q-holonomic. Then h 2 SrC1.V /, defined by

h.n1; : : : ; nr�1; a; b/D

bX
nrDa

f .n1; n2; : : : ; nr/; (48)

is q-holonomic.

4.4. Elementary q-holonomic functions
A function g W Zs ! Zr is affine if there is an (r � s)-matrix A with integer entries
and b 2 Zr such that g.a/DAaC b. If b D 0, then such a function is called linear.

A function f W Zr ! Q.q/Œx˙1� is called an elementary block if f is a finite
product of compositions of a linear function Zr ! Zs (for s D 1; 2) with one of the
following functions:
(i) Z! ZŒq˙1�; k! .�1/k , or k! qk , or k!He.k/,



THE COLORED HOMFLYPT FUNCTION IS q-HOLONOMIC 429

(ii) Z2! ZŒq˙1�; .k; l/! .�1/kl , or .k; l/! ık;l , or .k; l/! Œ k
l
�, or .k; l/!

Œ xIk
l
�.

Observe that functions of the form (i) or (ii) above are q-holonomic (see [20]). Con-
sider the function f .n1; n2/ D .�1/n1n2 . Its annihilator ideal contains the monic
operators L21 � 1 and L22 � 1, which generate a q-holonomic ideal (see [20, Theo-
rem 7.2(a)]); hence, f is q-holonomic.

A function f W Zr !Q.q/Œx˙1� is called elementary if it can be presented by a
terminating sum

f .a/D
X
b2Zl

g.a; b/;

where g W ZkCl !Q.q/Œx˙1� is an elementary block. Here “the sum is terminating”
means that for each a there are only a finite number of b’s such that g.a; b/ ¤ 0.
Theorems 4.7 and 4.8 imply the following.

COROLLARY 4.9
Every elementary block and every elementary function is q-holonomic.

5. Proof of Theorem 1.1

5.1. Evaluation of monomials is q-holonomic
For n 2 Z, let evaln WQ.q/Œx˙1�!Q.q/ be the Q.q/-algebra homomorphism defined
by

evaln.f /D f jxDqn : (49)

The next lemma recovers an element of Q.q/Œx˙1� from its evaluations.

LEMMA 5.1
Suppose that f;g 2 Q.q/Œx˙1� satisfy evaln.f / D evaln.g/ for infinitely many n.
Then f D g.

Proof
This follows from the fact that a Laurent polynomial in x has at most k roots, where
k is the difference between the highest order and the lowest order in x.

Let X D .X1; : : : ;Xk/ be a sequence of elements of the set X2m from (21).
Recall that, for b D .b1; : : : ; bk/ 2 Zk , the monomial X .b/ 2 A2m and its weight are
defined in Section 3.1. By convention, X .b/ D 0 if one of the bi ’s is negative. The
goal of this section is to calculate
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evn.X
.b//D ev.1#X

.b/1#/;

where # D .nm; 0m/ 2 Z2m.

PROPOSITION 5.2
Suppose thatX D .X1; : : : ;Xk/ is a sequence of elements of the set X2m. There exists
a unique function

QX W Z
k!Q.q/Œx˙1�

such that, for all b 2 Zk , n 2N,

evn.X
.b//D evaln

�
QX .b/

�
: (50)

Moreover, QX is an elementary function given by

QX .b/D
X
j2Zl

FX .b; j / (51)

for a certain l 2N and elementary block FX W ZkCl !Q.q/Œx˙1�. In addition,
(i) FX .b; j /D 0 if kjk1 > kbk1 (which implies that the sum (51) is terminat-

ing), and
(ii) FX .b; j / D 0 if .X; b/ is tail-negative or if one of the components of b is

negative.

Proof
The uniqueness follows from Lemma 5.1. Let us prove the existence. The idea is to
move the Ei ’s to the right of the Fj ’s by using (22) and (23) (this creates a sum of
a product of q-binomials) and then use (17), which creates a product of ı-functions.
Besides, we insert Heaviside functions to make the sum terminating. The result is an
elementary function. Now we give the details of the proof.

Let l � k be the maximal index such that Xl 2 ¹E1; : : : ;E2m�1º. We use induc-
tion on k and then induction on l . If k D 0, then the statement is obvious.

For fixed k, we use induction on l , beginning with l D k and going down.
(a) Suppose that l D k. Recall that # D .nm; 0m/. Using (17), we have

X .b/1# D ıbk ;0Y
.b0/1# ;

where Y D .X1; : : : ;Xk�1/ and b0 D .b1; : : : ; bk�1/. For Y the statement holds. De-
fine

FX .b; j / WD FY .b
0; j /ıbk ;0; QX .b/D

X
j2Zl

FX .b; j /:
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Then FX .b; j / is an elementary summand. Both statements (i) and (ii) for FX .b; j /
follow immediately from those for FY .b0; j /. ThenQX is an elementary q-holonomic
function, and (50) holds.

(b) Suppose that l < k. Assume that Xl DEr and XlC1 D Fs . Let Y D .Y1; : : : ;
Yk/ be the sequence defined by Yi D Xi for all i ’s except for those such that Yl D
XlC1 and YlC1 DXl . By induction, the statement holds for Y , and we can define an
elementary summand FY .b; j / for .b; j / 2 ZkCl . Consider two cases.

Case 1: r ¤ s. Because ErFs D FsEr , we have X .b/ D Y .b
0/ where b0 is

obtained from b by swapping the l th and .l C 1/th components. This case is reduced
to the case of Y by defining FX .b; j /D FY .b0; j /.

Case 2: r D s. We have

X .b/ DXleft.E
.bl /
r F

.blC1/
r /Xright;

where

Xleft D
�!Y

j2Œ1;l�1�

X
.bj /

j ; Xright D
�!Y

j2ŒlC2;k�

X
.bj /

j :

We have Xright1# 2HomnLad2m.#;�/, where

�D # Cw.Xright/D # �

kX
jDlC2

bj˛ij :

Here the index ij is defined so that Xj D Fij for j > l . Using (14a), we have

X .b/1# D
X
t2Z

�
h�;˛ri C bl � blC1

t

	
XleftF

.blC1�t/
r E.bl�t/r Xright1#

D
X
t2Z

�
h�;˛ri C bl � blC1

t

	
Y .b
0/1# ; (52)

where b0 D .b01; : : : ; b
0
k
/ such that b0i D bi for all i ’s except for i D l; l C 1, with

b0
l
D blC1 � t; b

0
lC1
D bl � t . Clearly b0 is a linear function of .b; t/.

Note that h#;˛ri D nı.r;m/. From the definition of �,

h�;˛ri C bl � blC1 D nı.r;m/C Lin.b/;

where Lin.b/D hw.Xright/; ˛ri C bl � blC1 is a Z-linear form of b. For j 2 ZlC1,
we write j D .j 0; t /; that is, t is the last component of j . For b 2 Zk and j 2 ZlC1,
define

FX .b; j /D

´�
xILin.b/

t

�
FY .b

0; j 0/H .X; b/ if r Dm;�
Lin.b/
t

�
FY .b

0; j 0/H .X; b/ if r ¤m;
(53)
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where H .X; b/, defined by (26), is an elementary function of b.
Then FX .b; j / is an elementary function. Let us prove (i) and (ii), which claim

FX .b; j /D 0 under certain conditions. If t < 0, then the first factor on the right-hand
side of (53) is 0. Hence, we will assume t � 0 in what follows.
(i) Suppose that kjk1 > kbk1. Then either kj 0k1 > kbk1 or jt j > kbk1. In

the first case, kj 0k1 > kbk1 � kb0k1, and FY .b0; j 0/D 0. In the latter case,
the l th component of b0 is negative. By (ii) we have FY .b0; j 0/D 0. Hence,
FY .b; j /D 0.

(ii) First assume that one of the components of b is negative. Then one of the
components of b0 is negative. Hence, FY .b0; j 0/D 0, implying FX .b; j /D 0.

Now assume that .X; b/ is tail-negative. Then the third factor on the right-hand
side of (53) is 0. Hence, FX .b; j /D 0.

Let us prove (50). If .X; b/ is tail-negative, then both sides of (50) are 0, by
Lemma 3.1 and the property of H .X; b/. Assume now that .X; b/ is not tail-negative.
Then H .X; b/D 1, and (50) follows from (52), (53), and the identity (50) applicable
to Y . This completes the proof of the proposition.

5.2. Coloring with partitions with one column

THEOREM 5.3
Suppose L is an oriented, framed link with r ordered components. There exists a
unique function

QL WN
r !Q.q/Œx˙1�

such that, for any integer n� 2 and aD .a1; : : : ; ar/ 2Nr \ Œ0; n� 1�r ,

QJ
sln
L .ea1 ; : : : ; ear /D evaln

�
QL.a/

�
: (54)

Moreover, QL is elementary and, hence, a q-holonomic function.

Proof
The uniqueness follows from Lemma 5.1. Let us prove the existence. Suppose that L
is the closure of a braid ˇ on m strands, as in Section 3.5. By Proposition 3.3, there
exists a sequence X D .X1; : : : ;Xk/ of elements from Ei ;Fi with i D 1; : : : ; 2m� 1
and linear functions g1; g2 W ZrCt ! Z and f W ZrCt ! Zk such that

QJ
sln
L .ea1 ; : : : ; ear /D

X
s2Zt

.�1/g1.a;s/qg2.a;s/evn.X
.f .a;s///:

By Proposition 5.2, there exists an elementary summand function FX W Z
kCl !

Q.q/Œx˙1� such that
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QJ
sln
L .ea1 ; ; : : : ; ear /D

X
s2Zt

.�1/g1.a;s/qg2.a;s/evaln
�X
j2Zl

FX
�
f .a; s/; j

��
:

By Proposition 5.2(i),

FX
�
f .a; s/; j

�
D 0 if kjk1 >



f .a; s/


1
: (55)

When ksk1 > kak1, .X;f .a; s// is tail-negative (see Proposition 3.3). Hence,
by Proposition 5.2(ii),

FX
�
f .a; s/; j

�
D 0 if ksk1 > kak1: (56)

Then (55) and (56) imply that the sum

QL.a/ WD
X
s2Zt

X
j2Zl

.�1/g1.a;s/qg2.a;s/F
�
f .a; s/; j

�
is terminating for each a 2 Zr . Then QL is elementary q-holonomic, and (54) holds.

Remark 5.4
By our construction, QL vanishes in Zr nNr .

Remark 5.5
Theorem 5.3 gives an alternative construction of the colored HOMFLYPT polyno-
mial WL of a framed, oriented link colored by partitions with one column. By the
uniqueness,

QL.a1; : : : ; ar/DWL.ea1 ; : : : ; ear /:

5.3. The Jacobi–Trudi formula
In this section we explain how to extend the q-holonomicity of the HOMFLYPT poly-
nomial of a link colored by partitions with one row to the case of partitions with a
fixed number of rows. The key idea is the Jacobi–Trudi formula, which expresses the
Schur function s� of a partition � 2P`, considered as an element of the algebra ƒ, as
a determinant of a matrix whose entries are partitions with one row. Observe that for
partitions with one row (resp., one column) we have s.a/ D ha (resp., s.1a/ D ea).

The Jacobi–Trudi formula (see [39]) states that if � D .�1; : : : ; �`/ 2 P`, then
in ƒ,

s� D det
�
.e
�
�

i
Cj�i

/`i;jD1
�
;
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where the right-hand side is an (` � `)-determinant, with the convention e0 D 1 and
en D 0 for n < 0. For example, if � is a partition with three rows with �1, �2, and �3
boxes, then we have

s�1;�2;�3 D � e�1C2e�2e�3�2C e�1C1e�2C1e�3�2C e�1C2e�2�1e�3�1

� e�1e�2C1e�3�1 � e�1C1e�2�1e�3 C h�1e�2e�3 :

Let L denote a framed, oriented link L with r ordered components, and choose
a partition � 2P` and partitions �2; : : : ;�r . Then, Proposition 2.4(c) implies that

WL.�;�1; : : : ;�r/

D
X

�2Sym`

sgn.�/WL0.e�1C�.1/�1; : : : ; e�`C�.`/�`;�1; : : : ;�r/; (57)

where L0 is the link obtained from L by replacing the first framed component of L
by ` of its parallels.

5.4. Proof of Theorem 1.1
Fix a framed, oriented link L with r ordered components. By using the symmetry
of the HOMFLYPT polynomial from Proposition 2.4(c), it suffices to show that the
colored HOMFLYPT polynomial of L, colored by partitions with at most ` rows, is
q-holonomic. Said differently, it suffices to show that the functionWL ı .�

�

`
/r WNr`!

Q.q/Œx˙1� is q-holonomic. Let �D .�1; : : : ; �r`/ 2Nr`. Using (57), we have�
WL ı .�

�

`
/r
�
.�/D

X
�

sgn.�/W�L.ef�;1.�/; : : : ; ef�;r`.�//;

where the sum is over � D .�1; : : : ; �r/ 2 .Sym`/
r , sgn.�/D sgn.�1/ � � � sgn.�r/,�L

is the link with r` components obtained from L by replacing each component with
its `th parallel, and f�;i W Zr`! Z are affine. Theorem 4.7(a) and 4.7(e) together with
Theorem 5.3 imply that WL ı .�

�

`
/r is a sum of q-holonomic functions and, thus, is

q-holonomic. This concludes the proof of Theorem 1.1.

Appendices

A. The formula for the invariant of the trefoil
In this section we give the omitted details of how (38) implies (39). We start with (38)
and observe thatX

s1;s2;s32Z

.�q/�.s1Cs2Cs3/E
.a/
2 E

.a/
1 E

.a/
3 E

.a/
2 E

.s1/
3 F

.s1/
3 E

.s2/
3 F

.s2/
3 E

.s3/
3 F

.s3/
3

�F
.a/
2 F

.a/
3 F

.a/
1 F

.a/
2 1.n;n;0;0/
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D
X

s1;s2;s32Z

.�q/�.s1Cs2Cs3/E
.a/
2 E

.a/
1 E

.a/
3 E

.a/
2 .E

.s1/
3 F

.s1/
3 E

.s2/
3 F

.s2/
3 E

.s3/
3

�F
.s3/
3 1.n�a;n�a;a;a//F

.a/
2 F

.a/
3 F

.a/
1 F

.a/
2 1.n;n;0;0/; (58)

where we used (13) to include the idempotent in the middle term (and the fact that
.n;n; 0; 0/� a˛1 � 2a˛2 � a˛3 D .n� a;n� a;a; a/). The term in parentheses can
be simplified as follows:

E
.s1/
3 F

.s1/
3 E

.s2/
3 F

.s2/
3 .E

.s3/
3 F

.s3/
3 1.n�a;n�a;a;a//

(14a)
D E

.s1/
3 F

.s1/
3 F

.s2/
3 E

.s2/
3 F

.s3/
3 E

.s3/
3 1.n�a;n�a;a;a/

(13)
D .F

.s1/
3 E

.s1/
3 1.n�a;n�a;a;a//F

.s2/
3 E

.s2/
3 F

.s3/
3 E

.s3/
3

(14a)
D F

.s1/
3 E

.s1/
3 F

.s2/
3 E

.s2/
3 F

.s3/
3 E

.s3/
3 1.n�a;n�a;a;a/

(13)
D F

.s1/
3 1.n�a;n�a;aCs1;a�s1/E

.s1/
3 F

.s2/
3 1.n�a;n�a;aCs2;a�s2/E

.s2/
3

�F
.s3/
3 1.n�a;n�a;aCs3;a�s3/E

.s3/
3

(3.1)
D He.a� s1/He.a� s2/He.a� s3/F

.s1/
3 .E

.s1/
3 F

.s2/
3 1.n�a;n�a;aCs2;a�s2//

� .E
.s2/
3 F

.s3/
3 1.n�a;n�a;aCs3;a�s3//E

.s3/
3

(14a)
D He.a� s1/He.a� s2/He.a� s3/

X
s4;s5

"
s2C s1

s4

#"
s2C s3

s5

#

�F
.s1/
3 .F

.s2�s4/
3 E

.s1�s4/
3 1.n�a;n�a;aCs2;a�s2//

� .F
.s3�s5/
3 E

.s2�s5/
3 1.n�a;n�a;aCs3;a�s3//E

.s3/
3 1.n�a;n�a;a;a/

(13)
D He.a� s1/He.a� s2/He.a� s3/

X
s4;s5

"
s2C s1

s4

#"
s2C s3

s5

#
F
.s1/
3

�F
.s2�s4/
3 1.n�a;n�a;aCs1Cs2�s4;a�s1�s2Cs4/

� .E
.s1�s4/
3 F

.s3�s5/
3 1.n�a;n�a;aCs2Cs3�s5;a�s2�s3Cs5//

�E
.s2�s5/
3 E

.s3/
3 1.n�a;n�a;a;a/

(3.1)
D He.a� s1/He.a� s2/He.a� s3/He.aC s1C s2 � s4/He.aC s2C s3 � s5/

�
X
s4;s5

"
s2C s1

s4

#"
s2C s3

s5

#
F
.s1/
3 F

.s2�s4/
3 .E

.s1�s4/
3
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�F
.s3�s5/
3 1.n�a;n�a;aCs3Cs2�s5;a�s3�s2Cs5//

�E
.s2�s5/
3 E

.s3/
3 1.n�a;n�a;a;a/

(14a)
D He.a� s1/He.a� s2/He.a� s3/He.aC s1C s2 � s4/He.aC s2C s3 � s5/

�
X

s4;s5;s6

"
s2C s1

s4

#"
s2C s3

s5

#"
s1C 2s2C s3 � s4 � s5

s6

#
F
.s1/
3

�F
.s2�s4/
3 .F

.s3�s5�s6/
3 E

.s1�s4�s6/
3 /E

.s2�s5/
3 E

.s3/
3 1.n�a;n�a;a;a/

(3.1)
D He.a� s1/He.a� s2/He.a� s3/He.aC s1C s2 � s4/

�He.aC s2C s3 � s5/He.aC s1C s2C s3 � s4 � s5 � s6/

�
X

s4;s5;s6

"
s2C s1

s4

#"
s2C s3

s5

#"
s1C 2s2C s3 � s4 � s5

s6

#

� .F
.s1/
3 F

.s2�s4/
3 F

.s3�s5�s6/
3 /.E

.s1�s4�s6/
3 E

.s2�s5/
3 E

.s3/
3 /1.n�a;n�a;a;a/

(14d)
D He.a� s1/He.a� s2/He.a� s3/He.aC s1C s2 � s4/

�He.aC s2C s3 � s5/He.aC s1C s2C s3 � s4 � s5 � s6/

�
X

s4;s5;s6

"
s2C s1

s4

#"
s2C s3

s5

#"
s1C 2s2C s3 � s4 � s5

s6

#

�

"
s1C s2 � s4

s1

#"
s1C s2C s3 � s4 � s5 � s6

s1C s2 � s4

#

�

"
s2C s3 � s5

s3

#"
s1C s2C s3 � s4 � s5 � s6

s2C s3 � s5

#

�F
.s1Cs2Cs3�s4�s5�s6/
3 E

.s1Cs2Cs3�s4�s5�s6/
3 1.n�a;n�a;a;a/:

Then to complete the computation of YE.a/1# from (58), set 	 D s1C s2C s3� s4�
s5� s6 for simplicity, and use the above computation to simplify each term in the sum
from (58)

1.n;n;0;0/E
.a/
2 E

.a/
1 E

.a/
3 E

.a/
2 F

.s1Cs2Cs3�s4�s5�s6/
3 E

.s1Cs2Cs3�s4�s5�s6/
3

�F
.a/
2 F

.a/
3 F

.a/
1 F

.a/
2 1.n;n;0;0/

DE
.a/
2 E

.a/
1 E

.a/
3 .E

.a/
2 F

.�/
3 /.E

.�/
3 F

.a/
2 /F

.a/
3 F

.a/
1 F

.a/
2 1.n;n;0;0/

(14b)
D E

.a/
2 E

.a/
1 E

.a/
3 .F

.�/
3 E

.a/
2 /.F

.a/
2 E

.�/
3 /F

.a/
3 F

.a/
1 F

.a/
2 1.n;n;0;0/
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(13)
D E

.a/
2 E

.a/
1 .E

.a/
3 F

.�/
3 1.n�a;n;�;a��//E

.a/
2 F

.a/
2 .E

.�/
3 F

.a/
3 1.n�a;n;a;0//F

.a/
1 F

.a/
2

(14a)
D

X
p1;p2

"
	

p2

#"
	

p1

#
E
.a/
2 E

.a/
1 .F

.��p2/
3 E

.a�p2/
3 1.n�a;n;�;a��//

�E
.a/
2 F

.a/
2 .F

.a�p1/
3 E

.��p1/
3 1.n�a;n;a;0//F

.a/
1 F

.a/
2

D
X
p1;p2

"
	

p2

#"
	

p1

#
1#.E

.a/
2 E

.a/
1 F

.��p2/
3 /E

.a�p2/
3 E

.a/
2 F

.a/
2 F

.a�p1/
3

� .E
.��p1/
3 F

.a/
1 F

.a/
2 /1#

(14b)
D

X
p1;p2

"
	

p2

#"
	

p1

#
1#.F

.��p2/
3 E

.a/
2 E

.a/
1 /E

.a�p2/
3 E

.a/
2 F

.a/
2 F

.a�p1/
3

� .F
.a/
1 F

.a/
2 E

.��p1/
3 /1#

D
X
p1;p2

"
	

p2

#"
	

p1

#
.1#F

.��p2/
3 /E

.a/
2 E

.a/
1 E

.a�p2/
3 E

.a/
2 F

.a/
2 F

.a�p1/
3 F

.a/
1 F

.a/
2

� .E
.��p1/
3 1#/

(17)
D

X
p1;p2

"
	

p2

#"
	

p1

#
.1#ı�;p2/E

.a/
2 E

.a/
1 E

.a�p2/
3 E

.a/
2 F

.a/
2 F

.a�p1/
3 F

.a/
1

�F
.a/
2 .ı�;p11#/

(13)
D E

.a/
2 E

.a/
1 E

.a��/
3 .E

.a/
2 F

.a/
2 1�.n�a;n;�;a��//F

.a��/
3 F

.a/
1 F

.a/
2 1#

(14a)
D
X
s7

"
n� 	

s7

#
E
.a/
2 E

.a/
1 E

.a��/
3 .F

.a�s7/
2 E

.a�s7/
2 1.n�a;n;�;a��//

�F
.a��/
3 F

.a/
1 F

.a/
2 1#

D
X
s7

"
n� 	

s7

#
E
.a/
2 .E

.a/
1 E

.a��/
3 F

.a�s7/
2 /.E

.a�s7/
2 F

.a��/
3 F

.a/
1 /F

.a/
2 1#

(14b)
D
X
s7

"
n� 	

s7

#
E
.a/
2 .F

.a�s7/
2 E

.a/
1 E

.a��/
3 /.F

.a��/
3

�F
.a/
1 E

.a�s7/
2 /F

.a/
2 1#
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(13)
D
X
s7

"
n� 	

s7

#
.E

.a/
2 F

.a�s7/
2 1.n;n�s7;s7;0//E

.a/
1 E

.a��/
3

�F
.a��/
3 F

.a/
1 .E

.a�s7/
2 F

.a/
2 1#/

(14a)
D

X
s7;v1;v2

"
n� 	

s7

#"
n� s7

v1

#"
n� s7

v2

#
.1#F

.a�s7�v2/
2 E

.a�v2/
2 /E

.a/
1 E

.a��/
3

�F
.a��/
3 F

.a/
1 .F

.a�v1/
2 E

.a�s7�v1/
2 1#/

D
X

s7;v1;v2

"
n� 	

s7

#"
n� s7

v1

#"
n� s7

v2

#
.1#F

.a�s7�v2/
2 /E

.a�v2/
2 E

.a/
1 E

.a��/
3 F

.a��/
3

�F
.a/
1 F

.a�v1/
2 .E

.a�s7�v1/
2 1#/

(17)
D

X
s7;v1;v2

"
n� 	

s7

#"
n� s7

v1

#"
n� s7

v2

#
.1#ıv2;a�s7/E

.a�v2/
2 E

.a/
1 E

.a��/
3 F

.a��/
3

�F
.a/
1 F

.a�v1/
2 .ıv1;a�s71#/

D
X
s7

"
n� 	

s7

#"
n� s7

a� s7

#"
n� s7

a� s7

#
E
.s7/
2 E

.a/
1 E

.a��/
3 F

.a��/
3 F

.a/
1 F

.s7/
2 1#

(13)
D
X
s7

"
n� 	

s7

#"
n� s7

a� s7

#"
n� s7

a� s7

#
E
.s7/
2 E

.a/
1 .E

.a��/
3 F

.a��/
3 1.n�a;nCa�s7;s7;0//

�F
.a/
1 F

.s7/
2 1#

(14a)
D

X
s7;v3

"
n� 	

s7

#"
n� s7

a� s7

#"
n� s7

a� s7

#"
s7

v3

#
E
.s7/
2 E

.a/
1

� .F
.a���v3/
3 E

.a���v3/
3 1.n�a;nCa�s7;s7;0//F

.a/
1 F

.s7/
2 1#

(14b)
D

X
s7;v3

"
n� 	

s7

#"
n� s7

a� s7

#2"
s7

v3

#
.1#F

.a���v3/
3 /E

.s7/
2 E

.a/
1 F

.a/
1 F

.s7/
2

� .E
.a���v3/
3 1#/

(17)
D
X
s7;v3

"
n� 	

s7

#"
n� s7

a� s7

#2"
s7

v3

#
.1#ıv3;a�� /E

.s7/
2 E

.a/
1 F

.a/
1 F

.s7/
2 .ıv3;a��1#/



THE COLORED HOMFLYPT FUNCTION IS q-HOLONOMIC 439

(13)
D
X
s7

"
n� 	

s7

#"
n� s7

a� s7

#2"
s7

a� 	

#
E
.s7/
2 .E

.a/
1 F

.a/
1 1.n;n�s7;s7;0//F

.s7/
2

(14a)
D

X
s7;v4

"
n� 	

s7

#"
n� s7

a� s7

#2"
s7

a� 	

#"
s7

v4

#
E
.s7/
2

� .F
.a�v4/
1 E

.a�v4/
1 1.n;n�s7;s7;0//F

.s7/
2 1#

(14b)
D

X
s7;v4

"
n� 	

s7

#"
n� s7

a� s7

#2"
s7

a� 	

#"
s7

v4

#
.1#F

.a�v4/
1 /E

.s7/
2 F

.s7/
2 .E

.a�v4/
1 1#/

(17)
D
X
s7

"
n� 	

s7

#"
n� s7

a� s7

#2"
s7

a� 	

#
�
"
s7

a

#
1#E

.s7/
2 F

.s7/
2 1# : (59)

Tracing through this computation we have placed the symbol � to indicate places
where we must introduce Heaviside functions, so the end result should be multiplied
by He.	/. The Heaviside functions He.a � 	/He.a � s7/He.s7 � a/ are implied by
the definition of quantum binomial coefficients from (15c). Thus, s7 D a and the sum
simplifies to

He.	/

"
n� 	

a

#"
n� a

0

#"
n� a

0

#"
a

a� 	

#"
a

a

#
1.n;n;0;0/E

.a/
2 F

.a/
2 1.n;n;0;0/

DHe.	/

"
n� 	

a

#"
a

a� 	

#
1.n;n;0;0/E

.a/
2 F

.a/
2 1.n;n;0;0/

(14a)
D He.	/

X
v6

"
n� 	

a

#"
a

a� 	

#"
n

v6

#
1.n;n;0;0/F

.a�v6/
2 E

.a�v6/
2 1.n;n;0;0/

(17)
D He.	/

"
n� 	

a

#"
a

a� 	

#"
n

a

#
1#

(17)
D He.	/

"
n� 	

a

#"
n

a� 	

#
1# : (60)

By putting it all together, the a-colored trefoil evaluates to (39).

B. Proof of Propositions 2.4(b) and 2.4(c)
For a compact oriented surface (possibly with boundary) †, let S.†/ be the HOM-
FLYPT skein algebra of †, as defined in [3] and [42]. Recall that, as a Q.x; q/-
module, S.†/ is generated by oriented links diagrams on † modulo the regular iso-



440 GAROUFALIDIS, LAUDA, and LÊ

topy, the two relations

� D .q � q�1/

D x

and the relation that a disjoint trivial knot can be removed from a diagram at the
expense of multiplication with x�x�1

q�q�1
. The product L1L2 of two links diagrams is

obtained by placing L1 atop L2. When † is a disk, S.†/ŠQ.q; x/ via a map L!
hLi, where hLi is a framed version of the HOMFLYPT polynomial.

The HOMFLYPT skein algebra of the annulus contains the subalgebra CC gen-
erated by the closure of all braids. It is known that CC is isomorphic to the algebra of
symmetric functions (with ground ring Q.q; x/). Under this isomorphism, the Schur
function s� of a partition � corresponds to a certain skein element Q�, which will
be recalled later. The relation with the colored HOMFLYPT polynomial is as fol-
lows. For an oriented link diagram L on the disk with r ordered components and for
partitions �i for i D 1; : : : ; r , we have

WL.�1; : : : ; �r/D
˝
L � .Q�1 ; : : : ;Q�r /

˛
: (61)

Here, L � .Q�1 ; : : : ;Q�r / is the Q.q; x/-linear combination of link diagrams on
the disk obtained by replacing the i th component of L by Q�i . The above equal-
ity implies Proposition 2.4(b).

Let � WQ.x; q/!Q.x; q/ denote the Q-algebra automorphism given by �.x/D
x, �.q/D�q�1. One can easily check that � extends to a Q-linear automorphism of
S.†/ for any † by setting �.L/ WD L for any link diagram L on †. It is easy to see
that if y is an element of the HOMFLYPT skein algebra of the disk, then

�
�
hyi
�
D
˝
�.y/

˛
: (62)

LEMMA B.1
For any partition � one has

�.Q�/DQ�� : (63)

Proof
Aiston and Morton [3] gave a geometric description of Q� in terms of closures of
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braids. Let us recall this formula for partitions with one row ha D .a/ or one column
ea D .1

a/ from [3, p. 11]:

Q.a/ D
1

˛.a/

X
	2Syma

ql.	/b!	 ; Q.1a/ D
1

˛.1a/

X
	2Syma

.�q�1/l.	/b!	 : (64)

Here, for a permutation 
 of Symn, !	 denotes the positive braid corresponding to

 , and b!	 2 C denotes the closure of !	 . Moreover, ˛� is given by [3, p. 14] as

˛� D
Y

.i;j /2�

qj�i
�
hook.ij /

�
; (65)

where hook.ij / is the hook length of the cell .i; j / of the partition �.
From (64) and (65) one can readily check that �.Q.a// D Q.1a/, proving the

lemma for the case � D ha D .a/. The case of general � can be proved similarly,
using explicit formulas of Q� as described in [3]. Alternatively, one can reduce the
general case to the case of one row as follows. The two Jacobi–Trudi formulas

s� D det
�
.h�iCj�i /

`
i;jD1

�
; s�� D det

�
.e�iCj�i /

`
i;jD1

�
;

together with the case �D ha, imply the lemma for general partitions.

Suppose that L is an oriented link diagram L on the disk with r ordered compo-
nents, and suppose that �i for i D 1; : : : ; r are partitions. We have

�
�
WL.�1; : : : ; �r/

�
D �

�˝
L � .Q�1 ; : : : ;Q�r /

˛�
by (61)

D
˝
�
�
L � .Q�1 ; : : : ;Q�r /

�˛
by (62)

D
˝
L �

�
�.Q�1/; : : : ; �.Q�r /

�˛
D
˝
L � .Q

�
�
1

; : : : ;Q
�
�
r
/
˛

by (63)

DWL.�
�
1; : : : ; �

�
r /:

This concludes the proof of Proposition 2.4(c).

C. The recursion for the colored HOMFLYPT of the trefoil
Let � 2 Pn�1 be a partition of length at most n � 1. We also use � to denote the
corresponding Uq.sln/-module. For every positive integer k, the theory of ribbon
categories gives a representation J WBk ! Aut.�˝k/, where Bk is the braid group
on k strands and Aut.�˝k/ is the group of Uq.sln/-linear automorphisms of �˝k .

Suppose that ˇ 2 Bm is a braid on m strands, and suppose that L D cl.ˇ/ is
the oriented, framed link obtained by closing ˇ in the standard way, with blackboard
framing. Then
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JL.�;�; : : : /D tr�
˝m

q

�
J.ˇ/

�
; (66)

where for a Uq.sln/-linear map f W V ! V ,

trVq .f /D tr.f g; V /:

Here the right-hand side is the usual trace of f g acting on V , and g 2 Uq.sln/ is the
so-called charm element whose exact formula is not needed here. In particular, for
a finite-dimensional weight Uq.sln/-module V , the quantum dimension dimq.V / WD

JU .V / (where U is the unknot) is

dimq.V / WD trVq .id/D tr.g; V /:

Let � be the standard generator of B2 (see Xa;b of Figure 1). Then J.�/ is
defined by the universal R-matrix, and the action of J.�/ on h˝2m can be calculated
as follows. The decomposition of h˝2m into irreducible Uq.sln/-modules has the form

h˝2m D

mM
kD0

�m;k ;

where �m;k is the partition .2m � k;k/. Since J.�/ is Uq.sln/-linear, the Schur
lemma shows that there are scalars cm;k 2Q.q1=n/ such that on h˝2m ,

J.�/j
h
˝2
m
D

mM
kD0

cm;k id
m;k : (67)

One of the axioms of the ribbon structure of Uq.sln/ is that

J.�2/jV˝W D .r�1V ˝ r�1W /rV˝W ; (68)

where r is the ribbon element, which belongs to the center of a certain completion of
Uq.sln/ and acts on any finite-dimensional weight Uq.sln/-module (see [46], [54]).
Geometrically, rD JT , where T is the trivial 1–1 tangle with framing 1, and its action
on � is known (see, e.g., [35, (1.7)]):

rjV� D r.�/id�; where r.�/D qh�;�C2�i: (69)

Here h�; �i is the inner product on the weight space of Uq.sln/ normalized such that
each root has square length 2, and 2� is the sum of all positive roots.

Using (68) in the square of (67), we get

.cm;k/
2 D r.�m;k/r.hm/

�2:
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Taking the square root and using (69), one gets the value of .cm;k/, up to sign ˙1.
The sign can be determined by noting that, when q D 1, J.�/ is the permutation,
J.�/.x1˝ x2/D x2˝ x1. Eventually, we get

cm;k D .�1/
kq�m

2=nqm
2�2mkCk2�k : (70)

Suppose that Ts is the link closure of � s , which is a torus link of type .2; s/. By (66)
and the decomposition (67),

QJTs .hm/D q
sm2=nJTs .hm/D q

sm2=n

mX
kD0

.cm;k/
s dimq.�m;k/

D

mX
kD0

.�1/skqs.m
2�2mkCk2�k/ dimq.�m;k/

D

mX
kD0

.�1/skqs.m
2�2mkCk2�k/

�
xIk � 2

k

	�
xI2m� k � 1

2m� k

	

�
Œ2m� 2kC 1�

Œ2m� kC 1�
; (71)

where x D qn. In the last equality we use the well-known formula for the quantum
dimension (see, e.g., [41, (11)]), which was first established by Reshetikhin. The
right-hand side of (71) gives a formula for WTr .hm/. When s D 3, we get another
formula of WT3 for the trefoil, which is simpler than the one given in Section 3.7,
since it is a 1-dimensional sum.

For odd s, let VTs be the torus knot Ts with 0 framing. Then, adjusting the framing,
from (71) we get

W VTs
.hm/D x

�m

mX
kD0

.�1/kqs.m�2mkCk
2�k/

�
xIk � 2

k

	�
xI2m� k � 1

2m� k

	

�
Œ2m� 2kC 1�

Œ2m� kC 1�
: (72)

Using the Zeilberger algorithm (see [47]), we get the recurrence relation forW VT3
.hm/

as described in Section 1.4.
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