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ABSTRACT. For any non-zero finite module M of finite projective dimension
over a noetherian local ring R with maximal ideal m and residue field k, it
is proved that the natural map Extp(k, M) — Extp(k, M/mM) is non-zero
when R is regular and is zero otherwise. A noteworthy aspect of the proof
is the use of stable cohomology. Applications include computations of Bass
series over certain local rings.

INTRODUCTION

Let (R, m, k) denote a commutative noetherian local ring with maximal ideal m
and residue field k; when R is not regular we say that it is singular.
This article revolves around the following result:

Theorem. If (R, m, k) is a singular local ring and M an R-module of finite projec-
tive dimension, then Exty(k, 7™) =0 for the canonical map 7™ : M — M/mM.

Special cases, known for a long time, are surveyed at the end of Section 2. Even
in those cases our proof is new. It utilizes a result of Martsinkovsky [11] through
properties of Vogel’s stable cohomology functors [6, 3] recalled in Section 1. It also
suggests extensions to DG modules over certain commutative DG algebras; see [2].
Applications of the theorem include new criteria for regularity of local rings (in
Section 2) and explicit computations of Bass numbers of modules (in Section 3).

1. STABLE COHOMOLOGY

In this section we recall the construction of stable cohomology and basic results
required in the sequel. The approach we adopt is based on a construction by Vogel,
and described in Goichot [6]; see also [3].

Let R be an associative ring and let R denote its center. Given left R-modules
L and M, choose projective resolutions P and @ of L and M, respectively. Recall
that a homomorphism P — @ of degree n is a family 8 = (8;);cz of R-linear maps
Bi: P; = Q;yn; that is, an element of the R°-module

Homp(P,Q)n = HHomR(Pi,QHn) .
1E€EL
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This module is the n-th component of a complex Hompg (P, @), with differential

On(B) = 0%, B — (—1)"B;1 0L .
The maps g: P — @ with 8; = 0 for ¢ > 0 form a subcomplex with component

Homp(P,Q)n = [ [Homp(P;, Qiyn) for neZ.
1€ZL

We write Hom r(P, Q) for the quotient complex. It is independent of the choices
of P and @ up to R-linear homotopy, and so is the exact sequence of complexes

(1.0.1) 0 — Homz (P, Q) — Hompz(P,Q) = Homz(P,Q) — 0.
The stable cohomology of the pair (L, M) is the graded R°-module E/))RR(L, M) with
Ext?(L, M) = H*(Homp(P,Q)) for each ne€Z.

It comes equipped with functorial homomorphisms of graded R*-modules

(1.0.2) Ext?(L, M) LM Bgn (L, M) forall neZ.

1.1. If pdp L or pdg M is finite, then E;]%(L,M) =0 for all n € Z.
Indeed, in this case we may choose P or ) to be a bounded complex. The
definitions then yield Hompg(P, Q) = Hompg (P, @), and hence Homp (P, Q) = 0.

1.2. For a family {M} ;e of R-modules and every integer n the canonical inclusions

M; — Hj cs M; induce, by functoriality, a commutative diagram of R°-modules

7" (L1 e, M)

Exty(L, Hje] M;) E;ﬂ%(LijeJ M;)

] |

n ]—I nn(LaM') —
[T, Bxtih(L, M) —< 5 ey ExUR(L, M)

Proposition 1.3. Suppose L admits a resolution by finite projective R-modules.
For every integer n the vertical maps in (1.2.1) are bijective. In particular, the

map N (L, HjEJ Mj) is injective or surjective for some n if and only if n™ (L, M;)

has the corresponding property for every j € J.

Proof. Let P be aresolution of L by finite projective R-modules and @); a projective

resolution of M;. The complex [ jes @j is a projective resolution of 11 jeq Mj, and

we have a commutative diagram of morphisms of complexes of R*-modules

0 — Homp(P, [, @) — Homg(P.11,c, Q;) — Homa(P,[1,c, Q;) — 0

0 — ;e Homg(P, Q;) — [;c; Homp(P, Q;) — [1;c; Homp(P,Q;) —0
with natural vertical maps. The map H" () is bijective, as it represents
H EXHIL%(L> MJ) - EXHII{(L) H MJ) ,
JjeJ jeJ
which is bijective due to the hypothesis on L. As 37 is evidently bijective, H" () is
an isomorphism. The right-hand square of the diagram above induces (1.0.2). O
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2. LOCAL RINGS

The next theorem is the main result of the paper. It concerns the maps
Exty(k, B): Exth(k, M) — Exty(k, V)

induced by some homomorphism 3: M — V, and is derived from a result of
Martsinkovsky [11] by using properties of stable cohomology, recalled above.

Theorem 2.1. Let (R, m, k) be a local ring and V' an R-module such that mV = 0.
If R is singular and B: M — V is an R-linear map that factors through some
module of finite projective dimension, then

Extk(k,8) =0 forall neZ.

Proof. By hypothesis, there exists an R-module N of finite projective dimension
such that 3 factors as M - N % V. The following diagram

Ext™ (k, nRV)
Exct s (k, M) ot et (6, V) <21 Bxgn (1, 1)

Em TEXtR(k"s)n(k N TEX%(M)
0" (k,

Exti(k, N) —— Ext}(k, N) =0

commutes due to the naturality of the maps involved; the equality comes from 1.1.
The map n™(k, k) is injective by [11, Theorem 6]. Proposition 1.3 shows that
n™(k, V) is injective as well, so the diagram yields Ext’y(k, 8) = 0. O

Note that no finiteness condition on M is imposed in the theorem. This remark
is used in the proof of the following corollary, which deals with the maps

Tor?(k,a): TorZ(k,V) — Torf(k, M)
induced by some homomorphism a: V — M.

Corollary 2.2. If R is singular and a: V — M is an R-linear map that factors
through some module of finite injective dimension, then

Torf(k,a) =0 forall necZ.

Proof. Set (—)Y = Hompg(—, F), where E is an injective envelope of the R-module k.
Let V.— L — M be a factorization of o with L of finite injective dimension. By
Ishikawa [7, 1.5] the module LY has finite flat dimension, so it has finite projective
dimension by Jensen [9, 5.8]. As m(VV) =0 and a" factors through LV, Theorem
2.1 gives Ext’(k,a") = 0. The natural isomorphism Ext’(k, —) = TorZ(k, —)v
now yields Tor (k, )" = 0, whence we get Tor(k, o) = 0, as desired. O

Next we record an elementary observation, where (—)* = Homg(—, R).

Lemma 2.3. Let (R, m, k) be a local ring and x: X —'Y an R-linear map.
If Coker(x) has a non-zero free direct summand, then Ker(x*) € mY™ holds.
When Y is free of finite rank the converse assertion holds as well.

Proof. The condition on Coker(x) holds if and only if there is an epimorphism

Coker(x) — R; that is, an R-linear map v: ¥ — R with vy = 0 and v(Y) € m.
When such a v exists it is in Ker(x*), but not in mY™, for otherwise v(Y") C m.
When Y is finite free and Ker(x*) € mY™ holds, pick v in Ker(x*) ~ mY™*. Since

Y™ is finite free, v can be extended to a basis of Y*, hence v(Y) = R. g
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The theorem in the introduction is the crucial implication in the next result:

Theorem 2.4. Let (R,m, k) be a local ring. For each R-module M, let
eny = Exth(k, 7™): Ext%(k, M) — BExt’(k, M/mM)

be the map of R-modules induced by the natural map 7™ : M — M/mM.

The following conditions are equivalent.

(i) R is regular.

(ii) €% # 0 for some integer n.

(iii) el # 0 for some R-module M with pdp M <oco and some integer n.

(iv) €4, # 0 for every finite R-module M # 0 and for d = dim R.
)

v) Coker(9L), where F is a minimal free resolution of k over R, has a non-zero
free direct summand for some integer n.

Proof. Set G = Hompg(F, R) with F' as in (v). From Homp(F, M) = G ®r M and
O(G® M) Cm(G® M) (by the minimality of F) we get a commutative diagram

n
Em

Ext?(k, M) Ext}, (k, M/mM)

T H—n(G®R7Tlu) T

H_,(Gor M) —"2"" L (Gor (M/mM)) = G_, @ (M/mM)

(i) = (iv). As R is regular, F' is the Koszul complex on a minimal generating
set of m. This gives G4 = R, an isomorphism H_4(G ®x 7™), and an inequality
M/mM # 0 by Nakayama’s Lemma; now the diagram yields €4, # 0.

(iv) = (ii) = (iii). These implications are tautologies.

(iii) = (i). This implication is a special case of Theorem 2.1.

(ii) <= (v). The preceding diagram shows that the condition €% # 0 is equiva-
lent to Ker(9%,) € mG_,,. Thus, the desired assertion follow from Lemma 2.3. [

Notes 2.5. The equivalence of conditions (i) and (ii) in Theorem 2.4 was proved by
Ivanov [8, Theorem 2] when R is Gorenstein and by Lescot [10, 1.4] in general.

The equivalence of (i) and (v) is due to Dutta [4, 1.3]. As shown above, it follows
from Lescot’s theorem via the elementary Lemma 2.3. Martsinkovsky deduced
Dutta’s theorem from [11, Theorem 6], and used the latter to prove regularity
criteria different from (ii), (iii), and (iv) in Theorem 2.4; see [11, p. 11].

3. BASS NUMBERS OF MODULES
The nth Bass number of a module M over a local ring (R, m, k) is the integer
wr(M) = ranky, Exty(k, M) .

In what follows, given a homomorphism 3: M — N and an R-submodule N’ C
N we let M N N’ denote the submodule 3~(N’) of M.

Theorem 3.1. Let (R,m,k) be a local ring, M — N an R-linear map, and set
r =ranky(M/M NmN).
If R is singular and pdy N is finite, then for each n € Z there is an equality
W (M O mN) = (M) + 1y (k)
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Proof. Set M = M/(MNmN)and N = N/mN,andlet 7: M — M and t: M — N
be the induced maps. They appear in a commutative diagram with exact row

M——N
l L J
0 M N

Since ¢ is k-linear, it is split, so we get a commutative diagram with exact row

Extp(k, M) —— Ext 5 (k, N)

ExtR(k,Tr)J/ Jo

— Extg (k) —
0 —— Ext p(k, M) Ext ,(k, V)

and zero map due to Theorem 2.1. It implies Extp(k, 7) = 0.
By definition, there exists an exact sequence of R-modules

0— (MNmN) — M "M —0
As Extg(k,m) = 0, its cohomology sequence yields an exact sequence
0 — Exty '(k, M) — Ext(k, M NmN) — Exth(k, M) — 0

of k-vector spaces for each integer n. Computing ranks over k and using the iso-
morphism Ext g (k, M) = Extg(k, k) ®, M, we obtain the desired equality. O

Recall that the nth Betti number of M is the integer B2 (M) = ranky Ext}y (M, k).
Corollary 3.2. Assume that R is singular and N 2 M 2O mN holds, and set
s =rankg(N/M).
If N is finite and pdr N = p < oo holds, then for each n € Z there is an equality

(3.2.1) pR(M) = Z i (R)BIE(N) + 88,7 (k) -

In particular, i (m) = p(R) + BE_, (k) for each n > 0.

Proof. The hypotheses give M NmN = mN and r = rank;(M/mN). By applying
Theorem 3.1 to the submodules M € N and mN C N we obtain

(M) = pjp(mN) =5t (k)
= up(N) + ranky (N/mN) ;L (k) — 7B, (k)
= pip(N) + sBiE 1 (k).
As pdy N is finite, Foxby [5, 4.3(2)] yields ph(N) = S0 w5t (R)BE(N). d

Remark 3.3. The hypothesis p < oo in the corollary is needed, as otherwise the
sum in (3.2.1) is not defined. On the other hand, when R is regular—and so p is
necessarily finite—formula (3.2.1) may fail. For instance, with d = dim R one has

( d ) forn=1 d

n m) = n—1 PR ) )

i (m) {0 otherwise.

Indeed, 0 - m — R — k — 0 induces a cohomology long exact sequence where

pin(R) = 0 for n # d, the map €% is bijective by Theorem 2.4, and p' (k) = (d)

2
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3.4. Bass numbers are often described in terms of the generating formal power
series I (t) = 3, cq wi(M)t™. We also use the series Pt (t) = >, o, BE(M)t™.

In these terms, the formulas (3.2.1) for all n € Z can be restated as an equality
(3.4.1) IN@) = IR PR + stPE(t).

3.5. Let (S, mg, k) and (T, mp, k) be local rings and let eg: S — k < T : e denote
the canonical maps. The fiber product of S and T over k is defined by the formula
SxpT:={(s,t) € SxT|eg(s) =er(t)}.

It is well known, and easy to see, that this is a subring of S x T', which is local with
maximal ideal m = mg ® my and residue field k. Set R = .5 x; T.

Let N and P be finite modules over S and T, respectively. The canonical maps
S+ R — T turn N and P into R-modules, and for them Lescot [10, 2.4] proved

ORI ORI O ()

Pt PI() P P

When N/ngN =V = P/myp P holds for some k-module V' the fiber product
N xy P:={(n,p) € N x P |7 (n) =7"(p)}

has a natural structure of finite R-module.

(3.5.1)

Corollary 3.6. With notation as in 3.5, set v =rankg V and M = N xy P.
If S and T are singular and pdg N and pdp P are finite, then

IRM@) ISPy | IR0 PE(")
PRt~ B P(t)
Proof. We have mM = mgN @mp P as R-modules, whence the first equality below:
IpM) _ Ig=N(1) . I " (1)
PRt Bt P
_IsPy(t) IF ()Pt
IR0 P(t)
The second one comes by applying formulas (3.5.1) and (3.4.1), in this order. O

+ 2vt.

+ vt + + vt.

Notes 3.7. For all finite R-modules N D M D mN # 0, it is proved in [1, Theorem 4]
that the Bass numbers of M and mN asymptotically have the same size, measured
on appropriate polynomial or exponential scales. The closed formula in Corollary
3.2 is a much more precise statement, but as noted in Remark 3.3 that formula may
not hold when pdp N is infinite or when R is regular.

The last conclusion in Corollary 3.2 is Lescot’s result [10, 1.8(2)]. Combining
it with the expression for IE(t) obtained from Corollary 3.6 by setting N = S,
P =T, and V = k, one recovers [10, 3.2(1)]. The proof of Corollary 3.6 faithfully
transposes Lescot’s derivation of [10, 3.2(1)] from [10, 1.8(2)].
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