SUBADDITIVITY OF SYZYGIES OF KOSZUL ALGEBRAS

LUCHEZAR L. AVRAMOV, ALDO CONCA, AND SRIKANTH B. IYENGAR

ABSTRACT. Estimates are obtained for the degrees of minimal syzygies of quo-
tient algebras of polynomial rings. For a class that includes Koszul algebras
in almost all characteristics, these degrees are shown to increase by at most 2
from one syzygy module to the next one. Even slower growth is proved if, in
addition, the algebra satisfies Green and Lazarsfeld’s condition Nq with ¢ > 2.

INTRODUCTION

In this paper we study homological properties of commutative graded algebras
R, generated over a field k by finitely many elements of degree one. A common
approach is to choose a presentation R =~ S/J, where S is a standard graded
polynomial ring over k and J an ideal containing no linear forms, and use the
minimal free resolution F' of the graded S-module R. In this context, the numbers

t?(R) = sup{j € Z | Tor} (R, k); # 0}

are of significant interest, as they bound the degrees of the basis elements of F;.
Explicit upper bounds exist in terms of the most accessible data: e, the number
of variables of S and ¢ (R), the maximal degrees of the generators of J. They are
doubly exponential in 7 and cannot be strengthened in general; see 5.4 for references.
The situation is dramatically different when R is Koszul; that is, when the
minimal free resolution of k = R/Ry over R is linear; equivalently, when tf(k) < i
for all ¢ > 0. For Koszul algebras Backelin [3] and Kempf [21] proved inequalities

(1) t#(R) <2 for 1<i<pdgR.

Cases when equality hold are described in [2].

Here we extend and sharpen these results in several directions.

First, we relax the hypothesis, assuming only tf*(k) < i for i < e + 1. Such
algebras are not necessarily Koszul and—unlike the latter—they are identified by
a fixed finite segment of the minimal free resolution of k over R; see Roos [31]. In
Section 4 we prove that they satisfy (1) and determine when equality holds.

Second, for the algebras described above we investigate the existence of upper
bounds on 7 (R) that depend on 3 (R) for 1 < a < i. In Section 5 we prove

(2) t2 ((R)<t7(R)+2 for 1<i<e—dimR+1
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when (i+1) is invertible in k; since then ¢ (R) = 2, this inequality refines (1) under
additional hypotheses. It is itself the special case b = 1 of the following inequality:

(3) t9 ,(R) <tJ(R)+t7(R) for a,b>1witha+b<pdgR.

We conjecture that (3) holds without restrictions on the characteristic of k and
review evidence gleaned from a number of sources. In particular, here we show
that when R is Cohen-Macaulay and (a:b) is invertible in k one has

t5 (R <tJ(R)+t)(R)+1 for a>1andb>2witha+b<pdgR.

For the algebras described above we study the impact of the Green—Lazarsfeld
condition N,: The differential F; — F;_; is given by a matrix of quadrics for ¢ = 1
and by matrices of linear forms for 2 < ¢ < ¢; see [18]. In Section 6 we show that
(excluding finitely many specified characteristics) it implies a sharpening of (1):

(4) tf(R)<2{iJ+i+{0 if {g+ 1)l

q+1 1 otherwise.

This inequality reveals hitherto unknown properties of the resolutions of algebras of
geometric interest, even in cases such as Segre products and Veronese subalgebras
of polynomial rings. For related recent progress in this context see [32, 34].

Our approach utilizes the homology of the Koszul complex K on a basis of R;.

The differential bigraded algebra K provides a bridge between the homology of
the R-module k and that of the S-module R; see [1]. As in [2], the proof of (1)
depends on the decomposable classes in H(K') contained in its subalgebra generated
by H;i(K). On the other hand, the proofs of (2) and (4) involve an analysis of
indecomposable homology classes; namely, of the quotient H, (K )/ H, (K) -Hp(K).

This is the main technical innovation in the paper. Its effectiveness depends
on the existence (in almost all characteristics) of splitting maps for Koszul cycles,
discovered in [8] and described in Section 2 from a more conceptual perspective.
These maps are combined with cascades of bounds on regularities of Tor modules,
obtained in Sections 1 and 3. The material in the first three sections is presented
in its natural generality, which is much greater than the one needed in the sequel.

1. COMPLEXES OF FLAT MODULES

In this section we evaluate how cycles change with the introduction of coeflicients,
starting from a general situation and moving on to a graded one. Only basic
homological considerations are involved.

1.1. Coefficients. Let R be an associative ring and R¢ its center. Let

Oat1 Ja
(1.1.1) Fo i By 2 g 2 p

be a complex of right R-modules, and for every integer a set
Zo =XKer(0,), Ba=Im(0411), Ha=Zs/Bs, and C, = Coker(dy11).

For each left R-module N and for Z,(F ®r N) = Ker(d, ® N) the assignment
z® x — z ® x defines a natural in N homomorphism of abelian groups

(1.1.2) ba: Za ®r N — Zo(F @5 N).

The next lemma is a sort of “universal coefficients theorem” for cycles.
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Lemma 1.2. When F, and F,_1 are flat there is a natural in N exact sequence

0 — Tor®(B,_1,N) = Z, ®r N 2% Z,(F @5 N) — Tor’(C,_1, N) — 0
of R°-modules, and for every i = 1 there is a natural in N isomorphism

(1.2.1) Torf 1 (By—1,N) = Tor;(Z,, N).

Proof. The maps F, I B,—1 and B, Leot, F,_1 yield a commutative diagram

OHKer(ﬂ'a@RN)—>FQ®RNM>BCL—1®RNHO

J \%@RN L’fal@RN

0 0 Foor @@ N=—=F,-1Qr N

with exact rows. The Snake Lemma then produces an exact sequence
0 — Ker(m, ®r N) —» Zo(F ®r N) — Ker(tq—1 ®r N) — 0

As F, is flat, the exact sequence 0 — Z, — F, X2 B,—1 — 0 induces the isomor-
phisms (1.2.1) and yields an exact sequence

0 — Tor®(B,_1,N) — Z, ®r N < Ker(r, ®g N) — 0
such that the composition of ¢, with the inclusion Z,(F ®gr N) € F, ®gr N is equal
to ¢q. As F,_1 is flat we also have exact sequence

ta—1®@rN
-

OﬁTOf{%(Cafl,N) — B,_1®r N Fooi®r N

induced by 0 — B,_1 Ll By — Cyu_q — 0; it computes Ker(to—1 ®r N). O
Next we describe notation and conventions concerning gradings in this paper.
1.3. Graded objects. Let k be a field and V = (—Bj V; a graded vector space; set
top(V') = sup{j | V; # 0};

thus, top(V') = —oo if and only if V' = 0. The notation deg(v) = j means v € Vj.

A graded k-algebra is a graded vector space R = @,_, R; with Ry = k, R; = 0 for
i < 0, and associative k-bilinear products R; x R; — R; ;. A left graded R-module
is a graded vector space N = ®jeZ N; with N; = 0 for j « 0 and associative
k-bilinear products R; x N; — N, ;. Graded right R-modules are defined similarly.

Homomorphisms of graded R-modules are homogeneous of degree 0. Thus, when
L is a right R-module and N a left one, Tor®(L, N) is a graded R°-module.

As usual, given an graded R-module N and integer n, we write N(n) for the
graded R-module with N(n); = N,,4; for all i € Z.

By abuse of notation, & also stands for the module R/ @, R;. The number

ti(N) = top(Tor{ (k, N))
then equals the largest degree of a minimal i-syzygy of the R-module V.

Lemma 1.4. When L is a right graded R-module and N a left one, one has
(1.4.1) top(Torl(L, N)) < top(L) + tE(N) for all icZ.
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Proof. Set t = top(L). We may assume t is finite, and then s = ¢ —min{j | L; # 0}
is a non-negative integer. If s = 0, then Tor®(L, N) = L®y, Torl(k, N), so equality
holds in (1.4.1). The exact sequence 0 — Ly(—t) — L — L/L;(—t) — 0 of graded
R-modules induces an exact sequence of graded Tor vector spaces, from which the
inequality (1.4.1) follows by induction on s. ([l

Lemma 1.5. Let R be a graded algebra and F a complex of flat graded R-modules.
For all integers i = 1 and a = 0 the following inequalities hold:

(1.5.1) top(Tor{"(Ba, N)) < max {top(Hj) +t4'i41-;(N)}
(15.2) top(Tor;(Za, N)) < max {top(H;) +t'yi41-;(N))
(1.5.3) top(Tor*(Ca-1, N)) < max {top(H;) +te_11i—;(N)}

Proof. Fix some integer ¢ > 1. In view of (1.2.1), we obtain an exact sequence

(1.5.4) Torf ; (H,, N) — Torf(B,, N) — Tor\1(Bs—1, N)

from the one induced by 0 - B, — Z, — H, — 0. Now (1.5.4) and (1.4.1) yield
top(Tor;*(B,, N)) < max{top(H,) + tZ1(N), top(Torf 1 (Bs—1,N))}

The proof of (1.5.1) is completed by iterating this procedure.
The isomorphisms (1.2.1) show that formula (1.5.2) follows from (1.5.1).
The exact sequence 0 > H, 1 — C,_1 — B,_2 — 0 induces an exact sequence

Torf(H,_1, N) — Torf(C,_1, N) — Torf(B,_a, N)
from which the inequality (1.5.3) follows, due to formulas (1.4.1) and (1.5.1). O

2. INDECOMPOSABLE KOSZUL HOMOLOGY
In this section R denotes a commutative ring and M an R-module.

2.1. Koszul complexes. Let E = A, E; be the exterior algebra on a free R-
module F; sitting in homological degree 1, and u: F ®r E — E the product map.

The algebra E has following universal property: Each R-linear map E; — R
extends uniquely to an R-linear map ¢: E — FE of homological degree —1, satisfying

(2.1.1) Op=pl@E+ E®DJ).

As 0%(E1) = 0 holds for degree reasons, this implies 0> = 0. The complex K with
underlying graded module F and differential ¢ is the Koszul complex of F1 — R.
Set KM = K @ M. In view of (2.1.1), K is a DG algebra and K™ is a DG
K-module. Thus, H(K) is a graded algebra and H(K™) is a graded H (K )-module.
If R is a graded k-algebra and Fy — R a homomorphism of graded R-modules,
see 1.3, then the differential algebra K and its differential module K are bigraded:
their differentials decrease homological degrees by 1 and preserve internal degrees.
Thus, H(R) is naturally a bigraded algebra and H(M) a bigraded module over it

Theorem 2.2. For each pair (a,b) € Z? there exists a natural R-linear map
Ha+b(K]w)
Ho(K)Hy(KM)

described in 2.10, which is surjective when (“Zb) is invertible in R.
When R and M are graded o is a homomorphism of graded modules.

(2.2.1) Yap: Torf(Co1(K), Zo(KM)) —



SUBADDITIVITY OF SYZYGIES OF KOSZUL ALGEBRAS 5

The theorem is proved at the end of the section.

Corollary 2.3. Assume Ho(K) = 0 for a = 1 (for instance, E1 has a basis
€1, ..., e such that the sequence d(e1),...,0(er) is R-reqular) and set I = (E).
If (a:b) is invertible in R, then there is a surjective R-linear map

Vit Torf(R/I, Zy(KM)) — Torl, ,(R/I, M)
Proof. The hypothesis yields H,,(KM) = ToraRer(R/I7 M) and an exact sequence
0—>Co1(K)>Ky1—>--—Ky—R/I—>0
of R-modules. Since K; is flat for 0 < ¢ < a — 1, the iterated connecting map
Tor®(R/I, Zy(KM)) — Torf(Co_1(K), Zy(K™M)) is bijective. O
As a special case, we obtain an (unexpected) inequality between Betti numbers:

Corollary 2.4. Let R be a regular local ring, K the Koszul complex on a minimal
generating set of the maximal ideal of R, and M a finitely generated R-module.
If (“:b) is invertible in R, then the b-cycles of KM = K ®gr M satisfy
Ba(Zy(K™M)) = Baty (M) .
In the graded setup such inequalities hold for graded Betti numbers. (Il
2.5. Diagonal maps. Equipping £ ®r E with the product

(£1 ® x2) - (11 @ y2) = (=)0l (2191 @ woyp) .

turns it into an R-algebra that is strictly graded-commutative for the homological

degree. The universal property of exterior algebras yields a unique homomorphism

A: E —> E®pg E of graded R-algebras, such that A(z) =2z ® 1+ 1®« for z € E;.
Set ¢/ = 0® FE and ¢" = E ® 0. These maps satisfy the equalities

(2.5.1) IA=A0=0"A
(2.5.2) § + 0" =0

Indeed, the maps in (2.5.1) and (2.5.2) are graded derivations of the R-algebras E
and E®p F, respectively. They are generated in homological degree 1, so it suffices
to verify agreement on F; and (E ®pr F)1, respectively. This is straightforward.

2.6. Partial cycles. As F is a graded free R-module, we have
E®r Z(KM) = E®g Ker(0® M) = Ker(d" ® M)

From (2.5.2) we obtain (¢/ ® M)(Ker(¢" ® M)) < Ker(¢” ® M), so ¢’ ® M turns
Ker(0” ® M) into a complex. It is equal to K ®g Z(KM), so we get

(2.6.1) Z(K ®r Z(KM)) = Ker(¢' ® M) n Ker(¢" ® M)
as graded submodules of E®r E ®g M. For every integer n there is an equality
(2.6.2) Zy(K®r Z(KM)) = P Zi(K®g Zj(KM))

i+j=n

Let ¢; ; and m; ; denote the canonical maps from and to Z;(K ®g Z;(K™)), respec-
tively, induced by the decomposition (2.6.2).
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2.7. The maps «a. The equalities (2.1.1) and (2.5.2) imply
(n® M)(Ker(d @ M + 0" ®@ M)) < Ker(0@ M) = Z(KM).
In view of (2.6.1), u ® M restricts to a homomorphism of graded R-modules
a: Z(K ®@r Z(KM)) - Z(KM).
Setting n = a + b, we define a3 to be the composed map
Zo(K ®r Zy(K™M)) =% Z,(K @r Z(KM)) 22 Z,(K™M)
2.8. The maps 3. The equalities (2.5.1) imply
(A®gr M)(Ker(0® M)) < Ker(0' @ M) n Ker(0" ® M) .
In view of (2.6.1), A ®r M restricts to a homomorphism of graded R-modules
B: Z(K®@M) — Z(K ®r Z(KM)).
Setting n = a + b, we define 3, to be the composed map
Zo(KM) 25 Z,(K @r Z(KM)) ™% Z,(K ®r Zy(K™M))

The next result is proved by Bruns, Conca, and Romer in [8, 2.4] through direct
calculations. Our proof mines the graded Hopf algebra structure of E.

Lemma 2.9. For each pair (a,b) of non-negative integers there is an equality
Qap © ﬂa,b _ (a + b) idZa_Hj([(M) .
a
Proof. Set n = a + b and note that a4 0 44 is induced by the composed map

Sap: En 25 (EQ®p E)p 225 (E®p E), 2 B,

where p,, projects (E ®g E), = (—DHj:n E, ®r E; onto its summand E, ® Ej.

Let n be a positive integer and let n denote the sequence (1,...,n). For each
sequence ¢ = (uq,...,u;) of integers satisfying 1 < w3 < -+ < w; < n, write
n~t=(v,...,0—;) with v; < --- <wv,_; and let sgn(é,n \¢) denote the sign of
the permutation (u1,...,u;,v1,...,v,—;) of n. Given a subset z = {z1,...,z,} of
Eq, setting x; = xy, A -+ A Xy, € E; we obtain the following equalities:

6a,b(xn) = HUn © pa,b( Z Sgl’l(i, n \7') Tq ® xn\i>

icn

—Mn( Z sgn(i,n\i)xi®xn\i)

cardi=a

<n>

= In

a

It remains to remark that E,, is additively generated by elements of the form x,,. O

2.10. The maps v. Each pair (a, b) of integers defines a diagram of R-linear maps

Za(K) ® Zy(KM) 22 H,(K) @ Hy(KM)

(2.10.1) / \uf,b Juf,b

Zo(K ®r Zp(KM)) et Zarn(KM) et Heqp(KM)
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where the maps y are canonical, 7, and plf, are induced by p in view of (2.1.1),

Qqp comes from 2.7, and ¢, is given by 1.1 with F = K and N = Z,(K™). The
definitions show that diagram (2.10.1) commutes, so it yields natural R-linear maps

(2.10.2) Coker(¢,) — Coker(uib) - Coker(ugb)

The isomorphism Tor’(C,_(K), Zy(K™)) =~ Coker(¢,) from Lemma 1.2, com-
posed with the maps in (2.10.2), defines the map v, in (2.2.1).

Proof of Theorem 2.2. Since Xq+p is surjective, so is the second map in (2.10.2).

If (azb) is invertible in R, then a4 is surjective by Lemma 2.9, hence so is the

first map in (2.2.1). It follows that 7,5 is surjective, as desired.
When R is a graded ring and M is a graded R-module the constructions of oy p,
Ba.b, and 7, show that they are homomorphisms of graded R-modules. (]

3. REGULARITY

In this section k is a field and R a graded commutative k-algebra with Ry = k,
R = k[R;], and ranky R; finite. We write S for the symmetric k-algebra S on Ry
and let S — R be the canonical surjective homomorphism of graded k-algebras.

3.1. Regularities. The nth partial regularity of an R-module M is the number
(3.1.1) reg, (M) = max{t;"(M) — i} .
Thus, for every n € Z there is an inequality
(3.1.2) reg, (R) <reg, (k)
and sup{reg (M)} ez is the Castelnuovo-Mumford regularity regf(M).
The goal of this section is to prove the following result.

Theorem 3.2. Let a, b be non-negative integers satisfying a + b < pdg R.
If (a;)rb) is invertible in k, then for every R-module M one has

ta (R) + 3 (M)
tas+b(M) < max { regi | (R) +regl (M) +a+b
regy 1 (R) +regy 1 (M) +regg (k) +a+b+1
We single out a special case of the theorem:
Corollary 3.3. Ifregh . (k) =0 =regl (M), then there is an inequality
(3.3.1) t5. (M) < max { tf(f) +iy (M) S }
regs 1 (R) +regy {(M)+a+b+1

The proof of Theorem 3.2 utilizes Koszul complexes.

3.4. Koszul homology. The inclusion Rij(—1) € R defines an R-linear map
R®j, R1(—1) — R, and hence a Koszul complex K; see 2.1. Set KM = K ®x M.
For each ¢ € N we have an isomorphism

(3.4.1) Hi(KM) = Tor? (k, M)
of graded R-modules; it gives an equality
(3.4.2) t7 (M) = top(H;(K™))
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As (Ry)H(KM) = 0, for all non-negative integers i, j the preceding formula yields
(3.4.3) E(H (KM)) = 17 (M) + 7 (k)

By applying Theorem 2.2, then formula (1.5.3) with ' = K and N = Z,(K™M),
and finally formula (3.4.2) with M = R we obtain:

Lemma 3.5. If (azb) is invertible in R, then there is an inequality

B51)  top () < e (50) + 4 (AGY)). O

Next we estimate the partial regularities of the cycles appearing in (3.5.1).

Lemma 3.6. For each R-module M the following inequality holds:

tR(M) +b
(3.6.1) tR(Z,(K™M)) < max, th (M) +b—j
ty s (M) +t 11 (k)

Proof. From the exact sequences of R-modules

00— Zb(KM) Kéw Bb_l(KM) —0
0— By 1(KM) — Zy 1 (KM) — Hy_1(KM) —0

we obtain the following inequalities:

ta (Zo(KM)) < max{tgyy (By-1(K™), (M) + b)}
tar1 (Bo—1 (K™)) < max{tyyo (Hy—r (K™), gy (Zo—r (K1)}

By concatenating these relations and invoking (3.4.3) we get

tR(M) + b

te(Zy(K™M)) < max {4 (Zy1 (K™M))
ty o (M) + ta+2(k)

The desired result follows from the preceding formula by induction on b. [l

Proof of Theorem 3.2. Products in homology yield an exact sequence

Ha+b(KM)

Ho(K) @ Hy(K™) = Haro( K™) ~ g

— 0

of graded k-vector spaces. It accounts for the first inequality in the following display,
where the equality comes from (3.4.2), the second inequality from (3.5.1), and the
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last inequality from (3.6.1):

ta (M) = top(Has(K™))
H (K]V[)
< M a+b
max {top(Ha(K)) + top(Hy(K™)), top <HG(K)Hb(KM)) }
< max {2 (R) + 15 (M), 8] (R) + t,2,(Zy (K™))}
ta (R) +t; (M)
t2(R) +tE (M) +b
< max S
Osiza | 7 (R) +tg i (M) +b—
tzS(R) + tb ](M) + ta Z+]+1(k)
For each pair (4,j) with 0 < i <a and 0 < j < b, in view of (3.1.1) we have

t(R)+t§z+3( )+b7j
< [regi i (R) +i] + [regh (M) +a—i+jl+b—j
= regf_l(R) + regf+b(M) +a+b

Similarly, for each pair (¢,7) with 0 < < a and 1 < j < b, we obtain
t7(R) + 55 (M) + tgi 1 (k)
< [rega_y(R) + 1] + [regy_y (M) + b — j] + [regglppq (k) +a —i+j +1]

=reg;_;(R) +regy (M) + regaR+b+1(k) +a+b+1

It remains to assemble the inequalities in the last three displays. O

4. DECOMPOSABLE KOSZUL HOMOLOGY

We keep the hypotheses on R and S from Section 3, and let J denote the kernel
of the surjection S — R of graded k-algebras.

Theorem 4.1. Let K be the Koszul complex described in 3.4.
Ifregl | (k) = 0 for some n =0, then for 0 < i <n there are equalities
(4.1.1) H;(K); =0 when j>2i.
(4.1.2) H; (K)o = (Hi(K)2)".
Formula (3.4.2) gives a numerical translation of the equality (4.1.1).
Corollary 4.2. For 0 < i < n the following inequalities hold:
(4.2.1) t?(R) < 2i. 0

When R is Koszul, that is to say, when reg*(k) = 0, these results hold for all
integers ¢ = 0. This is known: (4.2.1) is proved by Kempf [21, Lemma 4] and is a
special case of a result of Backelin [3, Corollary]; see also [2, 4.1(a) and 1.4]. On
the other hand, (4.1.2) is a special case of [2, 4.1(a) and (3.8.3)].

The proof of Theorem 4.1 does not use the material developed in previous sec-
tions; rather, it adapts ideas from our proof of [2, 3.1]. We start by presenting the
relevant background material.
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4.3. Minimal models. Given a set X = | |;_,o, X, let k[X] denote the k-
algebra ;- k[X;], where X; = L, Xi,; and k[X;] is the exterior algebra on X;
when ¢ is odd, respectively, the symmetric algebra on X; when ¢ is even.

For z € X;; set |z| = ¢ and deg(x) = j. A k-basis of k[X] is given by the
clement 1 € k and the monomials z{" - - - z% with 2; € X and d; = 1 when || is
odd, respectively, with d; = 1 when || is even. We bigrade k[X] by setting

m u
|xf111 wiu| = Zdllxll and deg (;cill xZ“) = Zdl deg(x;) .
=1 =1

We also bigrade S by |y| = 0 and deg(y) = i for y € S;.
A model of R is a differential bigraded S-algebra S[X] with underlying algebra
S ®x k[X] and differential satisfying |d(y)| = |y| — 1, deg(d(y)) = deg(y), and

As@yy) =s®@ay)y + (-1)"s@ydy),

together with an S-linear map e that makes the following sequence exact:
(4.3.1) o S[X ik 2 S[X i1 — - — S[X]ox = R — 0

A model S[X] is said to be minimal if it satisfies d(S[X]) < (S, + X?)S[X].
Such a model always exists, and any two are isomorphic as differential bigraded S-
algebras; see [1, 7.2.4]. In every minimal model d(X7) is a minimal set of generators
of J and S[X] is the Koszul complex of the restriction SX; — S of d;.

Let Xo,0 be a k-basis of S1, and define a set X" = |, X} ; by the formula

(432) Xz{J‘ = {‘rl}.'L'EXi—l.j .

Set k(X") = X2, k(X}), where X! = Ll; Xi; and k(X}) denotes the exterior
algebra on X/ when ¢ is odd, respectively, the divided powers algebra on that space
when 7 is even.

A E-basis of k(X") is given by 1 € k and m’gdl) - ZCIELd") with z; € X" and d; = 1
if || is odd, respectively, with d; > 1 if |z]| is even. It is bigraded by setting

() () = Z di|z)] and deg (x’gdl) - x'id”)) = Z dy deg(]) .

=1 =1

/
|

By [1, 7.2.6], there exists an isomorphism of bigraded k-vector spaces
0
(4.3.3) Tor"(k, k) = X) k(X])
i=1
Proof of Theorem 4.1. Let S[X] be a minimal model of R. Set k[X] = k ®s S[X]
and note that (3.4.1) and (4.3.1) yield isomorphisms of bigraded k-algebras
(4.4.1) H(k[X]) = Tor®(k, R) ~ H(K).

This induces an isomorphism kX, o = Hy (K), by the minimality of S[X].

Let 2’ be the element of X7 ; corresponding to the element x of X;_1 ;; see (4.3.2
For i + 1 < n+1, from regfl,, (k) = 0 and (4.3.3) we get j =i + 1. Thus, |z| <
implies deg(x) = |#| + 1. Since |z| > 1 holds for i < n, for any monomial z{" - - - z%

).
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with |29 ... 29| < n we obtain the relations

u

deg (m(lil e 2 dy deg(z;) Z (Jlzg| + 1) ’x({ll
1=1 =1
2|x - :z:d

For j > 2i these relations yield (k[X]);; = 0. As a consequence, H;(k[X]); =0
holds for j > 2¢ and H;(k[X])2; is a quotient of (k[X]);2;. In view of (4.4.1), now
(4.1.1) is proved, and for (4.1.2) it remains to show (k[X]); 2 = (kX12)".

When deg (9:‘111 e :z:ff“) = 2|x‘1i1 e xﬁ“| the inequality in the last display becomes
an equality. All d; and |x;| being positive integers, for 1 < [ < u we get first
|z;| = 1, then |x;| = deg(z;) — |a;|; that is, deg(z;) = 2. As a consequence, we get
k/‘[X]Z"Qi = k[Xl]i,gi = (kXLz)i, as desired. U

5. SUBADDITIVITY OF SYZYGIES

We keep the hypotheses on R and S from Section 3. In this section we pick up
a theme from the introduction—I/inearity at the start of the resolution of k over R
implies subadditivity of the degree of the syzygies of R over S. We set

L(R) = £5(R), reg(R) —regS(R), and reg,(R) — reg’(R)
for i € Z. Some of our results depend on the number
m(R) =min{i € Z | t;(R) = t;+1(R)}.
Lemma 5.1. The following inequalities hold:
(5.1.1) ranky Ry —dim R < m(R) < pdg R.

Proof. We set m = m(R) and let F' be a minimal free resolution of R over S.

For h = pdg R we have t;(R) > 0 and t541(R) = —00, hence m < h.

For t = ¢, (R) we have t,,—1(R) <t = t;41(R). The functor 7* = Homg(?,5)
gives homogeneous R-linear maps of graded R-modules, and hence k-linear maps

(am)ft (am )ft
(F‘mfl)f (Fm)ﬂ:t = (Fm+1)it
The inequalities for ¢ imply (Fn—1)*, = 0 and (F,41)F = 0 for j < —t, hence
I ((Om+1)%¢) € (S4(Fmt1)™) =t = Z Si(Fm+1) =0
=1
Thus, we get Extd(R,S)! = (F,)*; # 0, and hence gradeg R < m. This is the
desired lower bound, as gradeg R = ranky R; — dim R because S is regular. O

Theorem 5.2. Let a,b be non-negative integers such that (‘”b) is invertible in k.
When regf , ., (k) = 0 and max{a, b} < m(R) hold there is an inequality

(5.2.1) tars(R) < max ( ) +1(B)
- ath = (R) + 1y 1(R) +3("

In particular, there are inequalities

(5.2.2) tat1(R) < to(R) + 2 when b=1.

(5.2.3) tatb(R) <to(R)+t(R)+1 for b=2
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Proof. Formula (3.3.1) and the hypothesis on a,b yield

to(R) + ty(R) }

ta+b(R) <max{taI(R)_(a_1)+tbI(R)_(b—l)—i-a—i—b—i-l

This simplifies to (5.2.1). The other inequalities follow, since ¢o(R) = 0, t1(R) = 2,
and t;—1 <t; — 1 for i < m(R). O

Unless R is a polynomial ring, regl’(k) = 0 implies ¢;(R) = 2. Thus, (4.2.1)
gives an upper bound on t,(R) by a function depending only on a and ¢ (R). Such
a property does not hold in general:

Example 5.3. For R = k[x1,...,2.]/J and J generated by e + 1 general quadrics
t1(R) =2 and ta(R) = [gJ 42
This is seen from the free resolution given by Migliore and Mir6-Roig in [29, 5.4].
On the other hand, we have:

5.4. General upper bounds. For every algebra R the number t,(R) is bounded
above by a function of the numbers a, t1(R), and e = ranky Ry; specifically, Bayer
and Mumford [5, 3.7] and Caviglia and Sbarra [10, 2.7] give the upper bound

ta(R) < (2t1(R))2672 +a—1 forevery a=>1.

It cannot be tightened substantially, since variations of the Mayr-Meyer ideals [26]
yield algebras with the same type of doubly exponential syzygy growth, albeit with
different coefficients; see Bayer and Stillman [6, 2.6] and Koh [22, Theorem, p. 233].

The results in this section suggest the following
Conjecture 5.5. If reg?,, | (k) = 0, then the following inequality holds:
(5.5.1) tatb(R) < to(R) 4+ tp(R) whenever a+b<pdgR.

Additional supporting evidence is reviewed below. The algebra R = S/J has
monomial relations if J can be generated by products of elements in some k-basis
of Ry; such an algebra is Koszul if and only if J is generated by quadrics; see [15].

Examples 5.6. Set e = ranky R; and h = pdg R.
The inequality (5.5.1) holds in the following cases:
(1) dimR < 1, depth R = 0, and a + b = e: Eisenbud, Huneke, and Ulrich [14, 4.1].
(2) b= 1 when R has monomial relations: Ferndndez-Ramos and Gimenez [13, 1.9]
in the quadratic case, Herzog and Srinivasan [19] in general.
(3) e < 7 when R has quadratic monomial relations and char(k) = 0: Verified by
McCullough by using MACAULAY2 [17] and NAUTY [28].
In addition, the following weaker inequalities are known to hold:
(4) tasu(R) < to(R) + to(R) + 1 when R is Cohen-Macaulay, regf’, | (k) = 0, and
(a:b) is invertible in k: Formulas (5.1.1) and (5.2.3).
(5) tats(R) < maxgp>1{ta(R) + tp(R)} when a + b = e: McCullough [27, 4.4].

When p is a prime number and n a non-negative integer, we say that p is good
for n if (7;) # 0 (mod p) holds for all i € Z with 0 < i < n.
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Lemma 5.7. A prime number p is good for an integer n = 0 if and only if one of
the following holds: (a) p =0, or (b) p >mn, or (c) n+ 1 = pu for some integers
s =1 and 2 < u < p; furthermore, at most one pair (p,n) satisfies (c).

Proof. We may assume 0 < p < n. Let }7_ on;p’ and pI 0 1P’ be the p-adic
expansions of n and i, respectively; thus, s > 1 and 1 < ng < p. Lucas’ congruence

() =11(5) oo

shows that (7}) is invertible mod p if and only if so is (?J) for each j. One has
0 < ij,n; < p by definition, so (2”) is invertible mod p if and only if n; > i;. In
conclusion, p is good for n if and only ifn; >4, holdsforj =0,...,sandn >¢>0.
An inequality n > ¢ > 0 means s > r and there is an integer [ with 0 > [ > s,
satisfying n; = i; for j > [ and n; > ¢;. This holds for all ¢ with n >4 > 0 if and

only if ng > i, and n; = p — 1 for s > j > 0; that is, if and only if
s—1

s j s p87
n=ngp’+ Y (p—1)p) =nep +(p*1)p_
j=0

1
. =(ns+1)p°—1.

Assume up® = u’ " holds for some prime number p’ and integers v/, s’ satisfying
s =21land 2 <u <p. If p > p, then p'lu, and hence v > p’ > p, which is
impossible. By symmetry, so is p > p/, so we get p’ = p. Now s # ¢’ implies p|u or
plu’, which again is impossible. Thus, we must have s = ', and hence u = v’. O

Subadditivity is also reflected in the behavior of partial regularity. Recall from
(3.1.2) that one has always an inequality reg,(R) < reg,,(R).

Proposition 5.8. Let a,b be non-negative integers.
If regf+b+1(k) = 0, and char(k) is zero or good for (a + b), then the following
inequalities hold:

(5.8.1) reg, 1 (R) <reg,(R) +1 when b=1,
reg, (R) + reg,(R)
5.8.2 re R) < ma or b
(582)  regayy(R) <max { veg, (R) + regy () + 1] 7
Proof Pick any integer 1 With 0 < i< a+band write it as 1 = a’ + b’ with integer
a’ and b’ satisfying 0 < a’ < a and 0 <V <b. The number (“ ;b) is invertible in

k due to the hypOtheblb on char(k), so for b > 1 formulas (3.3.1) and (3.1.2) yield:

| (tw (R) = ) + (t(R) — )
I =7 s max { reg, 1 (R) + regy 1 (R) + 1}

reg, (R) + regy (R)
= reg, _1(R) + regy_1(R) + 1

reg, (R) + reg,(R)
reg,_1(R) +reg,_1(R) + 1

This implies (5.8.2), and also (5.8.1) because reg;(R) = j holds for j =0, 1. O
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6. THE GREEN-LAZARSFELD PROPERTY N,

We keep the hypotheses on R and S from Section 3, and set
p =char(k), h=pdpS, e=rank;R;.

Green and Lazarsfeld [18, p. 85] say that R has property N, for a positive integer
q if t;(R) =i+ 1 holds for 1 < i < ¢. This is equivalent to reg] (R) = 1, see 3.1.

Theorem 6.1. Let R be a graded algebra satisfying regffﬂ(k) =0 for somen > 2.
When R satisfies Ny with ¢ = 2 the following inequalities hold:

(6.1.1) ti(R)<2i—1 for 2<i<n.

If, furthermore, p is good for i, then also the following inequalities hold:

(6.1.2) ti(R)<2{ ! J+i+ 0 (q+ 1)
qg+1 1  otherwise.
n

1. <

(6.1.3) reg, (R) 2L]+1J+1

Remark. Both (6.1.1) and (6.1.2) sharpen (4.2.1). The condition g > 2 is necessary,
since a complete intersection of quadrics R has Ny and t,(R) = 2a for a < h.

Proof. The isomorphisms (3.4.2) and (4.1.2) give for each i > 2 equalities
Tor? (R, k)a; = (Tory (R, k)2)?(Tory (R, k)2)" 2 = Tor (R, k)4(Tor? (R, k)3)' 2

We have T0r2 (R, k)4 = 0 because R satisfies N3, and hence Tor (R, k)2; = 0. Since
(4.4.1) gives to; < 2i for ¢ > 1, we conclude that tg; < 2i — 1 holds for i = 2.

If i < g, then (6.1.2) holds by hypothesis. When ¢ > ¢ + 1 we may assume by
induction on ¢ that for 0 < j < ¢ the following inequalities hold:

j 0 if (¢+1)[j
6.1.4 B <2\ =+
( ) reg;(R) L]‘*‘lJ {1 otherwise.

Euclidean division yields integers 0 < v < ¢ and v > 1, such that
i=(g+1)v+u.

In case u = 0 by applying first formula (3.3.1) with @ = ¢ — 1 and b = 1, then
formula (6.1.4) with j = (¢+ 1)v — 1, j = (¢ + 1)v — 2, and j = 0 we obtain

h(R) < max tg+1yo—1(R) + t1(R)
s reg 4 1)p—2(f) +rego(R) +i+1

2—-1)+(GE—1)+1+2
< max .

2W—-1)+140+:i+1
=2v+1
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In case 1 < u < ¢ by applying formula (3.3.1) with a = (¢ + 1)v and b = u, then
formula (6.1.4) with j = (¢+ 1)v,j=u,j=(¢+ v —1,and j = u— 1 we get

torye(R) + tu(R
1 ) e | 0 ) 1) |
reg i 1y—1(R) +reg, 1(R) +i+1

20+ (g+v+u+1
< max .
20—-1)+14+1+i+1
=2v+i+ 1
This concludes the proof of (6.1.2). Formula (6.1.3) is a direct consequence. [
Conjecture 5.5 predicts that the bounds in Theorem 6.1 can be strengthened:

Lemma 6.2. Assume R has property Ny for some q > 2.
If tivg(R) < ti(R) + ty(R) holds for i < h — g, then there are inequalities

(6.2.1) t;(R) < [;] +1i for i>1.
(6.2.2) reg R < “ﬂ .

Proof. For 1 < i < ¢ the inequality (6.2.1) is just condition N,. Thus, by induction
on 7 we may assume that the inequality holds for some ¢ > ¢q. The calculation

tir1(R) < ti+17q(R) + tq(R>

i+ 1—
< [qu titlogtq+l
0+ 1
- F hi } +itl
q
completes the induction step for formula (6.2.1). The latter implies (6.2.2). O

Next we describe graphical displays that help visualize such inequalities.

6.3. Betti templates. Recall that the Betti table of R is the matrix that has
Bi,i+;(R) as the entry in its ith column and jth row. In order to present information
on the vanishing of Betti numbers, for each integer ¢ > 1 we form a Betti template
by replacing 3; i+, (R) with one of the symbols from the following list:

* non-zero due to condition N,.

- zero due to condition V.

zero by (6.1.1).

zero by (6.1.2) when p is good for 4, predicted by (6.2.1) in general.
zero predicted by (6.2.1).

no information available.

1 ® O o

Thus, columns 0 through ¢ of the template contain the available and the conjectural
information on the vanishing of 3; ;4;(R) when regf | (k) = 0 and R satisfies N,.

An additional row at the bottom of the template displays—if it exists—the only
good characteristic p for ¢ other that p = 0 or p > 7; see Lemma 5.7.

A natural question is how tightly these templates can be filled in. Precise answers
would be interesting both in their own right and for applications to coordinate
rings of classical algebraic varieties. We present estimates by drawing on existing
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examples, and also record new information obtained from our results. It is worth
noting that the algebras in these examples are Koszul and many are Gorenstein.
Recall that the Hilbert series Hr(t) = Y5, ranky R;t' is a rational function

with numerator in Z[t] and denominator equal to (1 — ¢)4™ £,

6.4. Minimally elliptic singularities. Let £k = C and let R be the associated
graded ring of a rationally elliptic surface singularity; see Laufer [24]. Wahl [35, 2.8]
proved that R is a Gorenstein ring, pdg(R) =e—2>2, 3, ;(R) =0 for j #i+1
and 1 <i<e—3, Ben;(R)=0for j#e, and Hr(t) = (1 + et +t2)/(1 —t)2

When £ is infinite Wahl’s arguments apply to any Gorenstein k-algebra that has
Hg(t) = (1 +et+1t2)/(1 —t)4m . Furthermore, such an R is Koszul: By factoring
out a maximal R-regular sequence of linear forms it suffices to treat the case of
dimension zero, where the desired assertion follows from [25, Theorem 3(1)].

In particular, for every g > 2 there is a Koszul k-algebra R that is a Gorenstein
ring, and for which equality holds in (6.2.1) with i = ¢ + 1.

Example 6.5. The first 13 columns and 8 rows of the Betti template for Ny:

01 2 3 4 5 6 7 8 9 10 11 12 13
0 * - - - - - - - - - - - - -
1 - v v v v v v v v v v
2 - v v v v v v v v v v
3 - 0 v v Y v Y v v v \
4 - 0 0 O ® \ \Y% v v \Y% v \Y
5/- - - 0 0 0 O|l® ®|]v v v v v
6/- - - 00 0 0 O O|l® ®|]v v v
7/- - - 0 0 0 0 0 O S\W\L
8/- - - 0 0 0 0 0 0 O O O|l® ®
P 3 2 3 5 7

Let R be a general Gorenstein algebra with Hilbert series 1 + 5z + 522 + 23. It
is Koszul by [11, 6.3]. When p # 2, by specializing Schreyer’s result [33, p. 107] to
the Artinian case one sees that the Betti table of R is given by

B W N = O
1
1
1
=
=]
=
(=)
1
1

Thus, when g = 2 there is a Koszul k-algebra R that is a Gorenstein ring, and
for which equalities hold in (6.2.1) with ¢ = 3 and ¢ = 5.

Property N3 appears prominently in recent studies of a basic construction:

6.6. Segre products. Let (e,...,es) be an s-tuple of positive integers with s > 2.
Let R(¢1:¢5) be the coordinate ring of the Segre embedding Py x---xPrs — P,
where e = [[7_,(e; + 1) — 1. It is Koszul; see Barcdnescu and Manolache [4, 2.1].
When k& = C Rubei [32, Theorem 10] proved that R(er-e2) gatisfies N3, but not
N4 unless s =2 and e; = 1 or e = 1. Snowden developed a functorial method for
building its syzygies: “One consequence of this result is that almost any question
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about p-syzygies—such as, is the module of 13-syzygies of every Segre embedding
generated in degrees at most 20?7—can be resolved by a finite computation (in
theory);” see [34, p.226]. Column 13 in the next example gives a positive answer.

Example 6.7. The first 16 columns and 8 rows of the Betti template for N3:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ol * - - - - - - - - - - - - - - - -
1 - \ 4 v v \ v v 4 v 4 v v 4
2 - 4 \ v v 2 v v \ v v v v \
3| - ol ®|v v v v v v v Vv VvV V¥
4/- - - - 0 0 0 O|l®@ @]V v v v v v ¥
5/- - - - 0 0o O O LOT ® LOocﬂ v vV v vV
6/- - - - 000 00O O O|l® ® 6 0|V
7|- - - - 000 0 00O O O|® ® ® O
8|]- - - - 00 0 0 0 O O O O O O Of®
» | 3 2 3 5 7 5 2

The algebra R1Y has N3 by 6.6, it is Gorenstein with Hp = (1+4t+t2)/(1—t)*
by [4, 3.2(7)], and so it is Koszul by 6.4.

Equality can hold in (6.2.2) for any ¢ = h —1 > 2 by 6.4 and with (¢, h) = (2,5)
by Example 6.5. However, (6.2.2) may be far from optimal when pdg R is large.
In fact, we know of no family of Koszul algebras satisfying No and with projective
dimensions bounded above by some linear function of their regularities. On the
other hand, families with quadratic bounds do exist:

6.8. Grassmannians. Let R[" be the coordinate ring of the Grassmannian of
2-dimensional subspaces of the affine space A}. It is classically known that the k-
algebra R[™ is minimally generated by () elements, and Hochster [20, 3.2] proved
that it is a Gorenstein ring of Krull dimension 2n — 3. It is also Koszul, see [21],
and when p =0 or p > %(n — 4) has property Ny by Kurano [23, 5.3].

The following hold: reg(R[™) =n — 3 by [9, 1.4] but pd(R™) = ("?).

In a different direction, Dao, Huneke, and Schweig [12, 4.8] obtained an upper
bound on the regularity of Koszul algebras with monomial relations satisfying IV,
for some ¢ > 2 in terms of the number e of algebra generators: They exhibit an
explicit polynomial f,(z) € R[z] and a real number ¢, € R with oy > 1, such that

reg R < log,_(fq(€)) .

Our last example shows that no bound of similar type can exist for the class of all
Koszul algebras satisfying V,, since it contains the following family:

6.9. Veronese subalgebras. Let R?™ be the k-subalgebra generated by all the
monomials of degree ¢ in a polynomial ring in gn variables. It is Koszul by [4, 2.1],
has N, by [7, 4.2], and needs (q”J’qq_l) generators, and its regularity is equal to
(¢—1)n; the last expression is well known: It follows easily from the results of Goto
and Watanabe in [16, Ch. 3] and is given explicitly by Nitsche in [30, 4.2].
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