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Abstract. For any non-zero finite module M of finite projective dimension
over a noetherian local ring R with maximal ideal m and residue field k, it

is proved that the natural map Ext
R
(k,M) → Ext

R
(k,M/mM) is non-zero

when R is regular and is zero otherwise. A noteworthy aspect of the proof
is the use of stable cohomology. Applications include computations of Bass
series over certain local rings.

Introduction

Let (R,m, k) denote a commutative noetherian local ring with maximal ideal m
and residue field k; when R is not regular we say that it is singular.

This article revolves around the following result:

Theorem. If (R,m, k) is a singular local ring and M an R-module of finite projec-

tive dimension, then ExtR(k, π
M ) = 0 for the canonical map πM : M →M/mM .

Special cases, known for a long time, are surveyed at the end of Section 2. Even
in those cases our proof is new. It utilizes a result of Martsinkovsky [11] through
properties of Vogel’s stable cohomology functors [6, 3] recalled in Section 1. It also
suggests extensions to DG modules over certain commutative DG algebras; see [2].
Applications of the theorem include new criteria for regularity of local rings (in
Section 2) and explicit computations of Bass numbers of modules (in Section 3).

1. Stable cohomology

In this section we recall the construction of stable cohomology and basic results
required in the sequel. The approach we adopt is based on a construction by Vogel,
and described in Goichot [6]; see also [3].

Let R be an associative ring and let Rc denote its center. Given left R-modules
L and M , choose projective resolutions P and Q of L and M , respectively. Recall
that a homomorphism P → Q of degree n is a family β = (βi)i∈Z of R-linear maps
βi : Pi → Qi+n; that is, an element of the Rc-module

HomR(P,Q)n =
∏

i∈Z

HomR(Pi, Qi+n) .
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This module is the n-th component of a complex HomR(P,Q), with differential

∂n(β) = ∂Q
i+nβi − (−1)nβi−1∂

P
n .

The maps β : P → Q with βi = 0 for i� 0 form a subcomplex with component

HomR(P,Q)n =
∐

i∈Z

HomR(Pi, Qi+n) for n ∈ Z .

We write ĤomR(P,Q) for the quotient complex. It is independent of the choices
of P and Q up to R-linear homotopy, and so is the exact sequence of complexes

(1.0.1) 0 −→ HomR(P,Q) −→ HomR(P,Q)
θ
−−→ ĤomR(P,Q) −→ 0 .

The stable cohomology of the pair (L,M) is the graded Rc-module ÊxtR(L,M) with

ÊxtnR(L,M) = Hn(ĤomR(P,Q)) for each n ∈ Z .

It comes equipped with functorial homomorphisms of graded Rc-modules

(1.0.2) ExtnR(L,M)
ηn(L,M)
−−−−−−→ ÊxtnR(L,M) for all n ∈ Z .

1.1. If pdR L or pdR M is finite, then ÊxtnR(L,M) = 0 for all n ∈ Z.

Indeed, in this case we may choose P or Q to be a bounded complex. The

definitions then yield HomR(P,Q) = HomR(P,Q), and hence ĤomR(P,Q) = 0.

1.2. For a family {Mj}j∈J of R-modules and every integer n the canonical inclusions
Mj →

∐
j∈J Mj induce, by functoriality, a commutative diagram of Rc-modules

(1.2.1)

ExtnR(L,
∐

j∈J Mj)
ηn(L,

∐
j∈J Mj)

// ÊxtnR(L,
∐

j∈J Mj)

∐
j∈J ExtnR(L,Mj)

OO

∐
j∈J ηn(L,Mj)

//
∐

j∈J ÊxtnR(L,Mj)

OO

Proposition 1.3. Suppose L admits a resolution by finite projective R-modules.

For every integer n the vertical maps in (1.2.1) are bijective. In particular, the

map ηn(L,
∐

j∈J Mj) is injective or surjective for some n if and only if ηn(L,Mj)
has the corresponding property for every j ∈ J .

Proof. Let P be a resolution of L by finite projective R-modules and Qj a projective
resolution of Mj . The complex

∐
j∈J Qj is a projective resolution of

∐
j∈J Mj , and

we have a commutative diagram of morphisms of complexes of Rc-modules

0 // HomR(P,
∐

j∈J Qj) // HomR(P,
∐

j∈J Qj) // ĤomR(P,
∐

j∈J Qj) // 0

0 //
∐

j∈J HomR(P,Qj) //

κ

OO

∐
j∈J HomR(P,Qj) //

κ

OO

∐
j∈J ĤomR(P,Qj) //

κ̂

OO

0

with natural vertical maps. The map Hn(κ) is bijective, as it represents
∐

j∈J

ExtnR(L,Mj)→ ExtnR(L,
∐

j∈J

Mj) ,

which is bijective due to the hypothesis on L. As κ is evidently bijective, Hn(κ̂) is
an isomorphism. The right-hand square of the diagram above induces (1.0.2). �
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2. Local rings

The next theorem is the main result of the paper. It concerns the maps

ExtnR(k, β) : ExtnR(k,M)→ ExtnR(k, V )

induced by some homomorphism β : M → V , and is derived from a result of
Martsinkovsky [11] by using properties of stable cohomology, recalled above.

Theorem 2.1. Let (R,m, k) be a local ring and V an R-module such that mV = 0.
If R is singular and β : M → V is an R-linear map that factors through some

module of finite projective dimension, then

ExtnR(k, β) = 0 for all n ∈ Z .

Proof. By hypothesis, there exists an R-module N of finite projective dimension

such that β factors as M
γ
−→ N

δ
−→ V . The following diagram

ExtnR(k,M)
ExtnR(k,β)

//

ExtnR(k,γ)
((P

P

P

P

P

P

P

P

P

P

P

P

P

ExtnR(k, V )
ηn(k,V )

// ÊxtnR(k, V )

ExtnR(k,N)
ηn(k,N)

//

ExtnR(k,δ)

OO

ÊxtnR(k,N)

ÊxtnR(k,δ)

OO

0

commutes due to the naturality of the maps involved; the equality comes from 1.1.
The map ηn(k, k) is injective by [11, Theorem 6]. Proposition 1.3 shows that

ηn(k, V ) is injective as well, so the diagram yields ExtnR(k, β) = 0. �

Note that no finiteness condition on M is imposed in the theorem. This remark
is used in the proof of the following corollary, which deals with the maps

TorRn (k, α) : TorRn (k, V )→ TorRn (k,M)

induced by some homomorphism α : V →M .

Corollary 2.2. If R is singular and α : V → M is an R-linear map that factors

through some module of finite injective dimension, then

TorRn (k, α) = 0 for all n ∈ Z .

Proof. Set (−)∨ = HomR(−, E), where E is an injective envelope of theR-module k.
Let V → L → M be a factorization of α with L of finite injective dimension. By
Ishikawa [7, 1.5] the module L∨ has finite flat dimension, so it has finite projective
dimension by Jensen [9, 5.8]. As m(V ∨) = 0 and α∨ factors through L∨, Theorem

2.1 gives ExtnR(k, α
∨) = 0. The natural isomorphism ExtnR(k,−

∨) ∼= TorRn (k,−)
∨

now yields TorRn (k, α)
∨ = 0, whence we get TorRn (k, α) = 0, as desired. �

Next we record an elementary observation, where (−)∗ = HomR(−, R).

Lemma 2.3. Let (R,m, k) be a local ring and χ : X → Y an R-linear map.

If Coker(χ) has a non-zero free direct summand, then Ker(χ∗) * mY ∗ holds.

When Y is free of finite rank the converse assertion holds as well.

Proof. The condition on Coker(χ) holds if and only if there is an epimorphism
Coker(χ)→ R; that is, an R-linear map υ : Y → R with υχ = 0 and υ(Y ) * m.

When such a υ exists it is in Ker(χ∗), but not in mY ∗, for otherwise υ(Y ) ⊆ m.
When Y is finite free and Ker(χ∗) * mY ∗ holds, pick υ in Ker(χ∗)rmY ∗. Since

Y ∗ is finite free, υ can be extended to a basis of Y ∗, hence υ(Y ) = R. �
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The theorem in the introduction is the crucial implication in the next result:

Theorem 2.4. Let (R,m, k) be a local ring. For each R-module M , let

εnM = ExtnR(k, π
M ) : ExtnR(k,M)→ ExtnR(k,M/mM)

be the map of R-modules induced by the natural map πM : M →M/mM .

The following conditions are equivalent.

(i) R is regular.

(ii) εnR 6= 0 for some integer n.
(iii) εnM 6= 0 for some R-module M with pdR M<∞ and some integer n.
(iv) εdM 6= 0 for every finite R-module M 6= 0 and for d = dimR.

(v) Coker(∂F
n ), where F is a minimal free resolution of k over R, has a non-zero

free direct summand for some integer n.

Proof. Set G = HomR(F,R) with F as in (v). From HomR(F,M) ∼= G⊗R M and
∂(G⊗M) ⊆ m(G⊗M) (by the minimality of F ) we get a commutative diagram

ExtnR(k,M)
εnM

// ExtnR(k,M/mM)

H−n(G⊗R M)

∼=

OO

H−n(G⊗RπM )
// H−n(G⊗R (M/mM))

∼=

OO

G−n ⊗ (M/mM)

(i) =⇒ (iv). As R is regular, F is the Koszul complex on a minimal generating
set of m. This gives Gd = R, an isomorphism H−d(G ⊗R πM ), and an inequality
M/mM 6= 0 by Nakayama’s Lemma; now the diagram yields εdM 6= 0.

(iv) =⇒ (ii) =⇒ (iii). These implications are tautologies.
(iii) =⇒ (i). This implication is a special case of Theorem 2.1.
(ii)⇐⇒ (v). The preceding diagram shows that the condition εnR 6= 0 is equiva-

lent to Ker(∂G
−n) * mG−n. Thus, the desired assertion follow from Lemma 2.3. �

Notes 2.5. The equivalence of conditions (i) and (ii) in Theorem 2.4 was proved by
Ivanov [8, Theorem 2] when R is Gorenstein and by Lescot [10, 1.4] in general.

The equivalence of (i) and (v) is due to Dutta [4, 1.3]. As shown above, it follows
from Lescot’s theorem via the elementary Lemma 2.3. Martsinkovsky deduced
Dutta’s theorem from [11, Theorem 6], and used the latter to prove regularity
criteria different from (ii), (iii), and (iv) in Theorem 2.4; see [11, p. 11].

3. Bass numbers of modules

The nth Bass number of a module M over a local ring (R,m, k) is the integer

µn
R(M) = rankk Ext

n
R(k,M) .

In what follows, given a homomorphism β : M → N and an R-submodule N ′ ⊆
N we let M ∩N ′ denote the submodule β−1(N ′) of M .

Theorem 3.1. Let (R,m, k) be a local ring, M → N an R-linear map, and set

r = rankk(M/M ∩mN) .

If R is singular and pdR N is finite, then for each n ∈ Z there is an equality

µn
R(M ∩mN) = µn

R(M) + rµn−1
R (k) .
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Proof. Set M = M/(M∩mN) and N = N/mN , and let π : M →M and ι : M → N
be the induced maps. They appear in a commutative diagram with exact row

M

π

��

// N

��

0 // M
ι

// N

Since ι is k-linear, it is split, so we get a commutative diagram with exact row

ExtR(k,M)

ExtR(k,π)

��

// ExtR(k,N)

0

��

0 // ExtR(k,M)
ExtR(k,ι)

// ExtR(k,N)

and zero map due to Theorem 2.1. It implies ExtR(k, π) = 0.
By definition, there exists an exact sequence of R-modules

0 −→ (M ∩mN) −→M
π
−−→M −→ 0

As ExtR(k, π) = 0, its cohomology sequence yields an exact sequence

0 −→ Extn−1
R (k,M) −→ ExtnR(k,M ∩mN) −→ ExtnR(k,M) −→ 0

of k-vector spaces for each integer n. Computing ranks over k and using the iso-
morphism ExtR(k,M) ∼= ExtR(k, k)⊗k M , we obtain the desired equality. �

Recall that the nth Betti number ofM is the integer βR
n (M) = rankk Ext

n
R(M,k).

Corollary 3.2. Assume that R is singular and N ⊇M ⊇ mN holds, and set

s = rankk(N/M) .

If N is finite and pdR N = p <∞ holds, then for each n ∈ Z there is an equality

(3.2.1) µn
R(M) =

p∑

i=0

µn+i
R (R)βR

i (N) + sβR
n−1(k) .

In particular, µn
R(m) = µn

R(R) + βR
n−1(k) for each n ≥ 0.

Proof. The hypotheses give M ∩ mN = mN and r = rankk(M/mN). By applying
Theorem 3.1 to the submodules M ⊆ N and mN ⊆ N we obtain

µn
R(M) = µn

R(mN)− rβR
n−1(k)

= µn
R(N) + rankk(N/mN)βR

n−1(k)− rβR
n−1(k)

= µn
R(N) + sβR

n−1(k) .

As pdR N is finite, Foxby [5, 4.3(2)] yields µn
R(N) =

∑p
i=0 µ

n+i
R (R)βR

i (N). �

Remark 3.3. The hypothesis p < ∞ in the corollary is needed, as otherwise the
sum in (3.2.1) is not defined. On the other hand, when R is regular—and so p is
necessarily finite—formula (3.2.1) may fail. For instance, with d = dimR one has

µn
R(m) =

{(
d

n−1

)
for n = 1, . . . , d ,

0 otherwise.

Indeed, 0 → m → R → k → 0 induces a cohomology long exact sequence where
µi
R(R) = 0 for n 6= d, the map εdR is bijective by Theorem 2.4, and µi

R(k) =
(
d
i

)
.



6 L. L. AVRAMOV AND S. B. IYENGAR

3.4. Bass numbers are often described in terms of the generating formal power
series IMR (t) =

∑
n∈Z

µn
R(M)tn. We also use the series PR

M (t) =
∑

n∈Z
βR
n (M)tn.

In these terms, the formulas (3.2.1) for all n ∈ Z can be restated as an equality

(3.4.1) IMR (t) = IRR (t)PR
N (t−1) + stPR

k (t) .

3.5. Let (S,mS , k) and (T,mT , k) be local rings and let εS : S → k ← T : εT denote
the canonical maps. The fiber product of S and T over k is defined by the formula

S ×k T := {(s, t) ∈ S × T | εS(s) = εT (t)} .

It is well known, and easy to see, that this is a subring of S×T , which is local with
maximal ideal m = mS ⊕mT and residue field k. Set R = S ×k T .

Let N and P be finite modules over S and T , respectively. The canonical maps
S ← R→ T turn N and P into R-modules, and for them Lescot [10, 2.4] proved

(3.5.1)
INR (t)

PR
k (t)

=
INS (t)

PS
k (t)

and
IPR (t)

PR
k (t)

=
IPT (t)

PT
k (t)

.

When N/nSN = V = P/mTP holds for some k-module V the fiber product

N ×V P := {(n, p) ∈ N × P | πN (n) = πP (p)}

has a natural structure of finite R-module.

Corollary 3.6. With notation as in 3.5, set v = rankk V and M = N ×V P .

If S and T are singular and pdS N and pdT P are finite, then

ImM
R (t)

PR
k (t)

=
ISS (t)P

S
N (t−1)

PS
k (t)

+
ITT (t)P

T
P (t−1)

PT
k (t)

+ 2vt .

Proof. We have mM ∼= mSN⊕mTP as R-modules, whence the first equality below:

ImM
R (t)

PR
k (t)

=
ImSN
R (t)

PR
k (t)

+
ImTP
R (t)

PR
k (t)

=
ISS (t)P

S
N (t−1)

PS
k (t)

+ vt+
ITT (t)P

T
P (t−1)

PT
k (t)

+ vt .

The second one comes by applying formulas (3.5.1) and (3.4.1), in this order. �

Notes 3.7. For all finiteR-modulesN ⊇M ⊇ mN 6= 0, it is proved in [1, Theorem 4]
that the Bass numbers of M and mN asymptotically have the same size, measured
on appropriate polynomial or exponential scales. The closed formula in Corollary
3.2 is a much more precise statement, but as noted in Remark 3.3 that formula may
not hold when pdR N is infinite or when R is regular.

The last conclusion in Corollary 3.2 is Lescot’s result [10, 1.8(2)]. Combining
it with the expression for IRR (t) obtained from Corollary 3.6 by setting N = S,
P = T , and V = k, one recovers [10, 3.2(1)]. The proof of Corollary 3.6 faithfully
transposes Lescot’s derivation of [10, 3.2(1)] from [10, 1.8(2)].
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