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Abstract

We consider a congested aggregation model that describes the evolution of a
density through the competing effects of nonlocal Newtonian attraction and a hard
height constraint. This provides a counterpoint to existing literature on repulsive–
attractive nonlocal interactionmodels, where the repulsive effects instead arise from
an interaction kernel or the addition of diffusion. We formulate our model as the
Wasserstein gradient flow of an interaction energy, with a penalization to enforce
the constraint on the height of the density. From this perspective, the problem can
be seen as a singular limit of the Keller–Segel equation with degenerate diffusion.
Two key properties distinguish our problem from previous work on height con-
strained equations: nonconvexity of the interaction kernel (which places the model
outside the scope of classical gradient flow theory) and nonlocal dependence of
the velocity field on the density (which causes the problem to lack a comparison
principle). To overcome these obstacles, we combine recent results on gradient
flows of nonconvex energies with viscosity solution theory. We characterize the
dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem
and, using this characterization, show that in two dimensions patch solutions con-
verge to a characteristic function of a disk in the long-time limit, with an explicit
rate on the decay of the energy. We believe that a key contribution of the present
work is our blended approach, combining energy methods with viscosity solution
theory.
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1. Introduction

In recent years, there has been significant interest in physical and biological
models with nonlocal interactions. These models describe the pairwise interac-
tions of a large number of individual agents, for which, in the continuum limit,
the nonnegative density ρ(x, t) satisfies the aggregation equation with degenerate
diffusion

ρt = ∇ · (ρ∇N ∗ ρ)+�ρm, (1.1)

for an interaction kernelN : Rd → R andm � 1. This equation ismass-preserving
and, provided thatN (x) possesses sufficient convexity and regularity, it is aWasser-
stein gradient flow of the energy

Em(ρ) = W (ρ)+ Sm(ρ),

where the interaction energy W (ρ) and Rényi entropy Sm(ρ) are given by

W (ρ) = 1

2

∫
(N ∗ ρ)(x)ρ(x) dx and Sm(ρ) := 1

m − 1

∫
ρ(x)mdx .

See Section 2.1 for further background on this gradient flow structure, including
Remark 2.11 for the case when

∫
ρ �= 1.

Depending on the choice of interaction kernel and diffusion parameter, equa-
tions similar to (1.1) arises in a range applications in physics and biology, including
models of granular media [6,18], biological swarming [13,50], robotic swarming
[19,43], molecular self-assembly [21,45,53], and the evolution of vortex densities
in superconductors [3,36,39,44]. Of particular interest are kernels and diffusion
parameters for which the model exhibits competing repulsive and attractive effects,
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causing solutions to blow up in finite time or form rich patterns in the asymptotic
limit (c.f. [4,5,7–9,23–25,48]). For example, with m � 1 and the interaction is
given by the Newtonian interaction kernel

N (x) =
{

1
2π log |x | for d = 2,
−1

d(d−2)αd |x |2−d for d �= 2,
with αd the volume of the unit ball in Rd ,

(1.2)

Equation (1.1) corresponds to the Keller–Segel model for biological chemotaxis
[10,11,29]

ρt = ∇ · (ρ∇(N ∗ ρ))+�ρm . (1.3)

In this case, the interaction kernel is purely attractive and competes with the repul-
sion induced by the degenerate diffusion. If m > 2 − 2/d, diffusion dominates at
large density, and bounded solutions exist globally in time [47]. Otherwise, depend-
ing on the choice of initial data, solutions with bounded initial data may blow up
in finite time.

In the present work, we consider a diffusion–aggregation model similar to the
Keller–Segel equation, but with the role of diffusion instead played by a hard
height constraint on the density. Heuristically, the evolution of ρ(x, t) is given by
the congested aggregation equation

{
ρt = ∇ · (ρ∇Nρ) if ρ(x, t) � 1,

ρ(x, t) � 1 always,
(1.4)

where Nρ := N ∗ρ denotes the Newtonian potential of ρ. Informally, solutions of
1.4 seek to evolve according to the “desired velocity field” ∇Nρ, subject to a hard
height constraint. More precisely, we define ρ(x, t) as the Wasserstein gradient
flow of the constrained interaction energy

E∞(ρ) :=
{

1
2

∫
Nρ(x)ρ(x)dx if ‖ρ‖∞ � 1,

+∞ otherwise.
(1.5)

Our choice of hard height constraint is inspired by the work of Maury et al. [40,
41], who introduced such a constraint in their model of pedestrian crowd motion.
They considered a congested drift equation

{
ρt = ∇ · (ρ∇V ) if ρ(x, t) � 1,

ρ(x, t) � 1 always,
(1.6)

for a local drift V : Rd → R, where ∇V is the “desired velocity field” of the
density. As in the present work, they rigorously defined the evolution of the density
as the Wasserstein gradient flow of the constrained potential energy

V∞(ρ) :=
{∫

V (x)ρ(x)dx if ‖ρ‖∞ � 1,

+∞ otherwise.
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They then showed that this gradient flow satisfies a formulation of the continuity
equation, where the velocity field is given by the L2 projection of ∇V onto the
set of admissible velocities that do not increase the density in the saturated zone,
{ρ = 1} [40]. Furthermore, when V (x) is semiconvex (for example when ∇2V (x)
is bounded below—see Section 2.1) the energy V∞ is likewise semiconvex and
Wasserstein gradient flow theory ensures that this evolution is unique.

Building upon this work, Alexander et al. [1] showed that solutions of the
congested drift equation could be approximated by solutions to a corresponding
nonlinear diffusion equation

ρt = ∇ · (ρ∇V )+�ρm (1.7)

as m →+∞, which are gradient flows of the energy

Vm(ρ) :=
∫

V (x)ρ(x)dx + 1

m − 1

∫
ρ(x)mdx,

(note that, for a fixed ρ, V∞(ρ) is the limit of Vm(ρ) as m → ∞.) They then
applied this result to characterize the dynamics of the congested drift equation:
given a velocity field satisfying �V > 0 and initial data that is a characteristic
function on a patch, ρ(x, 0) = χ�0(x) for

χ�0(x) :=
{
1 if x ∈ �0,

0 otherwise,

the solution remains a characteristic function, and the evolution of the patch is given
by a Hele-Shaw type free boundary problem.

In spite of the similarities between our congested aggregation equation (1.4) and
the congested drift equation (1.6), two key differences prevent its analysis by the
same methods. First, unlike V∞, the energy E∞ does not satisfy the semiconvexity
assumptions of classical gradient flow theory that ensure uniqueness. (In particu-
lar, we do not have that E∞ is λ-displacement convex.) This lack of convexity also
makes the equation inaccessible by classical approximation methods—specifically,
quantitative approximation by the discrete gradient flow or JKO scheme for semi-
convex energies—which was a key tool in Alexander, Kim, and Yao’s result on the
convergence of the nonlinear diffusion equation (1.7) asm →+∞ to the congested
drift equation. The secondmajor difference between the congested aggregation and
congested drift equations is that the velocity field of the former depends nonlocally
on the density. This prevents a direct adaptation of Maury, Roudneff-Chupin, and
Santambrogio’s characterization of solutions in terms of a continuity equation,
since their argument relies upon an Euler–Lagrange equation for the discrete gradi-
ent flow sequence, the proof of which strongly leverages the local nature of the drift.
Finally, the nonlocal nature of the velocity field causes there to be no comparison
principle, an important element in Alexander, Kim, and Yao’s analysis of the patch
dynamics.

To overcome these difficulties, we combine new results on the Wasserstein
gradient flow of non-semiconvex energies with a refined approximation of the
congested aggregation equation by nonlinear diffusion equations to characterize the
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dynamics of patch solutions and study their asymptotic behavior. To address the lack
of convexity, we appeal to recent work by the first author, inspired by the present
problem, that proves well-posedness ofWasserstein gradient flows for energies that
are merely ω-convex and provides quantitative estimates on the convergence of the
discrete gradient flow. (See Section 2.1). We apply these results to conclude that
if the initial data ρ0 satisfies ‖ρ0‖∞ � 1, then there exists a unique Wasserstein
gradient flow ρ∞ of the constrained interaction energy E∞. (Specifically, there
exists a unique curve in the space of probability measures that solves the evolution
variational inequality for E∞. See Theorem 2.4.) However, due to the low regularity
of E∞, gradient flow theory doesn’t provide a characterization of its evolution in
terms of a partial differential equation.

Our goal in this paper is to study the dynamics and asymptotic behavior of ρ∞.
We focus on the case when the initial data ρ0 is a patch, that is ρ0 = χ�0 , where
�0 ⊆ R

d is a bounded domain with Lipschitz boundary, and we seek to answer the
following questions:

1. If ρ0 is a patch, does ρ∞(·, t) remain a patch χ�(t) for all t � 0?
2. If so, what partial differential equation determines the evolution of the set�(t)?
3. What is the asymptotic behavior of �(t) as t →∞?

To answer these questions, we blend the gradient flow approach with viscosity
solution theory. Due to the attractive nature of the Newtonian kernel (1.2), we show
that the solution of the congested aggregation equation ρ∞(x, t) indeed remains a
patch: ρ∞(x, t) = χ�(t)(x) for a time dependent domain �(t). We then show that
�(t) evolves with outward normal velocity V = V (x, t) satisfying

V = −ν · (∇ p +∇Nρ∞) at x ∈ ∂�(t),

where ν = ν(x, t) is the outward unit normal at x ∈ ∂�(t) and, for each t > 0,
p = p(x, t) solves

−�p(·, t) = 1 in �(t), p(·, t) = 0 outside of �(t).

Since, �(t) = {p(·, t) > 0}, this gives a Hele-Shaw type free boundary problem
for the pressure variable p,

⎧⎨
⎩
−�p(·, t) = 1 in {p > 0};
V = −ν · (∇ p + ∇�) on ∂{p > 0};
� = Nχ{p>0}.

(P)

Provided that p is sufficiently regular (for example, p ∈ L1([0,∞); H1(Rd)), this
would imply that the solution of the congested aggregation is a weak solution of
the continuity equation

ρt = ∇ · (ρ(∇Nρ + ∇ p)), (1.8)

where ∇ p is the pressure generated by the height constraint that modifies the
“desired velocity field” ∇Nρ. In terms of p, ν = −∇ p/|∇ p| and V = pt/|∇ p|,
so in the smooth setting the second condition in (P) can be written as

pt = |∇ p|2 +∇ p · ∇� on ∂{p > 0}.



6 Katy Craig, Inwon Kim & Yao Yao

While we believe such regularity of the pressure should hold, it is not clear how to
obtain the necessary estimates from our Wasserstein gradient flow approach, and
we believe a different approach would be needed.

Even if �0 has smooth boundary, the evolving set �(t) = {p(·, t) > 0} may
undergo topological changes such as merging. Consequently, to describe the evolu-
tion of�(t), we require a notion of weak solution for (P). While viscosity solutions
are a natural choice, given their utility in free boundary problems, because of the
nonlocal dependence of the outward normal velocity V on p itself, (P) lacks a com-
parison principle. Instead, we consider an auxillary problem for a fixed, nonnegative
function ρ(x, t) ∈ L∞(Rd × (0,∞)),

⎧⎨
⎩
−�p(·, t) = 1 in {p > 0};
V = −ν · (∇ p + ∇�) on ∂{p > 0};
� = Nρ.

(P)∞

We show that the comparison comparison principle holds for (P)∞, hence viscosity
solution theory applies. We then define p to be a solution of (P) if it is a weak
viscosity solution of (P)∞ with ρ = χ{p>0} almost everywhere.

We now state our first main result, which follows from Theorems 3.12 and 3.17.

Theorem 1.1. (Characterization of dynamics of aggregation patches)

(a) Let�0 ⊆ R
d be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) ∈

L∞(Rn) be the gradient flow of E∞ with initial data χ�0 . (See Theorem 2.4 for
the well-posedness of this gradient flow.) Consider the free boundary problem
(P)∞ with ρ replaced by ρ∞, and the initial data p0 given by

−�p0(·, 0) = 1 in �0, p0(·, 0) = 0 outside of �0. (1.9)

Then there is a unique minimal viscosity solution p(x, t) of (P)∞ with initial
data p0.

(b) Let �(t) = {p(·, t) > 0}. Then ρ∞(·, t) remains a patch for all times, and

ρ∞(·, t) = χ�(t) almost everywhere for all t � 0.

(c) Therefore, p is a weak solution of (P) in the sense of Definition 3.6.

Next, we consider the asymptotic behavior of patch solutions as t →+∞. For
any given mass and any dimension, the Riesz rearrangement inequality [34, Theo-
rem 3.7] immediately gives that the global minimizer of the constrained interaction
energy (1.5) must be a characteristic function of a ball. However, this does not
guarantee that the gradient flow ρ∞(t) of the constrained interaction energy always
converges to a translation of the global minimizer as t → +∞. In particular, the
main obstacle is to show themass of ρ∞(t) cannot escape to infinity in the long time
limit, which requires us to obtain some compactness estimates on ρ∞(t) uniformly
in time.

For the Keller–Segel equation (1.3) with subcritical power m > 2 − 2/d, the
situation is very similar. Again, there exists a unique (up to a translation) global
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minimizer of Em for any given mass [35,37], but it is unknown whether solu-
tions converge to it as t →+∞. In dimension two, convergence has been recently
shown by Carrillo, Hittmeir, Volzone, and the third author [16], where compactness
is obtained via a uniform in time bound of the second moment, though no explicit
convergence rate towards the global minimizer is given. For d � 3, the only avail-
able convergence result towards the global minimizer is work by the second two
authors on radial solutions [31].

In our work, for dimension two, we not only prove convergence of solutions
towards the global minimizer of the constrained interaction energy (1.5) but also
provide explicit estimates on the rate of decay of the energy. We accomplish this
by again applying a blended approach, combining the gradient flow structure of the
problem with viscosity solution theory and the characterization of patch dynamics
from Theorem 1.1. We begin by using a rearrangement inequality of Talenti [49]
to show that the second moment of ρ∞(t) is non-increasing in time and is strictly
decreasing at time t unless �(t) is a disk. Then, applying a quantitative version
of the isoperimetric inequality due to Fusco et al. [26] and our characterization of
patch dynamics, Theorem 1.1, we provide explicit estimates on the rate that the
second moment is decreasing, in terms of the symmetric difference between �(t)
and a disk. Finally, using the gradient flow structure of the problem, we show that
as t →+∞, ρ∞(t) strongly converges to a characteristic function of a disk in Lq

for any 1 � q < ∞, and its energy E∞(ρ∞) converges to its global minimizer
with an explicit rate. This gives our second main result, which combines Theorems
4.9 and 4.12.

Theorem 1.2. (Long time behavior in two dimensions) Assume d = 2. Let �0 ⊆
R
2 be a bounded domain with Lipschitz boundary, and let ρ∞ be the gradient flow

of E∞ with initial data χ�0 . Then as t → +∞, ρ∞(·, t) converges to χB0 in Lq

for any 1 � q < ∞, where B0 is the unique disk with the same area and center
of mass as those of �0. Furthermore, we have the following rate of convergence in
terms of the free energy:

0 � E∞(ρ∞(·, t))− E∞(χB0) � C(|�0|, M2[�0])t−1/6.

Remark 1.3. Let us point out that our control for the second moment relies on
the particular structure for the 2D Newtonian kernel, and we are unable to obtain
similar compactness estimates for higher dimensions. For d � 3, whether ρ∞(t)
converges to a ball as t →∞ remains an interesting open question.

We now describe the key ingredients in our characterization of the dynamics
of the congested aggregation equation. At the heart of our analysis is an approxi-
mation of this equation as the singular limit of a sequence of nonlinear diffusion
equations. This provides the bridge between the gradient flow and viscosity solu-
tion approach. In particular, while the gradient flow of E∞ is merely a curve in
the space of measures, approximating it by a sequence of solutions to nonlinear
diffusion equations allows us to bring to bear the tools of viscosity solution theory
in the limit.
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Following the analogy with Alexander, Kim, and Yao’s previous work, one
might hope to approximate the congested aggregation equation by the Keller–Segel
equation (1.3), which also has a gradient flow structure corresponding to the energy

EK S(ρ) =
∫∫

ρ(x)Nρ(x)dx + 1

m − 1

∫
ρ(x)mdx . (1.10)

Note that for a fixed ρ, E∞(ρ) is the limit of EK S(ρ) as m → ∞. However,
EK S satisfies neither the classical assumptions for semiconvexity nor the weaker
assumptions for ω-convexity. Consequently, we lack the quantitative estimates on
the rate of convergence of the discrete gradient flow that are an essential element of
our approach. Instead, we replace the nonlocal potentialNρ(x) in EK S with a time-
dependent local potential �1/m(x, t), which is given by a suitable regularization
of Nρ∞(x, t), where ρ∞(x, t) is the gradient flow of E∞ with initial data ρ0(x).
(See Definition 2.12 for a precise definition of this potential.)

This leads to the energy

Em,t (ρ) :=
∫

ρ(x)�1/m(x, t)dx + 1

m − 1

∫
ρ(x)mdx,

which we can show is ω-convex. We then prove that the (time dependent) gradient
flow of this energy, which corresponds to a solution of

ρt = ∇ · (ρ∇�1/m)+�ρm, (PME-D)m

converges as m → +∞ to a solution of the congested aggregation equation. (See
Section 2 for our construction of this time dependent gradient flow.) Then, rewriting
(PME-D)m in the form

ρt = ∇ · (ρ(∇�1/m + ∇ pm)), for pm = m

m − 1
ρm−1, (1.11)

we use viscosity solution theory to show that, asm →+∞, pm converges to a solu-
tion of the free boundary problem (P). By the uniqueness of the limit, we conclude
the characterization of dynamics of patch solutions of the congested aggregation
equation, as stated in Theorem 1.1.

Our paper is organized as follows. In Section 2, we prove that the solutions of
the nonlinear diffusion equations (PME-D)m converge as m → +∞ to the gradi-
ent flow of E∞ with an explicit rate depending on m. We also provide background
on Wasserstein gradient flow, including recent results by the first author on the
gradient flows of ω-convex energies. In Section 3, we show that the pressure pm
corresponding to the nonlinear diffusion equations, given in equation (1.11), con-
verges as m → +∞ to a solution of (P)∞. Combining these results, we show that
the gradient flow of E∞ is a characteristic function of the evolving set �(t) and
that �(t) can be obtained from the viscosity solution of (P)∞. In Section 4, we
consider the asymptotic behavior of ρ∞ in two dimensions, proving that it con-
verges to a disk with explicit rate. Let us remark that the characterization of ρ∞ by
the pressure variable p plays a crucial role in the proof of this asymptotic result.
Finally, we conclude with an appendix Section 5, which contains proofs of several
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lemmas from Section 2, as well as definitions of viscosity solutions for the limiting
free boundary problem (P)∞.

There are several directions for future work. First, our analysis only addresses
solutions that are initially a patch. Results for more general initial data could lever-
age recent work by Kim and Pozar [30] and Mellet et al. [42]. Second, in the light
of work by Maury et al. [40], it would be interesting if one could characterize the
modified velocity ∇ p + ∇Nρ in (1.8) as the projection of the original velocity
∇Nρ onto the space of admissible velocities under the height constraint. At the
moment, this appears to be a difficult question, due to the highly nonlinear nature
of the projection and its dependence on the solution. A third direction for future
work would be to pursue to what extent our analysis extends to nonlocal velocity
field generated by kernels aside from the Newtonian N , which arise in a range of
biological and physical applications. While our result on the singular limit of the
nonlinear diffusion equations extends to a range of kernels (see Remark 2.1), our
analysis of the free boundary problem strongly leverages the structure of the New-
tonian kernel. A final direction for future work would be to make rigorous the link
between the congested aggregation equation and the Keller–Segel equation (1.3)
as m →+∞, completing the analogy with previous work by Alexander, Kim, and
Yao that found that the hard height constraint may be obtained as the limit of slow
diffusion.

2. Convergence of Gradient Flows: Drift Diffusion to Height Constrained
Interaction

In this section, we show that the gradient flow of the height constrained inter-
action energy E∞, defined in equation (1.5), may be approximated by solutions of
the nonlinear diffusions equations (PME-D)m as m → +∞. This provides a link
between the abstract Wasserstein gradient flow of E∞, which in general is merely
a curve in the space of probability measures, and solutions to partial differential
equations.

Remark 2.1. (Choice of interaction kernel) For the sake of continuitywith Sections
3 and 4, we assume that the interaction kernelN is Newtonian (1.2). However, our
results in this section may be extended to any kernels that satisfy [20, Assumption
4.1] and the estimates of Proposition 2.3. In particular, this includesmany repulsive–
attractive potentials of interest in the literature.

2.1. Preliminary Results

We begin by collecting some results on the Wasserstein gradient flow of ω-
convex energies that will be useful in what follows. For further background on the
Wasserstein metric and gradient flows of semiconvex energies, we refer the reader
to the books by Ambrosio et al. [2] and Villani [52]. For more details on gradient
flows of ω-convex energies, see recent work by the first author [20].

Let P2(R
d) denote the set of probability measures on R

d with finite second
moment, that is

∫ |x |2dμ < +∞. If ameasureμ ∈ P2(R
d) is absolutely continuous
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with respect to Lebesgue measure (μ 
 Ld ), we will identify μ with its density,
that is dμ(x) = μ(x)dx . In particular, we write ‖μ‖L∞ < +∞ if dμ(x) = μ(x)dx
and μ(x) ∈ L∞(Rd).

Given μ, ν ∈ P2(R
d), a measurable function t : Rd → R

d transports μ onto
ν in case

∫
f (t(x))dμ = ∫

f (y)dν for all f ∈ L1(dν). We then call ν the push-
forward of μ under t and write ν = t#μ. If μ is absolutely continuous with respect
to Lebesgue measure (as will be the case for all the measures we consider), then
the Wasserstein distance from μ to ν is given by

W2(μ, ν) = inf

{(∫
|t − id|2dμ

)1/2

: t#μ = ν

}
, (2.1)

where id(x) = x . Furthermore, the infimum is attained by an optimal transport
map t = tνμ, which is unique μ-almost everywhere.

The metric space (P2(R
d),W2) is complete, and convergence can be charac-

terized as

W2(μn, μ) → 0 ⇐⇒ ∫
f dμn →

∫
f dμ for all f ∈ C(Rd) such that

∃C > 0, x0 ∈ R
d so that | f (x)|�C(1+ |x − x0|2).

We will refer to such f as continuous functions with at most quadratic growth. Fur-
thermore, for any f ∈ C1(Rd) with uniformly bounded gradient, we can quantify
the difference between the integral of f against μ and the integral of f against ν

using the following elementary lemma:

Lemma 2.2. For f ∈ C1(Rd) and μ, ν ∈ P2(R
d),∣∣∣∣

∫
f dμ−

∫
f dν

∣∣∣∣ � ‖∇ f ‖∞W2(μ, ν).

Proof. For simplicity, suppose that μ 
 Ld , so there exists an optimal transport
map tνμ. (The proof is identical in the general case, using optimal transport plans.)
By Jensen’s inequality,
∣∣∣∣
∫

f dμ−
∫

f dν

∣∣∣∣ �
∫ ∣∣ f − f ◦ tνμ

∣∣ dμ � ‖∇ f ‖∞
(∫

|tνμ − id|2dμ

)1/2

= ‖∇ f ‖∞W2(μ, ν).

��
Alongwith itsmetric structure, (P2(R

d),W2) is a geodesic space, since any two
measures μ0, μ1 ∈ P2(R

d) are connected by a geodesic μα ∈ P2(R
d), α ∈ [0, 1],

satisfying

W2(μα, μβ) = |β − α|W2(μ0, μ1) for all α, β ∈ [0, 1].
If μ0 
 Ld , then the geodesic from μ0 to any μ1 ∈ P2(R

d) is unique and of the
form

μα = ((1− α)id+ αtμ1
μ0

)#μ0.
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Unlike a square Hilbertian norm, the square Wasserstein distance is not convex
along geodesics (α �→ W 2

2 (ν, μα) is not convex) [2, Example 9.1.5]. Consequently,
Ambrosio, Gigli, and Savaré introduced an expanded class of curves known as
generalized geodesics, so that, between any two measures, there is always at least
one curve along which the square distance is convex [2, Lemma 9.2.1, Definition
9.2.2]. Given μ0, μ1, ν ∈ P2(R

d) with ν 
 Ld , the generalized geodesic from μ0
to μ1 with base ν is

μα = ((1− α)tμ0
ν + αtμ1

ν )#ν,

and along such a curve we have

W 2
2 (ν, μα) = (1− α)W 2

2 (ν, μ0)+ αW 2
2 (ν, μ1)− α(1− α)‖tμ0

ν − tμ1
ν ‖2L2(dν)

.

An additional class of curves along which the square Wasserstein metric is convex
are linear interpolations of measures,

μα := (1− α)μ0 + αμ1.

For any μ0, μ1, ν ∈ P2(R
d), we have

W 2
2 (ν, μα) � (1− α)W 2

2 (ν, μ0)+ αW 2
2 (ν, μ1). (2.2)

(See, for example, [46, Proposition 7.19].)
Due to the fact that (P2(R

d),W2) is a geodesic space, it induces a natural
notion of convexity on energy functionals E : P2(R

d)→ R∪ {+∞}, that is given
a geodesic μα , the function α �→ E(μα) is convex. We recall both this standard
notion of convexity, as well as two generalizations, semiconvexity andω-convexity:

(i) E is convex along μα if E(μα) � (1− α)E(μ0)+ αE(μ1);
(ii) E is semiconvex along μα if there exists λ ∈ R so that

E(μα) � (1− α)E(μ0)+ αE(μ1)− α(1− α)λ
2W

2
2 (μ0, μ1);

(iii) E is ω-convex along μα if there exists λω ∈ R and a continuous, nondecreas-
ing function ω : [0,+∞) → [0,+∞), which vanishes only at x = 0, so that
E(μα) � (1−α)E(μ0)+αE(μ1)− λω

2 [(1−α)ω(α2W 2
2 (μ0, μ1))+αω((1−

α)W 2
2 (μ0, μ1))].

If, for any μ0, μ1 ∈ P2(R
d), there exists a geodesic μα from μ0 to μ1 along

which E satisfies (i), we say E is convex along geodesics. Likewise, given λ (resp.
(ω, λω)) so that for any μ0, μ1 ∈ P2(R

d) there exists a geodesic μα from μ0 to μ1
along which E satisfies (ii) (resp. (iii)), we say E is semiconvex (resp. ω-convex)
along geodesics.

Likewise, given λ (resp. (ω, λω)), so that for any μ0, μ1, ν ∈ P2(R
d), there

exists a generalized geodesicμα fromμ0 toμ1 with base ν along which E satisfies
(ii) (resp. (iii)), withW2(μ0, μ1) on the right hand side replaced by ‖tμ0

ν −tμ1
ν ‖2L2(ν)

,
we say E is semiconvex (resp. ω-convex) along generalized geodesics.

We will also say that E is proper if the domain of the energy D(E) = {μ :
E(μ) < +∞} is nonempty.

A key element of our analysis is that the height constrained interaction energy
E∞ defined in equation (1.5) isω-convex along generalized geodesics. This follows
from the following estimates on the Newtonian potential of a bounded, integrable
function:
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Proposition 2.3. (c.f.[38, Theorem 2.7]) Suppose ρ,μ, ν ∈ P2(R
d) with ‖ρ‖∞,

‖μ‖∞ � 1. Then there exists Cd � 1, depending only on the dimension, so that

‖∇Nρ‖∞ � Cd ,

∫
Nρdν � −Cd ,

|∇Nρ(x)−∇Nρ(y)| � Cdσ(|x − y|), and ‖∇Nρ − ∇Nμ‖L2(Rd ) � W2(ρ, μ),

where

σ(x) :=
⎧⎨
⎩
2x | log x | if 0 � x � e(−1−√2)/2,√
x2 + 2(1+√2)e−1−

√
2 if x > e(−1−√2)/2.

(2.3)

We defer the proof of this proposition to the appendix in Section 5.1.
By the above estimates and [20, Theorem 4.3, Proposition 4.4], E∞ isω-convex

along generalized geodesics with λω = −Cd and ω(x) a log-Lipschitz modulus of
convexity

ω(x) =
⎧⎨
⎩
x | log x | if 0 � x � e−1−

√
2,√

x2 + 2(1+√2)e−1−
√
2x if x > e−1−

√
2.

(2.4)

Theω-convexity of E∞ then leads to the following result on the well-posedness
of the gradient flow:

Theorem 2.4. ([20, Theorem 4.3, Proposition 4.4]) For any ρ0 ∈ D(E∞) (that is,
ρ0 ∈ P2(R

d) with ‖ρ0‖∞ � 1), the gradient flow ρ∞(t) of E∞ with initial data
ρ0 is well-posed. Specifically ρ∞ : (0,+∞) → P2(R

d) is the unique curve that is
locally absolutely continuous in time, with limt→0 W2(ρ∞(t), ρ0) = 0 and

1

2

d

dt
W 2

2 (ρ∞(t), ν)+ λω

2
ω(W 2

2 (ρ∞(t), ν))

� E(ν)− E(ρ∞(t)), ∀ν ∈ D(E∞), almost everywhere t > 0. (2.5)

Remark 2.5. Equation (2.5) is the generalization of Ambrosio, Gigli, and Savaré’s
evolution variational inequality [2, Equation 4.0.13] to the context of ω-convex
functions. For more details, see work by Carrillo et al. [17, Theorem 3.1 (i)] and
the first author [20, Definition 2.10].

In order to provide a PDE characterization of ρ∞(x, t) in Section 3, we use
the following higher regularity of ρ∞(x, t) and ∇Nρ∞(x, t), which we prove in
appendix Section 5.1:

Proposition 2.6. (time regularity of the gradient flow of E∞) Suppose ρ∞(x, t),
with initial data ρ∞(x, 0) ∈ D(E∞), is a gradient flow of E∞. Then W2(ρ∞(t),
ρ∞(s)) � 2Cd |t − s|, where Cd > 0 is as in Proposition 2.3.
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Proposition 2.7. Suppose ρ∞(x, t), with initial data ρ∞(x, 0) ∈ D(E∞), is a
gradient flow of E∞. Then ∇Nρ∞(x, t) is log-Lipschitz in space and 1/2d-Hölder
continuous in time. In particular, with Cd > 0 and σ(x) as in Proposition 2.3,

|∇Nρ∞(x, t)− ∇Nρ∞(y, t)| � Cdσ(|x − y|) for all x, y ∈ R
d , t � 0,

|∇Nρ∞(x, t)−∇Nρ∞(x, s)| � 10Cd |t − s|1/2d for all 0 < |t − s|
< e(−1−√2)/2, x ∈ R

d .

An important tool in the analysis ofWasserstein gradient flows is a discrete time
approximation of gradient flows known as the discrete gradient flow or JKO scheme
[27]. This scheme is analogous to the implicit Euler method for approximation of
ordinary differential equations in Euclidean space. For any μ ∈ D(E∞) and time
step τ > 0, the discrete gradient flow of E∞ is given by

ρn
τ ∈ argmin

ν∈P2(Rd )

{
1

2τ
W 2

2 (ρn−1
τ , ν)+ E∞(ν)

}
and ρ0

τ := ρ.

By [20, Theorem 4.3, Proposition 4.4], the discrete gradient flow of E∞ exists for
all ρ ∈ D(E∞) and τ > 0, and if τ = t/n for any t � 0, the discrete gradient flow
converges to the continuous gradient flow,

lim
n→+∞W2(ρ

n
t/n, ρ∞(t)) = 0.

As demonstrated in previous work by the first author [20], well-posedness of
the gradient flows of ω-convex eneriges is closely related to the well-posedness of
the ODE

{ d
dt Ft (x) = −Cdω(Ft (x)),

F0(x) = x .
(2.6)

For ω(x) as in equation (2.4), 0 � x � e−1−
√
2, and t � 0, the solution is given

by Ft (x) = xe
Cd t . Furthermore, for all x, t � 0, Ft (x) is nondecreasing in space

and nonincreasing in time.
In a similar way, analysis of the discrete gradient flow of E∞ is closely related

to a discrete time approximation of (2.6). In particular, we define

fτ (x) :=
{
x − Cdτω(x) if x � 0,

0 if x � 0,

so that f (m)
τ (x) is the mth step of the explicit Euler method with time step τ . In the

following proposition, we recall some properties of the function fτ (x) that will be
useful in our estimates of the discrete time sequences.

Proposition 2.8. (properties of fτ (x))

(i) If 0 � x � y � r , there exists cr > 0 so that fτ (x) � fτ (y)+ C2
dc

2
r τ

2.
(ii) For all x, y � 0, fτ (x + y) � fτ (x)+ y.
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(iii) For all x, t � 0, |Ft (x)− f (n)
t/n (x)| � Cdω(x)t/n.

Proof. (i) and (ii) are consequences of [20, Lemma 2.25]. (iii) is a consequence of
[20, Proposition 2.24] and the fact that Ft (x) is nonincreasing in time. ��

Finally, we recall a contraction inequality for the discrete gradient flow of an
ω-convex energy, which we use to conclude stability of the discrete gradient flow
sequences.

Proposition 2.9. (contraction inequality) Let E : P2(R
d)→ R∪{+∞} be proper,

lower semicontinuous, bounded below, and ω-convex along generalized geodesics,
for ω(x) as in equation (2.4) and λω � 0. Fix ρ,μ ∈ D(E) and, for τ > 0, let ρτ

and μτ be any measures satisfying

ρτ ∈ argmin
ν∈P2(Rd )

{
1

2τ
W 2

2 (ρ, ν)+E(ν)

}
and μτ ∈ argmin

ν∈P2(Rd )

{
1

2τ
W 2

2 (μ, ν)+E(ν)

}
.

Then there exist positive constants C and τ∗ depending on W2(ρ, μ), λω, E(μ),
and E(ν) so that for all 0 < τ < τ∗,

f (2)
τ (W 2

2 (ρτ , μτ )) �W 2
2 (ρ, μ)+ |λω|τω(CW2(μ,μτ ))

+ 2τ(E(ρ)− E(ρτ ))+ Cτ 2.

Remark 2.10. The preceding contraction inequality plays a crucial role in our study
of the gradient flows of Em,t and E∞. For these energies, we are able to show that
the quantities W2(ρ, μ), E(μ), and E(ν) are uniformly bounded along the corre-
sponding discrete time sequences (see Definition 2.14). We then iterate the above
contraction inequality to obtain stability estimates for the sequences in terms of
their initial data. Ultimately, we use these stability estimates to both prove con-
vergence of the discrete time sequences to the continuous time gradient flows as
τ → 0 (see Propositions 5.1 and 5.2), as well as to prove a quantitative estimate on
the distance between the discrete time sequences corresponding to Em,t and E∞
(see Propositions 2.21 and 2.23).

Proof. This is a particular case of [20, Theorem 3.2]. ��

Remark 2.11. (Wasserstein gradient flow of measures with mass not equal to 1)
We conclude by observing that the gradient flow theory can be easily extended
to nonnegative measures whose integral is not equal to 1. For a fixed A > 0, let
P2,A(Rd) denote the set of non-negative measures that integrate to A and have
finite second moment. For μ, ν ∈ P2,A(Rd) (with the same A), we can then define
W2(μ, ν) in the same way as in (2.1), and given initial data ρ0 ∈ P2,A(Rd) with
‖ρ0‖∞ � 1, the same arguments lead to the well-posedness of a gradient flow
ρ∞ : (0,+∞) → P2,A(Rd) of E∞. However, for the sake of simplicity, we will
assume that ρ0 is a probability measure for the remainder of this section.
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2.2. Definitions of Energies and Discrete Time Sequences

We now turn to the definitions of the energies and discrete time sequences that
we will use to show that solutions of the nonlinear diffusions equations (PME-D)m
converge asm →+∞ to the the gradient flow of the height constrained interaction
energy E∞. We begin by defining the local potential�1/m(x, t), which induces the
drift in (PME-D)m . As described in the introduction, previous work by Alexander,
Kim, and Yao suggests that the gradient flow of E∞ should be obtained as the limit
of the gradient flows of the Keller–Segel energy EK S , defined in equation (1.10).
However, we lack sufficient convexity of EK S to prove this rigorously. Instead,
we replace the nonlocal potential Nρ in EK S with a local potential �1/m(x, t) that
depends on time, the initial data ρ0(x) of the gradient flow of E∞, and the diffusion
parameter m � 1.

Definition 2.12. (local potential �1/m(x, t)) Given initial data ρ0, let ρ∞(x, t) be
the gradient flow of the height constrained interaction energy E∞. Fix a mollifier
ψ ∈ C∞c (Rd) satisfyingψ � 0 and

∫
ψ = 1, and letψ1/m(x) = mdψ(mx). Then,

for any m > 1, define

�(x, t) = Nρ∞(x, t) and �1/m(x, t) = ψ1/m ∗ Nρ∞(x, t). (2.7)

This definition is guided by the following intuition: given initial data ρ0, one
heuristically expects that the gradient flow of EK S should converge to ρ∞. Con-
sequently, if we replace Nρ in the definition of EK S by Nρ∞, we expect that the
gradient flow of this new energy will still converge to ρ∞ asm →+∞. We include
the extra mollification on the potential to leverage the existing theory on the porous
medium equation with drift [33], which requires the potential to be twice contin-
uously differentiable in space. By Proposition 2.7, ∇�(x, t) is log-Lipschitz in
space, hence ∇�1/m = ψ1/m ∗∇� converges to ∇� uniformly onRd ×[0,+∞).
Furthermore, by Proposition 2.3 and the fact that ��1/m(x, t) = ψ1/m ∗ρ∞(x, t),

‖∇�1/m(·, t)‖∞ � Cd , ‖��1/m(·, t)‖∞ � 1. (2.8)

With this precise definition of the drift arising in (PME-D)m in hand, we now
turn to the definitions of the the three energy functionals that we use in our analysis
of the limit of (PME-D)m as m →+∞.

Definition 2.13. (energy functionals) Fix ψ ∈ C∞c (Rd) as in Definition 2.12 and
μ ∈ P2(R

d) with ‖μ‖∞ � 1. For any ρ ∈ P2(R
d), define

E∞(ρ) :=
{

1
2

∫
Nρ(x)dρ(x) if ‖ρ‖∞ � 1,

+∞ otherwise;

Ẽ∞(ρ;μ) :=
{∫

Nμ(x)dρ(x) if ‖ρ‖∞ � 1,

+∞ otherwise;

Em(ρ;μ) :=
{

1
m−1

∫
ρ(x)mdx + ∫

ψ1/m ∗ Nμ(x)dρ(x) if ρ 
 Ld ,

+∞ otherwise.
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As shown in previous work by the first author, the gradient flows of the above
energies are well-posed [20, Theorem 4.3, Proposition 4.4]. In particular, while
these energies fall outside the scope of the theory of gradients flows of semiconvex
energies, all three energies are instead ω-convex along generalized geodesics for
λω = −Cd , as in Proposition 2.3, and ω(x) a log-Lipschitz modulus of convexity,
as in equation (2.4). The third energy is also λ-convex along generalized geodesics

for λ = λ(m)
m→+∞−−−−−→ −∞ [2, Proposition 9.3.2, Proposition 9.3.9].

Corresponding to these energies, we consider the following discrete time
sequences.

Definition 2.14. (discrete time sequences) For a fixed time step τ > 0 and ρ ∈
D(E∞), define:

(i) discrete gradient flow of E∞:

ρn
τ ∈ argmin

ν∈P2(Rd )

{
1

2τ
W 2

2 (ρn−1
τ , ν)+ E∞(ν)

}
and ρ0

τ := ρ;

(ii) time varying discrete gradient flow of Ẽ∞: for ρn
τ as in (i),

ρ̃n
τ ∈ argmin

ν∈P2(Rd )

{
1

2τ
W 2

2 (ρ̃n−1
τ , ν)+ Ẽ∞(ν; ρn

τ )

}
and ρ̃0

τ := ρ;

(iii) time varying discrete gradient flow of Em: for ρn
τ as in (i) and m > 1,

ρn
τ,m ∈ argmin

ν∈P2(Rd )

{
1

2τ
W 2

2 (ρn−1
τ,m , ν)+ Em(ν; ρn

τ )

}
and ρ0

τ,m := ρ.

The existence of the above sequences is guaranteed by [20, Theorem 4.3, Proposi-
tion 4.4]. However, they are not necessarily unique, and we use the notation ρn

τ , ρ̃n
τ ,

and ρn
τ,m to denote any such sequence. Still, using Proposition 2.9, which provides

a contraction inequality for ω-convex functions, we can at least bound the Wasser-
stein distance between any two such sequences—for example, see Proposition 5.1
in the appendix for such an estimate for Ẽ∞.

If one takes τ = t/n for t � 0, then as n → +∞ the discrete gradient flow of
E∞ converges to the continuous gradient flow of E∞ with initial data ρ∞(0) = ρ

[20, Theorem 4.3, Proposition 4.4]. Likewise, ρn
t/n,m converges to a solution of

the nonlinear diffusion equations (PME-D)m , which we denote by ρm(x, t), with
the same initial data (see Proposition 5.2) . We refer to ρn

τ,m as the “time varying”
discrete gradient flow of Em since we change the second argument of Em(·; ·) at
each step of the sequence to accommodate the time dependent drift in (PME-D)m .

The main goal of this section is to show that limm→+∞W2(ρ∞(t), ρm(t)) = 0,
which we accomplish by showing that the distance between the sequences ρn

τ and
ρn

τ,m becomes arbitrarily small as m → +∞. We use the sequence ρ̃n
τ , defined in

(ii) above, to serve as a bridge between the two. In what follows, we will often use
the crude estimate ω(x) � √

x , for x � 0 sufficiently small. Consequently, the
rate of convergence we obtain for ρm(t) → ρ∞(t) is certainly not sharp, but the
inequalities are much simpler.
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We close this introductory section with a few elementary estimates on the above
discrete time sequences. In these estimates, as well as in what follows, it will be
useful to consider one step of the above sequences:

Definition 2.15. (one step minimizers) For a fixed time step τ > 0, we define:

(i) one step of discrete gradient flow of E∞: given ρ ∈ P2(R
d),

ρτ ∈ argmin
ν∈P2(Rd )

{
1

2τ
W 2

2 (ρ, ν)+ E∞(ν)

}
;

(ii) one step of discrete gradient flow of Ẽ∞(·;μ): given ρ ∈ P2(R
d) and

μ ∈ P2(R
d) with ‖μ‖∞ � 1,

ρ̃τ ∈ argmin
ν∈P2(Rd )

{
1

2τ
W 2

2 (ρ, ν)+ Ẽ∞(ν;μ)

}
;

(iii) one step of discrete gradient flow of Em(·;μ): given ρ ∈ P2(R
d), μ ∈

P2(R
d) with ‖μ‖∞ � 1, and m > 1,

ρτ,m ∈ argmin
ν∈P2(Rd )

{
1

2τ
W 2

2 (ρ, ν)+ Em(ν;μ)

}
.

As before, [20, Theorem 4.3, Proposition 4.4] ensures theseminimization problems
admit at least one solution. Again, these minimizers are not necessarily unique, and
we use the notation ρτ , ρ̃τ , and ρτ,m to denote any such minimizer.

First, we estimate how theWasserstein distance, energies, and Lm norms behave
under one step of the discrete gradient flow.

Lemma 2.16. Fix ρ,μ ∈ P2(R
d) with ‖μ‖∞ � 1. Then for Cd > 0 as in Propo-

sition 2.3 and any τ > 0 and m � 2,

(i) If ‖ρ‖∞ � 1, then W2(ρτ , ρ) � 2Cdτ and E∞(ρ) � E∞(ρτ )+ 2C2
dτ ;

(ii) If ‖ρ‖∞ � 1, then W2(ρ̃τ , ρ) � 2Cdτ and Ẽ∞(ρ;μ) � Ẽ∞(ρ̃τ ;μ) +
2C2

dτ ;
(iii) For all ρ ∈ P2(R

d),

W2(ρτ,m, ρ) �
√

2τ
m−1 (‖ρ‖mm − ‖ρτ,m‖mm)+ + 2Cdτ ,

1
m−1‖ρτ,m‖mm �

1
m−1‖ρ‖mm + τ

2C
2
d ,

and Em(ρ;μ) � Em(ρτ,m;μ) + (‖ρ‖mm − ‖ρτ,m‖mm
) + Cd

√
2τ

m−1‖ρ‖mm +
2C2

dτ .

Proof. We begin with (ii). Taking ν = ρ in the definition of ρ̃τ and rearranging,

W 2
2 (ρ̃τ , ρ) � 2τ

(
Ẽ∞(ρ;μ)− Ẽ∞(ρ̃τ ;μ)

)
.
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Thus, applying Lemma 2.2, with f = Nμ, and Proposition 2.3

0 � Ẽ∞(ρ;μ)− Ẽ∞(ρ̃τ ;μ) =
∫

Nμdρ −
∫

Nμdρ̃τ

� CdW2(ρ̃τ , ρ).

Combining the above two inequalities gives the results.
Next, we show (i). Again, taking ν = ρ in the definition of ρτ ,

W 2
2 (ρτ , ρ) � 2τ(E∞(ρ)− E∞(ρτ )).

Thus, applying Lemma 2.2, with f = Nρ and f = Nρτ , along with Proposition
2.3,

0 �E∞(ρ)− E∞(ρτ ) = 1

2

(∫
Nρdρ −

∫
Nρdρτ +

∫
Nρτdρ −

∫
Nρτdρτ

)

� CdW2(ρτ , ρ).

Combining the above two inequalities again give the results.
It remains to show (iii). For simplicity of notation, let �1/m = ψ1/m ∗ Nμ.

Taking ν = ρ in the definition of ρτ,m ,

1

2τ
W 2

2 (ρ, ρτ,m)+ Em(ρτ,m;μ) � Em(ρ;μ). (2.9)

By definition of Em , Lemma 2.2 with f = �1/m , and Proposition 2.3, this implies

‖ρτ,m‖mm/(m − 1) � ‖ρ‖mm/(m − 1)+
(∫

�1/mρ −
∫

�1/mρτ,m

)

−W 2
2 (ρ, ρτ,m)/(2τ)

� ‖ρ‖mm/(m − 1)+ CdW2(ρ, ρτ,m)−W 2
2 (ρ, ρτ,m)/(2τ)

= ‖ρ‖mm/(m − 1)− (
W2(ρ, ρτ,m)− τCd

)2
/(2τ)+ τC2

d/2

Dropping the negative term shows the second inequality. Rearranging gives

(
W2(ρ, ρτ,m)− τCd

)2
2τ

�
( ‖ρ‖mm
m − 1

− ‖ρτ,m‖mm
m − 1

)
+
+ τC2

d

2
,

which, by the subadditivity of
√·, gives the first inequality.

To show the third inequality, we combine (2.9) with Lemma 2.2 and use the
previous estimate on the Wasserstein distance,

0 � Em(ρ;μ)− Em(ρτ,m;μ) � 1

m − 1

(‖ρ‖mm − ‖ρτ,m‖mm
)+

∫
Nμd(ρ − ρτ,m)

�
(‖ρ‖mm − ‖ρτ,m‖mm

)+ Cd

√
2τ

m − 1
‖ρ‖mm + 2C2

dτ.

��
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Iterating the above lemma provides bounds on theWasserstein distance between
the discrete time sequences of E∞, Ẽ∞, and Em and their initial data.

Corollary 2.17. Under the assumptions in Lemma 2.16, given initial data ρ ∈
D(E∞),

W2(ρ
n
τ , ρ) � 2Cdnτ, W2(ρ̃

n
τ , ρ) � 2Cdnτ, and W2(ρ

n
m,τ , ρ)

�
√
4nτ‖ρ‖mm + 8C2

dn
2τ 2.

Proof. The first two inequalities are a direct consequence of Lemma 2.16 and
triangle inequality, so it remains to show the third inequality. By Lemma 2.16 and
(a + b)2 � 2a2 + 2b2,

W 2
2

(
ρi

τ,m, ρi−1
τ,m

)
� 4τ

m − 1

(∥∥∥ρi−1
τ,m

∥∥∥m
m
−
∥∥∥ρi

τ,m

∥∥∥m
m

)
+ 8C2

dτ
2.

The result then follows by the triangle inequality, Cauchy’s inequality, and 1/(m−
1) � 1,

W 2
2 (ρn

τ,m, ρ) �
(

n∑
i=1

W2

(
ρi

τ,m, ρi−1
τ,m

))2

� n
n∑

i=1
W 2

2

(
ρi

τ,m, ρi−1
τ,m

)

� 4nτ‖ρ‖mm + 8C2
dn

2τ 2. ��

In the next three lemmas, we estimate the size of ρτ,m . These estimates are
similar in some respects to the corresponding results in previous work byAlexander
with the second and third authors [1]. However, the proofsmust be adapted since the
semiconvexity of the drift potential ψ1/m ∗Nμ in the energy Em(·;μ) deteriorates
as m →+∞, and we must instead use that Em(·;μ) is ω-convex uniformly in m.

Though we do not, in general, have ‖ρ1
τ,m‖∞ � 1, in the next lemma, we show

that the mass of ρτ,m above 1 becomes arbitrarily small as m →+∞.

Lemma 2.18. Fix ρ,μ ∈ P2(R
d) with both ‖ρ‖∞, ‖μ‖∞ � 1 and consider ρτ,m

as in Definition 2.15. Then for Cd > 0 as in Proposition 2.3 and 0 < τ < 1, m � 2,∫
(ρτ,m(x)− 1)+dx �

√
(2+ C2

d )/m.

Proof. By the Cauchy–Schwarz inequality and the fact that |{ρτ,m � 1}| �∫
ρτ,m = 1,

∫
(ρτ,m − 1)+ � |{ρτ,m � 1}|1/2

(∫
(ρτ,m − 1)2+

)1/2

�
(∫

(ρτ,m − 1)2+
)1/2

.

(2.10)
Furthermore, form � 2, the convexity of f (s) = sm ensures sm > 1+m(s−1)+
m(m−1)

2 (s − 1)2 for all s > 1, which yields (s − 1)2+ � 2
m(m−1) s

m for all s > 0.
Consequently, (2.10) becomes

∫
Rd

(ρτ,m − 1)+ �
(

2

m(m − 1)

∫
Rd

ρm
τ,m

)1/2

.
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Since ‖ρ‖∞ � 1, m � 2, and τ < 1, Lemma 2.16 (iii) ensures 1
m−1‖ρτ,m‖mm �

1+ C2
d/2. Substituting this into the above inequality gives the result. ��

Finally, we use the previous lemma to show that ρτ,m is always close to a
measure ν that satisfies ‖ν‖∞ � 1 and is almost a one step minimizer.

Lemma 2.19. Under the assumptions of Lemma 2.18, there exists ν ∈ P2(R
d)with

‖ν‖∞ � 1 and C > 0 depending only on the dimension, so that

W2(ρτ,m, ν) � Cm−1/4 and Em(ν;μ) � Em(ρτ,m;μ)+ Cm−1/2. (2.11)

Proof. Define a := ∫
(ρτ,m − 1)+. Since ρτ,m is a probably measure, a < 1, and

by Lemma 2.18, we also have a �
√

(2+ C2
d )/m.

To construct ν, we decompose ρτ,m as ρτ,m = ρ1
τ,m + ρ2

τ,m , where ρ1
τ,m =

min{ρτ,m, 1− a} and ρ2
τ,m = (ρτ,m − (1− a))+. First, note that

1 �
∫

ρτ,m � (1− a)|{ρτ,m > 1− a}| +
∫

(ρτ,m − 1)+

= (1− a)|{ρτ,m > 1− a}| + a,

so subtracting a from both sides and dividing by 1−a ensures |{ρτ,m > 1−a}| � 1.
Thus,∫

ρ2
τ,m �

∫
(ρτ,m − 1)+ + a|{ρτ,m > 1− a}| � a + a · 1 = 2a. (2.12)

Now, choose Rd so g := 1
2χBRd (0) ∈ P2(R

d) and define ν = ρ1
τ,m + g ∗ ρ2

τ,m ∈
P2(R

d). By Young’s inequality, the definition of ρ1
τ,m , and inequality (2.12),

‖ν‖∞ � ‖ρ1
τ,m‖∞ + ‖g‖∞‖ρ2

τ,m‖1 � (1− a)+ 1

2
· 2a � 1.

It remains to show that ν satisfies (2.11). To show the first inequality, we use
the fact that that

W 2
2 (ρτ,m, ν) = inf

{∫
Rd×Rd

|x − y|2d�(x, y) : π1#� = ρτ,m and π2#� = ν

}
,

whereπ1(x, y) = x andπ2(x, y) = y [2, Equation 7.1.1].We construct a transport
plan � ∈ P2(R

d ×R
d) as follows: keep all the mass of ρ1

τ,m at its original location
and distribute the mass of ρ2

τ,m(x) uniformly over the disk BRd (x). Specifically,
the plan � ∈ P2(R

d × R
d) is given by

∫
f (x, y)d�(x, y) =

∫
f (x, x)dρ1

τ,m(x)+
∫∫

f (x, x − z)g(z)dzdρ2
τ,m(x),

for all bounded and continuous functions f : Rd × R
d → R. In particular, taking

f (x, y) = |x−y|2 and using that ∫ dρ2
τ,m � 2a, we see that the total cost of this plan

is bounded by 2aR2
d , which givesW2(ρτ,m, ν) �

√
2aRd � Rd(4(2+C2

d )/m)1/4.
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To show the second inequality in (2.11), we abbreviate �1/m = ψ1/m ∗ Nμ.
Then,

Em(ν;μ)− Em(ρτ,m;μ) = 1

m − 1

∫
νm − 1

m − 1

∫
ρm

τ,m

+
∫

�1/mdν −
∫

�1/mdρτ,m

� ‖ν‖mm/(m − 1)+
∫

(g ∗�1/m −�1/m)ρ2
τ,m � (m − 1)−1

+ 2a‖g ∗�1/m −�1/m‖∞

� 2m−1 + 2a ess supx

∣∣∣∣∣
∫
y∈BRd (x)

(�1/m(y)−�1/m(x))g(x − y)dy

∣∣∣∣∣
� 2m−1 + 2a‖∇�1/m‖∞Rd‖g‖1 � 2m−1 + 2Cd Rd

√
(2+ Cd)2/m,

where in the last inequality we use Proposition 2.3. ��

2.3. Distance Between Discrete Time Sequences of E∞, Ẽ∞, and Em

In this section, we apply the previous results to show that as m →+∞, ρm(t)
converges to ρ∞(t), with quantitative rates of convergence on bounded time inter-
vals. We accomplish this by first estimating the distance between the discrete time
sequences of E∞, Ẽ∞, and Em .

We begin by showing that one step of the discrete gradient flow of E∞ is also
one step of a discrete time sequence corresponding to Ẽ∞. (Recall that neither one
step of the discrete gradient flow of E∞ nor one step of the discrete gradient flow
of Ẽ∞ needs to be unique.)

Lemma 2.20. (one-step comparison between ρτ and ρ̃τ ) Given τ > 0 and ρ ∈
P2(R

d), if ρτ is a one step minimizer of E∞, then it is also a one step minimizer of
Ẽ∞(·, ρτ ).

Proof. Assume, for the sake of contradiction, that ρτ is not a one step minimizer
of Ẽ∞(·, ρτ ). Then there exists ν ∈ P2(R

d) with ‖ν‖∞ � 1, such that

1

2τ
W 2

2 (ρ, ρτ )+ Ẽ∞(ρτ ; ρτ ) >
1

2τ
W 2

2 (ρ, ν)+ Ẽ∞(ν; ρτ ). (2.13)

Define ρε := (1 − ε)ρτ + εν ∈ P2(R
d), so ‖ρε‖∞ � 1. We will show that for

ε > 0 small,

1

2τ
W 2

2 (ρ, ρτ )+ E∞(ρτ ) >
1

2τ
W 2

2 (ρ, ρε)+ E∞(ρε), (2.14)

which contradicts the fact that ρτ is a one step minimizer of E∞.
By inequality (2.2),W 2

2 is convex along linear interpolations ofmeasures, hence

W 2
2 (ρ, ρε) � (1− ε)W 2

2 (ρ, ρτ )+ εW 2
2 (ρ, ν)

= W 2
2 (ρ, ρτ )− ε

(
W 2

2 (ρ, ρτ )−W 2
2 (ρ, ν)

)
.

(2.15)
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Likewise, we use that 2E∞(ρτ ) = Ẽ∞(ρτ ; ρτ ) to estimate the behavior of E∞
along ρε by

E∞(ρε) = 1

2

∫
N ((1− ε)ρτ + εν) d ((1− ε)ρτ + εν)

= (1− ε)2E∞(ρτ )+ ε(1− ε)Ẽ∞(ν; ρτ )+ ε2E∞(ν)

= E∞(ρτ )− ε(Ẽ∞(ρτ ; ρτ )− Ẽ∞(ν; ρτ ))+ Dε2,

(2.16)

where D := E∞(ρτ )+ E∞(ν)− Ẽ∞(ν, ρτ ) is a constant independent of ε. Mul-
tiplying (2.15) by 1/(2τ) and adding to (2.16) yields

1

2τ
W 2

2 (ρ, ρε)+ E∞(ρε)

� 1

2τ
W 2

2 (ρ, ρτ )+ E∞(ρτ )

− ε

(
1

2τ
(W 2

2 (ρ, ρτ )−W 2
2 (ρ, ν))+ Ẽ∞(ρτ ; ρτ )− Ẽ∞(ν; ρτ )

)
+ Dε2.

By (2.13), the quantitywithin parentheses is strictly positive, hencewe obtain (2.14)
for ε small. ��

Using this lemma and Proposition 5.1, which provides a contraction inequality
for two discrete gradient flows of ω-convex energies, we can bound the distance
between the discrete gradient flow of E∞ and the discrete time sequence corre-
sponding to Ẽ∞.

Proposition 2.21. (multi-step comparison between ρn
τ and ρ̃n

τ ) Given T > 0 and
initial data ρ ∈ D(E∞), there exist positive constants C and N depending on the
dimension, T , and E∞(ρ) so that for τ = t/n, 0 � t � T , and n > N,

W2(ρ
n
τ , ρ̃n

τ ) � C(n−1/2)1/2e2Cd T .

Proof. By Lemma 2.20, ρn
τ is also a time varying discrete gradient flow of Ẽ∞, in

the sense of Definition 2.14 (ii). Hence, by Proposition 5.1, for any T > 0 there
exist positive constants C and N (which we allow to change from line to line),
depending on the dimension, T , and E∞(ρ) so that for τ = t/n, 0 � t � T , and
n > N ,

f (2n)
τ (W 2

2 (ρn
τ , ρ̃n

τ )) � Cω(t/n) � Cn−1/2.

Furthermore, combining Corollary 2.17 and the triangle inequality provides the
following crude bound for the distance between the two sequences:

W2(ρ
n
τ , ρ̃n

τ ) � W2(ρ
n
τ , ρ)+W2(ρ̃

n
τ , ρ) � 4CdT � C.

Therefore, by Proposition 2.8 (iii) and the fact that Ft (x) is decreasing in time,

F2nτ (W
2
2 (ρn

τ , ρ̃n
τ )) � Cn−1/2+2Cdω(C)T/n �⇒ F2T (W 2

2 (ρn
τ , ρ̃n

τ )) � Cn−1/2.
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Since for 0 � x � e−1−
√
2, Ft (x) = xe

Cd t , for n sufficiently large, we have

W2(ρ
n
τ , ρ̃n

τ ) � C(n−1/2)1/2e2Cd T ,

which gives the result. ��
Next, we bound the distance between one step of the discrete time sequences

corresponding to Ẽ∞ and Em .

Proposition 2.22. (one-step comparison between ρ̃τ and ρτ,m) Given ρ,μ ∈
P2(R

d) with ‖ρ‖∞, ‖μ‖∞ � 1 and Cd > 0 as in Proposition 2.3, there exists
C > 0 depending only on the dimension so that for all 0 < τ < 1/6Cd and m � 2,

W2(ρτ,m, ρ̃τ ) � Cm−1/8 + 2e−1/(4Cdτ).

Proof. Let ν be as in Lemma 2.19 and define

η :=
(
1

2
tνρ +

1

2
tρ̃τ
ρ

)
#ρ

to be the midpoint on the generalized geodesic from ν to ρ̃τ with base ρ. Since the
L∞ norm of a generalized geodesic is bounded by the L∞ norm of its endpoints
(c.f. [20, inequality (60)]), we have ‖ν‖∞ � 1. Furthermore, by the optimality of
ρτ,m and ρ̃τ ,

1

2τ
W 2

2 (ρ, η)+ Em(η;μ) � 1

2τ
W 2

2 (ρ, ρτ,m)+ Em(ρτ,m;μ),

1

2τ
W 2

2 (ρ, η)+ Ẽ∞(η;μ) � 1

2τ
W 2

2 (ρ, ρ̃τ )+ Ẽ∞(ρ̃τ ;μ).

Adding these inequalities together and collecting the distance and energy terms
gives

TW + TE � 0, (2.17)

for

TW := 1

τ
W 2

2 (ρ, η)− 1

2τ
W 2

2 (ρ, ρτ,m)− 1

2τ
W 2

2 (ρ, ρ̃τ ),

TE := Em(η;μ)+ Ẽ∞(η;μ)− Em(ρτ,m;μ)− Ẽ∞(ρ̃τ ;μ).

Next, we find upper bounds on TW and TE . Define A := ‖tνρ − tρ̃τ
ρ ‖L2(ρ). Since

W 2
2 (ρ, ·) is 2-convex along generalized geodesics with base ρ [2, Lemma 9.2.1],

W 2
2 (ρ, η) � W 2

2 (ρ, ν)/2+W 2
2 (ρ, ρ̃τ )/2− A2/4.

Substituting this in the definition of TW ,

TW � 1

2τ
(W 2

2 (ρ, ν)−W 2
2 (ρ, ρτ,m))− A2

4τ

� 1

2τ
W2(ρτ,m, ν)(W2(ρ, ν)+W2(ρ, ρτ,m))− A2

4τ

� 1

2τ
W2(ρτ,m, ν)(W2(ρτ,m, ν)+ 2W2(ρ, ρτ,m)− A2

4τ
� C

2τ
m−1/4 − A2

4τ
,
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where in the last inequality we apply W2(ρτ,m, ν) � Cm−1/4 from Lemma 2.19,
W2(ρτ,m, ρ) �

√
2τ + 2Cdτ from Lemma 2.16, and the facts that m � 2 and

τ < 1. We also allow C > 0, depending only on the dimension, to change from
line to line.

In order to bound TE from above, we first estimate the difference between
Em(μ̃, μ) and Ẽ∞(μ̃, μ) for any μ̃ ∈ P2(R

d) with ‖μ̃‖∞ � 1. As usual, we
abbreviate � := Nμ and �1/m := ψ1/m ∗ Nμ. Given Rψ > 0 so that supp ψ ⊆
BRψ (0), for any x ∈ R

d , Proposition 2.3 ensures

|�1/m(x)−�(x)| =
∣∣∣∣
∫
Rd

(�(x − y)−�(x))ψ1/m(y)dy

∣∣∣∣
� Rψ‖∇�‖∞m−1 � Cdm

−1.

Consequently,

∣∣∣Em(μ̃;μ)− Ẽ∞(μ̃;μ)

∣∣∣ � 1

m − 1

∫
μ̃m +

∫ ∣∣�1/m −�
∣∣ dμ̃

� (m − 1)−1 + ‖�1/m −�‖∞ � (2+ Cd)m
−1.

Therefore, first applying Lemma 2.19 to the definition of TE and then using the
above inequality,

TE � Em(η;μ)+ Ẽ∞(η;μ)− Em(ν, μ)− Ẽ∞(ρ̃τ ;μ)+ Cm−1/2 (2.18)

� 2Ẽ∞(η;μ)− Ẽ∞(ν, μ)− Ẽ∞(ρ̃τ ;μ)+ Cm−1/2.

Since Ẽ∞(·, μ) is ω-convex along generalized geodesics and η is the midpoint
along the generalized geodesic from ν and ρ̃τ with base ρ,

2Ẽ∞(η;μ)− Ẽ∞(ν;μ)− Ẽ∞(ρ̃τ ;μ) � Cd

2
ω

(
A2

4

)
.

Substituting this into inequality (2.18) gives

TE � Cm−1/2 + Cdω
(
A2/4

)
.

Finally, combining our upper bounds on TW and TE with inequality (2.17), we
obtain

A2 � Cm−1/4 + 4Cdτω
(
A2/4

)
. (2.19)

We now claim that

A �
√
2Cm−1/8 + 2e−1/(4Cdτ) (2.20)

If A2/4 > e−1−
√
2, then combining inequality (2.19) and τ < 1/(6Cd) implies

A2 � Cm−1/4 + 4τCdω
(
A2/4

)
� Cm−1/4 + 3τCd A

2 �⇒ A �
√
2Cm−1/8,
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hence (2.20) holds. Alternatively, if A2/4 � e−1−
√
2,

A2 � Cm−1/4 + 4τCdω
(
A2/4

)
= Cm−1/4 − Cdτ A

2 log
(
A2/4

)
. (2.21)

If (2.20) is violated, we have A >
√
2Cm−1/8 and A > 2e−1/(4Cdτ), so

Cm−1/4 < A2/2 and −Cdτ A2 log(A2/4) < A2

2 . Adding these together would
contradict (2.19), so again (2.20) holds.

Since A = ‖tνρ − tρ̃τ
ρ ‖L2(ρ) = ‖tνρ ◦ tρρ̃τ

− id‖L2(ρ̃τ ) and tνρ ◦ tρρ̃τ
#ρ̃τ = ν, we

have W2(ν, ρ̃τ ) � A. Therefore, using (2.20) and Lemma 2.19, we may conclude
the result,

W2(ρτ,m, ρ̃τ ) � W2(ρτ,m, ν)+W2(ν, ρ̃τ ) � Cm−1/4 + A

� Cm−1/4 +√2Cm−1/8 + 2e−1/(4Cdτ) � Cm−1/8 + 2e−1/(4Cdτ).

��
Proposition 2.23. (multi-step comparison between ρ̃n

τ and ρn
τ,m)Given T > 0 and

initial data ρ ∈ D(E∞), there exist positive constants C, N, and M depending on
the dimension, T , E∞(ρ), and ψ so that for τ = t/n, 0 � t � T , n > N, m > M,
and n = o(m1/8),

W2(ρ
n
τ,m, ρ̃n

τ ) � C(n−1/4 + nm−1/8)1/2e2Cd T

Proof. Define di := W2(ρ
i
τ,m, ρ̃i

τ ) for any i = 1, . . . , n. Using Corollary 2.17 and
‖ρ‖mm � 1, we have the crude bound

di � W2(ρ
i
τ,m, ρ)+W2(ρ̃

i
τ , ρ) �

√
4T + 8CdT 2 + 2CdT . (2.22)

The one step estimates from Proposition 2.22 allow us to control the distance
between one-step minimizers of Em and Ẽ∞ when they have the same initial data.
In particular, for

δ := Cm−1/8 + 2e−1/(4Cdτ), (2.23)

we have d1 � δ. In order to apply Proposition 2.22 to control di for i = 2, . . . , n, we
use a sequence of densitiesηi to serve as a bridge betweenρi

τ,m and ρ̃i
τ , following the

tree structure in Fig. 1. Specifically, we choose ηi ∈ P2(R
d) so that, by Proposition

2.22,

ηi ∈ argmin
ν∈P2(Rd )

{
1

2τ
W 2

2 (ρ̃i−1
τ , ν)+ Em(ν; ρi

τ )

}
�⇒ W2(ρ̃

i
τ , η

i ) � δ. (2.24)

Since ηi and ρi
τ,m are one-step minimizers of the same energy Em(·, ρi

τ ) with
different initial data (ρ̃i−1

τ and ρi−1
τ,m respectively), we may control their distance

using Proposition 2.9.
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ρ0

ρ̃1τ

ρ̃2τ

ρ̃3τ

ρ1τ,m

ρ2τ,m

ρ3τ,m

≤ δ

≤ δ

≤ δ

d2 dnd1

ρn
τ,m

ρ̃n
τ

d3
η2

η3

Em

Em

Em

Em

Em

Em

Ẽ∞

Ẽ∞

Ẽ∞

Ẽ∞

Fig. 1. An illustration of the tree structure used in the multi-step comparison between ρ̃nτ
and ρnτ,m

First, we obtain a few elementary bounds on how the energy changes along the
discrete time sequence. Combining Lemma 2.2, Proposition 2.3, Lemma 2.16, and
the definition of ρi−1

τ,m as a minimizer,

Em

(
ρi−1

τ,m ; ρi
τ

)
= Em

(
ρi−1

τ,m ; ρi−1
τ

)
+ Em

(
ρi−1

τ,m ; ρi
τ

)
− Em

(
ρi−1

τ,m ; ρi−1
τ

)

= Em

(
ρi−1

τ,m ; ρi−1
τ

)
+
∫

ψ1/m ∗ Nρi−1
τ,m d

(
ρi

τ − ρi−1
τ

)

� Em

(
ρi−2

τ,m ; ρi−1
τ

)
+ CdW2

(
ρi

τ , ρ
i−1
τ

)

� Em

(
ρi−2

τ,m ; ρi−1
τ

)
+ 2C2

dτ � · · · � Em

(
ρ; ρ1

τ

)
+ 2C2

dT .

Likewise, we may control the first term on the right hand side of the last inequality
by

Em

(
ρ; ρ1

τ

)
= ‖ρ‖mm/(m − 1)+

∫
ψ1/m ∗ Nρ1

τ dρ � 1+ 2E∞(ρ)

+
∫

Nρd
(
ψ1/m ∗ ρ1

τ − ρ
)

� 1+ 2E∞(ρ)

+ CdW2

(
ψ1/m ∗ ρ1

τ , ρ
)

� 1+ 2E∞(ρ)
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+ Cd

(
W2

(
ψ1/m ∗ ρ1

τ , ρ1
τ

)
+W2(ρ

1
τ , ρ)

)

� 1+ 2E∞(ρ)+ Cd((1/m)Mψ + 2Cdτ)

where, in the last step, we apply [2, Lemma 7.1.10], which ensures

W2(μ ∗ ψ1/m, μ) � 1

m

(∫
|x |2ψ(x)dx

)1/2

=: 1
m
Mψ. (2.25)

Combining the above two inequalities, we conclude that there exists constantC > 0
(whichweallow to change from line to line) dependingon thedimension,T , E∞(ρ),
and ψ so that

Em

(
ρi−1

τ,m ; ρi
τ

)
� C for all i = 1, . . . , n.

Furthermore, by Proposition 2.3, we also have that Em(·; ·) is uniformly bounded
below.

Using these estimates on the energy, we may now apply Proposition 2.9 to
conclude that there exist positive constants C and N depending on the dimension,
T , E∞(ρ), and ψ , which we allow to change from line to line, so that for τ = t/n,
0 � t � T , and n > N ,

f (2)
τ

(
W 2

2

(
ηi , ρi

τ,m

))
� d2i−1 + Cdτω

(
CW2

(
ηi , ρ̃i−1

τ

))
+ 2τ

(
Em

(
ρi−1

τ,m ; ρi
τ

)

−Em

(
ρi

τ,m; ρi
τ

))
+ Cτ 2.

By Lemma 2.16 (iii), we have the following bounds for two quantities on the right
hand side:

W2

(
ηi , ρ̃i−1

τ

)
�
√

2τ

m − 1
‖ρ̃i−1

τ ‖mm + 2Cdτ � C
√

τ ,

Em

(
ρi−1

τ,m ; ρi
τ

)
− Em

(
ρi

τ,m; ρi
τ

)
�
(
‖ρi−1

τ,m ‖mm − ‖ρi
τ,m‖mm

)
+ C

√
τ .

Therefore,

f (2)
τ

(
W 2

2

(
ηi , ρi

τ,m

))
� d2i−1 + 2τ

(
‖ρi−1

τ,m ‖mm − ‖ρi
τ,m‖mm

)
+ Cτ 5/4 (2.26)

Wenowuse this estimate to bounddi = W2(ρ
i
τ,m, ρ̃i

τ ). By the triangle inequality
and (2.24),

d2i �
(
W2

(
ηi , ρi

τ,m

)
+W2

(
ρ̃i

τ , η
i
))2

� W 2
2

(
ηi , ρi

τ,m

)
+
(
2W2

(
ηi , ρi

τ,m

)
+ δ

)
δ (2.27)

Furthermore, by Lemma 2.16 (iii), inequality (2.22), and equation (2.23)

W2

(
ηi , ρi

τ,m

)
� W2

(
ηi , ρ̃i−1

τ

)
+ di−1 + δ � C,
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Thus, by Proposition 2.8, we may apply f (2)
τ to both sides of the (2.27) to obtain

f (2)
τ (d2i ) � f (2)

τ

(
W 2

2

(
ηi , ρi

τ,m

))
+ Cδ + Cτ 2.

Combining this with (2.26) gives, for all i = 1, . . . , n,

f (2)
τ (d2i ) � d2i−1 + 2τ

(
‖ρi−1

τ,m ‖mm − ‖ρi
τ,m‖mm

)
+ Cτ 5/4 + Cδ. (2.28)

We claim that the result will follow if we can show that, for all j = 1, . . . , n,

f (2 j)
τ (d2n ) � d2n− j + 2τ

(
‖ρn− j

τ,m ‖mm − ‖ρn
τ,m‖mm

)
+ 2Cτ 5/4 j + Cδ j. (2.29)

In particular, if this holds, then taking j = n and using that e−1/4Cdτ = O(τ 5/4)

gives

f (2n)
τ (d2n ) � 2τ‖ρ‖mm + 2CT τ 1/4 + Cδn � C(n−1/4 + nm−1/8).

By Proposition 2.8 (iii) and the fact that Ft (x) is decreasing in t ,

F2nτ (d
2
n ) � C(n−1/4 + nm−1/8)+ 2Cdω(C)T/n �⇒ F2T (d2n )

� C(n−1/4 + nm−1/8).

For 0 � x � e−1−
√
2, we have Ft (x) = xe

Cd t . Thus, for n and m sufficiently large,
depending on the dimension, T , E∞(ρ), and ψ , and with n = o(m1/8), we have

dn � C(n−1/4 + nm−1/8)1/2e2Cd T ,

which gives the result.
It remains to show (2.29). We proceed by induction. The base case for j = 1

follows from (2.28), so we assume the result holds for j − 1,

f (2( j−1))
τ (d2n ) � d2n− j+1 + 2τ

(
‖ρn− j+1

τ,m ‖mm − ‖ρn
τ,m‖mm

)

+ 2Cτ 5/4( j − 1)+ Cδ( j − 1).

For any j = 1, . . . , n, the right hand side is bounded by a constant depending on
the dimension, T , E∞(ρ), and ψ . Thus, by Proposition 2.8, we may apply f (2)

τ to
both sides to conclude

f (2 j))
τ (d2n ) � f (2)

τ (d2n− j+1)+ 2τ
(
‖ρn− j+1

τ,m ‖mm − ‖ρn
τ,m‖mm

)

+ 2Cτ 5/4( j − 1)+ Cδ( j − 1)+ C2τ 2

� d2n− j + 2τ
(
‖ρn− j

τ,m ‖mm − ‖ρn
τ,m‖mm

)
+ 2Cτ 5/4 j + Cδ j

where, in the second inequality, we apply (2.28) and the fact that
C2τ 2 � Cτ

√
τ . ��

Combining the previous propositions, we obtain our main result.
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Theorem 2.24. (convergence of ρm(t) to ρ∞(t)) Given T > 0 and initial data
ρ ∈ D(E∞), there exist positive constants C and M depending on d, T , E∞(ρ),
and ψ so that for all 0 � t � T and m � M,

W2(ρm(t), ρ∞(t)) � Cm−1/144e4Cd T .

Proof. Combining Proposition 2.21, Proposition 2.23, [20, Theorem 3.8], and
Proposition 5.2, there exist positive constantsC and N depending on d, T, E∞(ρ),

andψ so that for τ = t/n and all n � N ,m � d+1, 0 � t � T , and n = o(m1/8),

W2(ρ
n
τ , ρ̃n

τ ) � Cn−1/4e2Cd T , W2(ρ
n
τ,m, ρ̃n

τ ) � C(n−1/4 + nm−1/8)1/2e2Cd T

W2(ρ
n
τ , ρ∞(t)) � Cn−1/16e2Cd T , W2(ρ

n
t/n,m, ρm(t)) � Cn−1/16e4Cd T .

Hence, by the triangle inequality, we have

W2(ρm(t), ρ∞(t)) � C(n−1/16e4Cd T + n1/2e
2Cd T m−1/16e2Cd T ).

Taking n = m1/9 gives the result. ��

3. Convergence of Viscosity Solutions: Drift Diffusion Pressure to Free
Boundary Problem

In the previous section, we showed that the gradient flow of the height con-
strained interaction energy E∞, which is merely a curve in the space of measures,
may be approximated by solutions of the nonlinear diffusion equations (PME-D)m
as m → +∞. This approximation provides the bridge by which we are able to
unite the energy methods approach with viscosity solution approach. In the present
section, we use this approximation to characterize the dynamics of patch solu-
tions in terms of a Hele-Shaw type free boundary problem. We accomplish this by
considering the nonlinear diffusion equations in terms of their pressure variables:
given ρm a weak solution of (PME-D)m , the pressure variable pm := m

m−1 (ρm)m−1
uniquely solves

(pm)t − (m − 1)pm(�pm +��1/m)− ∇ pm · (∇ pm +∇�1/m) = 0. (P)m

For initial data given by (1.9), we show that as m → +∞ the half-relaxed limits
of viscosity solutions of (P)m satisfy sub- and supersolution properties of (P)∞.
The comparison principle of (P)∞ then yields that these half-relaxed limits are
ordered with respect to the viscosity solution p of (P)∞ with the same initial data.
In terms of the density variable, we show that ρm uniformly converges to χ�(t)

away from ∂�(t), where �(t) = {p(·, t) > 0}. It follows that ρ∞ = χ�(t) almost
everywhere, and thus (P)∞ identifies with (P). Due to the fact that we lack a priori
stability estimates to link (P)∞ and (P) as the initial data varies, wemust introduce
additional perturbations and approximations into our proof of this final result.
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Remark 3.1. The lack of the comparison principle for the original problem (P) is
not the main reason we consider (PME-D)m . We could have considered the drift
term given by � := N ∗ ρm , and thus proved the convergence of the Keller–Segel
equation to our problem, if we had known that the corresponding solutions ρm
converged to ρ∞ as m → +∞. Obtaining such convergence seems to require a
uniform L∞ bound on the gradient flow solutions of (PME-D)m , which is an open
question at the moment.

3.1. Definition of Viscosity Solutions of (P)m and (P)∞ and Weak Solutions of (P)

We begin by recalling some notation. For Q ⊆ R
d × (0,∞), we write f ∈

C2,1(Q) if f is twice continuously differentiable in x and once in t . We say that
u−ϕ has a local maximum (minimum) zero (x0, t0) in Q if there exists ε > 0 such
that

ϕ(x0, t0) = u(x0, t0) and ϕ � u (ϕ � u) in Q ∩ (Bε(x0)× (t0 − ε, t0 + ε)).

In other words, ϕ touches u from above (below) at (x0, t0) with respect to Q.
Given an open set � ⊆ R

d and a function h : �× [0,+∞) → R, we denote
its upper and lower semicontinuous envelopes by

h∗(x, t) := lim
ε→0

sup
|x−y|�ε,

|t−s|�ε

h(y, s), h∗(x, t) := lim
ε→0

inf
|x−y|�ε,

|t−s|�ε

h(y, s). (3.1)

Note that h∗ is the smallest upper semicontinuous function satisfying h � h∗, and
h∗ is the largest lower semicontinuous function satisfying h � h∗.

We now turn to the definition of solutions of (P)m , (P)∞, and (P). For (P)m ,
we refer the reader to Alexander et al. [1, Section 3] and Kim and Lei [33, Section
2.1] for the definitions of classical and viscosity solutions. For (P)∞, we again
follow an approach reminiscent of Kim [32] and Alexander et al. [1], with the
notable difference that we separate of the solution and the set evolution in our
notion of subsolutions. (If we instead defined solutions of (P)∞ by comparison with
classical sub- and supersolutions, itwould ease the proof of the comparison theorem,
Theorem 3.11. However, our definition is more natural from the perspective of our
convergence theorem, Theorem 3.17.)

Definition 3.2. (subsolution of (P)∞) An upper semicontinuous function u : Rd ×
(0,+∞) → [0,+∞), paired with a space–time set � = ∪t>0(�(t) × {t}), is a
viscosity subsolution of (P)∞ if

(a) {u(·, t) > 0} ⊆ �(t) and � ∩ {t � t0} ⊆ � ∩ {t < t0} for every t0 > 0;
(b) for all ϕ ∈ C2,1(Rd × (0,+∞)) so that u − ϕ has a local maximum zero at

(x0, t0) in � ∩ {t � t0},
(i) if x0 ∈ �(t0)◦ or u(x0, t0) > 0, then −�ϕ(x0, t0) ≤ 1;
(ii) if x0 ∈ ∂�(t0), u(x0, t0) = 0, and |∇ϕ|(x0, t0) �= 0, then

min(−�ϕ − 1, ϕt − |∇ϕ|2 − ∇ϕ · ∇�)(x0, t0) ≤ 0.
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Wewill say that u : Rd×[0,+∞) → [0,+∞) has compactly supported initial
data u0 if, in addition,

(c) u(·, 0) = u0(·) and {u0 > 0} = � ∩ {t = 0}.
We introduce the set � for technical reasons, to allow for the possibility that u
becomes zero in the evolving set�(t). Condition (a) ensures that a subsolution does
not jump up from zero. Condition (b)(ii) ensures that limits of viscosity solutions
are viscosity solutions, since it is possible that the boundary collapses in a limit and
boundary points of the limiting functions become interior points of the limit.

Definition 3.3. (supersolution of (P)∞) A lower semicontinuous function v : Rd ×
(0,+∞) → (0,+∞) is a viscosity supersolution of (P)∞ with initial data v0 if for
all ϕ ∈ C2,1(Rd × (0,+∞)) so that v − ϕ has a local minimum zero at (x0, t0)
with respect to Rd ∩ {t � t0},
(i) if (x0, t0) ∈ {v > 0}, −�ϕ(x0, t0) ≥ 1;
(ii) if (x0, t0) ∈ ∂{v > 0}, v(x0, t0) = 0,

|∇ϕ|(x0, t0) �= 0, and {ϕ > 0} ∩ {v > 0} ∩ B �= ∅
for some ball B centered at (x0, t0) (3.2)

then max(−�ϕ − 1, ϕt − |∇ϕ|2 −∇ϕ · ∇�)(x0, t0) ≥ 0.

Will we say that v : Rd×[0,+∞) → (0,+∞) has initial data v0 if v(·, 0) = v0(·)
Condition (3.2) ensures that ϕ touches v from below in a non-degenerate way.

Definition 3.4. (viscosity solution of (P)∞) A lower semi-continuous function u is
a viscosity solution of (P)∞ in R

d × (0,∞) with compactly supported initial data
u0 if (u∗, {u > 0}) and u are respectively viscosity sub- and supersolutions of (P)∞
with initial data u0.

The following lemma illustrates the fact that the solution of (P)∞ is entirely
characterized by its support.

Lemma 3.5. Suppose u is a viscosity solution of (P)∞ in R
d × (0,∞) and

{u∗ > 0} = {u > 0}. Then, for each t > 0, u(·, t) = (ht )∗, where

ht (x) = inf{α(x) : −�α � 1 in an open set E containing {u(·, t) > 0};
α � 0 on E .}

Proof. By the definition of a viscosity supersolution, −�u(·, t) � 1 in {u(·, t) >

0}, so (ht )∗ � u(·, t). On the other hand, by the definition of a viscosity subsolution,
−�u∗(·, t) � 1 inRd and u∗(·, t) is supported in {u(·, t) > 0}. Therefore u∗(·, t) �
α for any candidate function α(x) in the definition of ht , so u∗(·, t) � (ht )∗.
Consequently, we conclude that u(·, t) = (ht )∗. ��

We close by defining the notion of weak solution for the original free boundary
problem (P).

Definition 3.6. p is a weak solution of (P) if it is a viscosity solution of (P)∞ with
initial data p0 and ρ∞ = χ{p>0} almost everywhere.
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3.2. Basic Properties of Viscosity Solutions of (P)m and (P)∞

We now recall the several results on well-posedness of viscosity solutions of
(P)m and the L1 contraction of the corresponding density variable.

Lemma 3.7. Consider the porous medium equation with drift and source terms,

ρt = ∇ · (ρ∇�1/m)+�ρm + ρ f, (3.3)

with f ∈ L1 and bounded nonnegative initial data then:

(a) If ρ1 and ρ2 are nonnegative weak solutions of (3.3) with source terms f1 and
f2, then for all t � 0,

‖ρ1(·, t)− ρ2(·, t)‖L1(Rd ) � ‖ρ1(·, 0)− ρ2(·, 0)‖L1(Rd )

+
∫ t

0

∫
Rd
|ρ1 f1 − ρ2 f2|;

(b) Let ρ be a nonnegative weak solution of (3.3) for any continuous, compactly
supported initial data ρ0 and continuous function f . Then the pressure vari-
able pm := m

m−1ρ
m−1 is a viscosity solution to

(pm)t − (m − 1)pm(�pm +��1/m + f )−∇ pm · (∇ pm +∇�1/m) = 0.

Proof. (a) is due to [51, Section 3.2.2], and (b) follows from
[33, Corollary 2.11]. ��

We now turn to the following estimates on the size and support of solutions to
(P)m , which are uniform in m. The first ensures that if the initial data is bounded
uniformly in m, it remains so on bounded time intervals. The second ensures that
if the support of the initial data is bounded uniformly in m, it likewise remains so
on bounded time intervals.

Lemma 3.8. (Estimates on size and support of solutions to (P)m)Let pm be a viscos-
ity solution of (P)m with continuous, compactly supported initial data pm(·, 0). Sup-
pose that there exists R0 � 1 sufficiently large so that {pm(·, 0) > 0} ⊆ BR0/2(0)
and pm(·, 0) � R2

0/4d. Define R(t) := (R0 + Cd
d )et/d − Cd

d , with Cd > 0 as in
(2.8). Then,

(a) {pm(·, t) > 0} ⊆ BR(t)(0) for all t ∈ [0, T ];
(b) pm(x, t) � R(t)2/2d for all t > 0.

Proof. We prove the result by comparison with a classical supersolution of (P)m .
Define

h(x) =
{

1−|x |2
2d for |x | < 1,

0 for |x | � 1,

so that h(x) satisfies −�h = 1 in |x | < 1 and h = 0 in |x | � 1. Let φ(x, t) :=
R(t)2h(x/R(t)), where R(t) solves R′(t) = R(t)

d + Cd with r(0) = R0, and Cd is
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the upper bound of ‖∇�1/m‖∞ given by (2.8). We claim that such φ is a classical
supersolution of (P)m for all m. To check this, direct computation gives that in the
support of φ,

φt (x, t) = 2R(t)R′(t)
1− |x |2

R(t)2

2d
+ R(t)2

(
− x

dR(t)

)
·
(
− x R′(t)

R(t)2

)
= R(t)R′(t)

d
,

(3.4)
and ‖∇φ(·, t)‖∞ = R(t)‖∇h‖∞ = R(t)

d . In addition, since�φ = −1 in its support
and ��1/m � 1 for all m, we have

(m − 1)φ (�φ +��1/m)︸ ︷︷ ︸
�0

−∇φ · (∇φ +∇�1/m) � R(t)

d

(
R(t)

d
+ Cd

)
. (3.5)

Comparing (3.4) with (3.5) gives thatφ is a classical supersolution if R′(t) = R(t)
d +

Cd . With R(0) = R0, we have pm(·, 0) < φ(·, 0) for all m, and supp pm(·, 0) ⊂
BR0/2(0) ⊂ BR0(0) = supp φ(·, 0). The comparison principle for viscosity solutions
(see Theorem 3.10 below) then yields that {pm(·, t) > 0} ⊆ BR(t)(0) for all t , and
pm(x, t) � R(t)2/2d for all x, t . ��
Remark 3.9. Lemma 3.8(b) and the fact that ρm = (m−1m pm)1/(m−1) directly lead
to the bound

lim sup
m→∞

‖ρm(·, t)‖∞ � 1 for all t � 0, (3.6)

which we will make use of in what follows.

A key property of viscosity solutions of (P)m is that they satisfy a comparison
principle, which we now recall. We say two functions f, g : Rd → [0,∞) are
strictly separated, denoted by f ≺ g, if f < g in { f > 0}, and { f > 0} is a
compact subset of {g > 0}.
Theorem 3.10. (comparison theorem for (P)m) Suppose u and v are viscosity sub-
and supersolutions of (P)m. If the initial data are strictly ordered, that is

u(·, 0) < v(·, 0) in {u(·, 0) > 0} and {u(·, 0) > 0}
is a compact subset of {v(·, 0) > 0},

then u(·, t) ≺ v(·, t) for all t > 0.

Proof. The result follows from [33, Theorem 2.25]. ��
We also have the following comparison theorem for solutions to (P)∞, which

we prove at the end of this section:

Theorem 3.11. (comparison theorem for (P)∞) Suppose (u, �) and v are respec-
tively viscosity sub- and supersolutions of (P)∞. If the initial data are strictly
ordered, that is

u(·, 0) < v(·, 0) in � ∩ {t = 0} and � ∩ {t = 0}
is a compact subset of {v(·, 0) > 0}, (3.7)

then u(·, t) ≺ v(·, t) and �̄ ∩ {t} ⊂ {v(·, t) > 0} for all t > 0.
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Our approach in proving this comparison theorem is to consider the first contact
time for regularizations of sub- and supersolutions, obtained by considering their
sup and inf convolutions over space-time smooth sets. Such regularizations are often
used to prove comparison principles for free boundary problems (c.f. [1,14,15,32]),
as they ensure that, when the free boundaries intersect for the first time, the free
boundaries have both the interior and exterior ball property at the contact point.
This provides sufficient regularity to consider a first-order asymptotic expansion of
the free boundary graph at the contact point.

Proof of Theorem 3.11. Our proof is parallel to the proof of [1, Theorem 2.7],
the main difference being that our drift term ∇�1/m has less regularity uniformly
in m. This makes (P)∞ more susceptible to perturbations, so we must carefully
choose our regularization procedure so that the regularized solutions remain sub-
and supersolutions of the original problem.

We now describe the details of this regularization. Fix r0 ∈ [0, e(−1−√2)/2).
Let r(t) be the unique solution to{

r ′(t) = −2Cdσ(r(t)),

r(0) = r0,
(3.8)

with Cd and σ(x) in Proposition 2.7. Given (u, �) and v as in Theorem 3.11, we
define the spatial sup and inf convolutions

ur (x, t) := sup
Br(t)(x)

u(y, t), vr (x, t) := inf
Br(t)(x)

v(y, t), �r := ∪t>0�r(t)(t)×{t},
(3.9)

where �r(t)(t) := {x : d(x,�(t)) � r(t)}. Next we define the spacetime sup and
inf convolutions

ũr (x, t) := sup
Br∗ (x,t)

ur (y, s), ṽr (x, t) := inf
Br∗ (x,t)

vr (y, s),

�̃r := {(x, t) : d((x, t),�r ) < r∗}. (3.10)

for fixed r∗ > 0.
For r∗ := (σ (r(T ))/11)2d , one can show that (ũr , �̃r ) and ṽr are viscosity

sub- and supersolutions of (P)∞ in R
n × (r0, T − r∗). (The proof of this fact is

standard, and we refer the reader to the arXiv preprint of the manuscript for further
details.)

Using the above regularization procedure, the result then follows as in [1, The-
orem 2.7].

We will use the preceding comparison theorem, as well as the L1 contraction
theorem forρm , to obtain our firstmain result: we identifyρ∞with the characteristic
function on the support of the minimal viscosity solution of (P)∞, when the initial
data p0 is given by (1.9).

While the above theorem almost provides uniqueness of (P)∞, the requirement
that the initial data be strictly ordered prevents us from concluding this result.
However, combining the comparison principle with Perron’s method yields the
following:
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Theorem 3.12. For any bounded open set�0 ⊆ R
d with Lipschitz boundary, there

exists minimal and maximal viscosity solutions of (P)∞.

Proof. The result follows from [32]. ��

3.3. Convergence of (P)m to (P)∞

In this section, we show that, as m → +∞, viscosity solutions pm of (P)m
approach a solution p of (P)∞ and use this to show that patch solutions to the
congested aggregation equation satisfy ρ∞ = χ�(t) almost everywhere, where
�(t) = {p(·, t) > 0}.

We begin with the following lemma which states that ρm converges to ρ∞
weakly even if ρm has initial data ( m

m−1 p0)
1/(m−1), instead of requiring the initial

data of ρm to coincide with the initial data of ρ∞, as proved in Theorem 2.24.

Lemma 3.13. Let �0 ⊆ R
d be a bounded domain with Lipschitz boundary, and let

ρ∞(·, t) be the gradient flow of E∞ with initial data ρ0 = χ�0 . Let ρm be the weak
solution of (PME-D)m with initial data ( m

m−1 p0)
1/(m−1), where p0 is as in (1.9).

Then for any t � 0 and any f ∈ C(Rd), we have

lim
m→∞

∫
Rd

ρm(x, t) f (x)dx =
∫
Rd

ρ∞(x, t) f (x)dx for all t � 0. (3.11)

Proof. We will first prove (3.11) for all f ∈ C(Rd) ∩ L∞(Rd), and at the end of
the proof we will extend it to all (possibly unbounded) continuous functions.

Let ρ̃m be the weak solution of (PME-D)m with initial data χ�0 . Theorem 2.24
then yields that limm→∞W2(ρ̃m(t), ρ∞(t)) = 0 for any t > 0. By [2, Remark
7.1.11 and Remark 5.1.2], convergence in W2 distance implies that

lim
m→∞

∫
Rd

ρ̃m(x, t) f (x)dx =
∫
Rd

ρ∞(x, t) f (x)dx for all f ∈ C(Rd)∩L∞(Rd).

(3.12)
To relate ρ̃m with ρm , note that they are both weak solutions to (PME-D)m , with

different initial data χ�0 and ( m
m−1 p0)

1/(m−1) respectively. Since ( m
m−1 p0)

1/(m−1)
→ χ�0 pointwise as m →+∞, we have

lim
m→∞

∥∥∥
( m

m − 1
p0
)1/(m−1) − χ�0

∥∥∥
L1(Rd )

= 0

by dominated convergence theorem. Also, recall that for any m > 1 and t � 0, the
L1 contraction result in Lemma 3.8 gives

‖ρ̃m(·, t)− ρm(·, t)‖L1(Rd ) �
∥∥∥
( m

m − 1
p0
)1/(m−1) − χ�0

∥∥∥
L1(Rd )

.

Combining the above two equations yields limm→∞ ‖ρ̃m(·, t)− ρm(·, t)‖L1(Rd ) =
0, hence

lim
m→∞

∫
Rd

(ρ̃m(x, t)− ρm(x, t)) f (x)dx = 0 for all f ∈ L∞(Rd). (3.13)
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Putting (3.12) and (3.13) together gives us (3.11) for all f ∈ C(Rd) ∩ L∞(Rd).
To remove the requirement f ∈ L∞(Rd), recall that Lemma 3.8 gives that ρ̃m(·, t)
is supported in some bounded set B(0, R(t)) for all m, and as a result ρ∞(·, t) is
supported in it too. If f ∈ C(Rd) is unbounded, we can simply set f̃ = f η, where
η is a smooth cut-off function that is 1 in B(0, R(t)) and 0 outside of B(0, R(t)+1).
We then have (3.11) holds for f̃ . Since changing f̃ to f will not change the integrals
in (3.11), we know (3.11) holds for f too. ��

We begin our study of the limit of solutions of (P)m with the following result,
which shows that the half relaxed “limit infimum” of solutions of (P)m is a super-
solution of (P)∞.

Proposition 3.14. Suppose pm(x, t) is a viscosity solution of (P)m with initial data
pm(·, 0) = p0 as given in (1.9). Then the half relaxed limit

u2(x, t) := lim inf∗ pm(x, t) = lim
n→+∞ inf

m>n|(x,t)−(y,s)|<1/n

pm(y, s) (3.14)

is a viscosity supersolution of (P)∞.

Proof. The proof is analogous to [1, Theorem 3.4]. For further details, we refer to
the arXiv preprint of the manuscript. ��

Next, we proceed to show that taking a “limit supremum" of pm yields a sub-
solution of (P). Here we need to be a bit careful, due to the fact that subsolution
property is based on maximum points only in the support of the subsolution. (See
Definition 3.2.) Indeed, due to the nature of one-phase problem it is not possible
to perturb a smooth test function ϕ to create a strict maximum of u1 − ϕ without
restricting the domain to {u1 > 0}. This can create technical difficulties with argu-
ments along the lines of above proof to ensure that the local maximum points are
stable under the limit m →∞, especially when the support of pm degenerates as
m →∞. To overcome this obstacle, we work with a modified notion of viscosity
subsolutions, which are comprised of a pair (u, �). This allows the set evolution
� to be larger than the support of u. (See Definition 3.2 for details.)

Proposition 3.15. Suppose pm(x, t) is a viscosity solution of (P)m. Define

S(t) := ∩M�1(∪m>M {pm(·, t) > 0}), �1 := ∪t>0(S̊(t)× {t}) (3.15)

Then if u1 is the half-relaxed limit of pm,

u1(x, t) :=
∗

lim sup pm(x, t) = lim
n→+∞ sup

m>n|(x,t)−(y,s)|<1/n

pm(y, s), (3.16)

(u1, �1) is a viscosity subsolution of (P)∞.
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Proof. Since u1 is upper semicontinuous and S̊(t) is open, it remains to check
properties (a)–(b) of Definition 3.2. By definition, S(t)c ⊆ {u1(·, t) = 0}, hence
{u1(·, t) > 0}̊ ⊆ S̊(t). By [1, Theorem B.1], for all t0 > 0,

if (x0, t0) ∈ �1 then (x0, t0) ∈
(
�1 ∩ {t � t0}

)
.̊ (3.17)

In particular, we have, � ∩ {t � t0} ⊆ � ∩ {t < t0} for all t0 > 0.
Nowwe turn to property (b). Let u−ϕ have a local maximum zero at (x0, t0) in

�1∩{t � t0}. Firstwe consider part (i),where either (x0, t0) ∈ �1 oru1(x0, t0) > 0.
By adding δ(x− x0)2+δ(t0− t) to ϕ with δ > 0 sufficiently small, we may assume
there is a parabolic neighborhood Q of (x0, t0) so that u1−ϕ has a strict maximum
with respect to Q ∩�1 ∩ {t � t0} = Q ∩�1.

First, note that if suffices to consider the case when u1(x0, t0) > 0. In particular,
if (x0, t0) ∈ �1, then by (3.17), we may assume that Q is sufficiently small so
that Q ⊆ �1. This implies u1(x0, t0) > 0, since otherwise ϕ(·, t0) has a local
minimum zero at x0, contradicting the fact that it is superharmonic. Likewise, we
may assume that u1 − ϕ has a strict maximum zero at (x0, t0) with respect to Q,
since ϕ(x0, t0) = u1(x0, t0) > 0 and u1 = 0 in (�1)

c
.

We now show that

−�ϕ(x0, t0) � f (x0) for any f ∈ C(Rd)

such that f � ρ∞(·, t0) almost everywhere. (3.18)

In particular, this implies that −�ϕ(x0, t0) � 1, which gives the result. Suppose
for the sake of contradiction that −�ϕ(x0, t0) > f (x0) for some f .

Let (xm, tm) := argmaxQ pm − ϕ̃, Cm := pm(xm, tm)− ϕ̃(xm, tm), and ϕ̃m :=
ϕ̃ + Cm , so pm − ϕ̃m has a maximum zero at (xm, tm) with respect to Q. As in
[1, Theorem 3.4] (see paragraph A.2), up to a subsequence, we have (xm, tm) →
(x0, t0) ∈ Q, limm→+∞ pm(xm, tm) = lim sup∗ pm(x0, t0) = u1(x0, t0) > 0.
Since pm is a viscosity subsolution of (P)m ,

(ϕt − (m − 1)pm(�ϕ +��1/m)−∇ϕ · (∇ϕ +∇�1/m))(xm, tm) � 0. (3.19)

Because ��1/m = ψ1/m ∗ ρ∞ � f + o(1) and −�ϕ(x0, t0) > f (x0), we have

(�ϕ +��1/m)(xm, tm) < 0

for sufficiently large m, which is a contradiction.
Now we consider part (ii), where (x0, t0) ∈ ∂�1, u1(x0, t0) = 0, and

|∇ϕ|(x0, t0) �= 0. Suppose, for the sake of contradiction, that

−�ϕ(x0, t0) > 1 and (ϕt − |∇ϕ|2 −∇ϕ · ∇�)(x0, t0) > 0. (3.20)

We can now apply parallel argument as in the proof of Theorem 3.4 in [1] to
conclude. ��
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We now show that the initial data of the half-relaxed limits coincides with the
initial data given in equation (1.9). Specifically, this ensures that the initial data
of u1 and u2 coincides with the initial data of the sequence pm , in spite of the
time regularization inherent in the definitions of these half-relaxed limits. In what
follows, we make frequent use of the following inner and outer approximations:

�−r := {x : d(x,�c) > r} and �r := {x : d(x,�) < r}. (3.21)

Lemma 3.16. Consider a bounded domain�0 ⊆ R
d with the “no-crack” property

�̊0 = �0. Suppose pm are viscosity solutions of (P)m with initial data p0 as given
in (1.9). Then, for the half-relaxed limits u1 and u2, we have u1(x, 0) = u2(x, 0) =
p0(x).

Proof. 1. We begin by proving the following claim on the support of pm for given
ε > 0:

There is Tε > 0 such that �−ε
0 ⊆ {ui (·, t) > 0} ⊆ �ε

0

for all t ∈ [0, Tε] and i = 1, 2. (3.22)

We begin by showing {pm(·, t) > 0} ⊆ �ε
0 for 0 � t � tε for some tε ∈ (0, 1) that

is independent of m. Suppose x0 ∈ (�ε
0)

c, so that pm = 0 in Bε(x0) for all m.
Let us define

φ(x, t) =
(
N (x − x0)− |x − x0|2

2d
+ f (t)

)
+,

where f is an increasing functionwhichwewill determinemomentarily. Let f (0) =
−N (ε)+C1+1, where C1 > 0 is such that pm(·, t) � C1 for allm and t ∈ [0, 1],
given byLemma3.8(b). Such choice of f guarantees thatφ(x, 0) � C1 � pm(x, 0)
in {ε � |x − x0| � 1} (hence φ(·, 0) � pm(·, 0) in B1(x0)), and φ(x, t) � C1 �
pm(x, t) on ∂B1(x0) for all t ∈ [0, 1].

We claim that if we let f (t) increase sufficiently fast, φ would be a classical
supersolution of (P)m for all m in B1(x0) × [0, tε] for some tε > 0. Note that
at time t , φ(·, t) has support {r(t) � |x − x0| � 1}, where r(t) ∈ (0, 1) solves

N (r(t)) − r(t)2

2d + f (t) = 0, hence it satisfies r(t) > N−1(− f (t) + 1) > 0.
(Here N−1 is the inverse function of N ). By definition, �φ = −1 in its support.
Thus in order to make φ a classical supersolution of (P)m , all we need is φt �
|∇φ|(|∇φ| + |∇�1/m |) everywhere in its support. In the support of φ, we have
φt = f ′(t), and |∇φ| � N ′(r(t))+ 1 � N ′(N−1(− f (t)+ 1))+ 1. Finally, let

f ′(t) = (N ′(N−1(− f (t)+ 1))+ 1+ Cd)
2,

whereCd is the bound for |∇�1/m | as in (2.8). The standardODE theory guarantees
that f is finite in some [0, tε] (where tε > 0 depends on ε, C1 and d), hence
r(t) > 0 in [0, tε]. By comparing pm with φ in the domain B1(x0) × [0, tε] and
using the definition of viscosity solutions, we conclude that pm = 0 in Br(t)(x0)
for t ∈ [0, tε]. In particular, x0 ∈ {pm(·, t) > 0}c for all m and all t ∈ [0, tε], and
since x0 ∈ (�ε

0)
c was arbitrary, this gives the result.
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Similarly we show �−ε
0 ⊆ {pm(·, t) > 0} for small times by constructing

a classical subsolution of (P)m . Suppose y0 ∈ �−ε
0 , so that Bε(y0) ⊆ �0. Let

hm(x, t) solve−�hm(·, t) = 1
m in Br(t)(y0), with hm(·, t) = 0 on ∂Br(t)(y0). Here

r(t) := ε−Mt , and M is a large constant to be determined later. Note that hm takes

the explicit expression hm(x, t) :=
(
r(t)2−|x−y0|2

2dm

)
+ , thus |∇hm(·, t)| � r(t)/dm

in its support. So the following holds in the support of hm :

(m − 1)hm(�hm +��1/m)+∇hm · (∇hm +∇�1/m)

� −m − 1

m
hm − r(t)

dm

(
r(t)

dm
+ Cd

)

� −r(t)2

2dm
− r(t)

dm

(
r(t)

dm
+ Cd

)
,

where Cd is the bound for ‖∇�1/m‖ by (2.8), and we also used ��1/m � 0 in the
first inequality. Since (hm)t = r(t)r ′(t)/dm in its support, in order for hm to be a
classical subsolution of (P)m , all we need is r ′ � −r/2− (r +‖∇�1/m‖∞), so we
can simply let r(t) = ε − Mt with M = 1+ Cd .

Since pm(·, 0) � hm(·, 0) for allm > 1, comparison principle yields that pm �
hm for 0 � t � ε

2M . It follows that pm � hm � ε2

16dm in�ε := Bε/4(y0)×[0, ε
2M ].

Even though this lower bound of pm is not uniformly positive in m, we can still
conclude that lim infm→∞ ρm � 1 in �ε by definition of ρm = ( m

m−1 pm)1/(m−1).
Given the weak convergence of ρm to ρ∞ in Lemma 3.13, we have that ρ∞ = 1
almost everywhere in�ε. This implies that��1/m = ρ∞∗ψ1/m ≡ 1 in Bε/8(y0)×
[0, ε

2M ] for all sufficiently large m (more precisely, for all m > 8/ε).
With this information on ��1/m , we can now define a new subsolution ϕ(x, t)

that solves −�ϕ = 1 in Br̃(t)(y0), with ϕ(·, t) = 0 on ∂Br̃(t)(y0), where r̃(t) =
ε/8−Mt , and M = 1+Cd . One can check that ϕ is a classical subsolution of (P)m ,
hence pm � ϕ � cε for some cε > 0 (that is independent of m) in Bε/32 × [0, Tε]
for all sufficiently large m, where Tε := ε

16M , yielding (3.22).
2. To show that u1(·, 0) = u2(·, 0) = p0, we construct our first barrier as

follows: suppose hε(x) solves

−�hε = 1+ ε in �ε, hε = 0 on ∂�ε.

By (3.22), S(t) ⊆ �ε/2 for t ∈ [0, T̃ε] for some T̃ε > 0. Thus, u1 � hε in S(t).
Furthermore, since u1 = 0 in (S(t))c, we conclude that

u1(·, t) � hε in �ε × [0, T̃ε]. (3.23)

Next, comparison of pm with the classical subsolution ϕ given above yields
that

pm � cε in �−ε × [0, Tε]. (3.24)

Now we construct our second barrier using (3.24). Consider g(x) solving

−�g = 1− ε in �−ε, g = cε on ∂�−ε.
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Since u2 is a supersolution of (P)∞ and (3.22) ensures that �−ε ⊆ {u2 > 0} for
t ∈ [0, Tε], we have−�u2 � 1 in �−ε × [0, Tε]. Furthermore, (3.24) ensures that
g � u2 on ∂�−ε × [0, Tε]. Therefore,

g � u2 in �−ε × [0, Tε]. (3.25)

Combining inequalities (3.23) and (3.25) and sending ε → 0, we can
conclude. ��

We now show our main convergence theorem.

Theorem 3.17. Let �0 ⊆ R
d be a bounded domain with Lipschitz boundary, and

let pm solve (P)m with initial data p0 as given in (1.9). Let ρm be the density variable
corresponding to pm, and let U be the maximal solution of (P)∞ with initial data
p0, that is

U (x, t) := (inf{w : w is a viscosity supersolution of (P)∞ with w(·, 0) � p0})∗.
Then the following holds for each t > 0:

(a) ρ∞(·, t) = χ{u1(·,t)>0} = χ{u2(·,t)>0} = χ{U (·,t)>0} almost everywhere, where
u1 and u2 are defined in (3.16) and (3.14) respectively;

(b) Let �(t) := {u2(·, t) > 0} and �1(t) := {u1(·, t) > 0}. By construction
u1 � u2, so �(t) ⊂ �1(t). In addition, for every t � 0, �(t) is an open set
with |∂�(t)| = 0, and we also have |∂�1(t)| = 0;

(c) ρm converges to 1 uniformly in�(t) away from its boundary—that is, the con-
vergence is uniform in any compact set Q ⊆ {(x, t) : x ∈ �(t)}. Furthermore,
we have limm→∞ ‖ρm(·, t)− χ�(t)‖L1(Rd ) = 0 for every t � 0.

Remark 3.18. The fact thatU is a solution of (P)∞ is a consequence of a standard
Perron’s method argument.

Proof. 1. To begin with, let us define two families of functions that are approx-
imations of pm . For n ∈ N, let pn,−

0 (x) and pn,+
0 (x) be solutions to (1.9) with

�0 replaced by �
−1/n
0 and �

1/n
0 (as defined in (3.21)) respectively. Note that

pn,−
0 ≺ p0 ≺ pn,+

0 . We then let pn,−
m be the viscosity solution to (P)m with

initial data pn,−
0 , and denote by ρ

n,−
m the corresponding density function. We let

pn,+
m solve a modified version of (P)m with an extra source term, namely

pt = (m − 1)p(�p +��1/m)+∇ p · (∇ p + ∇�1/m)+ p fn,

where

fn := χ�n−�, � := {u2 > 0} and �n :=
{
(x, t) : d((x, t),�) � 1

n

}
,

and denote by ρ
n,+
m the corresponding density function. Finally we let

(un,−
1 , Sn,−(t)) and un,+

2 denote the corresponding half-relaxed limits for pn,−
m

and pn,+
m .
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The motivation of these two family of functions is as follows: in step 2, we will
show that

un,−
1 � U � u2 � u1 � un,+

2 for any n ∈ N, (3.26)

and it turns out that in order to show the last inequality we have to let pn,+
m solve

the equation with the extra source term, rather than (P)m . In step 3, we will use L1

contraction result between ρ
n,−
m and ρ

n,+
m to show that for any t � 0,

An(t) :=
∣∣supp un,+

2 (·, t) \ supp un,−
1 (·, t)∣∣→ 0 as n →∞, (3.27)

and by combining it with (3.26) we have that U , u1 and u2 are supported on the
same set.

2. In this step we aim to prove (3.26). The second inequality is a direct conse-
quence from the minimality ofU and the fact that u2 is supersolution of (P)∞ with
initial data p0 (which follows from Proposition 3.14 and Lemma 3.16). The third
inequality immediately follows from the definition of the half relaxed limits u2 and
u1. As for the first inequality, note that by Proposition 3.15, (un,−

1 , Sn,−(t)) is a
subsolution of (P)m . (Proposition 3.15 does not require the initial data be the same
as p0.) In addition, we have u

n,−
1 (·, 0) = pn,−

0 via the same argument as in Lemma
3.16. Since pn,−

0 ≺ p0, combining the above discussion on un,−
1 with Proposition

3.14 and the comparison principle in Theorem 3.11 yields

un,−
1 ≺ u2 with Sn,−

1 (t) ⊆ {u2(·, t) > 0}, (3.28)

which gives us the first inequality.
The last inequality of (3.26) is more difficult to obtain. We point out that this

is not a direct consequence of the comparison principle for (P)∞, since we do not
know that un,+

2 is a supersolution of (P)∞ due to the fact that pn,+
m (·, 0) �= p0. (In

order to apply Proposition 3.14, the initial data must be the same as p0.)
To overcome this difficulty, we will show that u1 and un,+

2 are sub- and super-
solutions of another free boundary problem, for which the comparison principle
also holds. From the proof (in particular (3.18)) of Proposition 3.15, it follows that
in addition to (u1, S(t)) being a viscosity subsolution of (P)∞, u1 satisfies

−�u1(·, t) � ρ∞ (3.29)

in the integral sense. On the other hand, parallel arguments as in Proposition 3.14
yield that un,+

2 satisfies supersolution properties of (P)∞(see Definition 3.3), but
with the interior operator −�− 1 replaced by −�− ρ∞. In particular we have

−�un,+
2 � ρ∞ in {un,+

2 > 0} (3.30)

in the integral sense. As a result, (u1, S(t)) and un,+
2 are respectively viscosity sub-

and supersolutions of
⎧⎪⎨
⎪⎩
−�p(·, t) = ρ∞ in {p > 0};
V = −ν · (Dp + D�) on ∂{p > 0};
� = N ∗ ρ∞.

(P̃)∞
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Using this fact, one can modify the proof of comparison principle for (P)∞ to
show that, for any n ∈ N,

u1 ≺ un,+
2 with S1(t) ⊆ {un,+

2 (·, t) > 0}. (3.31)

The proof of (3.31) is parallel to that of Theorem 2.7 in [1]. The only difference
lies in showing the second inequality in the interior operator, which we will discuss
below. Let us give a heuristic sketch of the proof under the assumption that S(t)
and {un,+

2 (·, t) > 0} have smooth boundaries: the actual proof is carried out with
regularizations as given in (3.9)–(3.10) which generate strict subsolution and super-
solution of (P̃)∞. As usual in the proof of comparison principle, we begin with the
scenario that u1 crosses u

n,+
2 from below at some time and yield a contradiction.

More precisely we suppose that the first crossing time is finite, that is

t0 := sup{t : u1(·, s) ≺ un,+
2 (·, s) and S(t) ⊆ {un,+

2 (·, t) > 0} for s � t} <∞.

Note that t0 > 0 since S(0) = �0 = {u1(·, 0) > 0} due to Lemma 3.16 and
u1 ≺ un,+

2 at t = 0 from the construction. Observe also that (3.29)–(3.30) rules
out the possibility that the crossing occurs at an interior point, that is,

u1(·, t) < un,+
2 (·, t) in {u1(·, t) > 0}

as long as {u1(·, t) > 0} ⊆ S(t) ⊆ {un,+
2 > 0}.

Hence this means that the set S(t) touches the boundary of {un,+
2 (·, t) > 0}

for the first time at some point (x0, t0). Then the normal velocity law for the sets
S(t) and {un,+

2 (·, t) > 0}, as well as the fact that u1(·, t0) � un,+
2 (·, t0) yields a

contradiction.
Note that (3.30) and the definition of �n ensures that the source term for u1

remains smaller than that of un,+
2 after the regularization process given in (3.9)–

(3.10) if r(t) is sufficiently small. Based on this fact, the rest of the proof is the
same as to that of Theorem 2.7 in [1].

3. Next we will show (3.27). First, note that ρn,−
m satisfies (3.3) with no source

term, while ρ
n,+
m satisfies (3.3) with source term ρ

n,+
m fn which is non-negative.

Since their initial data is also ordered, comparison principle for (3.3) yields that
ρ
n,−
m � ρ

n,+
m . We then define

An
m(t) :=

∫
(ρn,+

m (x, t)− ρn,−
m (x, t))dx,

which is nonnegative. We can apply the L1 contraction property of (3.3) in
Lemma 3.7 to conclude that, for any t > 0 and any m > 1,

An
m(t) �

∫ t

0

∫
ρn,+
m (x, s) fn(x, s)dx ds + An

m(0). (3.32)

By (3.28) and the definition of Sn,−
1 , for all t � 0 and sufficiently large m, we have

supp ρn,−
m (t) = supp pn,−

m (t) ⊆ supp u2(t) =: �(t). (3.33)
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Thus for all sufficiently large m, the spatial integral in (3.32) can be controlled as∫
ρn,+
m (x, s) fn(x, s)dx =

∫
�n(s)\�(s)

ρn,+
m (x, s)dx � An

m(s),

where in the last step we used that ρn,−
m (x, s) ≡ 0 in �n(s) \�(s) for all large m,

which follows from (3.33). Plugging this into (3.32) yields An
m(t) �

∫ t
0 An

m(s)ds+
An
m(0), thus Gronwall’s inequality immediately yields that An

m(t) � An
m(0)et . It

is easy to check that limm→∞ An
m(0) = |�1/n

0 \ �
−1/n
0 | � C/n, which yields

lim infm→∞ An
m(t) � Cet/n for all n ∈ N, t � 0.

Next we claim

lim inf
m→∞ An

m(t) � |supp un,+
2 (·, t) \ supp un,−

1 (·, t)|.
To show this, it suffices to show that

lim inf
m→∞

∫
ρn,+
m (x, t)dx � |supp un,+

2 (·, t)| and

lim sup
m→∞

∫
ρn,−
m (x, t)dx � |supp un,−

1 (·, t)|. (3.34)

For the first inequality, note that by definition of the half-relaxed limit, for any
x ∈ supp un,+

2 (·, t), we have lim infm→∞ pn,+
m (x, t) > 0. Thus by the relation

ρ
n,+
m = (m−1m pn,+

m )1/(m−1), we have that lim infm→∞ ρ
n,+
m (x, t) � 1. Therefore

∫
lim inf
m→∞ ρn,+

m (x, t)dx � |supp un,+
2 (·, t)|,

and applying Fatou’s lemma to it yields the first inequality of (3.34). The second
inequality follows from the definition of the half-relaxed limit un,−

1 and the fact
that lim supm→∞ ‖ρn,−

m ‖∞ � 1, which is due to (3.6).
We now combine the above claim with lim infm→∞ An

m(t) � Cet/n to con-
clude that the An(t) defined in (3.27) satisfies An(t) � Cet/n for all n ∈ N, t � 0,
which yields (3.27). Applying this to (3.26) then yields that χ{u1>0} = χ{u2>0} =
χ{U>0} almost everywhere. So the proof of part (a) would be finished if we can
show ρ∞ is also equal to these functions almost everywhere, which we postpone
to step 4.

At the end of step 3, let us point out part (b) can be easily proved using the
above bound on An(t): note that �(t) = {u2(·, t) > 0} is open due to the lower-
semicontinuity of u2, hence

∂�(t) = �(t) \�(t) ⊆ supp un,+
2 (·, t) \ supp un,−

1 (·, t),
where we used (3.26), (3.28) and (3.31) in the last inequality. The above bound on
An(t) thus gives |∂�(t)| � An(t) � Cet/n for all n ∈ N, t � 0, and by sending
n →∞ we obtain part (b) for �(t). In addition, the inequalities (3.26), (3.28) and
(3.31) also lead to |∂�1(t)| � An(t), hence we also have |∂�1(t)| = 0.

4. To finish the proof of part (a), it suffices to relate u2 and ρ∞ and show that

ρ∞ = χ{u2>0} almost everywhere (3.35)
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The direction ρ∞ � χ{u2>0} is easier: take any (x0, t0) such that a :=
u2(x0, t0) > 0. By definition of the half-relaxed limit u2, there exists some positive
r0 and N0, such that pm(x, t0) � a/2 > 0 for all x ∈ Br0(x0), m > N0. Hence
ρm(x, t0) � (m−1m

a
2 )1/(m−1) for x,m as above. Combining this lower bound (which

approaches 1 asm →∞) with the weak convergence of ρm towards ρ∞ in Lemma
3.13, we have ρ∞(·, t0) � 1 in Br0(x0). Since x0 ∈ {u2(·, t0) > 0} is arbitrary, we
have ρ∞ � χ{u2>0}.

For the other direction, we will use pn,−
m . Using the definition of Sn,−(t) (see

(3.15)) as well as (3.26), we have

lim sup
m→∞

χ{pn,−
m (·,t)>0} = χSn,−(t) � χ{u2(·,t)>0} for any n ∈ N, t � 0. (3.36)

In addition, since lim supm→∞ ‖ρn,−
m (t)‖∞ � lim supm→∞ ‖ρm(t)‖∞ � 1 by

(3.6), it implies

lim sup
m→∞

ρn,−
m (·, t) � lim sup

m→∞
χ{ρn,−

m (·,t)>0} = lim sup
m→∞

χ{pn,−
m (·,t)>0}. (3.37)

Finally we will relate ρ∞ with ρ
n,−
m . Note that for any continuous, bounded

f � 0, we have the following (where we omit the x dependence in integrals due
to space limitation):

∫
ρ∞(t) f dx = lim

m→∞

∫
ρm(t) f dx = lim

m→∞ lim
n→∞

∫
ρn,−
m (t) f dx

�
∫

lim sup
m,n→∞

ρn,−
m (t) f dx, (3.38)

where the first equality follows from Lemma 3.13, the second one is due to the
L1 contraction property of Lemma 3.7(a) and the fact that ρ

n,−
m � ρm , and

the last inequality follows from Fatou’s lemma. This implies that ρ∞(·, t) �
lim supm,n→∞ ρ

n,−
m (·, t) almost everywhere, and this with (3.36)–(3.37) implies

ρ∞ � χ{u2>0}, which finishes the proof of (3.35), thus yielding part (a).
5. To prove part (c), take any compact set Q ⊆ {(x, t) : x ∈ �(t)}. By

definition of the half-relaxed limit u2, for each (x0, t0) ∈ Q there is some r0 > 0,
such that pm � u2(x0, t0)/2 > 0 in Br0(x0, t0) for all sufficiently large m. Recall
that pm is also bounded from above uniformly in m by Lemma 3.8. Since ρm =
(m−1m pm)1/(m−1), this implies that ρm → 1 uniformly in Br0(x0, t0).

The compactness of Q then allows us to find a finite number of points (xi , ti )
such that Bri (xi , ti ) covers Q, implying that ρm → 1 uniformly in Q.

Finally let us prove the L1 convergence result, where we use the elementary
inequality

‖ f −g‖L1 =
∫

(g− f )+dx+
∫

( f −g)+dx � 2
∫

(g− f )+dx+
∣∣∣∣
∫

( f − g)dx

∣∣∣∣ .
(3.39)

Let f = ρm(·, t), g = χ�(t) = ρ∞(·, t). Since the mass of ρm(·, t) and ρ∞(·, t)
are both preserved in time, we have
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∣∣∣∣
∫

( f − g)dx

∣∣∣∣ � ‖ρm(·, 0)− χ�0‖L1

= ∥∥
(

m

m − 1
p0

)1/(m−1)
− χ�0

∥∥
L1 → 0 as m →∞.

To control
∫
(g − f )+dx , note that g = 0 almost everywhere in �(t)c, hence∫

(g− f )+dx =
∫
�(t)(1− ρm)+dx . Since �(t) is open, for any ε > 0 we can find

a compact set D ⊆ �(t), such that |�(t) \ D| � ε. We can then apply the uniform
convergence result of ρm in D to conclude that

∫
(g− f )+dx � 2ε for sufficiently

largem, and since ε > 0 is arbitrary we have limm→∞
∫
(g− f )+dx = 0. Plugging

the above results into (3.39) yields the L1 convergence result. ��

4. Long Time Behavior of Patch Solutions in Two Dimensions

In this section, we investigate the long-time behavior of a patch solution ρ∞
in two dimensions, using the pressure variable characterization of the dynamics of
ρ∞ obtained in Section 3. Throughout this section, we consider our spatial domain
to be R2. By Theorem 3.17, we know that ρ∞(·, t) = χ�(t) for some �(t) ⊆ R

2

for all t � 0. Our goal is to show that, as t → ∞, �(t) converges to the unique
disk B0 with the same mass and the center of mass as �0. (See Theorem 4.12)

We proceed as follows: in Sections 4.1 and 4.2, we show that the secondmoment
of ρ∞(·, t) = χ�(t) decreases unless �(t) is a disk, from which we are able to
conclude that �(t) cannot stay uniformly away from a disk for all times, in terms
of its Fraenkel asymmetry. In Section 4.3, we combine this with the gradient flow
structure of ρ∞ to show that as t → +∞ the energy E∞(ρ∞(t)) approaches the
minimum of E∞, with a quantitative estimate on the rate. Lastly, in Section 4.4,
we show that ρ∞(·, t) converges to χB0 strongly in Lq for any 1 � q <∞.

4.1. Evolution of the Second Moment

Let M2[ f ] :=
∫
R2 f (x)|x |2dx denote the second moment of f . In this subsec-

tion, we investigate the evolution of the secondmoment of ρ∞(·, t) = χ�(t). Before
we present the rigorous derivation of the evolution of the second moment, we begin
with the following heuristic computation. As described in the introduction, ρ∞(·, t)
formally satisfies the transport equation

ρt = ∇ · (ρ(∇Nρ + ∇ p)),

where p is a solution to (P). (See equation (1.8).) By definition, p(·, t) solves
�p = −1 in �(t) and p = 0 on ∂�(t). Hence, supposing that ∂�(t) is smooth,
the evolution of M2[ρ∞(t)] is given by

d

dt
M2[ρ∞(t)] = −2

∫
R2

ρ∞∇Nρ∞ · xdx − 2
∫
R2

ρ∞∇ p · xdx

= − 1

π

∫
R2

∫
R2

ρ∞(x)ρ∞(y)
(x − y) · x
|x − y|2 dydx − 2

∫
�(t)

∇ p · xdx
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= − 1

2π

∫
R2

∫
R2

ρ∞(x)ρ∞(y)dydx + 4
∫

�(t)
p(x)dx

= − 1

2π
|�(t)|2 + 4

∫
�(t)

p(x)dx = − 1

2π
|�0|2 + 4

∫
�(t)

p(x)dx .

(4.1)

In the second equality, we use that, in two dimensions, Nρ∞ = N ∗ ρ∞ with
N (x) = 1

2π log |x |. In the third equality, we symmetrize x and y in the first integral
(hence the extra factor of 1

2 ), and in the last equality, we use that ρ∞ preserves its
mass (which is |�0|) for all time.

In the following proposition, we rigorously obtain the time evolution of
M2[ρ∞(t)] by analyzing the evolution of the second moments for each ρm and
sending m → +∞, using our convergence results from the previous sections. We
show that the evolution of the second moment indeed satisfies a time-integral form
of (4.1),with the exception thatwemust substitute p(x)with u1(x), the half-relaxed
limit of pm defined in Lemma 3.15, to take into account the fact that �(t) may not
have smooth boundary for all time.

Proposition 4.1. Let �0 ⊆ R
2 be a bounded domain with Lipschitz boundary, and

let ρ∞(·, t) = χ�(t) be the gradient flow of E∞ with initial data ρ0 = χ�0 . Then
for any T > 0,

M2[ρ∞(T )] − M2[ρ0] � − 1

2π
|�0|2T + 4

∫ T

0

∫
�(t)

u1(x, t) dx dt, (4.2)

where u1 is the half-relaxed limit of pm, defined in Lemma 3.15, and �(t) =
{u2(·, t) > 0}, as defined in Theorem 3.17 (b).

Proof. For any m > 1, let ρm be the weak solution of (PME-D)m with initial data
(m−1m p0)1/(m−1), where p0 is given by equation (1.9). Let pm := m

m−1ρ
m−1
m be the

corresponding solution of (P)m . Taking |x |2 as our test function, we have for any
T > 0,

∫
R2

ρm(x, T )|x |2dx
︸ ︷︷ ︸

=:I1

−
∫
R2

ρm(x, 0)|x |2dx
︸ ︷︷ ︸

=:I2

= −2
∫ T

0

∫
R2

ρm∇�1/m(x, t) · x dx dt
︸ ︷︷ ︸

=:I3

+4
∫ T

0

∫
R2

ρm
m (x, t) dx dt

︸ ︷︷ ︸
=:I4

. (4.3)

(Since ρm has compact support in [0, T ], our test function is not required to have
compact support since we can always take a cut-off sufficiently far away.) As
m → +∞, Lemma 3.13 yields that I1 converges to M2[ρ∞(T )] and I2 converges
to M2[ρ∞(0)].



Congested Aggregation via Newtonian Interaction 47

To show the convergence of I3, we decompose the integral into two parts:

I3 =
∫ T

0

∫
R2

ρm∇�(x, t) · x dx dt +
∫ T

0

∫
R2

ρm∇(�1/m(x, t)−�(x, t))

·x dx dt =: I31 + I32.

Since ∇�(x, t) · x ∈ C(Rd) for any t , Lemma 3.13 again gives that

lim
m→∞

∫
R2

ρm∇�(x, t) · xdx =
∫
R2

ρ∞∇�(x, t) · xdx for any t ∈ [0, T ].

Note that the integral on the left hand side is uniformly bounded for sufficiently
large m and t ∈ [0, T ], thanks to the uniform control of the support of ρm(t, ·) in
[0, T ]. We can then integrate the above equality in time and apply the dominated
convergence theorem to obtain

I31
m→+∞−−−−−→

∫ T

0

∫
R2

ρ∞∇�(x, t) · x dx dt = 1

4π

∫ T

0

(∫
R2

ρ∞dx

)2

dt

= 1

4π
|�0|2T,

where the last two equalities are obtained by symmetrizing x and y in the integrand
and using conservation of mass, as in equation (4.1).

To control I32, we first bound ‖∇�1/m − ∇�‖L2(R2). By Proposition 2.3,

‖∇�1/m −∇�‖L2(R2) � W2(ρ∞ ∗ ψ1/m, ρ∞) � 1

m

∫
ψ(x)|x |2dx, (4.4)

where, in the last step, we apply [2, Lemma 7.1.10]. Hence

|I32| �
∫ T

0
‖ρm(·, t)|x |‖L2‖∇�1/m − ∇�‖L2(R2) dt → 0 as m →+∞,

where the fact that supt∈[0,T ] supm�1 ‖ρm(·, t)|x |‖L2 < +∞ is a consequence of
Lemma 3.8, which ensures ρm is uniformly bounded and compactly supported.
Combining the estimates on I31 and I32 yields that I3 → 1

4π |�0|2T as m →+∞.
Finally, we consider I4. We will show that

lim sup
m→∞

∫ T

0

∫
R2

ρm
m (x, t) dx dt �

∫ T

0

∫
�(t)

u1(x, t) dx dt. (4.5)

The proof is then finished by taking lim supm→+∞ on both sides of (4.3).
To show (4.5), first note that, since pm := m

m−1ρ
m−1
m , we may write ρm

m =
m−1
m ρm pm and apply Remark 3.9 to obtain

lim sup
m→∞

∫ T

0

∫
R2

ρm
m (x, t) dx dt � lim sup

m→∞

∫ T

0

∫
R2

pm(x, t) dx dt. (4.6)

It remains to show that

lim sup
m→∞

∫ T

0

∫
R2

pm(x, t) dx dt �
∫ T

0

∫
R2

u1(x, t) dx dt. (4.7)
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For any n ∈ N, define

u1,n(x, t) := sup
m>n|(x,t)−(y,s)|<1/n

pm(y, s).

Note that u1,n is decreasing in n and lim
n→∞ u1,n = u1 by definition of u1. For each

n ∈ N, we have pm � u1,n for all m > n, hence

lim sup
m→∞

∫ T

0

∫
R2

pm(x, t) dx dt �
∫ T

0

∫
R2

u1,n(x, t) dx dt for all n ∈ N.

We can then take n →+∞ in the above inequality and apply the monotone conver-
gence theorem. By Theorem 3.17 (a), �(t) = {u1(·, t) > 0} almost everywhere.
Thus, inequality (4.7) holds. ��

4.2. Some Rearrangement Inequalities

In this subsection, we digress a bit to obtain an upper bound for the quantity

F(�) = − 1

2π
|�|2 + 4

∫
�

p(x)dx, (4.8)

where� is a bounded set with smooth boundary and p : �̄→ R satisfies−�p = 1
in � and p = 0 on ∂�. This quantity appears in our heuristic computation for the
evolution of the second moment of ρ∞(t), where we show d

dt M2[ρ∞] � F(�(t)).

Likewise,
∫ T
0 F(�(t))dt would have appeared on the right hand side of our rigorous

result, given in equation (4.2), if the boundary of �(t) were smooth for all time.
While in this subsection we only aim to control F(�) for smooth domains, in the
next subsection we discuss how to use this bound to control the right hand side of
(4.2), even when the boundary of �(t) is not smooth.

The following result, due to Talenti [49], shows that F(�) � 0, with equality if
and only if � is a disk. We sketch the proof below for the sake of completeness. In
the subsequent proposition, we will modify the proof to get a stronger inequality.

Proposition 4.2. (c.f. [49, Theorem 1]) Let � ⊆ R
2 be a bounded domain with

smooth boundary, and let F(�) be as in (4.8). Then we have

F(�) � 0, (4.9)

and the equality is achieved if and only if � is a disk.

Proof. First, note that maximum principle yields that p � 0 in �̄ and p > 0 in �.
For any k ∈ [0, sup� p), let us define

�k := {x ∈ � : p(x) > k} and g(k) := |�k |.
Note that g(0) = |�|. By definition of p and the divergence theorem, we have

g(k) =
∫

�k

−�p(x)dx =
∫

∂�k

−n · ∇ p dσ =
∫

∂�k

|∇ p|dσ. (4.10)
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On the other hand, by the co-area formula (c.f. [22]),

g(k) =
∫ ∞

k

∫
∂�s

1

|∇ p|dσds, g′(k) = −
∫

∂�k

1

|∇ p|dσ. (4.11)

Combining (4.10) and (4.11) and applying the Cauchy–Schwarz inequality,

g(k)g′(k) =
(∫

∂�k

|∇ p|dσ
)(
−
∫

∂�k

1

|∇ p|dσ
)

� −P(�k)
2, (4.12)

where P(�k) is the perimeter of�k . For any bounded domain E ⊆ R
2, the isoperi-

metric inequality yields
2
√

π
√|E | � P(E). (4.13)

Applying inequality (4.13) to �k in (4.12) gives

g(k)g′(k) � −
(
2
√

π
√
g(k)

)2 = −4πg(k),
hence g(k) satisfies the differential inequality

g′(k) � −4π for all k ∈
(
0, sup

�

g

)
. (4.14)

Combining this with g(0) = |�| yields that g(k) � (|�| − 4πk)+ for all k � 0.
Therefore,

∫
�

p(x)dx =
∫ sup� p

0
g(k)dk �

∫ ∞

0
(|�| − 4πk)+ dk = 1

8π
|�|2,

which gives (4.9). In order to achieve equality, �k must be a disk for almost every
k > 0, hence � must be a disk. ��

Wenowprove a stronger version of the above inequality by replacing the isoperi-
metric inequality in the above argument (see (4.13)) by the following quantitative
version due to Fusco et al. [26].

Lemma 4.3. (c.f. [26, Section 1.2]) Let E ⊆ R
2 be a bounded domain. We define

the Fraenkel asymmetry A(E) ∈ [0, 1] as

A(E) := inf

{ |E�(x0 + r B)|
|E | : x0 ∈ R

2, πr2 = |E |
}

,

where B is the unit disk. Then there is some constant c ∈ (0, 1), such that

P(E) � 2
√

π
√|E | (1+ cA(E)2

)
,

where P(E) = H1(∂E) denotes the perimeter of E.

We begin with the following simple observation regarding the Fraenkel asym-
metry.
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Lemma 4.4. Let E ⊆ R
2 be a bounded domain. For all U ⊆ E satisfying |U | �

|E |(1− A(E)
4 ), we have

A(U ) � A(E)

4
.

Proof. Assume the statement is not true, so there exists some disk BU with the
same area as U so that

|U�BU |
|U | <

A(E)

4
.

Since |U | = |BU |, we have |U�BU | = 2(|U | − |U ∩ BU |). Hence the above
inequality becomes

|U ∩ BU | > |U |
(
1− A(E)

8

)
.

Let BE be a disk with the same area as E that contains BU . Then since |U | �
|E |(1− A(E)

4 ),

|E ∩ BE | � |U ∩ BU | > |E |
(
1− A(E)

4

)(
1− A(E)

8

)
� |E |

(
1− 3A(E)

8

)
.

Therefore,

|E�BE |
|E | = 2(|E | − |E ∩ BE |)

|E | <
3

4
A(E),

which contradicts the fact that A(E) � |E�BE |/|E |. This gives the result. ��
With this lemma, we are now able to conclude a stronger upper bound on F(�)

than provided by Proposition 4.2.

Proposition 4.5. Under the same assumptions as Proposition 4.2, there exists a
constant c0 ∈ (0, 1), such that

F(�) � −c0A(�)3|�|2.
Proof. We follow the proof of Proposition 4.2, with the following difference:
instead of applying the isoperimetric inequality (4.13) to the set �k in inequal-
ity (4.12), we now apply the quantitative version from Lemma 4.3 to obtain

g′(k) � −4π
(
1+ cA(�k)

2
)2

� −4π
(
1+ cA(�k)

2
)

.

To relate A(�k) with A(�), we apply Lemma 4.4 to obtain that A(�k) � A(�)
4 for

any k such that g(k) � |�|(1− A(�)
4 ). In other words, we have

g′(k) � −4π
(
1+ cA(�)2

16

)
for all k such that g(k) � |�|

(
1− A(�)

4

)
.

(4.15)
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We claim that this implies

g(k) � |�| − 4π

(
1+ cA(�)2

16

)
k for all k ∈

(
0,

A(�)|�|
32π

)
. (4.16)

To see this, note that for all k ∈ (0, A(�)|�|
32π ), the right hand side of (4.16) is greater

than |�|(1− A(�)
4 ) since 1+ cA(�)2/16 � 2. As a result, if (4.16) is violated at

some k0 ∈ (0, A(�)|�|
32π ), thenwemust have g(k) � |�|(1− A(�)

4 ) for all k ∈ (0, k0),
since g is a decreasing function. We can then integrate (4.15) in (0, k0) to conclude
that (4.16) actually holds at k0, a contradiction.

Let h(k) = (|�|−4πk)+. Inequality (4.16) implies that g(k) � h(k)− cA(�)3|�|
128

at k = A(�)|�|
32π . For k >

A(�)|�|
32π , recall that by inequality (4.14), we have

g′(k) � −4π for k ∈ (
0, sup� g

)
, and by definition of h, we have h′(k) = −4π

in (0, |�|/(4π)). This gives that g(k) � h(k) − cA(�)3|�|
128 for A(�)|�|/32π �

k � |�|/4π . Since A(�) � 1 this range of k is larger than |�|/8π , and since
g(k) � h(k) for all k, we have

∫ ∞

0
g(k)dk �

∫ ∞

0
h(k)dk − cA(�)3|�|2

2000
= |�|2

8π
− cA(�)3|�|2

2000
.

Finally, this gives

F(�) =
∫ ∞

0
g(k)− |�|

2

8π
� cA(�)3|�|2

2000
,

hence the result holds with c0 := c
2000 . ��

4.3. Convergence of Energy Functional as t →∞
In this section, we aim to show that, along the solution ρ∞(·, t), the energy

functional E∞ converges to its global minimizer as t → +∞. We begin by esti-
mating the rate of change of the second moment along ρ∞. Combining Proposition
4.5 with our heuristic computation (4.1) suggests that

d

dt
M2[ρ∞(t)] � −c0A(�(t))3|�0|2.

We now show that this inequality is indeed true in the time-integral sense, even if
�(t) does not have smooth boundary.

Proposition 4.6. Let �0 ⊆ R
2 be a bounded domain with Lipschitz boundary, and

let ρ∞(·, t) = χ�(t) be the gradient flow of E∞ with initial data ρ0 = χ�0 . Then
we have

M2[ρ∞(T )] − M2[ρ0] � −c0|�0|2
∫ T

0
A(�(t))3dx dt for all T � 0, (4.17)

where c0 ∈ (0, 1) is the constant given in Proposition 4.5.
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Proof. Since the evolution of the second moment is already given by Proposition
4.1, it remains to show

− 1

2π
|�0|2T + 4

∫ T

0

∫
�(t)

u1(x, t) dx dt � −c0|�0|2
∫ T

0
A(�(t))3 dt, (4.18)

where u1 is the half-relaxed limit of pm defined in Lemma 3.15.
Let �1(t) = {u1(·, t) > 0}. By Theorem 3.17 (a) and (b), we have �1(t) =

�(t) almost everywhere, so A(�(t)) = A(�1(t)), and |∂�1(t)| = 0 for all t ∈
[0, T ]. Hence for any ε > 0 and t ∈ [0, T ], we can find a set Dε(t) ⊆ R

2 with
smooth boundary such that �1(t) ⊆ Dε(t), and |Dε(t) \ �1(t)| � ε. For any
t � 0, we then have a classical solution pε(·, t) such that−�pε(·, t) = 1 in Dε(t),
and pε(·, t) = 0 on ∂Dε(t) and Dε(t)c. In addition, we may choose Dε(t) so that
∂Dε(t) is continuous in time with respect of Hausdorff distance of sets, which
ensures that pε is continuous in time.

We first aim to show that

u1(x, t) � pε(x, t). (4.19)

It suffices to show that u1(x, t) � apε(x, t) for any a > 1. Towards a contradiction,
assume that there exists some a > 1, such that supx∈R2,t∈[0,T ](u1 − apε) > 0.
Since pε is continuous in both space and time, and u1 is upper semicontinuous by
definition as the half-relaxed limit, u1 − apε achieves a strictly positive maximum
at some (x0, t0). Furthermore, since pε � 0, we have u1(x0, t0) > 0. Again using
that (u1, �1) is a subsolution of (P)∞, we have that −a�pε(x0, t0) � 1, which
implies that −�pε(x0, t0) < 1. However, since x0 ∈ �1(t0) ⊆ Dε(t0), we must
have −�pε(x0, t0) = 1, which gives the contradiction.

We now show inequality (4.18). Since |Dε(t) \ �1(t)| � ε, there exists C
depending on |�0| so that A(�1(t)) = A(�(t)) � A(Dε(t)) + Cε. Combining
this observation with (4.19) and Proposition 4.5, we obtain the following bound for
the left hand side of (4.18), where C depends on �0 and T :

∫ T

0

(
− 1

2π
|�0|2 +

∫
�(t)

u1(x, t)dx

)
dt

�
∫ T

0

(
− 1

2π
|Dε(t)|2 +

∫
Dε(t)

pε(x, t)dx

)
dt + Cε

� −c0
∫ T

0
A(Dε(t))

3|Dε(t)|2 dt + Cε � −c0|�0|2
∫ T

0
A(�(t))3 dt + Cε.

Sending ε → 0 gives the result. ��
Corollary 4.7. Under the assumptions of Proposition 4.6, for any T > 0, there
exists some t0 ∈ (0, T ), such that

A(�(t0)) � C(�0)T
−1/3, (4.20)

where C(�0) :=
(
M2[χ�0 ]/c0|�0|2

)1/3
, for c0 as in Proposition 4.5.
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Proof. Fix T > 0. Towards a contradiction, assume A(�(t0)) > C(�0)T−1/3 for
all t0 ∈ (0, T ). By Proposition 4.6 and the definition of C(�0),

M2[ρ∞(T )] � M2[ρ0] − c0|�0|2
∫ T

0
A(�(t))3dx dt

� M2[ρ0] − c0|�0|2T (C(�0)T
−1/3)3 = 0,

which contradicts with the fact that M2[ρ∞(t)] must be positive for all time. ��
The above corollary does not directly yield that limt→∞ A(�(t)) = 0. To show

this and conclude that �(t) converges to a disk, we will use the fact that the energy
E∞ is decreasing in time along ρ∞(·, t). In the next lemma, we show that if A(�)

is small, then the energy is close to its minimum.

Lemma 4.8. Let � ⊆ R
2 be a bounded domain, and let B� ⊆ R

2 be a disk with
|B�| = |�|. Then,

0 � E∞(χ�)− E∞(χB�) � 40|�|(1+ |�| + M2[χ�])
√
A(�)

Proof. The first inequality is a direct consequence of Riesz rearrangement inequal-
ity [34, Theorem 3.7]. To prove the second one, let us first rewrite E∞(χ�) −
E∞(χB�) as

E∞(χ�)− E∞(χB�) = 1

2π

∫∫
R2×R2

(χ�(x)− χB�(x))(χ�(y)

+ χB�(y)) log |x − y|dxdy
=: 1

2π
I1 + 1

2π
I2,

where I1 and I2 denote the integral in the domains |x − y| � 1 and |x − y| > 1,
respectively.

First, we consider I1. Note that for any x ∈ R
2, we have

∣∣∣∣
∫
y∈B(x,1)

(χ�(y)+ χB�(y)) log |x − y|dy
∣∣∣∣ � 2

∣∣∣∣∣
∫
|x−y|�1

log |x − y|dy
∣∣∣∣∣ = π,

hence

I1 � ‖χ�−χB�‖1
∥∥∥∥
∫
y∈B(x,1)

(χ�(y)+ χB�(y)) log |x − y|dy
∥∥∥∥
∞

� π‖χ�−χB�‖1.

Now, we consider I2. For |x − y| > 1, log |x − y| � |x − y| � |x | + |y| �
(1+ |x |)(1+ |y|), so
I2 �

(∫
R2
|χ�(x)− χB�(x)|(1+ |x |)dx

)(∫
R2

(χ�(y)+ χB�(y))(1+ |y|)dy
)

� ‖χ� − χ�B‖1/21

(∫
R2
|χ�(x)− χB�(x)|(1+ |x |)2dx

)1/2

· (2|�|)1/2
(∫

R2
|χ�(y)+ χB�(y)|(1+ |y|)2dy

)1/2

� 2
√
2|�|1/2‖χ� − χ�B‖1/21 (M2[χ�] + M2[χB�] + 2|�|).
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Combining the above estimates on I1 and I2 with the facts that ‖χ�−χB�‖1 � 2|�|
and 1/π � 1, we have

E∞(χ�)− E∞(χB�) � 1

2π
I1 + 1

2π
I2

� |�|1/2‖χ� − χB�‖1/21 (1+ M2[χ�] + M2[χB�] + 2|�|).
(4.21)

The proof is then split into the following two cases: A(�) � 1/2 and A(�) <

1/2.
Case 1: A(�) � 1/2. In this case, we have ‖χ�−χB�‖1 � 2|�| � 4A(�)|�|

for any disk B� with the same measure as �. Since E∞ is invariant under transla-
tions, we can simply choose B� to be centered at 0. Such a choice directly yields
M2[χB�] � M2[χ�], hence (4.21) becomes

E∞(χ�)− E∞(χB�) � |�|1/2(4A(�)|�|)1/2(1+ 2|�| + 2M2[χ�])
� 4|�|(1+ |�| + M2[χ�])

√
A(�),

which gives the result.
Case 2: A(�) < 1/2. In this case, we choose B� to be the disk minimizing

|��B�|, which then gives

‖χ� − χB�‖1 = A(�)|�|. (4.22)

This choice of B� no longer directly gives usM2[χB�] � M2[χ�], butwe claim that
we still haveM2[χB�] � 36M2[χ�]. To see this, first note that A(�) < 1/2 implies
|B� \�| < |B�|/2. Also, a simple computation yields that for any x, y ∈ B�, we
have |x |2 � (|y| + |x − y|)2 � 2|y|2 + 2|x − y|2 � 2|y|2 + 8|�|/π . Therefore,

M2[χB�] =
∫
B�

|x |2dx � |B�| max
x∈B�

|x |2

� 2|B� ∩�| max
x∈B�

|x |2 � 2
∫
B�∩�

(
2|y|2 + 8

π
|�|

)
dy

� 4M2[χ�] + 16

π
|�|2 � 4M2[χ�] + 32

( |�|2
2π

)
� 4M2[χ�]

+ 32

(∫ √|�|/π

0
r2 · 2πrdr

)
� 36M2[χ�],

Combining this and equation (4.22) with inequality (4.21) then yields

E∞(χ�)− E∞(χB�) � |�|(1+ 37M2[χ�] + 2|�|)A(�)1/2,

which completes the proof. ��
Combining the above results, we are now able to show that, along the solution

ρ∞(t), the energy functional E∞ is converging towards its global minimizer with
an explicit rate.
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Theorem 4.9. Let�0 ⊆ R
2 be a bounded domain with Lipschitz boundary, and let

ρ∞(·, t) = χ�(t) be the gradient flow of E∞ with initial data ρ0 = χ�0 . Suppose
B0 is a disk with the same area as �0. Then, for any t > 0, we have

0 � E∞(χ�(t))− E∞(χB0) � C1(|�0|, M2[�0])t−1/6,
where C1(|�0|, M2[�0]) = C2|�|2/3(|�0| + M2[�0])7/6 and C2 is a universal
constant.

Proof. By Corollary 4.7, we have that, for any t > 0, there exists some t0 ∈ (0, t),
so that

A(�(t0)) �
(
M2[χ�0 ]/c0|�0|2

)1/3
t−1/3.

By definition of the discrete gradient flow and the lower semicontinuity of E∞,
E∞(ρ∞(t)) is nonincreasing in time. Therefore, at time t , wemay apply Lemma 4.8
to conclude

E∞(χ�(t))− E∞(χB0)

� E∞(χ�(t0))− E∞(χB0)

� 40|�(t0)|(1+ |�0| + M2[χ�(t0)])
√
A(�(t0))

� 40|�0|(1+ |�0| + M2[χ�0 ])
(
M2[χ�0 ]/c0|�0|2

)1/6
t−1/6

� C2|�0|2/3(1+ |�0| + M2[�0])7/6t−1/6. ��
Remark 4.10. While the rate in Theorem 4.9 is probably not optimal, the following
example shows that the optimal power cannot go beneath −1. For 0 < ε 
 1, let
�ε

0 = B(xε, ε) ∪ B(0, Rε), where xε := (ε−1, 0) ∈ R
2, and Rε :=

√
1− ε2

is chosen such that |�ε
0| = π . This definition ensures that M2[�ε

0] is uniformly
bounded for all ε < 1. Since ∂r (N ∗ χB(0,1))(r) ∼ r−1 for r ! 1, the extra
πε2 amount of mass will stay outside B(0, (2ε)−1) for all t ∈ [0, c1ε−2], where
c1 > 0 is independent of ε. During this time interval, the free energy is at least
c2ε2| log ε|greater than its globalminimizer for some c2 > 0.Hence E∞(χ�ε(Tε))−
E∞(χB(0,1)) � T−1ε | log Tε| for Tε = c1ε−2, implying that the optimal power of t
in Theorem 4.9 cannot be less than −1.

4.4. Convergence of ρ∞(t) as t →∞

Wenow conclude our study of asymptotic behavior by showing that, as t →∞,
ρ∞(t) converges to χB0 in Lq for any 1 � q < ∞, where B0 is the disk with the
same area and the center of mass as�0. We begin with the following lemma, which
ensures that the center of mass of ρ∞(t) is preserved for all time:

Lemma 4.11. Let �0 ⊆ R
2 be a bounded domain with Lipschitz boundary, and let

ρ∞(·, t) = χ�(t) be the gradient flow of E∞ with initial data ρ0 = χ�0 . Then for
any T > 0, we have

∫
R2 ρ∞(x, T )xdx = ∫

R2 ρ∞(x, 0)xdx.
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Proof. We proceed as in the proof of Proposition 4.1. For anym > 1, let ρm be the
weak solution of (PME-D)m with initial data (m−1m p0)1/(m−1), where p0 is as in
equation 1.9. For i = 1 or 2, we take our test function to be xi , the i-th component
of x . Then, for any T > 0,

∫
R2

ρm(x, T )xidx −
∫
R2

ρm(x, 0)xidx = −
∫ T

0

∫
R2

ρm∂i�1/m(x, t) dx dt.

(4.23)
By Lemma 3.13, the left hand side of (4.23) converges to

∫
R2 ρ∞(x, T )xidx −∫

R2 ρ∞(x, 0)xidx as m → ∞. The right hand side can be controlled in the same
way as the term I3 in the proof of Proposition 4.1, which gives

lim
m→∞

∫
R2

ρm∂i�1/m(x, t)dx =
∫
R2

ρ∞∂i�(x, t)dx

= 1

2π

∫∫
R2×R2

ρ∞(x)ρ∞(y)
xi − yi
|x − y|2 dxdy = 0.

Hence, sendingm →∞ in (4.23),wehave
∫
R2 ρ∞(x, T )xidx =

∫
R2 ρ∞(x, 0)xidx

for i = 1, 2, which finishes the proof. ��
With this control on the center of mass of ρ∞(x, t) in hand, we now turn to the

proof of the main result.

Theorem 4.12. Let �0 ⊆ R
2 be a bounded domain with Lipschitz boundary, and

let B0 ⊆ R
2 be a disk such that |B0| = |�0| and

∫
B0

xdx = ∫
�0

xdx. Letρ∞(·, t) =
χ�(t) be the gradient flow of E∞ with initial data χ�0 . Then for any 1 � q < +∞,
we have

lim
t→∞‖ρ∞(·, t)− χB0‖Lq (R2) = 0.

Proof. We first show that, for any f ∈ Cb(R
2), the space of bounded, continuous

functions,

lim
t→∞

∫
R2

ρ∞(x, t) f (x)dx =
∫
R2

χB0 f (x)dx . (4.24)

To show this, take any diverging time sequence (tn)∞n=1. By Proposition 4.6,
M2[ρ∞(tn)] is uniformly bounded for all n. Hence by Prokhorov’s Theorem [2,
Theorem 5.1.3], there exists a subsequence (tnk )

∞
k=1 and μ ∈ L1+((1+ |x |)2dx) so

that

lim
k→∞

∫
R2

ρ∞(x, tnk ) f (x)dx =
∫
R2

μ(x) f (x)dx

for all f ∈ Cb(R
2). Choosing suitable test functions f , we have

∫
μdx = |�0|

and ‖μ‖∞ � supt�0 ‖ρ∞(·, t)‖∞ = 1. In addition, by letting the test function f
approach f (x) = x , we have

lim
k→∞

∫
R2

ρ∞(x, tnk )xdx =
∫
R2

μ(x)xdx . (4.25)
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Since the energy functional E∞ is lower-semicontinuouswith respect toweak-*
convergence of probability measures [20, Proposition 4.5], by Theorem 4.9,

E∞(μ) � lim inf
k→∞ E∞(ρ∞(tnk )) = E∞(χB0).

As the only global minimizers of E∞ are translations of χB0 , μ must equal some
translation of χB0 almost everywhere. Finally, recall that Lemma 4.11 and the
definition of B0 give that

∫
R2 ρ∞(x, t)xdx = ∫

χ�0xdx =
∫

χB0xdx for all time.
Combining this with (4.25), we obtain

∫
R2 μ(x)xdx = ∫

χB0xdx , leading to μ =
χB0 almost everywhere. Thus, any diverging time sequence contains a subsequence
satisfying (4.24), so we conclude that (4.24) must hold.

We now show that ρ∞(·, t) → χB0 in L1(R2). Since 0 � ρ∞ � 1, we have
ρ∞ � χB0 almost everywhere in B0 and ρ∞ � χB0 almost everywhere in Bc

0.
Hence

‖ρ∞(·, t)− χB0‖1 = 2
∫
R2

(χB0 − ρ∞(x, t))χB0dx .

Thus, by choosing f ∈ Cb(R
2) sufficiently close to χB0 and applying (4.24), we

can show that, for any ε > 0, ‖ρ∞(·, t)− χB0‖1 � ε for sufficiently large t . This
shows that ρ∞(·, t) → χB0 in L1(R2). Finally, for 1 < q <∞, the convergence in
Lq follows directly from the L1 convergence and the fact that ‖ρ∞(·, t)− χB0‖∞
� 1. ��
Remark 4.13. A natural question is whether the convergence rate of the energy
functional towards its minimizer would give some convergence rate of ‖ρ∞(·, t)−
χB0‖1. Such questions have been studied by Burchard and Chambers [12] for the
Newtonian interaction energy in three dimensions,where they prove that E∞(χ�)−
E∞(χB�) � c(|�|)A(�)2, with A(�) defined as in Lemma 4.3. We expect that a
similar result would also hold in two dimensions, but for the sake of brevity, we
will not pursue this direction further.

5. Appendix

5.1. Further Properties of Gradient Flows of E∞, Ẽ∞, and Em

In this section, we collect several results on the gradient flows of E∞, Ẽ∞, and
Em . We begin by proving Proposition 2.3, which provides elementary estimates on
the Newtonian potential of a bounded, integrable function. We use these estimates
to conclude that E∞ is ω-convex along generalized geodesics. (See [20, Theorem
4.3, Proposition 4.4].)

Proof of Proposition 2.3. The fourth inequality is a classical potential theory
result (c.f.[17, Proposition 2.1], [28, Lemma 2.1]), and the fifth inequality is due to
Loeper [38, Theorem 2.7]. (While Loeper only considers the case d � 3, the same
argument applies in d = 2.)
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For the bound on ∇Nρ, note that if B = B1(0),

‖∇Nρ‖∞ � ‖∇N‖L1(B)‖ρ‖∞ + ‖∇N‖L∞(Bc)‖ρ‖1 � Cd .

Likewise, for the lower bound on
∫
Nρdρ, if we let N−(x) denote the negative

part of N (x),

∫
Nρdμ �

∫
N− ∗ ρ(x)dμ(x) � −‖N− ∗ ρ‖∞ � −‖N−‖L1(B)‖ρ‖∞

− ‖N−‖L∞(Bc)‖ρ‖1 � −Cd .

Next, we prove Proposition 2.6, which ensures that ρ∞ is Lipschitz in time,
with respect to the Wasserstein metric.

Proof of Proposition 2.6. By [20, Theorem 3.11], the function S(t) : D(E∞) →
D(E∞) : ρ∞(·, 0) �→ ρ∞(·, t) is a semigroup, that is S(t + s) = S(t)S(s)μ for
t, s � 0. Therefore, it suffices to show that W2(ρ∞(t), ρ∞(0)) � 2Cdt for all
t � 0.

Let ρn
τ be the discrete gradient flow of E∞ with initial data ρ = ρ∞(0) and time

step τ > 0, as defined by equation (i). By [20, Theorem 3.8], if we take τ = t/n
for any t � 0, then limn→+∞W2(ρ

n
t/n, ρ∞(t)) = 0. Therefore,

W2(ρ∞(t), ρ∞(0)) = lim
n→+∞W2(ρ

n
t/n, ρ) � lim

n→+∞

n∑
i=1

W2(ρ
i
t/n, ρ

i−1
t/n ) � 2Cdt,

where the last inequality follows from Lemma 2.16, which ensuresW2(ρ
i
t/n, ρ

i−1
t/n )

� 2Cd(t/n).

We now turn to the proof of Proposition 2.7, which concerns the regularity of
∇Nρ∞(x, t) in space and time.

Proof of Proposition 2.7. The fact that ∇Nρ∞(x, t) is log-Lipschitz in space is
an immediate consequence of Proposition 2.3. We now consider the continuity
with respect to time. By Proposition 2.6, ρ∞ is Lipschitz in time with respect to
the Wasserstein metric, so it suffices to translate this into continuity in time with
respect to the Euclidean norm.

Fix ψ ∈ C∞c (Rd) so that supp ψ ⊆ B1(0) and ‖ψ‖∞ � 1, and let �(x, t) =
Nρ∞(x, t) and �1/m := � ∗ ψ1/m . Combining the fifth inequality in Proposition
2.3 with Proposition 2.6,

|∇�1/m(x, t)− ∇�1/m(x, s)| = |ψ1/m ∗ (∇Nρ(x, t)− ∇Nρ(x, s))|
� ‖ψ1/m‖L2(Rd )‖∇Nρ∞(t)

−∇Nρ∞(s)‖L2(Rd ) � md/2W2(ρ∞(t), ρ∞(s)) � 2Cdm
d/2|t − s|.
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We now use this inequality controlling the continuity in time of ∇�1/m(x, t)
to estimate the continuity in time of ∇�(x, t). By Proposition 2.3,

|∇�(x, t)− ∇�1/m(x, t)| =
∣∣∣∣
∫

(∇�(x, t)−∇�(x − y, t)) ψ1/m(y)dy

∣∣∣∣
� Cd

∫
σ(|y|)ψ1/m(y)dy

� Cdσ(1/m)

∫
ψ1/m(y)dy = Cdσ(1/m).

Therefore,

|∇�(x, t)−∇�(x, s)|
� |∇�(x, t)− ∇�1/m(x, t)| + |∇�1/m(x, t)− ∇�1/m(y, t)|
+ |∇�1/m(y, t)− ∇�(y, t)|

� 2Cdσ(1/m)+ 2Cdm
d/2|t − s|.

Let p = 1/2d. Since |t−s| < e(−1−√2)/2, if we choosem = |t−s|(−2/d)(1−p) � 1,
we have md/2|t − s| = |t − s|p, which takes care of the second term in the above
inequality. Furthermore, q = 1/(2(2 − 1/d)) < 1/2 ensures | log(x)| � x−1/2 �
xq−1 for 0 � x � 1. Therefore,

σ(1/m) �
{

(1/m)q if 1/m < e(−1−√2)/2

3/m if 1/m � e(−1−√2)/2

}

� 3(1/m)q = 3|t − s|(2q/d)(1−p) = 3|t − s|p.
Therefore, |∇�(x, t)− ∇�(x, s)| � 10Cd |t − s|1/2d , which gives the result.

In the next proposition, we show that, while the discrete time sequence corre-
sponding to Ẽ∞ may not be unique, the distance between any two such sequences
converges to zero as the time step τ → 0.

Proposition 5.1. Fix T > 0 and initial data ρ ∈ D(E∞) and let ρ̃n
τ and μ̃n

τ be
two choices for the time discrete time sequence corresponding to Ẽ∞, as defined
in Definition 2.14 (ii). Then there exist positive constants N and C, depending on
the dimension, T , and E∞(ρ), so that for τ = t/n and all 0 � t � T and n > N,

f (2n)
τ (W 2

2 (ρ̃n
τ , μ̃n

τ )) � Cω(τ).

Proof. By Corollary 2.17, we have the following crude bound for all i = 1, . . . , n:

W2(ρ̃
i
τ , μ̃

i
τ ) � W2(ρ̃

i
τ , ρ)+W2(μ̃

i
τ , ρ) � 4CdT .

To obtain a more refined bound, we use Proposition 2.9. First, we estimate the
behavior of the energy Ẽ∞ along the discrete time sequence. By Proposition 2.3,
Lemma 2.16, and the definition of ρ̃i

τ as a minimizer
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Ẽ∞(ρ̃i−1
τ ; ρi

τ )

= Ẽ∞(ρ̃i−1
τ ; ρi−1

τ )+ Ẽ∞(ρ̃i−1
τ ; ρi

τ )− Ẽ∞(ρ̃i−1
τ ; ρi−1

τ )

= Ẽ∞(ρ̃i−1
τ ; ρi−1

τ )+
∫

Nρ̃i−1
τ d(ρi

τ − ρi−1
τ )

� Ẽ∞(ρ̃i−2
τ ; ρi−1

τ )+ CdW2(ρ
i
τ , ρ

i−1
τ ) � Ẽ∞(ρ̃i−2

τ ; ρi−1
τ )+ 2C2

dτ

� · · · � Ẽ∞(ρ; ρ1
τ )+ 2C2

dT .

Likewise, we may control the first term on the right hand side by

Ẽ∞(ρ; ρ1
τ ) = 2E∞(ρ)+ Ẽ∞(ρ; ρ1

τ )− Ẽ∞(ρ; ρ)

= 2E∞(ρ)+
∫

Nρd(ρ1
τ − ρ) � 2E∞(ρ)+ 2C2

dτ.

Thus, there exists C > 0 (which we allow to change from line to line) depending
only on the dimension, T , and E∞(ρ) so that

Ẽ∞(ρ̃i−1
τ ; ρi

τ ) � C.

Likewise, by Proposition 2.3, Ẽ∞(·; ·) is uniformly bounded below by −Cd .
Due to these estimates, we may apply Proposition 2.9 to conclude that there

exist positive constants C and N depending on the dimension, T , and E∞(ρ) so
that for τ = t/n, 0 � t � T , and n > N ,

f (2)
τ (W 2

2 (ρ̃i
τ , μ̃

i
τ ))

� W 2
2 (ρ̃i−1

τ , μ̃i−1
τ )+ Cdτω(CW2(μ̃

i
τ , μ̃

i−1
τ ))

+ 2τ(Ẽ∞(ρ̃i−1
τ ; ρi

τ )− Ẽ∞(ρ̃i
τ ; ρi

τ ))+ Cτ 2.

By Lemma 2.16(ii), we may bound the second term by Cdτω(Cτ) and the third
term by 4C2

dτ
2. Therefore, for all i = 1, . . . , n,

f (2)
τ (W 2

2 (ρ̃i
τ , μ̃

i
τ )) � W 2

2 (ρ̃i−1
τ , μ̃i−1

τ )+ Cτω(τ). (5.1)

We now show that, for all j = 1, . . . , n,

f (2 j)
τ (W 2

2 (ρ̃n
τ , μ̃n

τ )) � W 2
2 (ρ̃n− j

τ , μ̃n− j
τ )+ 2Cτω(τ) j. (5.2)

Once we have this, taking j = n gives the result. We prove (5.2) by induction. The
base case, when j = 1, is a consequence of (5.1). Suppose that the result holds for
j − 1,

f (2( j−1))
τ (W 2

2 (ρ̃n
τ , μ̃n

τ )) � W 2
2 (ρ̃n− j+1

τ , μ̃n− j+1
τ )+ 2Cτω(τ)( j − 1).

By Proposition 2.8, applying f (2)
τ to both sides,

f (2 j)
τ (W 2

2 (ρ̃n
τ , μ̃n

τ )) � f (2)
τ (W 2

2 (ρ̃n− j+1
τ , μ̃n− j+1

τ ))+ 2Cτω(τ)( j − 1)+ Cτ 2

� W 2
2 (ρ̃n− j , μ̃n− j )+ 2Cτω(τ) j

where the second inequality is a consequence of (5.1) and the fact that Cτ 2 �
Cτω(τ). This gives the result. ��
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Now, we turn to the proof that the discrete time sequence ρn
τ,m corresponding

to Em converges to the very weak solution of (PME-D)m as the time step goes to
zero. (See [51, Definition 6.2] for the definition of very weak solution.)

Proposition 5.2. Given initial data ρ ∈ D(E∞), let ρn
τ,m be the discrete time

sequence given in Definition 2.14 (iii). Then, for any t � 0, ρn
t/n,m converges as

n → +∞ to a limit ρm(t), and there exist positive constants C and N depending
on the dimension, E∞(ρ), and T so that for all n � N, m � d+1, and 0 � t � T ,

W2(ρ
n
t/n,m, ρm(t)) � Cn−1/16e4Cd T .

Furthermore, ρm(t) is the unique very weak solution of (PME-D)m.

Proof. Given initial data ρ ∈ D(E∞), let ρn
τ be the discrete gradient flow of E∞,

as in Definition 2.14 (i). Using this sequence, we define a time dependent energy
En

τ,m by

En
τ,m(ν) := Em(ν; ρn

τ )

=
{

1
m−1

∫
Rd ν(x)mdx + ∫

Rd ψ1/m ∗ Nρn
τ (x)dν(x) if ν 
 Ld ,

+∞ otherwise.

Then ρn
τ,m given in Definition 2.14 (iii) is the time varying discrete gradient flow

of this energy in the sense that

ρn
τ,m ∈ argmin

ν∈P2(Rd )

{
1

2τ
W 2

2 (ρn−1
τ,m , ν)+ En

τ,m(ν)

}
and ρ0

τ,m := ρ. (5.3)

Consequently, wemay apply the first author’s results on convergence of the discrete
gradient flow of time dependent energies [20, Theorem A.3], provided that we can
show En

m satisfies [20, Assumption A.2].
First, by [20, Theorem 4.3, Proposition 4.4], En

τ satisfies [20, Assumption 2.18]
uniformly for n ∈ N, m > 1, and τ > 0. In particular, there exists a solution to the
minimization problem (5.3) and En

τ is ω-convex along generalized geodesics, for
λω = −Cd as in Proposition 2.3 and ω(x) as in equation (2.4).

Next, we estimate the behavior of the energies and Wasserstein distance along
the discrete gradient flow. By Lemma 2.16 (iii), for all 1 � i � n,

W2(ρ
i
τ,m, ρi−1

τ,m ) �
√

2τ

m − 1
(‖ρi−1

τ,m ‖mm − ‖ρi
τ,m‖mm)+ 2Cdτ

�
√
2τ

(
1+ nτC2

d/2
)+ 2Cdτ.

where, in the second inequality, we use that ‖ρ0‖mm � 1. Likewise, by Corollary
2.17,

W2(ρ
n
m,τ , ρ) �

√
4nτ(1+ 8C2

dnτ).
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Finally, since Proposition 2.3 ensures En
τ,m is uniformly bounded below by −Cd ,

there exists a constant C̃d > 0, depending only on the dimension, so that

E0
τ,m(ρ)− En

τ,m(ρn
τ,m) � Em(ρ, ρ)+ Cd � 1

+
∫

Nρ(x)ψ1/m ∗ ρ(x)dx + Cd � C̃d + E∞(ρ),

where in the last inequality we use thatNρ(x) is a continuous function with at most

quadratic growth and ψ1/m ∗ ρ
m→+∞−−−−−→

W2
ρ, so

∫
Nρ(x)ψ1/m ∗ ρ(x)dx

m→+∞−−−−−→∫
Nρ(x)ρ(x)dx .
It remains to show that En

τ,m possesses sufficient continuity in nτ . To do this,
we first estimate the continuity of ρn

τ in nτ . By Lemma 2.16, we have the following
crude bound

W 2
2 (ρn

τ , ρk
h) � (2Cd(nτ + kh))2 � 16C2

dT
2.

Combining this with Proposition 2.8 (iii) and [20, Theorem 3.6], we obtain that for
any T > 0, there exists τ̄ = τ̄ (T, d) and C̄ = C̄(T, d) so that for all 0 � h < τ < τ̄

and k, n ∈ N with kh, nτ � T ,

F2kh(W
2
2 (ρn

τ , ρk
h)) � C̄

[√
(nτ − kh)2 + τ 2n + hkω̃(

√
τ)+ h2k + ω̃(h2)k

]

+ 2h(E∞(ρ)− inf E∞)+ Cdω(16C2
dT

2)T/n.

Since Ft (x) is decreasing in t , this implies there exists C̃ = C̃(T, d, E∞(ρ)) so
that for 0 < τ < τ̄ ,

F2T (W 2
2 (ρn

τ , ρk
h)) � C̃

[√
(nτ − kh)2 +√τ | log τ |

]
. (5.4)

Since F2T (x) is strictly increasing and convex in x , F−12T (x) is strictly increasing
and concave. Therefore,

σ(x) :=
√
F−12T (

√
x)

is a continuous, nondecreasing, concave function that vanishes only at zero.
In particular, σ(x) is also subadditive, so (5.4) implies that, for some C ′ =
C ′(T, d, E∞(ρ)),

W2(ρ
n
τ , ρk

h) � C ′
[
σ
(
(nτ − kh)2

)
+ σ

(
τ | log τ |2

)]
. (5.5)

We use this estimate to show that En
τ,m is continuous in nτ , up to an error that

decreases with τ . Since f := N(ψ1/m ∗ ρi
τ,m) ∈ C1, by Lemma 2.2,

|En
τ,m(ρi

τ,m)− Ek
h,m(ρi

τ,m)| = |Em(ρi
τ,m; ρn

τ )− Em(ρi
τ,m; ρk

h)|
=
∣∣∣∣
∫
Rd

N(ψ1/m ∗ ρi
τ,m)d(ρn

τ − ρk
h)

∣∣∣∣
� C ′‖∇ f ‖∞

[
σ
(
(nτ − kh)2

)
+ σ

(
τ | log τ |2

)]
.
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Finally, ‖∇ f ‖∞ is bounded uniformly in m, i , and τ , since for B = B1(0), there
exists c depending only on the dimension (and which we allow to change from line
to line) so that, for all m � d + 1,

‖∇ f ‖∞ � ‖∇N‖L∞(Rd\B) + ‖∇N‖Lm′ (B)
‖ρi

τ,m‖Lm (Rd )

� c + (1/αd)
(m−1)/(m)‖ρi

τ,m‖Lm (Rd )

� c

(
1+ ‖ρ‖m +

(
(m − 1)TC2

d/2
)1/m)

� c

where the fourth inequality uses Lemma 2.16.
Thus, [20, Assumption A.2] is satisfied, so by [20, Theorem A.3], we conclude

that for all 0 � t � T , there exists C = C(E∞(ρ), T, d) (which we allow to
change from line to line) so

F2t
(
W 2

2 (ρn
t/n,m, ρm(t))

)

� C
[
t/
√
n + tω

(√
t/n

)
+ σ(t2/n)+ σ(t/n| log(t/n)|2)

]
.

Hence, using again that Ft (x) is decreasing in t ,

F2T
(
W 2

2 (ρn
t/n,m, ρm(t))

)

� C

[
n−1/2 log n +

√
F−12T (t/

√
n)+

√
F−12T (

√
t/n| log(t/n)|)

]
.

For 0 � x � e−1−
√
2, Ft (x) = xe

Cd t and n−1/2 log n = O(n−1/4), so for n
sufficiently large,

(
W2(ρ

n
t/n,m, ρm(t))

)2e2Cd T
� C(n−1/8)1/e2Cd T �⇒ W2(ρ

n
t/n,m, ρm(t))

� Cn−1/16e4Cd T .

Finally, it remains to show that the limit ρm is the unique very week solution of
(PME-D)m . Following a parallel argument as in Jordan, Kinderlehrer, and Otto’s
original work on the convergence of the discrete gradient flow to solutions of the
Fokker–Planck equation [27], one can show that for all ζ ∈ C∞0 (Rd × [0,+∞)),

0 =
∫
Rd

ρm(x, 0)ζ(x, 0)dx +
∫ +∞

0

∫
Rd

ρm(x, s)(∂sζ(x, s)

−∇�1/m(x, s)∇ζ(x, s))dx ds (5.6)

+
∫ +∞

0

∫
Rd

ρm(x, s)m�ζ(x, s)dx ds.

Therefore, ρm(x, t) is a very weak solution of (PME-D)m , as defined in [51,
Definition 6.2]. (While this definition does not include a drift term, as in equation
(5.6) above, it generalizes naturally to our setting.) Finally, by [51, Theorem 6.5]
(suitably generalized to the presence of drift), this very weak solution is unique
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whenever ρm, (ρm)m ∈ L2(Rd × (0, T )). By Remark 3.9 and the fact that ρm is
compactly supported at any time, we conclude that ρm(x, t) is the unique very weak
solution of (PME-D)m . ��
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