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Abstract

We consider a congested aggregation model that describes the evolution of a
density through the competing effects of nonlocal Newtonian attraction and a hard
height constraint. This provides a counterpoint to existing literature on repulsive—
attractive nonlocal interaction models, where the repulsive effects instead arise from
an interaction kernel or the addition of diffusion. We formulate our model as the
Wasserstein gradient flow of an interaction energy, with a penalization to enforce
the constraint on the height of the density. From this perspective, the problem can
be seen as a singular limit of the Keller—Segel equation with degenerate diffusion.
Two key properties distinguish our problem from previous work on height con-
strained equations: nonconvexity of the interaction kernel (which places the model
outside the scope of classical gradient flow theory) and nonlocal dependence of
the velocity field on the density (which causes the problem to lack a comparison
principle). To overcome these obstacles, we combine recent results on gradient
flows of nonconvex energies with viscosity solution theory. We characterize the
dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem
and, using this characterization, show that in two dimensions patch solutions con-
verge to a characteristic function of a disk in the long-time limit, with an explicit
rate on the decay of the energy. We believe that a key contribution of the present
work is our blended approach, combining energy methods with viscosity solution
theory.
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1. Introduction

In recent years, there has been significant interest in physical and biological
models with nonlocal interactions. These models describe the pairwise interac-
tions of a large number of individual agents, for which, in the continuum limit,
the nonnegative density p (x, t) satisfies the aggregation equation with degenerate
diffusion

pr =V - (pVN % p) + Ap™, (1.1)

for an interaction kernel N : RY — Rand m > 1. This equation is mass-preserving
and, provided that A/ (x) possesses sufficient convexity and regularity, it is a Wasser-
stein gradient flow of the energy

En(p) = W(p) + Sm(p),

where the interaction energy W (p) and Rényi entropy S, (p) are given by

1 1
W(p) = 3 /(N *p)(x)p(x)dx and Sy (p) = p— p(x)"dx.
See Section 2.1 for further background on this gradient flow structure, including
Remark 2.11 for the case when [ p # 1.

Depending on the choice of interaction kernel and diffusion parameter, equa-
tions similar to (1.1) arises in a range applications in physics and biology, including
models of granular media [6, 18], biological swarming [13,50], robotic swarming
[19,43], molecular self-assembly [21,45,53], and the evolution of vortex densities
in superconductors [3,36,39,44]. Of particular interest are kernels and diffusion
parameters for which the model exhibits competing repulsive and attractive effects,
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causing solutions to blow up in finite time or form rich patterns in the asymptotic
limit (c.f. [4,5,7-9,23-25,48]). For example, with m = 1 and the interaction is
given by the Newtonian interaction kernel

with a4 the volume of the unit ball in ]Rd,

-1 2=d ford #2,

{zglogm ford =2,
aa—2ay ¥

(1.2)

Equation (1.1) corresponds to the Keller—Segel model for biological chemotaxis
[10,11,29]

pr =V - (pVN % p)) + Ap™. (1.3)

In this case, the interaction kernel is purely attractive and competes with the repul-
sion induced by the degenerate diffusion. If m > 2 — 2/d, diffusion dominates at
large density, and bounded solutions exist globally in time [47]. Otherwise, depend-
ing on the choice of initial data, solutions with bounded initial data may blow up
in finite time.

In the present work, we consider a diffusion—aggregation model similar to the
Keller—Segel equation, but with the role of diffusion instead played by a hard
height constraint on the density. Heuristically, the evolution of p(x, ) is given by
the congested aggregation equation

(1.4)

pr =V -(pVNp)if p(x,1) = 1,
o(x, 1) £ 1 always,

where Np := A % p denotes the Newtonian potential of p. Informally, solutions of
1.4 seek to evolve according to the “desired velocity field” VNp, subject to a hard
height constraint. More precisely, we define p(x, ¢) as the Wasserstein gradient
flow of the constrained interaction energy

L INo)p)dx if ol £ 1,

. (1.5)
400 otherwise.

Ex(p) == {

Our choice of hard height constraint is inspired by the work of Maury et al. [40,

41], who introduced such a constraint in their model of pedestrian crowd motion.
They considered a congested drift equation

{p, =V.-(pVV)if p(x,1) <1, (1.6)

p(x, 1) < 1 always,

for a local drift V : RY — R, where VYV is the “desired velocity field” of the
density. As in the present work, they rigorously defined the evolution of the density
as the Wasserstein gradient flow of the constrained potential energy

JV@p@)dx if [plleo 1,
+00 otherwise.

Vool(p) = {
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They then showed that this gradient flow satisfies a formulation of the continuity
equation, where the velocity field is given by the L? projection of VV onto the
set of admissible velocities that do not increase the density in the saturated zone,
{p = 1} [40]. Furthermore, when V (x) is semiconvex (for example when V2V (x)
is bounded below—see Section 2.1) the energy Vi is likewise semiconvex and
Wasserstein gradient flow theory ensures that this evolution is unique.

Building upon this work, Alexander et al. [1] showed that solutions of the
congested drift equation could be approximated by solutions to a corresponding
nonlinear diffusion equation

pr =V - (pVV)+ Ap™ (1.7)

as m — +o00, which are gradient flows of the energy

1
V(o) i= / V) pGode + —— f p(x)"dx,
m—1

(note that, for a fixed p, Vo (p) is the limit of V,,(p) as m — o0.) They then
applied this result to characterize the dynamics of the congested drift equation:
given a velocity field satisfying AV > 0 and initial data that is a characteristic
function on a patch, p(x, 0) = xq,(x) for

1 ifxe Q,
0 otherwise,

X9 (X) = {

the solution remains a characteristic function, and the evolution of the patch is given
by a Hele-Shaw type free boundary problem.

In spite of the similarities between our congested aggregation equation (1.4) and
the congested drift equation (1.6), two key differences prevent its analysis by the
same methods. First, unlike Vo, the energy E, does not satisfy the semiconvexity
assumptions of classical gradient flow theory that ensure uniqueness. (In particu-
lar, we do not have that E is A-displacement convex.) This lack of convexity also
makes the equation inaccessible by classical approximation methods—specifically,
quantitative approximation by the discrete gradient flow or JKO scheme for semi-
convex energies—which was a key tool in Alexander, Kim, and Yao’s result on the
convergence of the nonlinear diffusion equation (1.7) asm — 400 to the congested
drift equation. The second major difference between the congested aggregation and
congested drift equations is that the velocity field of the former depends nonlocally
on the density. This prevents a direct adaptation of Maury, Roudneff-Chupin, and
Santambrogio’s characterization of solutions in terms of a continuity equation,
since their argument relies upon an Euler—Lagrange equation for the discrete gradi-
ent flow sequence, the proof of which strongly leverages the local nature of the drift.
Finally, the nonlocal nature of the velocity field causes there to be no comparison
principle, an important element in Alexander, Kim, and Yao’s analysis of the patch
dynamics.

To overcome these difficulties, we combine new results on the Wasserstein
gradient flow of non-semiconvex energies with a refined approximation of the
congested aggregation equation by nonlinear diffusion equations to characterize the
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dynamics of patch solutions and study their asymptotic behavior. To address the lack
of convexity, we appeal to recent work by the first author, inspired by the present
problem, that proves well-posedness of Wasserstein gradient flows for energies that
are merely w-convex and provides quantitative estimates on the convergence of the
discrete gradient flow. (See Section 2.1). We apply these results to conclude that
if the initial data pg satisfies ||pollcc < 1, then there exists a unique Wasserstein
gradient flow po of the constrained interaction energy E.. (Specifically, there
exists a unique curve in the space of probability measures that solves the evolution
variational inequality for E«,. See Theorem 2.4.) However, due to the low regularity
of E, gradient flow theory doesn’t provide a characterization of its evolution in
terms of a partial differential equation.

Our goal in this paper is to study the dynamics and asymptotic behavior of pe.
We focus on the case when the initial data pg is a patch, that is pg = xgq,, where
Qo C R4 is a bounded domain with Lipschitz boundary, and we seek to answer the
following questions:

1. If po is a patch, does poo (-, ) remain a patch xq () forall + = 0?
2. If so, what partial differential equation determines the evolution of the set €2(¢)?
3. What is the asymptotic behavior of 2 (¢) as t — 00?

To answer these questions, we blend the gradient flow approach with viscosity
solution theory. Due to the attractive nature of the Newtonian kernel (1.2), we show
that the solution of the congested aggregation equation poo(x, t) indeed remains a
patch: poo (X, 1) = xq)(x) for a time dependent domain €2 (7). We then show that
Q(t) evolves with outward normal velocity V = V(x, t) satisfying

V=—v-(Vp+VNps) atx e dQ(1),

where v = v(x, t) is the outward unit normal at x € 9€2(¢) and, for each r > O,
p = p(x,t) solves

—Ap(,t) =1in Q(¢), p(-,t) =0 outside of Q(¢).

Since, Q(¢) = {p(-,t) > 0}, this gives a Hele-Shaw type free boundary problem
for the pressure variable p,

—ApCn =1 i {p> o)
V=—v-(Vp+V®d) on 3{p > 0}; (P)
® = Ny(p>0;-

Provided that p is sufficiently regular (for example, p € L'([0, 00); H! (Rd)), this
would imply that the solution of the congested aggregation is a weak solution of
the continuity equation

pr =V - (p(VNp + Vp)), (1.8)

where Vp is the pressure generated by the height constraint that modifies the
“desired velocity field” VNp. In terms of p, v = —Vp/|Vpland V = p,/|Vp|,
so in the smooth setting the second condition in (P) can be written as

pi=|Vpl*+Vp-Vdond{p >0}
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While we believe such regularity of the pressure should hold, it is not clear how to
obtain the necessary estimates from our Wasserstein gradient flow approach, and
we believe a different approach would be needed.

Even if Q¢ has smooth boundary, the evolving set Q2(t) = {p(-, 1) > 0} may
undergo topological changes such as merging. Consequently, to describe the evolu-
tion of €2(¢), we require a notion of weak solution for (P). While viscosity solutions
are a natural choice, given their utility in free boundary problems, because of the
nonlocal dependence of the outward normal velocity V on p itself, (P) lacks a com-
parison principle. Instead, we consider an auxillary problem for a fixed, nonnegative
function p(x, 1) € L®(R? x (0, 00)),

—Ap(,t) =1 in {p > 0};
V=—v.(Vp+V®d) on df{p > 0}; P)oo
® = Np.

We show that the comparison comparison principle holds for (P)+., hence viscosity
solution theory applies. We then define p to be a solution of (P) if it is a weak
viscosity solution of (P), with p = x{,>0) almost everywhere.

We now state our first main result, which follows from Theorems 3.12 and 3.17.

Theorem 1.1. (Characterization of dynamics of aggregation patches)

(a) Let Q20 C R4 be a bounded domain with Lipschitz boundary, and let poo (-, 1) €
L°°(R") be the gradient flow of E« with initial data xg,. (See Theorem 2.4 for
the well-posedness of this gradient flow.) Consider the free boundary problem
(P)oo With p replaced by p~o, and the initial data po given by

—Apo(-,0) =1in Qp, po(-,0) = 0 outside of Q. (1.9)

Then there is a unique minimal viscosity solution p(x,t) of (P)so with initial
data py.
(b) Let 2(t) = {p(-, t) > 0}. Then pso (-, t) remains a patch for all times, and

Poo (s 1) = X almost everywhere for all t = 0.

(¢c) Therefore, p is a weak solution of (P) in the sense of Definition 3.6.

Next, we consider the asymptotic behavior of patch solutions as t — +o0. For
any given mass and any dimension, the Riesz rearrangement inequality [34, Theo-
rem 3.7] immediately gives that the global minimizer of the constrained interaction
energy (1.5) must be a characteristic function of a ball. However, this does not
guarantee that the gradient flow p (¢) of the constrained interaction energy always
converges to a translation of the global minimizer as t — 4-oo. In particular, the
main obstacle is to show the mass of p (#) cannot escape to infinity in the long time
limit, which requires us to obtain some compactness estimates on P (f) uniformly
in time.

For the Keller—Segel equation (1.3) with subcritical power m > 2 — 2/d, the
situation is very similar. Again, there exists a unique (up to a translation) global
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minimizer of E, for any given mass [35,37], but it is unknown whether solu-
tions converge to it as t — +o00. In dimension two, convergence has been recently
shown by Carrillo, Hittmeir, Volzone, and the third author [16], where compactness
is obtained via a uniform in time bound of the second moment, though no explicit
convergence rate towards the global minimizer is given. For d = 3, the only avail-
able convergence result towards the global minimizer is work by the second two
authors on radial solutions [31].

In our work, for dimension two, we not only prove convergence of solutions
towards the global minimizer of the constrained interaction energy (1.5) but also
provide explicit estimates on the rate of decay of the energy. We accomplish this
by again applying a blended approach, combining the gradient flow structure of the
problem with viscosity solution theory and the characterization of patch dynamics
from Theorem 1.1. We begin by using a rearrangement inequality of Talenti [49]
to show that the second moment of p(#) is non-increasing in time and is strictly
decreasing at time ¢ unless €2(¢) is a disk. Then, applying a quantitative version
of the isoperimetric inequality due to Fusco et al. [26] and our characterization of
patch dynamics, Theorem 1.1, we provide explicit estimates on the rate that the
second moment is decreasing, in terms of the symmetric difference between 2 (¢)
and a disk. Finally, using the gradient flow structure of the problem, we show that
ast — 400, poo(t) strongly converges to a characteristic function of a disk in L7
for any 1 < g < o0, and its energy Eso(0o0) converges to its global minimizer
with an explicit rate. This gives our second main result, which combines Theorems
4.9 and 4.12.

Theorem 1.2. (Long time behavior in two dimensions) Assume d = 2. Let Q29 C
R? be a bounded domain with Lipschitz boundary, and let po be the gradient flow
of Eoc with initial data xq,. Then ast — 400, peo(-, t) converges to xp, in L4
forany 1 < q < oo, where By is the unique disk with the same area and center
of mass as those of Qo. Furthermore, we have the following rate of convergence in
terms of the free energy:

0 < Eoo(poo(- 1)) — Eco(xy) < C(IS201, Ma[Q0])t V8.

Remark 1.3. Let us point out that our control for the second moment relies on
the particular structure for the 2D Newtonian kernel, and we are unable to obtain
similar compactness estimates for higher dimensions. For d = 3, whether oo (1)
converges to a ball as t — oo remains an interesting open question.

We now describe the key ingredients in our characterization of the dynamics
of the congested aggregation equation. At the heart of our analysis is an approxi-
mation of this equation as the singular limit of a sequence of nonlinear diffusion
equations. This provides the bridge between the gradient flow and viscosity solu-
tion approach. In particular, while the gradient flow of E, is merely a curve in
the space of measures, approximating it by a sequence of solutions to nonlinear
diffusion equations allows us to bring to bear the tools of viscosity solution theory
in the limit.
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Following the analogy with Alexander, Kim, and Yao’s previous work, one
might hope to approximate the congested aggregation equation by the Keller—Segel
equation (1.3), which also has a gradient flow structure corresponding to the energy

1
Egs(p) = //p(X)Np(X)dx + m/P(X)de- (1.10)

Note that for a fixed p, Exo(p) is the limit of Egg(p) as m — oo. However,
Ek s satisfies neither the classical assumptions for semiconvexity nor the weaker
assumptions for w-convexity. Consequently, we lack the quantitative estimates on
the rate of convergence of the discrete gradient flow that are an essential element of
our approach. Instead, we replace the nonlocal potential Np (x) in E g s with a time-
dependent local potential @1/, (x, t), which is given by a suitable regularization
of Npso(x, 1), where poo(x, t) is the gradient flow of E, with initial data po(x).
(See Definition 2.12 for a precise definition of this potential.)
This leads to the energy

1
Epm.(0) 1=/P(X)CI)l/m(X,f)dx-i-m/ﬂ(x)de,

which we can show is w-convex. We then prove that the (time dependent) gradient
flow of this energy, which corresponds to a solution of

pr =V - (pVPi/m) + Ap™, (PME-D),

converges as m — 400 to a solution of the congested aggregation equation. (See
Section 2 for our construction of this time dependent gradient flow.) Then, rewriting
(PME-D),, in the form
m m—1

pr =V - (p(V®i/m + Vpmw)), forpy, = P (1.11)
we use viscosity solution theory to show that, as m — 400, p,, converges to a solu-
tion of the free boundary problem (P). By the uniqueness of the limit, we conclude
the characterization of dynamics of patch solutions of the congested aggregation
equation, as stated in Theorem 1.1.

Our paper is organized as follows. In Section 2, we prove that the solutions of
the nonlinear diffusion equations (PME-D),, converge as m — -+o00 to the gradi-
ent flow of E, with an explicit rate depending on m. We also provide background
on Wasserstein gradient flow, including recent results by the first author on the
gradient flows of w-convex energies. In Section 3, we show that the pressure p,,
corresponding to the nonlinear diffusion equations, given in equation (1.11), con-
verges as m — —+00 to a solution of (P)s,. Combining these results, we show that
the gradient flow of E is a characteristic function of the evolving set €2(¢) and
that €2(¢) can be obtained from the viscosity solution of (P). In Section 4, we
consider the asymptotic behavior of ps in two dimensions, proving that it con-
verges to a disk with explicit rate. Let us remark that the characterization of p, by
the pressure variable p plays a crucial role in the proof of this asymptotic result.
Finally, we conclude with an appendix Section 5, which contains proofs of several
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lemmas from Section 2, as well as definitions of viscosity solutions for the limiting
free boundary problem (P)xc.

There are several directions for future work. First, our analysis only addresses
solutions that are initially a patch. Results for more general initial data could lever-
age recent work by Kim and Pozar [30] and Mellet et al. [42]. Second, in the light
of work by Maury et al. [40], it would be interesting if one could characterize the
modified velocity Vp 4+ VNp in (1.8) as the projection of the original velocity
VNp onto the space of admissible velocities under the height constraint. At the
moment, this appears to be a difficult question, due to the highly nonlinear nature
of the projection and its dependence on the solution. A third direction for future
work would be to pursue to what extent our analysis extends to nonlocal velocity
field generated by kernels aside from the Newtonian N/, which arise in a range of
biological and physical applications. While our result on the singular limit of the
nonlinear diffusion equations extends to a range of kernels (see Remark 2.1), our
analysis of the free boundary problem strongly leverages the structure of the New-
tonian kernel. A final direction for future work would be to make rigorous the link
between the congested aggregation equation and the Keller—Segel equation (1.3)
as m — 400, completing the analogy with previous work by Alexander, Kim, and
Yao that found that the hard height constraint may be obtained as the limit of slow
diffusion.

2. Convergence of Gradient Flows: Drift Diffusion to Height Constrained
Interaction

In this section, we show that the gradient flow of the height constrained inter-
action energy E o, defined in equation (1.5), may be approximated by solutions of
the nonlinear diffusions equations (PME-D),, as m — +o0. This provides a link
between the abstract Wasserstein gradient flow of E;, which in general is merely
a curve in the space of probability measures, and solutions to partial differential
equations.

Remark 2.1. (Choice of interaction kernel) For the sake of continuity with Sections
3 and 4, we assume that the interaction kernel N is Newtonian (1.2). However, our
results in this section may be extended to any kernels that satisfy [20, Assumption
4.1] and the estimates of Proposition 2.3. In particular, this includes many repulsive—
attractive potentials of interest in the literature.

2.1. Preliminary Results

We begin by collecting some results on the Wasserstein gradient flow of w-
convex energies that will be useful in what follows. For further background on the
Wasserstein metric and gradient flows of semiconvex energies, we refer the reader
to the books by Ambrosio et al. [2] and Villani [52]. For more details on gradient
flows of w-convex energies, see recent work by the first author [20].

Let P>(R%) denote the set of probability measures on R? with finite second
moment, thatis | |x |*du < 4-o00. Ifameasure . € P> (R?) is absolutely continuous
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with respect to Lebesgue measure (1 < £4), we will identify p with its density,
thatis du(x) = w(x)dx. In particular, we write ||| g < +ooifdu(x) = u(x)dx
and p(x) € L®(RY).

Given i, v € P>(R?), a measurable function t : RY — R? transports ju onto
vincase [ f(t(x))du = [ f(y)dv forall f € L'(dv). We then call v the push-
forward of i under t and write v = t#u. If  is absolutely continuous with respect
to Lebesgue measure (as will be the case for all the measures we consider), then
the Wasserstein distance from p to v is given by

12
Wa(u, v) = inf { (/ It — id|2du> Lt = v} , @2.1)

where id(x) = x. Furthermore, the infimum is attained by an optimal transport
map t = t,, which is unique p-almost everywhere.

The metric space (P> (RY), W») is complete, and convergence can be charac-
terized as

Walpn, 1) > 0 < [ fdu, — [ fduforall f € C(R?) such that
3C > 0, x9 € R? so that | f (x)|SC(1 + |x — x0]?).

We will refer to such f as continuous functions with at most quadratic growth. Fur-
thermore, for any f € C'(R?) with uniformly bounded gradient, we can quantify
the difference between the integral of f against u and the integral of f against v
using the following elementary lemma:

Lemma 2.2. For f € C'(R?) and i, v € P2(RY),

fron o

Proof. For simplicity, suppose that ;1 < £, so there exists an optimal transport
map t,,. (The proof is identical in the general case, using optimal transport plans.)
By Jensen’s inequality,

fron o

S IV fllooWa(pe, v).

12
if!f—fotzldug IV £ lloo (/ |t;—id|2du>

= IV fllooW2(s, v).

O

Along with its metric structure, (P> (Rd), W) is a geodesic space, since any two
measures Lo, L1 € P2 (Rd ) are connected by a geodesic g € P> (Rd ), a € [0, 1],
satisfying

Wa (e, ng) = 1B — a|Wa(uo, pny) forall , g € [0, 1].

If o < £4, then the geodesic from pg to any 1 € Pa (RY) is unique and of the
form

to = (1 — a)id + ath})#1o.
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Unlike a square Hilbertian norm, the square Wasserstein distance is not convex
along geodesics (o +— sz(v, ) is not convex) [2, Example 9.1.5]. Consequently,
Ambrosio, Gigli, and Savaré introduced an expanded class of curves known as
generalized geodesics, so that, between any two measures, there is always at least
one curve along which the square distance is convex [2, Lemma 9.2.1, Definition
9.2.2]. Given g, i1,V € P» (RY) with v <« £4, the generalized geodesic from [
to 1 with base v is

Mo = (1 —a)th® + athH#v,
and along such a curve we have

W3, ie) = (1 =) W5 (v, o) + W5 (v, up) — a(l — )1t — 41175,

An additional class of curves along which the square Wasserstein metric is convex
are linear interpolations of measures,

Mo = (1 —a)po +ap.
For any j10, i1, v € P>(RY), we have
W3 (v, tta) < (1 — a)W5 (v, o) +aW3 (v, 1) (2.2)

(See, for example, [46, Proposition 7.19].)

Due to the fact that (P2(R9), W) is a geodesic space, it induces a natural
notion of convexity on energy functionals E : P,(R?) — R U {400}, that is given
a geodesic [y, the function o +— E (1) is convex. We recall both this standard
notion of convexity, as well as two generalizations, semiconvexity and w-convexity:

(i) E is convex along py if E(ug) < (1 — a)E(uo) + aE(1);

(ii) E is semiconvex along (i if there exists A € R so that
E(1te) < (1= @) E (o) + @E(1) — (1 — )5 W3 (120, j11);

(iii) E is w-convex along u,, if there exists A, € R and a continuous, nondecreas-
ing function w : [0, 400) — [0, +00), which vanishes only at x = 0, so that
E(jg) = (l—a)E(Mo)+aE(u1)—%”’[(1—a)w(a2W22(uo,u1))+aw((1—
) W3 (1o, k1)1

If, for any po, n1 € P2 (RY), there exists a geodesic [ty from g to 1 along
which F satisfies (i), we say E is convex along geodesics. Likewise, given X (resp.
(@, he)) so that for any g, 11 € P2 (R?) there exists a geodesic jtq from g to i
along which E satisfies (ii) (resp. (iii)), we say E is semiconvex (resp. w-convex)
along geodesics.

Likewise, given A (resp. (w, Ay)), so that for any wo, 1, v € P> (R?), there
exists a generalized geodesic 1, from pg to w1 with base v along which E satisfies
(ii) (resp. (iii)), with Wa (110, ;1) on the right hand side replaced by ||t4° —t/! ||i2(v),
we say E is semiconvex (resp. w-convex) along generalized geodesics.

We will also say that E is proper if the domain of the energy D(E) = {u :
E(u) < 400} is nonempty.

A key element of our analysis is that the height constrained interaction energy
E« defined in equation (1.5) is w-convex along generalized geodesics. This follows
from the following estimates on the Newtonian potential of a bounded, integrable
function:
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Proposition 2.3. (c.f.[38, Theorem 2.7]) Suppose p, i, v € P (RY) with lolloos
litlloo < 1. Then there exists Cq4 = 1, depending only on the dimension, so that

IVNplow < Ca [ Noavz —Ca
[VNp(x) = VNp(»)| = Cgo (lx — yI), and [[VNp — VNul 2ey = Wa(p, p),
where

2x|log x| if 0< x < e-1-V2)/2,
\/x2 F2(1+v2)e V2 if x> 1V,

o(x) 1= 2.3)

We defer the proof of this proposition to the appendix in Section 5.1.

By the above estimates and [20, Theorem 4.3, Proposition 4.4], E is w-convex
along generalized geodesics with A,, = —Cy and w(x) a log-Lipschitz modulus of
convexity

x| log x| if0<x <em1-V2

w(x) =
\/x2 +2(1 +2)e 1 =V2x ifx > e 1-V2,

)

2.4)

The w-convexity of E, then leads to the following result on the well-posedness
of the gradient flow:

Theorem 2.4. ([20, Theorem 4.3, Proposition 4.4]) For any po € D(E~) (that is,
po € Pr(RY) with loolleo S 1), the gradient flow peo(t) of Eeo with initial data

po is well-posed. Specifically pso : (0, +00) — P2(R?) is the unique curve that is
locally absolutely continuous in time, with lim;_.o W2 (000 (t), po) = 0 and

W2 (s, ) + E2 0 (WE (o), )
2dt? ’ 2 2 ’
S E®W) — E(poo(t)), Yv € D(Ey), almost everywhere t > 0. 2.5)

Remark 2.5. Equation (2.5) is the generalization of Ambrosio, Gigli, and Savaré’s
evolution variational inequality [2, Equation 4.0.13] to the context of w-convex
functions. For more details, see work by Carrillo et al. [17, Theorem 3.1 (i)] and
the first author [20, Definition 2.10].

In order to provide a PDE characterization of pso(x, t) in Section 3, we use
the following higher regularity of pso(x, t) and VNpoo(x, t), which we prove in
appendix Section 5.1:

Proposition 2.6. (time regularity of the gradient flow of E,) Suppose poo(x, 1),
with initial data peo(x,0) € D(Eso), is a gradient flow of E~. Then Wi (pso(t),
Poo(8)) S 2C4|t — s|, where Cq > 0 is as in Proposition 2.3.
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Proposition 2.7. Suppose poo(x,t), with initial data peo(x,0) € D(Ex), is a
gradient flow of E~. Then VNpoo (x, t) is log-Lipschitz in space and 1/2d-Holder
continuous in time. In particular, with Cy > 0 and o (x) as in Proposition 2.3,

IVNpoo (x, 1) — VNpoo (v, )| < Cao (|lx — y|) forallx,y e R, 1 20,
[VNpoo (x, 1) — VNpoo(x, 8)| < 10C4|t — s"* forall 0 < |t — s
< e(_l_‘@/z, x eRY,

An important tool in the analysis of Wasserstein gradient flows is a discrete time
approximation of gradient flows known as the discrete gradient flow or JKO scheme
[27]. This scheme is analogous to the implicit Euler method for approximation of
ordinary differential equations in Euclidean space. For any . € D(E«,) and time
step T > 0, the discrete gradient flow of E is given by

Py € argmin L) (P77, v) + Ex(v) ¢ and p; := p.
vePy(Rd) 12T

By [20, Theorem 4.3, Proposition 4.4], the discrete gradient flow of E, exists for
all p € D(Ex) and T > 0, and if T = 1 /n for any t = 0, the discrete gradient flow
converges to the continuous gradient flow,
: n _
nllrfoo W20 /5 Poo (1)) = 0.
As demonstrated in previous work by the first author [20], well-posedness of

the gradient flows of w-convex eneriges is closely related to the well-posedness of
the ODE

d
{EF,(x) = —Cyqo(F; (x)), 06

Fo(x) = x.

For w(x) as in equation (2.4),0 < x < e 1=V2 and ¢ = 0, the solution is given
by F;(x) = xe, Furthermore, for all x, ¢ = 0, F;(x) is nondecreasing in space
and nonincreasing in time.

In a similar way, analysis of the discrete gradient flow of E is closely related
to a discrete time approximation of (2.6). In particular, we define

x — Cytw(x) ifx 20,

ﬂuy={o ifx <0,

so that fr(m) (x) is the mth step of the explicit Euler method with time step t. In the
following proposition, we recall some properties of the function f; (x) that will be
useful in our estimates of the discrete time sequences.

Proposition 2.8. (properties of f;(x))

(i) If0 < x < y < r, there exists ¢, > 0 so that f;(x) < f:(y) + Cﬁc%fz.
(ii) Forall x,y 2 0, fr(x +y) = fr(x) + .
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(iii) For all x,t = 0, | F,(x) — £,/ ()] £ Cao(x)t/n.
Proof. (i) and (ii) are consequences of [20, Lemma 2.25]. (iii) is a consequence of
[20, Proposition 2.24] and the fact that F;(x) is nonincreasing in time. O

Finally, we recall a contraction inequality for the discrete gradient flow of an
w-convex energy, which we use to conclude stability of the discrete gradient flow
sequences.

Proposition 2.9. (contraction inequality) Let E : P, (R?) — RU{+00} be proper,
lower semicontinuous, bounded below, and w-convex along generalized geodesics,
for w(x) as in equation (2.4) and L, < 0. Fix p, u € D(E) and, for t > 0, let p;
and [ be any measures satisfying

1 1
pr € argmin {—W22(,0, v)+E(v)} and |, € argmin {—sz(u, v)+E(v)} .
vePy(Rd) | 2T vePy(Rd) | 2T

Then there exist positive constants C and t, depending on W (p, ), Ay, E(1L),
and E(v) so that for all 0 < 1 < Ty,

FO W3 (e, 1)) S W5 (0, 1) + [holto(CWa (e, pe))
+27(E(p) — E(pr)) + CT2.

Remark 2.10. The preceding contraction inequality plays a crucial role in our study
of the gradient flows of E,, ; and E. For these energies, we are able to show that
the quantities W»(p, ), E(u), and E(v) are uniformly bounded along the corre-
sponding discrete time sequences (see Definition 2.14). We then iterate the above
contraction inequality to obtain stability estimates for the sequences in terms of
their initial data. Ultimately, we use these stability estimates to both prove con-
vergence of the discrete time sequences to the continuous time gradient flows as
T — 0 (see Propositions 5.1 and 5.2), as well as to prove a quantitative estimate on
the distance between the discrete time sequences corresponding to E,, ; and Es
(see Propositions 2.21 and 2.23).

Proof. This is a particular case of [20, Theorem 3.2]. O

Remark 2.11. (Wasserstein gradient flow of measures with mass not equal to 1)
We conclude by observing that the gradient flow theory can be easily extended
to nonnegative measures whose integral is not equal to 1. For a fixed A > 0, let
Pa, A(R?) denote the set of non-negative measures that integrate to A and have
finite second moment. For jt, v € P2 4 (]Rd ) (with the same A), we can then define
Wa (e, v) in the same way as in (2.1), and given initial data pp € P, A(R?) with
loolloo < 1, the same arguments lead to the well-posedness of a gradient flow
Poc : (0, 400) = Ps, A(RY) of Es. However, for the sake of simplicity, we will
assume that pg is a probability measure for the remainder of this section.
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2.2. Definitions of Energies and Discrete Time Sequences

We now turn to the definitions of the energies and discrete time sequences that
we will use to show that solutions of the nonlinear diffusions equations (PME-D),,
converge as m — 4-oo to the the gradient flow of the height constrained interaction
energy Eoo. We begin by defining the local potential ®1,, (x, t), which induces the
drift in (PME-D),,. As described in the introduction, previous work by Alexander,
Kim, and Yao suggests that the gradient flow of E+, should be obtained as the limit
of the gradient flows of the Keller—Segel energy Ek s, defined in equation (1.10).
However, we lack sufficient convexity of Egg to prove this rigorously. Instead,
we replace the nonlocal potential Np in Ek g with a local potential ®,,, (x, t) that
depends on time, the initial data po(x) of the gradient flow of E,, and the diffusion
parameter m = 1.

Definition 2.12. (local potential ®1,,,(x, t)) Given initial data po, let poo (x, 1) be
the gradient flow of the height constrained interaction energy E. Fix a mollifier
¥ € CX(RY) satisfying = Oand [ = 1, and let Y1/, (x) = m?y (mx). Then,
for any m > 1, define

D(x,1) = Npoo(x, 1) and @y (x, 1) = Y1/m * Nooo(x, 1). 2.7)

This definition is guided by the following intuition: given initial data pg, one
heuristically expects that the gradient flow of Egg should converge to po. Con-
sequently, if we replace Np in the definition of Ex s by Npoo, we expect that the
gradient flow of this new energy will still converge to poo as m — 4-00. We include
the extra mollification on the potential to leverage the existing theory on the porous
medium equation with drift [33], which requires the potential to be twice contin-
vously differentiable in space. By Proposition 2.7, V@ (x, t) is log-Lipschitz in
space, hence V®1,, = Y1/, * V® converges to V& uniformly on RY x [0, +00).
Furthermore, by Proposition 2.3 and the fact that A®1,,(x, 1) = V¥1/m * Poo (X, 1),

IV@1/m(C, Dlloo = Ca, AP /m (- Dlloo = 1. (2.8)

With this precise definition of the drift arising in (PME-D),, in hand, we now
turn to the definitions of the the three energy functionals that we use in our analysis
of the limit of (PME-D),,, as m — +o0.

Definition 2.13. (energy functionals) Fix ¢ € C2°(R?) as in Definition 2.12 and
w € Pa(RY) with [|it]leo < 1. For any p € P> (RY), define

L Node() if lIpllse £ 1,
Eoo(p) := _
+00 otherwise;
= Nu(x)dp(x) if ol = 1,
Eoo(pip) = / °_°
+o00 otherwise;
1 . d
Ey(p: ) i 41 ] PO [y 2 N ()i p < L7,
+00 otherwise.
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As shown in previous work by the first author, the gradient flows of the above
energies are well-posed [20, Theorem 4.3, Proposition 4.4]. In particular, while
these energies fall outside the scope of the theory of gradients flows of semiconvex
energies, all three energies are instead w-convex along generalized geodesics for
Ay = —Cyq, as in Proposition 2.3, and w(x) a log-Lipschitz modulus of convexity,
as in equation (2.4). The third energy is also A-convex along generalized geodesics

for A = A(m) i RN [2, Proposition 9.3.2, Proposition 9.3.9].
Corresponding to these energies, we consider the following discrete time
sequences.

Definition 2.14. (discrete time sequences) For a fixed time step t > 0 and p €
D(E), define:

(i) discrete gradient flow of Exo:

. 1 _
P! € argmin {2—W§(p¢ Lv) +Eoo(v)} and p¥ := p;
veP, (R4)

(i1) time varying discrete gradient flow of Eoo: for o asin (i),

- . 1 I ~ -
pr € argmin {—Wg(p? l,v)+Eoo(v;p?)} and 52 := p;
vePy(Rd) L 2T

(iii) time varying discrete gradient flow of E,,: for p? asin (i) and m > 1,

Py, € argmin {inz(,o?;n], V) + Ep(v; p?)} and pg’m = p.
vePy(RY) LT

The existence of the above sequences is guaranteed by [20, Theorem 4.3, Proposi-
tion 4.4]. However, they are not necessarily unique, and we use the notation p?, o7,
and p7 , to denote any such sequence. Still, using Proposition 2.9, which provides
a contraction inequality for w-convex functions, we can at least bound the Wasser-
stein distance between any two such sequences—for example, see Proposition 5.1
in the appendix for such an estimate for Eno.

If one takes T = t/n for t = 0, then as n — +oo the discrete gradient flow of
E converges to the continuous gradient flow of E,, with initial data p,(0) = p
[20, Theorem 4.3, Proposition 4.4]. Likewise, ,of/n’m converges to a solution of
the nonlinear diffusion equations (PME-D),,, which we denote by p,, (x, t), with
the same initial data (see Proposition 5.2) . We refer to p7 ,, as the “time varying”
discrete gradient flow of E,, since we change the second argument of E,, (-; -) at
each step of the sequence to accommodate the time dependent drift in (PME-D),,.

The main goal of this section is to show that limy,;,— 400 W2 (000 (2), om(£)) = 0,
which we accomplish by showing that the distance between the sequences p} and
P, becomes arbitrarily small as m — +o00. We use the sequence p;, defined in
(i) above, to serve as a bridge between the two. In what follows, we will often use
the crude estimate w(x) < /x, for x = 0 sufficiently small. Consequently, the
rate of convergence we obtain for p,, (f) — pco(?) is certainly not sharp, but the
inequalities are much simpler.
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We close this introductory section with a few elementary estimates on the above
discrete time sequences. In these estimates, as well as in what follows, it will be
useful to consider one step of the above sequences:

Definition 2.15. (one step minimizers) For a fixed time step T > 0, we define:

(i) one step of discrete gradient flow of Es: given p € P>(R?),

1
pr € argmin {—sz(,o, V) + Eoo(v)} ;
veP,®d) 27

(i1) omne step of discrete gradient flow of Eoo('; Ww): given p € Pz(Rd) and
€ Py(RY) with || ulloo < 1,

- . 1 -
pr € argmin {—sz(p, V) + Eco(v; u)};
vePy(Rdy | 2T

(iii) one step of discrete gradient flow of E, (-; u): given p € Pr(RY), €
Pr(RY) with [|pt]leo < 1,and m > 1,

1
Pr.m € argmin {2—W22(p, v) + E,(v; /,L)} .
vePy(Rd) L 2T

As before, [20, Theorem 4.3, Proposition 4.4] ensures these minimization problems
admit at least one solution. Again, these minimizers are not necessarily unique, and
we use the notation o, pr, and pr ,, to denote any such minimizer.

First, we estimate how the Wasserstein distance, energies, and L™ norms behave
under one step of the discrete gradient flow.

Lemma 2.16. Fix p, i € P>(R?) with ||it]leo < 1. Then for C4 > 0 as in Propo-
sition 2.3 and any t > O and m 2 2,

(i) Iflpllec = 1, then Wa(pr, p) = 2Cat and Eco(p) = Eoo(pr) + 2C31;
(it) If lplloo = 1, then Wa(pr, p) = 2CqT and Eoo(p; 1) = Eco(pr; 1) +
2Cd2t;
(iii) Forall p € P>(RY),

Wapem: ) < ol — loem s +2Car, Ziilloemlly <

—L|plm 4+ ZC3,
and Ep(p3 1) < Enm(prms 1) + (1017 = Ipeml) + Cay/-Z5ll0lm +
2Ct.

Proof. We begin with (ii). Taking v = p in the definition of p, and rearranging,

W3 (6e. ) = 27 (Eoolpi 1) = EolBei )
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Thus, applying Lemma 2.2, with f = Nu, and Proposition 2.3

0 < Ex(pi ) — Eoo(frs ) = /Nudp - /Nudﬁr

Combining the above two inequalities gives the results.
Next, we show (i). Again, taking v = p in the definition of p,,

W3 (pr. p) < 2T (Eoo(p) — Eoo(p1)).
Thus, applying Lemma 2.2, with f = Np and f = Np,, along with Proposition
2.3,
1
0 ZEx(p) — Ex(pr) = > (/ Nodp — /dipr +/prdp - /prdpr)
< CyWa(ps, p).

Combining the above two inequalities again give the results.
It remains to show (iii). For simplicity of notation, let ®/, = Y1/, * Nu.
Taking v = p in the definition of pr .,

1
EWZ‘Z(’)’ Prm) + Em(pems 1) S En(p; 1) (2.9)

By definition of £, Lemma 2.2 with f = ®y,,,, and Proposition 2.3, this implies

loemllZ/(m — 1) < oI/ (m — 1) + (/ B jmp — f cbl/mpf,m)

— W3(p, pr.m)/(2T)
< lpl™/m — 1) + CaWa(p, pr.m) — W3 (p, prm)/(2T)
= ol /(m — 1) = (Walp, pr.m) — TCa)’ /(27) + TC3/2

Dropping the negative term shows the second inequality. Rearranging gives

2
(W2(p. pen) =TCa)” _ (ol loemlim) | 7€
< - + =5,
2t m—1 m—1 /. 2

which, by the subadditivity of /-, gives the first inequality.
To show the third inequality, we combine (2.9) with Lemma 2.2 and use the
previous estimate on the Wasserstein distance,

1
05 En(pi ) = En(proni ) S —— (161 = pemn ) + [ Nisd(p = pr)

2T
< (lelyy = lloemlly) + Ca,/ P lolm 4 2C2x.
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Iterating the above lemma provides bounds on the Wasserstein distance between
the discrete time sequences of Eo,, Exo, and E,, and their initial data.

Corollary 2.17. Under the assumptions in Lemma 2.16, given initial data p €
D(Eco),

Wa(p7, p) = 2Cant, Wa(py, p) = 2Cant, and Wa(py, ., p)

< \/4n1: lpllm + 8C2n2t2.

Proof. The first two inequalities are a direct consequence of Lemma 2.16 and
triangle inequality, so it remains to show the third inequality. By Lemma 2.16 and
(a + b)? < 2a% + 2b2,

. . 4t
2 —1
W3 (b pin) £ —— |

. ‘

. . m
o e L R
m m

The result then follows by the triangle inequality, Cauchy’s inequality, and 1/(m —
H=1,

n 2 n
W3 (ol . p) < (Z W (o - pl,,,,})) <n Y W3 (Pl Pt )
i i=1
<4nr||,o||m+8Cdn 72 |

In the next three lemmas, we estimate the size of p; . These estimates are
similar in some respects to the corresponding results in previous work by Alexander
with the second and third authors [1]. However, the proofs must be adapted since the
semiconvexity of the drift potential ¥y, * Ny in the energy Ej, (-; ) deteriorates
as m — 400, and we must instead use that E,, (-; n) is w-convex uniformly in m.

Though we do not, in general, have || ,orlg mlloo < 1, in the next lemma, we show
that the mass of p; ,; above 1 becomes arbitrarily small as m — +o0.

Lemma 2.18. Fix p, i € P2(RY) with both ||pllse. | itllee < 1 and consider Pr.m
as in Definition 2.15. Then for C4 > 0 as in Proposition2.3 and0 <1 < 1,m = 2,

/(:Or,m(x) — Dydx £,\/Q+C)/m.

Proof. By the Cauchy-Schwarz inequality and the fact that |{p;, = 1}| <

fpr,m - 1,
1/2 1/2
[ @rn = 0 S e = 117 (/(m.,m - 1)1) < (f(pf,m - 1)1) -
(2.10)
Furthermore, for m 2 2, the convexity of f(s) = s ensures s >14+m@s—1)+
2=l (s — 1) for all s > 1, which yields (s — 1)1 < 5Z5s™ forall s > 0.

Consequently, (2.10) becomes

) 1/2
Dy S| ——— m .
/Rd(pf,m )+ = (m(m 1) Jae p,,m>



20 Katy CrAIG, INWON KiM & YAO YAa0
Since ||plloc £ 1,m = 2,and T < 1, Lemma 2.16 (iii) ensures ﬁ”pr’mnm <
14 Cﬁ/ 2. Substituting this into the above inequality gives the result. O

Finally, we use the previous lemma to show that p; , is always close to a
measure v that satisfies ||v|loo < 1 and is almost a one step minimizer.

Lemma 2.19. Under the assumptions of Lemma 2.18, there exists v € P> (RY) with
IVlloo £ 1 and C > 0 depending only on the dimension, so that

Wa(prm,v) < Cm™* and  Ep(v; 1) £ Ep(prn: p) +Cm~"2 (2.11)

Proof. Define a := f(p,,m — 1)4. Since pr j, is a probably measure, a < 1, and

by Lemma 2.18, we also have a < /(2 + C3)/m.

To construct v, we decompose pr, as Pr.m = p,lym + pim, where ,ol,m =
min{p;,m, 1 — a} and p? ,, = (pr.m — (1 — a)). First, note that

12 fpt,m Z (1 =a){prm > 1—all +/(pt,m -y
=0 -a)l{prm > 1—a}| +a,

so subtracting a from both sides and dividing by 1 —a ensures |{p; ,, > 1 —a}| < 1.
Thus,

/p%,m < /(pf,m ~ Dy +allprm > 1—a)l Sata-1=2a.  (2.12)

Now, choose R; so g := %XBRd(O) € P»(R?) and define v = pg,m + g * pf’m €
P> (R%). By Young’s inequality, the definition of p;m, and inequality (2.12),

1
lloo < llog mllco + llgllsolloz plli < (1 —a) + Sr2asl.

It remains to show that v satisfies (2.11). To show the first inequality, we use
the fact that that

W22(pr,ms v) = inf {/ lx — y|2dn(x’ y) : T#I = pr p and mo#IT = V} s
R4 xR4

where 77! (x, y) = x and 72 (x, y) = y [2, Equation 7.1.1]. We construct a transport
plan IT € P> (R? x R?) as follows: keep all the mass of ,oflﬁ ,» atits original location

and distribute the mass of pf’m(x) uniformly over the disk Bg,(x). Specifically,
the plan IT € P>(RY x RY) is given by

/f(xﬁ VdIl(x, y) = /f(xa x)dp;,,, (x) +/ fx.x = 2)g(2)dzdp?,, (x),
for all bounded and continuous functions f : R? x R? — R. In particular, taking

f(x,y) = |x—y|?and using that [ dp%m < 2a, we see that the total cost of this plan
is bounded by 2aR3, which gives W (pr,m, v) < v/2aRy < Rq(4(2+C3)/m)'/*.
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To show the second inequality in (2.11), we abbreviate ®1/,, = V1/m * Nu.
Then,

1

m—1 m—1
+/<D1/mdv—/<1>1/mdpr,m

< ol om — 1) + /(g kD1 — D1yl < (m— 1)

+ 2a||g * cbl/m - q)l/m”oo

En(v; ) — Ep(0cms 1) =

< 2m~! 4 2a ess sup,

/ (P1/m(y) — P1ym(x))g(x — y)dy
veBg, (x)

< 2m™ ' 4+ 2a| VO o Rallglli < 2m™" +2C Ran/ (24 Ca)2/m,

where in the last inequality we use Proposition 2.3. O

2.3. Distance Between Discrete Time Sequences of E, Eoo, and E,,

In this section, we apply the previous results to show that as m — +00, oy, (¢)
converges to po (1), with quantitative rates of convergence on bounded time inter-
vals. We accomplish this by first estimating the distance between the discrete time
sequences of E, Eoo, and E,,.

We begin by showing that one step of the discrete gradient flow of E; is also
one step of a discrete time sequence corresponding to E«o. (Recall that neither one
step of the discrete gradient flow of E, nor one step of the discrete gradient flow
of Es needs to be unique.)

Lemma 2.20. (one-step comparison between p; and p;) Given t > 0 and p €
Pa (RY), if p; is a one step minimizer of Eoo, then it is also a one step minimizer of
EOO ('7 p‘[)

Proof. Assume, for the sake of contradiction, that p; is not a one step minimizer
of Exo (-, pr). Then there exists v € P»(R?) with ||v]|se < 1, such that

1 1
2T 2T

Define p? 1= (1 — &)p; + v € P2(RY), 50 [|p%]loc < 1. We will show that for
& > 0 small,

W3(p, pr) + Eco(pe; pr) > —W3(p, 1) + Eoo(v; po). (2.13)

1 1
52 W20, o) + Eoo(pr) > - W3 (p, 0) + Eoo(p%), (2.14)

which contradicts the fact that p; is a one step minimizer of E.
By inequality (2.2), W22 is convex along linear interpolations of measures, hence

W3(p, p°) = (1 — &)W5(p, pr) +eW5(p, v)

(2.15)
= W3(p. p0) = & (W2 (o, pr) = WE(p. 1))
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Likewise, we use that 2E,(p;) = Eoo(,o,; p7) to estimate the behavior of Eo
along p® by

1
Eoo(p®) = E/N((l —&)pr +ev)d (1 —¢&)pr +¢€v)

= (1 — &)?Eoc(pr) + £(1 — &) Eao(v; pr) + % Eno(v)
= Eoo(lor) - E(Eoo(,or; pr) - Eoo(‘); pr)) + D<927

(2.16)

where D := Eoo(p;) + Exc (V) — Eoo(v, pr) is a constant independent of ¢. Mul-
tiplying (2.15) by 1/(27) and adding to (2.16) yields

1
ZWZZ(’)’ 0%) + Ecc(p%)

1
< ZWQZ(,O”OI) + Exo(pr)

] ~ ~
¢ (Z(sz(f” pe) — W3 (0. 1) + Eoo(pri pr) — Eco(v; p,)> + De2.

By (2.13), the quantity within parentheses is strictly positive, hence we obtain (2.14)
for e small. O

Using this lemma and Proposition 5.1, which provides a contraction inequality
for two discrete gradient flows of w-convex energies, we can bound the distance
between the discrete gradient flow of E, and the discrete time sequence corre-
sponding to Eo.

Proposition 2.21. (multi-step comparison between p! and p7) Given T > 0 and
initial data p € D(E), there exist positive constants C and N depending on the
dimension, T, and Ex(p) so that fort =t/n,0 <t < T,andn > N,

Wa(pl, pp) < Cu= 212,

Proof. By Lemma 2.20, p! is also a time varying discrete gradient flow of Eoo, in
the sense of Definition 2.14 (ii). Hence, by Proposition 5.1, for any 7 > 0 there
exist positive constants C and N (which we allow to change from line to line),
depending on the dimension, T, and E(p) so that fort =¢/n,0 <t < T, and
n>N,

FEDW3 (o}, B1)) < Coo(t/n) < Cn™ 2,

Furthermore, combining Corollary 2.17 and the triangle inequality provides the
following crude bound for the distance between the two sequences:

Wa(p?, 1) < Wa(pl, p) + Wa(pl, p) < 4C4T < C.
Therefore, by Proposition 2.8 (iii) and the fact that F;(x) is decreasing in time,

Fane (W3 (p2, p1)) £ Cn™' P 42Cq0(C)T /n = Far (W5 (o}, p1)) < Cn™'/2,
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Since for0 < x < e‘l_ﬁ, Fi(x) = xecdt, for n sufficiently large, we have

2C4T
s

Wa (o7, 37) < Cn~ /212
which gives the result. O

Next, we bound the distance between one step of the discrete time sequences
corresponding to E, and E,,.

Proposition 2.22. (one-step comparison between p; and pr ) Given p,u €
Pr(RY) with ||plloos Ittllee £ 1 and Cq > 0 as in Proposition 2.3, there exists

C > 0depending only on the dimension so that forall0 < 1 < 1/6Cg andm = 2,
W2(;0r‘ma Pr) § Cm_l/s + 26—1/(4Cdr)-

Proof. Let v be as in Lemma 2.19 and define

1, 1
— Pr
n = <2tp + th )#,0
to be the midpoint on the generalized geodesic from v to p, with base p. Since the
L norm of a generalized geodesic is bounded by the L° norm of its endpoints
(c.f. [20, inequality (60)]), we have ||v||s < 1. Furthermore, by the optimality of
Pr,m and pr,

1 2 1 2
—W5(o,n) + En(n; ) 2 2—W2 (0, Pr.m) + En(prm; V),

27
1 1
77 30, ) + Eco(n; 1) 2 7 —W3(p, pr) + Eoolfr; 10).

Adding these inequalities together and collecting the distance and energy terms
gives

Tw + Tg 2 0, (2.17)
for
1 1 1
Tw =—W2(p n)——Wz(p Prm) — Wz(P Pr)s
Te := En(p; ) + Eco(n: p) — m(pr,m; u) — Eco(prs ).
Next, we find upper bounds on Ty and Tg. Define A := ||t;’) — tgf l22(p)- Since

W22 (p, -) is 2-convex along generalized geodesics with base p [2, Lemma 9.2.1],

W3 (p,m) < Wi (p,v)/2+ W5 (p, pr)/2 — A%/4.
Substituting this in the definition of Ty,

1 A
Tw < — W2 ’ _ WZ , -
w =< 21'( 5(p,v) 5 (05 Pr,m)) e
1 A?
< 2_TW2(pT’m, V) (Wa(p, v) + Walp, pr.m)) — .
| A2 c A?
< —Wa e V)(Wa(prms V) +2Wap, pem) — = < —=m~ 4 = 2|

2T - 21’ 4t
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where in the last inequality we apply W2(por.m, v) < Cm~!/* from Lemma 2.19,

Wa(prm, p) = V21 + 2Cy47 from Lemma 2.16, and the facts that m > 2 and
7 < 1. We also allow C > 0, depending only on the dimension, to change from
line to line.

In order to bound Tr from above, we first estimate the difference between
Enm(ft, 1) and Eoo(jL, ) for any i € Po(RY) with ||ftlcc < 1. As usual, we
abbreviate ® := Nu and @1/, := Y1/, * Nu. Given Ry > 0 so that supp ¥ C
Bg,, (0), for any x € R4, Proposition 2.3 ensures

[@1/m(x) — P(x)] = M%d(d)(x — ) = ) Y1/m(y)dy
< Ry [ V®[loom™" < Cam™".
Consequently,

1 5 -
p— /’Lm+/|q)1/m_q)‘d“

A

En (s 1) = Eoois )|
Sm—1D"+[®1m — Plls £ 2+ Ca)m™".

Therefore, first applying Lemma 2.19 to the definition of Tr and then using the
above inequality,

Tg £ En(; ) + Eoo(n; ) — Em(v, ) — Eoo(fr; ) +Cm™ 2 (2.18)
< 2Eoo(n; 1) — Eco(v, 1) — Eoo(pes ) + Cm~V/2.

Since Eqo(-, ) is w-convex along generalized geodesics and 7 is the midpoint
along the generalized geodesic from v and p, with base p,

. - . C A2
2E o (i 1) — Eoo (Vi 1) — Eoo(frs ) < 7% (7> :

Substituting this into inequality (2.18) gives
T < Cm~ 2 + Cho0 <A2/4> .

Finally, combining our upper bounds on Ty and Tg with inequality (2.17), we
obtain

A2 <em V4 4 ac e (A2/4) . (2.19)
We now claim that
A S V2Cm™ V3 4 2o~ 1/CT) (2.20)
If A2/4 > e_l_ﬁ, then combining inequality (2.19) and T < 1/(6Cy) implies

A2 < Cm V4 4 4rCho (A2/4) < Cm V4 4310 A% — A < 2Cm V8,
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hence (2.20) holds. Alternatively, if A2/4 < ¢=1=V2,

If (2.20) is violated, we have A > V2Cm= V8 and A > 27 1/6CaD) g
Cm™1/* < A?/2 and —Cyt A log(A%/4) < A; Adding these together would
contradict (2.19), so again (2.20) holds.

Since A = [It) — t;" [l 125 = It} o tgr —id|| 25, and t} otgr#ﬁf =, we
have W) (v, p;) < A. Therefore, using (2.20) and Lemma 2.19, we may conclude
the result,

W2 (0r.ms Pe) < Walprms v) + Wa(v, fr) < Cm~ V4 + A
S Cm™VA 4 V2Cm™ 1B 4267V @CD) < o= 1/8 9= 1/GCT),

O

Proposition 2.23. (multi-step comparison between p7 and p7 ,,) Given T > 0 and
initial data p € D(E), there exist positive constants C, N, and M depending on
the dimension, T, Ex(p), and { so thatfort =t/n,0 <t <T,n> N, m > M,
and n = o(m'/®),

Wa(pl s ) S Clu™ 4 ™1/ 1265507

Proof. Define d; := Wz(p.’;’m, ,éi) foranyi =1, ..., n. Using Corollary 2.17 and
ol < 1, we have the crude bound

di < Wa(p} > ) + Walpy, p) < VAT +8CyT? +2C,T. (2.22)

The one step estimates from Proposition 2.22 allow us to control the distance
between one-step minimizers of E,, and E,, when they have the same initial data.
In particular, for

§ = Cm~ /3 4 2o~ 1/@CaT) (2.23)

we haved; < 8. Inorder to apply Proposition 2.22 to control d; fori =2, ..., n,we
use a sequence of densities ' to serve as abridge between oy, and oy, following the

tree structure in Fig. 1. Specifically, we choose n’ € P, (R¢) so that, by Proposition
222,

. 1 L . L
n' € argmin {—sz(pi ],v)+Em(v;p’f)} — Wa(py,n') =68. (224
vePy(RY) L 4T

Since 1’ and pt ,, are one-step minimizers of the same energy E, (-, p!) with
different initial data (5!

using Proposition 2.9.

and p;’,,} respectively), we may control their distance
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07 m
B, _-ve
Prm -7
PZ,:,LE%' *~
P, Lo
En,
7 g 2 |d ds dy
Eoc ol 3
N .
Pr Eoo g
pr -

Fig. 1. An illustration of the tree structure used in the multi-step comparison between /7
and p? ,,

First, we obtain a few elementary bounds on how the energy changes along the
discrete time sequence. Combining Lemma 2.2, Proposition 2.3, Lemma 2.16, and
the definition of p;_ml as a minimizer,

Em (p.’;f,,,l;pi) = Ep (p.’;_,,,l;p-’;) — Ep (pt Pt 1)

(ol i) +
—E, (meuor 1) /wl/m*Nprm ( :0; 1)
( )+CdW2 (Pf’P; 1)

En
<En (p{m;p; )+2C§r <..-ZEn (p;pl)+2c§T

lo‘[m’lo‘[
ptm?p‘[

Likewise, we may control the first term on the right hand side of the last inequality
by

En (0 pt) = llolls/Gm = 1) +/w1/m *Npldp < 1+ 2E(p)

+ / Npd (wl/m *py— p)

S 1+2Ex(p)
+ CaWa (Viym # Pt p) 14 2Ecc(p)
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+Ca (W2 (V1m * P p}) + Walol )
< 1+ 2Eo(p) + Ca((1/m)My, +2C47)

where, in the last step, we apply [2, Lemma 7.1.10], which ensures

1 1z
Wap * Yrijm, ) = — (/ lezlﬂ(X)dx> = —My. (2.25)
m m

Combining the above two inequalities, we conclude that there exists constant C > 0
(which we allow to change from line to line) depending on the dimension, 7', Eo (p),
and ¢ so that

En (p’r_m],p;> <C forali=1,...,n.
Furthermore, by Proposition 2.3, we also have that E,,(-; -) is uniformly bounded
below.
Using these estimates on the energy, we may now apply Proposition 2.9 to
conclude that there exist positive constants C and N depending on the dimension,

T, Ex(p), and v, which we allow to change from line to line, so that for t = ¢/n,
0<¢t<T,andn > N,

2 (W22 (ni, pi,m)) <dl |+ Cyto (CWz (ni, /5.’;_1)) +21 (Em (pifml; pi)
—E, (,oi,m; pl,)) +Ct%

By Lemma 2.16 (iii), we have the following bounds for two quantities on the right

hand side:
wa (A1) < /21 i + 2T £ OVR,
En (pi,‘ml; pi) — En (p-’;,m; p.’;) < (Ilpifn}lliﬁ —~ Ilpi,mllﬁ) +CV/T.
Therefore,
O (W3 (' ph)) < a2+ 27 (Iokal s = lokull) + €% 226)

We now use this estimate tobound d; = W5 ( pi’ ms ,5i ). By the triangle inequality
and (2.24),

. . , AN 2
d} < (Wz (n’, p’r,m) + Wa (ﬁ’,, n’))
< w? (n’} pi,m) + (2W2 (n", p;m) + 5) 5 (2.27)
Furthermore, by Lemma 2.16 (iii), inequality (2.22), and equation (2.23)

Ws (ni, ,Oi,m) W, (ni7 ,5i_1) +di-1+38=C,
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Thus, by Proposition 2.8, we may apply ff(z) to both sides of the (2.27) to obtain
P2 < @ (W22 (ni, p;m)) +Cs+CT2
Combining this with (2.26) gives, foralli =1, ..., n,
Ddh £d +21 (||pi;,} = 110% m) +CoM s (2.28)
We claim that the result will follow if we can show that, forall j =1, ..., n,
FED @) £ a2y + 27 (108 Iy = ok lly) +2C754) + C8j. - 229)

In particular, if this holds, then taking j = n and using that e~1/4Cd™ = O (¢3/%)
gives

£ @2y <2t|p|™ +2CTt"* + Con < Cn™ V4 + nm™1/8).
By Proposition 2.8 (iii) and the fact that F;(x) is decreasing in ¢,

Fone(d®) £ Co™ V4 4+ nm™V8) 4 2C0(C)T/n = Far(d?)
< cm V4 4+ nm~178).

For0 < x < ¢~ 1=V2_ we have F,(x) = x4, Thus, for n and m sufficiently large,
depending on the dimension, 7', Es(p), and ¥, and with n = o(ml/g), we have

d, < C(n*1/4 +nm71/8)1/2e2CdT7

which gives the result.
It remains to show (2.29). We proceed by induction. The base case for j = 1
follows from (2.28), so we assume the result holds for j — 1,

j— —j+1
FRUTD@ = a2+ 20 (ot ™ i = 10k )
+2CT4 G = 1)+ C8( — 1).

For any j = 1, ..., n, the right hand side is bounded by a constant depending on
the dimension, 7', Ex(p), and 1. Thus, by Proposition 2.8, we may apply ff(z) to
both sides to conclude

i —j+1
FED @D < 12 @0+ 27 (108l T = ot )
+2CT4 (G — 1)+ C8(j — 1)+ C?22

< a2+ 20 (1ol s = 167, 1) +2C2%%j + C3

where, in the second inequality, we apply (2.28) and the fact that
C’t?<Cryr. O

Combining the previous propositions, we obtain our main result.
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Theorem 2.24. (convergence of p,,(t) t0 pso(t)) Given T > 0 and initial data
0 € D(Ex), there exist positive constants C and M depending on d, T, Ex(p),
and Vr so that forall0 <t < T andm = M,

Wa(om (1), poo (1)) < Cm~1/144*T

Proof. Combining Proposition 2.21, Proposition 2.23, [20, Theorem 3.8], and
Proposition 5.2, there exist positive constants C and N depending ond, T, Ex(p),
and ¢ sothatfort =¢t/nandalln 2 N,m 2 d+1,0 <t < T,andn = o(m'/?),

~ _ 2C4T ~ _ _ 2C,T
Wa(pr, pr) < Cn 1A Wapf . A1) < Cn= 4 4 nm = /8) 1127

Wa(pl, poo(t)) < Cn /166247

4c,T

o W2 e P (1) S Cn 1O
Hence, by the triangle inequality, we have
_ 4C,T 2C4T 2C,T
Wa(om (1), poo(£)) S C (=107 4 1274y = /16T,

Taking n = m!/? gives the result. O

3. Convergence of Viscosity Solutions: Drift Diffusion Pressure to Free
Boundary Problem

In the previous section, we showed that the gradient flow of the height con-
strained interaction energy Eo, which is merely a curve in the space of measures,
may be approximated by solutions of the nonlinear diffusion equations (PME-D),,
as m — +oo. This approximation provides the bridge by which we are able to
unite the energy methods approach with viscosity solution approach. In the present
section, we use this approximation to characterize the dynamics of patch solu-
tions in terms of a Hele-Shaw type free boundary problem. We accomplish this by
considering the nonlinear diffusion equations in terms of their pressure variables:
given p,, a weak solution of (PME-D),,, the pressure variable p,, := # (pm)m_l
uniquely solves

(Pm)t — m — 1) pp(App + A(I)l/m) —Vpu - (Vpm + Vq>l/m) =0. P

For initial data given by (1.9), we show that as m — +oo the half-relaxed limits
of viscosity solutions of (P),, satisfy sub- and supersolution properties of (P)so.
The comparison principle of (P)s then yields that these half-relaxed limits are
ordered with respect to the viscosity solution p of (P)s with the same initial data.
In terms of the density variable, we show that p, uniformly converges to xq()
away from 92 (), where Q (¢t) = {p(-, t) > 0}. It follows that poo = xq(;) almost
everywhere, and thus (P)., identifies with (P). Due to the fact that we lack a priori
stability estimates to link (P)o, and (P) as the initial data varies, we must introduce
additional perturbations and approximations into our proof of this final result.
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Remark 3.1. The lack of the comparison principle for the original problem (P) is
not the main reason we consider (PME-D),,. We could have considered the drift
term given by ® := N x p,,, and thus proved the convergence of the Keller—Segel
equation to our problem, if we had known that the corresponding solutions py,
converged to ps, as m — +00. Obtaining such convergence seems to require a
uniform L* bound on the gradient flow solutions of (PME-D),,, which is an open
question at the moment.

3.1. Definition of Viscosity Solutions of (P),, and (P)s and Weak Solutions of (P)

We begin by recalling some notation. For Q C RY x (0, 00), we write [ €
C>1(Q) if f is twice continuously differentiable in x and once in . We say that
u — @ has a local maximum (minimum) zero (xo, to) in Q if there exists ¢ > 0 such
that

@(x0, t0) = u(xo, o) and ¢ = u (¢ < u)in Q N (B (x0) x (to — €, o + €)).

In other words, ¢ touches u from above (below) at (xg, #p) with respect to Q.
Given an open set 2 C R4 and a function 4 : Q x [0, 4+00) — R, we denote
its upper and lower semicontinuous envelopes by

h*(x,t) ;= lim sup h(y,s), hg(x,t):=1lim inf A(y,s). 3.1

e— Ie—y|<e, e—=>0|x—y|<e,

lt—s|<e l—s|<e

Note that #* is the smallest upper semicontinuous function satisfying 2 < 7*, and
h is the largest lower semicontinuous function satisfying 7 > h,.

We now turn to the definition of solutions of (P),,, (P)so, and (P). For (P),,,
we refer the reader to Alexander et al. [1, Section 3] and Kim and Lei [33, Section
2.1] for the definitions of classical and viscosity solutions. For (P)s,, we again
follow an approach reminiscent of Kim [32] and Alexander et al. [1], with the
notable difference that we separate of the solution and the set evolution in our
notion of subsolutions. (If we instead defined solutions of (P), by comparison with
classical sub- and supersolutions, it would ease the proof of the comparison theorem,
Theorem 3.11. However, our definition is more natural from the perspective of our
convergence theorem, Theorem 3.17.)

Definition 3.2. (subsolution of (P)s) An upper semicontinuous function u : R? x
(0, +00) — [0, +00), paired with a space—time set ¥ = U;~(2(¢) x {t}),is a
viscosity subsolution of (P)s if

@ {uC,n)>0CQ@and = N{r <19} € N{r < to) for every 1y > 0;
(b) forall p € CZL(R? x (0, +00)) so that u — ¢ has a local maximum zero at
(x0, f0) in T N {r < 1t}
(1) if xg € 2(1)° or u(xop, to) > 0, then —A¢p(xg, p) < 1;
@) ifxg € 0Q2(ty), u(xo, to) = 0, and |V|(xo, tp) 7#~ 0, then

min(—A¢ — 1, ¢, — [Vg|* — Vo - V®)(xg, f9) < 0.
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We will say that u : RY x [0, +00) — [0, 4+00) has compactly supported initial
data ug if, in addition,

(©) u(-,0) = up(-) and {ug > 0} = = N {r = 0}.

We introduce the set ¥ for technical reasons, to allow for the possibility that u
becomes zero in the evolving set €2 (¢). Condition (a) ensures that a subsolution does
not jump up from zero. Condition (b)(ii) ensures that limits of viscosity solutions
are viscosity solutions, since it is possible that the boundary collapses in a limit and
boundary points of the limiting functions become interior points of the limit.

Definition 3.3. (supersolution of (P)~) A lower semicontinuous function v : RY x
(0, +00) — (0, +00) is a viscosity supersolution of (P), with initial data vy if for
all p € Cz'l(Rd x (0, +00)) so that v — ¢ has a local minimum zero at (xg, tp)
with respect to R? N {r < 1o},

(1) if (xo, f0) € {v > 0}, —A@(xo, f0) = 1;
(i) if (xo, tp) € 9{v > 0}, v(xp, tp) = 0,
IVol(xo,t0) 20, and{¢p > 0}N{v>0}NB £0
for some ball B centered at (xg, fg) (3.2)
then max(—Ag — 1, ¢, — |Vo|? — Vo - VO)(x0, 19) > 0.
Will we say that v : R? x [0, 400) — (0, 4+00) has initial data vy if v(-, 0) = vo(-)
Condition (3.2) ensures that ¢ touches v from below in a non-degenerate way.

Definition 3.4. (viscosity solution of (P)~) A lower semi-continuous function u is
a viscosity solution of (P)s in R¢ x (0, 00) with compactly supported initial data
ug if (u*, {u > 0}) and u are respectively viscosity sub- and supersolutions of (P)so
with initial data u.

The following lemma illustrates the fact that the solution of (P)s, is entirely
characterized by its support.

Lemma 3.5. Suppose u is a viscosity solution of (P)s in R? x (0, 00) and
{u* > 0} = {u > 0}. Then, for eacht > 0, u(-,t) = (hy)«, where

hy(x) = inf{a(x) : —Aa = 1 in an open set E containing {u(-, t) > 0};
«>00nE.)

Proof. By the definition of a viscosity supersolution, —Au(-, ) = 1 in {u(-, 1) >
0},50 (hy)« < u(-, t). Onthe other hand, by the definition of a viscosity subsolution,
—Au*(-,1) < 1inR% and u*(-, 1) is supported in {u(-, 1) > 0}. Therefore u*(-, 1) <
a for any candidate function a(x) in the definition of A, so u*(-, 1) < (hy)*.
Consequently, we conclude that u (-, 7) = (h;)y. O

We close by defining the notion of weak solution for the original free boundary
problem (P).

Definition 3.6. p is a weak solution of (P) if it is a viscosity solution of (P)., with
initial data pg and pos = X{p>0) almost everywhere.
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3.2. Basic Properties of Viscosity Solutions of (P);, and (P)s

We now recall the several results on well-posedness of viscosity solutions of
(P),, and the L' contraction of the corresponding density variable.

Lemma 3.7. Consider the porous medium equation with drift and source terms,
pr =V - (pVPim) + Ap™ + pf, (3.3)

with f € L' and bounded nonnegative initial data then:

(a) If p1 and pa are nonnegative weak solutions of (3.3) with source terms fi and
fa, then for all t 2 0,

lo1(, 1) — pa(, f)”Ll(]Rd) S lpi1(, 0) — pa(, 0)||L1(Rd)

t
+// lo1f1 — p2 121
0 Jrd

(b) Let p be a nonnegative weak solution of (3.3) for any continuous, compactly
supported initial data py and continuous function f. Then the pressure vari-
able p,, == %pm’l is a viscosity solution to

(Pm)e — (m — 1) pm(Apm + ADy/py + ) =Vpu - (Vpm + Vq)l/m) =0.

Proof. (a) is due to [51, Section 3.2.2], and (b) follows from
[33, Corollary 2.11]. O

We now turn to the following estimates on the size and support of solutions to
(P);,,, which are uniform in m. The first ensures that if the initial data is bounded
uniformly in m, it remains so on bounded time intervals. The second ensures that
if the support of the initial data is bounded uniformly in m, it likewise remains so
on bounded time intervals.

Lemma 3.8. (Estimates on size and support of solutions to (P),,) Let p,, be a viscos-
ity solution of (P),, with continuous, compactly supported initial data p,, (-, 0). Sup-
pose that there exists Ry = 1 sufficiently large so that {p,,(-,0) > 0} C Bg, 12(0)
and py(-,0) < R2/4d. Define R(t) == (Ro + S)e'/? — S with C4 > 0 as in
(2.8). Then,

(a) {pm(-,t) >0} € Br)(0) forallt €0, T];
(b) pm(x,1) < R(®)?/2d forallt > 0.

Proof. We prove the result by comparison with a classical supersolution of (P),,.
Define

1—|x|?
h(x) = o7 for x| < 1,
0 for |x| = 1,

so that i(x) satisfies —Ah = lin |x| < land h = 0 in |x| = 1. Let ¢(x, t) :=
R(t)zh(x/R(t)), where R(t) solves R'(t) = % + C4 with r(0) = Rg, and Cy is
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the upper bound of [|[V®;,,, || given by (2.8). We claim that such ¢ is a classical
supersolution of (P),, for all m. To check this, direct computation gives that in the
support of ¢,

2
x]

- R’ R()R'
i (x, 1) = 21%(:)1(@)—22")2 +R() <_d;(t)) . <_XR(t()t2)> _ (’)d 0}

(3.4)
and [Vo (-, )lloc = R(1) | Vhlloo = 2. In addition, since Ag = —1 inits support
and A®y/,, < 1 for all m, we have

R(t) (R(t)
(m—1¢ (Ap + ADy/p) =V - (Vo + VDyp) = e <_d + Cd) - (3.5
———
<0

Comparing (3.4) with (3.5) gives that ¢ is a classical supersolution if R’ () = % +
C4. With R(0) = Ry, we have p,,(-,0) < ¢ (-, 0) for all m, and supp p,,(-,0) C
BRy/2(0) C BRry(0) = supp ¢ (-, 0). The comparison principle for viscosity solutions
(see Theorem 3.10 below) then yields that { p;, (-, t) > 0} € Bg()(0) for all ¢, and
pm(x, 1) S R(1)?/2d forall x,r. O

Remark 3.9. Lemma 3.8(b) and the fact that p, = (=L p,,)!/"= 1 directly lead
to the bound
lim sup | om (-, e < 1 forall 7 = 0, (3.6)

m— 00

which we will make use of in what follows.

A key property of viscosity solutions of (P),, is that they satisfy a comparison
principle, which we now recall. We say two functions f, g : RY — [0, 00) are
strictly separated, denoted by f < g,if f < gin{f > 0}, and {f >0} is a
compact subset of {g > 0}.

Theorem 3.10. (comparison theorem for (P),,) Suppose u and v are viscosity sub-
and supersolutions of (P),,. If the initial data are strictly ordered, that is

u(-,0) <v(,0)in{u(-,0) > 0} and {u(-, 0) > 0}

is a compact subset of {v(-,0) > 0},

thenu(-,t) < v(-,t) forallt > 0.
Proof. The result follows from [33, Theorem 2.25]. O

We also have the following comparison theorem for solutions to (P)s,, which
we prove at the end of this section:

Theorem 3.11. (comparison theorem for (P)s,) Suppose (u, ¥) and v are respec-
tively viscosity sub- and supersolutions of (P)eo. If the initial data are strictly
ordered, that is

u(-,0) < v, 0 inXN{r=0}and T N {t = 0}
is a compact subset of {v(-, 0) > 0}, 3.7

then u(-, 1) < v(-, ) and T N {t} C {v(-,t) > O} forallt > 0.
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Our approach in proving this comparison theorem is to consider the first contact
time for regularizations of sub- and supersolutions, obtained by considering their
sup and inf convolutions over space-time smooth sets. Such regularizations are often
used to prove comparison principles for free boundary problems (c.f. 1, 14,15,32]),
as they ensure that, when the free boundaries intersect for the first time, the free
boundaries have both the interior and exterior ball property at the contact point.
This provides sufficient regularity to consider a first-order asymptotic expansion of
the free boundary graph at the contact point.

Proof of Theorem 3.11. Our proof is parallel to the proof of [1, Theorem 2.7],
the main difference being that our drift term V&1, has less regularity uniformly
in m. This makes (P)o, more susceptible to perturbations, so we must carefully
choose our regularization procedure so that the regularized solutions remain sub-
and supersolutions of the original problem.

We now describe the details of this regularization. Fix rg € [0, e(_l_ﬁ)/ 2).

Let r(¢) be the unique solution to
"ty = -2C 1)),
(1) = =240 (r(1)) a8)
r(0) = ro,

with C; and o (x) in Proposition 2.7. Given (u#, ¥) and v as in Theorem 3.11, we
define the spatial sup and inf convolutions

u (x, 1) = sup u(y,t), v (x,1):=_inf v(y,1), T" :=U;0Q O @)x{r},
B,(,)(x) Br(t)(x)

(3.9)
where Q"0 (¢) := {x : d(x, Q()) < r(t)}. Next we define the spacetime sup and
inf convolutions

i (x,t):= sup u'(y,s), V' (x,1):= inf v'(y,s),
B, (x,1) B, (x,1)
Y= A{(x, 1) :d((x,1), 2" < r*}. (3.10)

for fixed ry > O.

For r* := (o (r(T))/11)*, one can show that (i, £") and ¥" are viscosity
sub- and supersolutions of (P)s in R” x (rg, T — r*). (The proof of this fact is
standard, and we refer the reader to the arXiv preprint of the manuscript for further
details.)

Using the above regularization procedure, the result then follows as in [1, The-
orem 2.7].

We will use the preceding comparison theorem, as well as the L' contraction
theorem for p,,, to obtain our first main result: we identify p, with the characteristic
function on the support of the minimal viscosity solution of (P),, when the initial
data pg is given by (1.9).

While the above theorem almost provides uniqueness of (P), the requirement
that the initial data be strictly ordered prevents us from concluding this result.
However, combining the comparison principle with Perron’s method yields the
following:
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Theorem 3.12. For any bounded open set Qo € RY with Lipschitz boundary, there
exists minimal and maximal viscosity solutions of (P)c.

Proof. The result follows from [32]. O

3.3. Convergence of (P), to (P)so

In this section, we show that, as m — 400, viscosity solutions p,, of (P),,
approach a solution p of (P)s and use this to show that patch solutions to the
congested aggregation equation satisfy poo = xq() almost everywhere, where
Q@) ={pC, 0 =>0}

We begin with the following lemma which states that p,, converges to pso
weakly even if py, has initial data (=5 20)"/™= "instead of requiring the initial
data of p,, to coincide with the initial data of po, as proved in Theorem 2.24.

Lemma 3.13. Ler Qo € R? be a bounded domain with Lipschitz boundary, and let
Poo (-, 1) be the gradient flow of E with initial data py = xq,. Let pm, be the weak
solution of (PME-D),,, with initial data (%po)l/(’”_l), where pq is as in (1.9).
Then for any t > 0 and any f € C(R), we have

m—0oQ

lim | pm(x, 0)f(x)dx :/ Poo(x, 1) f(x)dx forallt > 0.  (3.11)
R4 R4

Proof. We will first prove (3.11) forall f € C (R?) N L*®(R?), and at the end of
the proof we will extend it to all (possibly unbounded) continuous functions.

Let 0, be the weak solution of (PME-D),, with initial data xq,. Theorem 2.24
then yields that lim,,— oo W2(0p,(t), po(t)) = O for any t > 0. By [2, Remark
7.1.11 and Remark 5.1.2], convergence in W, distance implies that

lim | o (x, 0 f (1)dx = /d poo(x, 1) f(x)dx  forall f e C(RHNL®(RY).
R R

m— o0
(3.12)
To relate p,,, with p,,, note that they are both weak solutions to (PME-D),,,, with
different initial data xq, and (25 po)"/"" =D respectively. Since (-2 po)!/ =1
— X, pointwise as m — +00, we have

. m 1/(m—1)
lim H( — 1PO) — XQo

m— 00 m

L (R4) -

by dominated convergence theorem. Also, recall that for any m > 1 and ¢t = 0, the
L' contraction result in Lemma 3.8 gives

m 1/(m—1)
o)

16m Gy 1) = pm (s Dl L1 ey = H( — X%

m—1 LIRd)

Combining the above two equations yields limy;— oo [|0m (-, 1) — pm (-, D)l L1 (rey =
0, hence

m— 00

im [ (Fne.0) = pu(x.0)f()dx =0 forall f L®@RY.  (3.13)
R
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Putting (3.12) and (3.13) together gives us (3.11) for all f € C(RY) N L®(RY).
To remove the requirement f € L®(RY), recall that Lemma 3.8 gives that p,, (-, 1)
is supported in some bounded set B(0, R(¢)) for all m, and as a result poo (-, ) is
supported in it too. If f € C(R?) is unbounded, we can simply set f = fn, where
1 is a smooth cut-off function thatis 1 in B(0, R(¢)) and O outside of B(0, R(z)+1).
We then have (3.11) holds for f. Since changing f to f will not change the integrals
in (3.11), we know (3.11) holds for f too. O

We begin our study of the limit of solutions of (P),, with the following result,
which shows that the half relaxed “limit infimum” of solutions of (P),, is a super-
solution of (P)o.

Proposition 3.14. Suppose p (x, t) is a viscosity solution of (P),, with initial data
Pm (-, 0) = po as given in (1.9). Then the half relaxed limit

ur(x, t) = liminf py,(x, ) = lim inf  pu(y,9) (3.14)
*

n—+0o00 m
|(x.)=(y.5)I<1/n
is a viscosity supersolution of (P)so.

Proof. The proof is analogous to [1, Theorem 3.4]. For further details, we refer to
the arXiv preprint of the manuscript. O

Next, we proceed to show that taking a “limit supremum" of p,, yields a sub-
solution of (P). Here we need to be a bit careful, due to the fact that subsolution
property is based on maximum points only in the support of the subsolution. (See
Definition 3.2.) Indeed, due to the nature of one-phase problem it is not possible
to perturb a smooth test function ¢ to create a strict maximum of u' — ¢ without
restricting the domain to {#! > 0}. This can create technical difficulties with argu-
ments along the lines of above proof to ensure that the local maximum points are
stable under the limit m — oo, especially when the support of p,, degenerates as
m — oo. To overcome this obstacle, we work with a modified notion of viscosity
subsolutions, which are comprised of a pair (u, X). This allows the set evolution
% to be larger than the support of u. (See Definition 3.2 for details.)

Proposition 3.15. Suppose p,, (x, t) is a viscosity solution of (P),,. Define

S@) == Ny> 1 Un>m{pm (G, 1) >0}, Xy := Ur=0(8(1) x {t}) (3.15)

Then if uy is the half-relaxed limit of pn,

*
ui(x, 1) :=limsup py (x,7) = lim sup pm(y, ), (3.16)
n——+00

m>n
[(e,0)=(y,9)[<1/n

(uy, X1) is a viscosity subsolution of (P)o.
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Proof. Since u; is upper semicontinuous and S(@) is open, it remains to check
properties (a)—(b) of Definition 3.2. By definition, S(#)¢ < {u(-,t) = 0}, hence
{ui(-,t) > 0F € S(¢). By [1, Theorem B.1], for all #y > 0,

if (xo, f0) € £ then (xq, 19) € (X1 N {r 2 10})". (3.17)

In particular, we have, X N {t < 79} € T N {r < to} for all 7y > 0.

Now we turn to property (b). Let u — ¢ have a local maximum zero at (xg, 7o) in
=1n{r < to). First we consider part (i), where either (xo, tp) € X1 orui(xo, fp) > 0.
By adding § (x — x0)%+38(tg—1) to ¢ with § > 0 sufficiently small, we may assume
there is a parabolic neighborhood Q of (x, #p) so that u; — ¢ has a strict maximum
with respectto QN N{t < 1o} = QN Xy

First, note that if suffices to consider the case when u1 (xg, ty) > 0. In particular,
if (xo, 7o) € i, then by (3.17), we may assume that Q is sufficiently small so
that O C X;. This implies u(xo, f9) > 0, since otherwise ¢(-, fy) has a local
minimum zero at xo, contradicting the fact that it is superharmonic. Likewise, we
may assume that u; — ¢ has a strict maximum zero at (xo, fo) with respect to @,
since ¢ (xo, fo) = u1(x0, fo) > 0 and u; = 0in (T1)".

We now show that

—Ap(x0, 10) < f(xo) forany f € C(R?)
such that f = poo(+, o) almost everywhere. (3.18)

In particular, this implies that —Ag(xo, fp) < 1, which gives the result. Suppose
for the sake of contradiction that —A¢(xg, tp) > f(xo) for some f.

Let (xp, t) = argmaxws pm — @, Co = pim(Xms tm) — @ (X, tn), and @y, 1=
¢ + Cp, SO py — @y has a maximum zero at (x,,, t,,) with respect to 0. As in
[1, Theorem 3.4] (see paragraph A.2), up to a subsequence, we have (x,,, t,,) —

(x0,70) € Q, liMy— 00 P (Xm, tm) = limsup® py,(x0, t0) = u1(xo, ) > 0.
Since p,, is a viscosity subsolution of (P),,,

(pr — (m = Dpm(Ag + A1) — Vo - (Vo + VD)) (X, ) = 0. (3.19)
Because Ay, = Yi/m * poo = f + 0(1) and —Ae(xo, fo) > f(x0), we have
(Ap + Aq:'l/m)(xmy tm) <0
for sufficiently large m, which is a contradiction.
Now we consider part (ii), where (xg, %) € 9X1, ui(xo,t9) = 0, and
V| (xo, to) # 0. Suppose, for the sake of contradiction, that

—Ap(xg,t9) > 1 and (¢; — |ng7|2 — V- V®)(xg, 1) > 0. (3.20)

We can now apply parallel argument as in the proof of Theorem 3.4 in [1] to
conclude. O
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We now show that the initial data of the half-relaxed limits coincides with the
initial data given in equation (1.9). Specifically, this ensures that the initial data
of u; and uy coincides with the initial data of the sequence p,,, in spite of the
time regularization inherent in the definitions of these half-relaxed limits. In what
follows, we make frequent use of the following inner and outer approximations:

Q7 i ={x:dx, Q) >r}and Q" :={x : d(x, Q) < r}. (3.21)

Lemma 3.16. Consider a bounded domain Qo € RY with the “no-crack” property

Qo = Qo. Suppose py, are viscosity solutions of (P),, with initial data pg as given
in (1.9). Then, for the half-relaxed limits u; and ua, we have uj(x, 0) = uy(x,0) =
Po(x).

Proof. 1. We begin by proving the following claim on the support of p,, for given
e > 0

There is T, > 0 such that Q,° € {u; (-, 1) > 0} € Q
forallr € [0, T,]andi = 1, 2. (3.22)

We begin by showing {p, (-, 1) > 0} € Q( for 0 < ¢ < ¢, for some #, € (0, 1) that
is independent of m. Suppose x¢ € (QS)C, so that p,; = 0 in B¢ (xq) for all m.
Let us define

| — xol?
T H0),

px.0) = (N = x0) -
where f is anincreasing function which we will determine momentarily. Let f(0) =
—N(¢)+C;i + 1, where C; > 0is such that p,,(-,1) £ Cy forallmandt € [0, 1],
given by Lemma 3.8(b). Such choice of f guarantees that ¢ (x, 0) = C| = py,(x, 0)
in{e = |x —xo| = 1} (hence (-, 0) = pu(-,0) in Bi(xp)), and ¢(x,1) = Cy =
pm(x, 1) on dBy(xp) forall ¢ € [0, 1].

We claim that if we let f(¢) increase sufficiently fast, ¢ would be a classical
supersolution of (P),, for all m in Bj(xgp) x [0, #;] for some ¢, > 0. Note that
at time 7, ¢ (-, t) has support {r(t) < |x — xo| < 1}, where r(t) € (0, 1) solves
N () — ’;’32 + £(t) = 0, hence it satisfies r(t) > N~L(=f@) +1) > 0.
(Here N'~! is the inverse function of ). By definition, A¢ = —1 in its support.
Thus in order to make ¢ a classical supersolution of (P),,, all we need is ¢; =
IVo|(IV@| + [VPy/m|) everywhere in its support. In the support of ¢, we have
¢ = f'(1),and |[Vo| SN (r(1)) + 1 SN N"H(=Ff() + 1)) + 1. Finally, let

F(6)=WN'WNH=f@) + D)+ 1+ Ca)?,

where Cy is the bound for |[V®y,,,| asin (2.8). The standard ODE theory guarantees
that f is finite in some [0, #,] (where t. > O depends on &, Cy and d), hence
r(t) > 01in [0, t;]. By comparing p,, with ¢ in the domain Bj(xg) x [0, #;] and
using the definition of viscosity solutions, we conclude that p,, = 0 in B, ()(xo)
for t € [0, t.]. In particular, xg € {py (-, 1) > 0}¢ for all m and all ¢ € [0, ¢.], and
since xo € (Qg)” was arbitrary, this gives the result.
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Similarly we show € £ C {pm(-,t) > 0} for small times by constructing
a classical subsolution of (P),,. Suppose yo € £2,°, so that B.(yg) < 0. Let
hy(x,t) solve —Ahy, (-, t) = % in B,(1)(y0), with i, (-, t) = O on 0 B, () (yo). Here
r(t) := e — Mt,and M is alarge constant to be determined later. Note that 4,, takes
2 2
the explicit expression /i, (x, t) := (W) , thus | Vi, (-, 1) < r(t)/dm
+

in its support. So the following holds in the support of £,,:

(m — Dhp(Ahy + ACI)I/m) + Vhy, (th + V(Dl/m)

S m- 1 r(t) (@ )
- m n = dm \ dm +Ca
r(t)? r(r) ("(I) v >
“2dm dm \ dm d

where Cy is the bound for |[V®y || by (2.8), and we also used AP/, = 0in the
first inequality. Since (h,,); = r(¢)r'(t)/dm in its support, in order for A,, to be a
classical subsolution of (P),,,, all we need is ' < —r/2 — (r + [[V®1 /[l 0), sO We
can simply let r(t) = ¢ — Mt with M = 1+ Cj.

Since py (-, 0) 2 hu (-, 0) forallm > 1, comparison principle yields that p,,, =

hon for0 < 1 < 55Tt follows that py = hyy = 7o in T := Beja(yo) x [0, 2571
Even though thls lower bound of p,, is not uniformly positive in m, we can still
conclude that lim inf,, o0 o = 1 in . by definition of o, = (%pm)l/(’”_l).
Given the weak convergence of p,, to pso in Lemma 3.13, we have that poo = 1
almost everywhere in X. This implies that A®1/,, = poo* Y1/ = 11in Bg/g(yo) X
[0, 551 for all sufficiently large m (more precisely, for all m > 8/¢).

With this information on A®y,,,, we can now define a new subsolution ¢ (x, 1)
that solves —Ag = 1 in Bj((yo), with ¢(-, 1) = 0 on 9Bz (yo), where 7(t) =
e/8—Mt,and M = 1+ C,4. One can check that ¢ is a classical subsolution of (P),,,
hence p,, 2 ¢ = c, for some ¢, > 0 (that is independent of m) in B, /32 x [0, T¢ ]
for all sufficiently large m, where T, := 17, yielding (3.22).

2. To show that u1(-,0) = uz(-,0) = pg, we construct our first barrier as
follows: suppose h.(x) solves

—Ah,=1+¢in Q% h,=00n9d0°.

By (3.22), S(1) € Q¢/? fort € [0, T,] for some T, > 0. Thus, u; < hg in S(1).
Furthermore, since u; = 0 in (S(¢))¢, we conclude that

ui (-, 1) < he in Q° x [0, T, (3.23)

Next, comparison of p,, with the classical subsolution ¢ given above yields
that

Pm 2 ¢ in Q7% x [0, Te]. (3.24)

Now we construct our second barrier using (3.24). Consider g(x) solving

—Ag=1—einQ7°% g=c,ondQ".
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Since u; is a supersolution of (P)s and (3.22) ensures that Q7% C {up > 0} for
t € [0, T;], we have —Aus = 11in Q¢ x [0, T, ]. Furthermore, (3.24) ensures that
g Supon 3¢ x [0, T]. Therefore,

g Suyin Q7° x [0, Te]. (3.25)

Combining inequalities (3.23) and (3.25) and sending ¢ — 0, we can
conclude. O

We now show our main convergence theorem.

Theorem 3.17. Let Q9 € RY be a bounded domain with Lipschitz boundary, and
let py, solve (P),, with initial data pg as givenin (1.9). Let p,, be the density variable
corresponding to py,, and let U be the maximal solution of (P)so with initial data
po, that is

U(x,t) := (inf{w : w is a viscosity supersolution of (P)ec with w(-, 0) = po})«.
Then the following holds for each t > 0:

(a) Poo(s 1) = X{ui(.0)>0) = X{uz(-.)>0} = X{U(-1)>0} almost everywhere, where
uy and uy are defined in (3.16) and (3.14) respectively;

(b) Let Q1) := {ur(-, 1) > 0} and Q' (t) = {u1(-,t) > 0O} By construction
w1 = u, so Q) C QU). In addition, for every t > 0, (1) is an open set
with |02(1)| = 0, and we also have |32 (t)| = 0;

(c) pm converges to 1 uniformly in Q(t) away from its boundary—that is, the con-
vergence is uniformin any compact set Q C {(x,t) : x € Q(t)}. Furthermore,
we have limy, oo | om (-, 1) — Xl L1 rey = 0 for everyt = 0.

Remark 3.18. The fact that U is a solution of (P), is a consequence of a standard
Perron’s method argument.

Proof. 1. To begin with, let us define two families of functions that are approx-
imations of p,,. For n € N, let pg’_(x) and p8’+(x) be solutions to (1.9) with
Qo replaced by Y and Q(l)/ " (as defined in (3.21)) respectively. Note that
Py~ < po < pyt. We then let pj;~ be the viscosity solution to (P),, with
initial data p;’~, and denote by p,, ~ the corresponding density function. We let
pf,,’J“ solve a modified version of (P),, with an extra source term, namely

pr=m—Dp(Ap+ADy;) +Vp - (Vp+Vy) + pfa,

where

o= xo,—q, 2:={uz>0}and Q, = {(x,t) cd((x,1), Q) < l}
n

and denote by pj" the corresponding density function. Finally we let

(uy ™, §™7 (1)) and u;’+ denote the corresponding half-relaxed limits for pj,;~
and ppt.
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The motivation of these two family of functions is as follows: in step 2, we will
show that
WP T SUSup Sup Suby™ foranyn €N, (3.26)

and it turns out that in order to show the last inequality we have to let pfrﬁ solve
the equation with the extra source term, rather than (P),,. In step 3, we will use L1
contraction result between p;;  and ,0,';,’+ to show that for any 7 = 0,

Ap(t) = |supp uy (1) \ supp u T )| > 0asn — oo, (3.27)

and by combining it with (3.26) we have that U, u; and u, are supported on the
same set.

2. In this step we aim to prove (3.26). The second inequality is a direct conse-
quence from the minimality of U and the fact that u» is supersolution of (P), with
initial data po (which follows from Proposition 3.14 and Lemma 3.16). The third
inequality immediately follows from the definition of the half relaxed limits > and
u1. As for the first inequality, note that by Proposition 3.15, (u}"~, §™7 (1)) is a
subsolution of (P),,. (Proposition 3.15 does not require the initial data be the same
as po.) In addition, we have u'll’_(~, 0) = pg’_ via the same argument as in Lemma
3.16. Since p;~ < po, combining the above discussion on u"~ with Proposition
3.14 and the comparison principle in Theorem 3.11 yields

W < up with ST (6) < fua(, 1) > 0}, (3.28)

which gives us the first inequality.

The last inequality of (3.26) is more difficult to obtain. We point out that this
is not a direct consequence of the comparison principle for (P)s, since we do not
know that ug’+ is a supersolution of (P)s due to the fact that p5 ™t (-, 0) # po. (In
order to apply Proposition 3.14, the initial data must be the same as py.)

To overcome this difficulty, we will show that 11 and ug’Jr are sub- and super-
solutions of another free boundary problem, for which the comparison principle
also holds. From the proof (in particular (3.18)) of Proposition 3.15, it follows that
in addition to (u1, S(¢)) being a viscosity subsolution of (P), u] satisfies

—Aui(,1) = poo (3.29)

in the integral sense. On the other hand, parallel arguments as in Proposition 3.14
yield that ug’+ satisfies supersolution properties of (P)s(see Definition 3.3), but
with the interior operator —A — 1 replaced by —A — ps. In particular we have

—Auyt 2 pog in fult > 0} (3.30)

in the integral sense. As aresult, (1, S(¢)) and ug’+ are respectively viscosity sub-
and supersolutions of

—Ap(-, 1) = poo in {p > 0};
V =—v.(Dp+DW¥) on d{p > 0}; (P)oo
V=N % poo.
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Using this fact, one can modify the proof of comparison principle for (P) to
show that, for any n € N,

uy < uy™ with S1(t) C {uy (-, 1) > 0} (3.31)

The proof of (3.31) is parallel to that of Theorem 2.7 in [1]. The only difference
lies in showing the second inequality in the interior operator, which we will discuss
below. Let us give a heuristic sketch of the proof under the assumption that S(z)
and {u;’+(~, t) > 0} have smooth boundaries: the actual proof is carried out with
regularizations as given in (3.9)—(3.10) which generate strict subsolution and super-
solution of (P)s. As usual in the proof of comparison principle, we begin with the
scenario that u crosses ug‘Jr from below at some time and yield a contradiction.
More precisely we suppose that the first crossing time is finite, that is

to 1= supf{t : uy (-, s) < uy (-, 8) and S(t) C {uh (-, 1) > 0} for s < 1} < 0.

Note that 7y > 0 since S(0) = Qo = {u1(-,0) > 0} due to Lemma 3.16 and
up < u;’+ at t = 0 from the construction. Observe also that (3.29)—(3.30) rules
out the possibility that the crossing occurs at an interior point, that is,

w1, 1) < uy* o0y in {ui (1) > 0}

as long as {u; (-, 1) > 0} C S(r) C {uy™ > 0}.

Hence this means that the set S(¢) touches the boundary of {ug’+(~, t) > 0}
for the first time at some point (xg, #p). Then the normal velocity law for the sets
S(t) and {uF (-, 1) > 0}, as well as the fact that u1 (-, 10) < u " (-, 1) yields a
contradiction.

Note that (3.30) and the definition of €2, ensures that the source term for u
remains smaller than that of ug’J“ after the regularization process given in (3.9)—
(3.10) if r(¢) is sufficiently small. Based on this fact, the rest of the proof is the
same as to that of Theorem 2.7 in [1].

3. Next we will show (3.27). First, note that o, satisfies (3.3) with no source
term, while p,'f,’Jr satisfies (3.3) with source term p,riﬁ fn which is non-negative.
Since their initial data is also ordered, comparison principle for (3.3) yields that
o™ < plT . We then define

AL = f (P (e, 1) — ot~ (2, D),

which is nonnegative. We can apply the L' contraction property of (3.3) in
Lemma 3.7 to conclude that, for any + > 0 and any m > 1,

t
A (1) < / /p,';~+(x,s)f,,(x,s)dx ds + A" (0). (3.32)
0

By (3.28) and the definition of S'f’_, for all t = 0 and sufficiently large m, we have

supp p,,;~ (t) = supp pj,;~ (1) S supp ua(t) =: Q(¢). (3.33)
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Thus for all sufficiently large m, the spatial integral in (3.32) can be controlled as
/pi’n’+(x, $) fa(x, 8)dx = / o T (x, $)dx S A} (s),
Q (s)\S2(s5)

where in the last step we used that oy, (x, s) = 01in Q,(s) \ Q(s) for all large m,
which follows from (3.33). Plugging this into (3.32) yields A7, (1) < fé Al (s)ds +
A? (0), thus Gronwall’s inequality immediately yields that A” (r) < A” (0)e’. It
is easy to check that lim,, o A% (0) = )" \ Q4" £ C/n, which yields
liminf,, o AL (1) < Ce'/nforalln € N,z = 0.

Next we claim

liminf A7, (1) = |supp u3" (-, 1) \ supp "~ (-, ).
To show this, it suffices to show that

liminf/p,’;"*'(x,t)dx > |supp uy (-, 1)| and

m—0oQ
lim sup/ o~ (x, 1)dx < [supp u"” (-, 1)]. (3.34)
m—0oQ

For the first inequality, note that by definition of the half-relaxed limit, for any
X € supp ug’+(~, 1), we have liminf,,— o pi " (x,7) > 0. Thus by the relation
ot = (2L pl )Y =D e have that lim inf,,— o0 pj * (x, ) = 1. Therefore

/lim inf p5 T (x, H)dx = [supp u5 (-, 1),
m—00

and applying Fatou’s lemma to it yields the first inequality of (3.34). The second
inequality follows from the definition of the half-relaxed limit "~ and the fact
that lim sup,, _, o lom ~ lloo = 1, which is due to (3.6).

We now combine the above claim with liminf,,_. o, A” (t) < C e' /n to con-
clude that the A, (¢) defined in (3.27) satisfies A, (t) < Ce'/nforalln € N, 1 = 0,
which yields (3.27). Applying this to (3.26) then yields that x>0} = X{u,>0} =
X{u=>0; almost everywhere. So the proof of part (a) would be finished if we can
show po 1s also equal to these functions almost everywhere, which we postpone
to step 4.

At the end of step 3, let us point out part (b) can be easily proved using the
above bound on A, (7): note that Q(¢) = {uz(-,t) > 0} is open due to the lower-
semicontinuity of u;, hence

Q) = Q) \ Q@) S supp us (-, 1) \ supp u}" T, 1),

where we used (3.26), (3.28) and (3.31) in the last inequality. The above bound on
A, (1) thus gives |0Q ()| £ A,(t) £ Ce'/nforalln € N,t = 0, and by sending
n — oo we obtain part (b) for (). In addition, the inequalities (3.26), (3.28) and
(3.31) also lead to [32! (£)| < A, (r), hence we also have [9Q2! ()| = 0.

4. To finish the proof of part (a), it suffices to relate u, and ps, and show that

Poo = X{up>0) almost everywhere (3.35)
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The direction poo = x{u,>0) is easier: take any (xo,#p) such that a :=
uz(xg, t0) > 0. By definition of the half-relaxed limit u5, there exists some positive
ro and No, such that p,, (x, fo) = a/2 > 0 for all x € B,,(x0), m > Ny. Hence
om(x, 1) = (mT_l %)1/ (m=1) for x, m as above. Combining this lower bound (which
approaches 1 as m — oo) with the weak convergence of p,, towards ps, in Lemma
3.13, we have poo (-, 10) = 1in By, (xp). Since xo € {u2(-, o) > 0} is arbitrary, we
have poo 2 X{uy>0}-

For the other direction, we will use p;; . Using the definition of S~ (¢) (see
(3.15)) as well as (3.26), we have

lim sup X(pi™ (o0)=0p = XS~ (1) < Xua(p=0y foranyn e N,z 2 0. (3.36)

m— 00

In addition, since lim sup,,_, o llom~ ) lloo < limsup,,_, o |om () llco < 1 by
(3.6), it implies

lim sup p;; ™ (-, ) < lim sup Xl (1y>0) = li;ln_)souop X{pl(-.1)=0}" (3.37)

m—0Q m— 00

Finally we will relate ps, with p;;~. Note that for any continuous, bounded
f 2 0, we have the following (where we omit the x dependence in integrals due
to space limitation):

/ Poo(t) fdx = lim / pm(®) fdx = lim lim f Pl (1) fdx
m— 00 m—00 n— 00
< / lim sup o/~ (1) fdx, (3.38)
m,n— 00

where the first equality follows from Lemma 3.13, the second one is due to the
L' contraction property of Lemma 3.7(a) and the fact that p,;” < p,, and
the last inequality follows from Fatou’s lemma. This implies that poo (-, 1) <
lim sup,, ,_, oo om (-, t) almost everywhere, and this with (3.36)—(3.37) implies
Poo = X{up>0}» Which finishes the proof of (3.35), thus yielding part (a).

5. To prove part (c), take any compact set Q@ C {(x,?) : x € Q(¢)}. By
definition of the half-relaxed limit u;, for each (xg, ) € Q there is some rg > 0,
such that p,, = ua(xo, 10)/2 > 0 in By, (xo, to) for all sufficiently large m. Recall
that p,, is also bounded from above uniformly in m by Lemma 3.8. Since p,, =
(% pm)"/ "=V this implies that p,, — 1 uniformly in By, (xo, 7).

The compactness of Q then allows us to find a finite number of points (x;, ;)
such that By, (x;, t;) covers Q, implying that p,, — 1 uniformly in Q.

Finally let us prove the L! convergence result, where we use the elementary
inequality

If =gl = f(g—f>+dx+/<f—g>+dx < 2/(g—f)+dx+’/(f _ g)dx'.
(3.39)

Let f = pm(-, 1), & = XQu) = Poc(:, 7). Since the mass of o, (-, 1) and poo (-, 1)
are both preserved in time, we have
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‘/(f —g)dx

= llom (5 0) — xeollp

m 1/(m—1)
:”(m—lpo) — x| ;1 = Oasm — oc.

To control f (g — f)+dx, note that g = 0O almost everywhere in (¢)¢, hence
J(g— fqdx = fsz(z)(l — pm)+dx. Since Q(¢) is open, for any & > 0 we can find
acompact set D C Q(¢), such that |Q(¢) \ D| < . We can then apply the uniform
convergence result of p,, in D to conclude that f (g — f)+dx < 2¢ for sufficiently
large m, and since ¢ > 0 is arbitrary we have lim,, o [ (g — f)4dx = 0. Plugging
the above results into (3.39) yields the L convergence result. O

4. Long Time Behavior of Patch Solutions in Two Dimensions

In this section, we investigate the long-time behavior of a patch solution pso
in two dimensions, using the pressure variable characterization of the dynamics of
Poo Obtained in Section 3. Throughout this section, we consider our spatial domain
to be R2. By Theorem 3.17, we know that pso (-, 1) = xq ) for some Q(r) € R2
for all + = 0. Our goal is to show that, as t — o0, €2(¢) converges to the unique
disk By with the same mass and the center of mass as 2. (See Theorem 4.12)

We proceed as follows: in Sections 4.1 and 4.2, we show that the second moment
of poo(-, 1) = xq() decreases unless €2(¢) is a disk, from which we are able to
conclude that €2(¢) cannot stay uniformly away from a disk for all times, in terms
of its Fraenkel asymmetry. In Section 4.3, we combine this with the gradient flow
structure of pso to show that as + — +o00 the energy Eso(poo(?)) approaches the
minimum of E, with a quantitative estimate on the rate. Lastly, in Section 4.4,
we show that p (-, 1) converges to x g, strongly in L7 forany 1 < g < oo.

4.1. Evolution of the Second Moment

Let M>[f] := fRZ £ (x)|x|2dx denote the second moment of £. In this subsec-
tion, we investigate the evolution of the second moment of poo (-, 1) = X (). Before
we present the rigorous derivation of the evolution of the second moment, we begin
with the following heuristic computation. As described in the introduction, pso (-, #)
formally satisfies the transport equation

pr =V - (p(VNp + Vp)),

where p is a solution to (P). (See equation (1.8).) By definition, p(-, ¢) solves
Ap = —1in Q(¢) and p = 0 on 9R2(¢). Hence, supposing that d€2(¢) is smooth,
the evolution of M>[px(2)] is given by

d
L Molpoo(0)] = —2/Rz pooVNpoo - xdx — 2/]1{2 psoVp - xdx

dt
1 (x — ) .X
__/ / Poo(x)poo(Y)—yzdydx - 2/ Vp-xdx
T Jr2 JR2 lx — y| Q)
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1
o / / poo (1) oo (1) dydx + 4 / pOr)dx
T JR? JR2 Q1)

1 1
—— Q) +4f p(x)dx = ——|Q)? +4/ p(x)dx.
27 Q@) 2 Q1)

“.1)

In the second equality, we use that, in two dimensions, Nps, = N * ps with
N(x) = % log |x|. In the third equality, we symmetrize x and y in the first integral
(hence the extra factor of %), and in the last equality, we use that ps, preserves its
mass (which is |Qg]) for all time.

In the following proposition, we rigorously obtain the time evolution of
M>[pso(t)] by analyzing the evolution of the second moments for each p,, and
sending m — 4-00, using our convergence results from the previous sections. We
show that the evolution of the second moment indeed satisfies a time-integral form
of (4.1), with the exception that we must substitute p(x) with u (x), the half-relaxed
limit of p,, defined in Lemma 3.15, to take into account the fact that €2 (¢) may not
have smooth boundary for all time.

Proposition 4.1. Let Qo € R? be a bounded domain with Lipschitz boundary, and
let poo (-, 1) = X be the gradient flow of E with initial data py = xg,. Then
forany T > 0,

1 T
Mz[poo(T)]—Mz[po]§—2—|90|2T+4// ui(x,dxdr,  (42)
T 0 JQ@)

where uy is the half-relaxed limit of py, defined in Lemma 3.15, and Q(t) =
{us (-, t) > 0}, as defined in Theorem 3.17 (b).

Proof. For any m > 1, let p,, be the weak solution of (PME-D),, with initial data
(mT_lpo)l/(m_l), where py is given by equation (1.9). Let p,, := %pfz—l be the
corresponding solution of (P),,. Taking |x |2 as our test function, we have for any
T >0,

/ P (X, T)|x|2dx—/ Pm (x, 0)]x*dx
R2 R2

=:1 =1

T T
= —2/ / PmV®1/m(x, 1) - x dx dr +4/ / pm(x,t)dxdr.  (4.3)
0 R2 0 R2

=:I3 =y

(Since p,, has compact support in [0, T'], our test function is not required to have
compact support since we can always take a cut-off sufficiently far away.) As
m — +o00, Lemma 3.13 yields that I} converges to M>[p~0(T)] and 1> converges
to M2[poc(0)].
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To show the convergence of I3, we decompose the integral into two parts:

T T
b= [ [ v n xaxdis [0 o V@t - o)
0 JR? 0 JR?
xdx dt =: I31 + I3.
Since V& (x, 1) - x € C(R?) for any ¢, Lemma 3.13 again gives that

lim P VO (x,1) - xdx = / Poo VP (x,1)-xdx foranyr € [0, T].
R2 R2

m—00

Note that the integral on the left hand side is uniformly bounded for sufficiently
large m and ¢ € [0, T'], thanks to the uniform control of the support of p,, (z, -) in
[0, T]. We can then integrate the above equality in time and apply the dominated
convergence theorem to obtain

T T 2
1
Iy 22t / [ oo VO(x, 1) - xdx dr = _/ (/ poodx> dr
0 R2 47[ 0 R2

= 1|9|2T
T qg 0

where the last two equalities are obtained by symmetrizing x and y in the integrand
and using conservation of mass, as in equation (4.1).
To control /37, we first bound [|V®y/,, — V<I>||L2(Rz). By Proposition 2.3,

1
IV®1/m — VOl 2®2) S Walpoo * Yi/m, Poc) = p / Y()lxPdx,  (4.4)

where, in the last step, we apply [2, Lemma 7.1.10]. Hence
T
3] = / lom O 21V P1ym — VI 2Ry df — 0 as m — 400,
0

where the fact that sup; ¢jo 71 Sup,, >y [lom (-, D)1x[[ 2 < 400 is a consequence of

Lemma 3.8, which ensures p;, is uniformly bounded and compactly supported.

Combining the estimates on /31 and I3, yields that I3 — % [$2|2T as m — +o0.
Finally, we consider /4. We will show that

T T
lim sup/ / pm(x,t)dx dr < / / ui(x,t)dx de. 4.5)
m—o00 JO JR? 0 JQ)

The proof is then finished by taking lim sup,,_, . , on both sides of (4.3).

To show (4.5), first note that, since p,, = =5 o1, we may write o =

W‘T*l Oom Pm and apply Remark 3.9 to obtain

T T
lim sup/ / Ppm(x,t)dx dr < lim sup/ / P (x, 1) dx dz. (4.6)
0 JR? 0 JR2

m—00 m—0Q

It remains to show that

T T
limsup/ / pm(x,t)dxdt §/ / ui(x,t)dxdr. 4.7
m—oo JO JR2 0 JRr?
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For any n € N, define
upp(x,t) = sup Pm(y,s).
m>n
[(x,0)=(y,8)|<1/n
Note that u , is decreasing in n and lim u; , = u; by definition of u;. For each
n—o0

n € N, we have p,, < u;, for all m > n, hence

T T
limsup/ / Pm(x, £)dxdr < / / upp(x,t)dxdr foralln e N.
0 JR2 0 JR2

m—0oQ

We can then take n — 400 in the above inequality and apply the monotone conver-
gence theorem. By Theorem 3.17 (a), Q2(¢) = {u1(-, ) > 0} almost everywhere.
Thus, inequality (4.7) holds. O

4.2. Some Rearrangement Inequalities

In this subsection, we digress a bit to obtain an upper bound for the quantity
1
F(Q) = ——|Q +4/ p(x)dx, (4.8)
2w Q

where Q is a bounded set with smooth boundary and p : @ — R satisfies —Ap = 1
in 2 and p = 0 on 92. This quantity appears in our heuristic computation for the
evolution of the second moment of ps (¢), where we show %Mz[poo] S F(Q(1)).
Likewise, fOT F(2(t))dt would have appeared on the right hand side of our rigorous
result, given in equation (4.2), if the boundary of €2 (¢) were smooth for all time.
While in this subsection we only aim to control F(£2) for smooth domains, in the
next subsection we discuss how to use this bound to control the right hand side of
(4.2), even when the boundary of €2 (¢) is not smooth.

The following result, due to Talenti [49], shows that F(2) < 0, with equality if
and only if €2 is a disk. We sketch the proof below for the sake of completeness. In
the subsequent proposition, we will modify the proof to get a stronger inequality.

Proposition 4.2. (c.f. [49, Theorem 1]) Let 2 C R2 be a bounded domain with
smooth boundary, and let F (2) be as in (4.8). Then we have

F(Q) =0, (4.9)
and the equality is achieved if and only if Q is a disk.

Proof. First, note that maximum principle yields that p > 0in Q and p > 0in Q.
For any k € [0, supg, p), let us define

Qri={xeQ:pkx) >k} andgk):= ||

Note that g(0) = |€2|. By definition of p and the divergence theorem, we have

gk) = / —Ap(x)dx = —n-Vpdo = / [Vpldo. (4.10)
Qk aﬂk .

082
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On the other hand, by the co-area formula (c.f. [22]),

1
. 1 dods, s =— [ g 411
gt = [[asz vy o & f39k|VP|G @D

Combining (4.10) and (4.11) and applying the Cauchy—Schwarz inequality,

gk)g' (k) = (/ |Vp|d0> <—/ LdU) < —P(20)% (4.12)
FIon aq VDl

where P (€2) is the perimeter of . For any bounded domain E C R2, the isoperi-

metric inequality yields
2J/m\/|E| £ P(E). (4.13)

Applying inequality (4.13) to € in (4.12) gives

2
808 () < — (2v7Ve) = —4mg (k).

hence g (k) satisfies the differential inequality
g (k) £ —4x forallk € (0, sup g> . 4.14)
Q

Combining this with g(0) = || yields that g(k) < (|| — 4mk)y forall k = 0.
Therefore,

supg p 00 1
/p(x)dx=/ g(k)dkgf (19| — 47k), dk = —|QP2,
Q 0 0 &

which gives (4.9). In order to achieve equality, £2x must be a disk for almost every
k > 0, hence Q2 must be adisk. O

We now prove a stronger version of the above inequality by replacing the isoperi-
metric inequality in the above argument (see (4.13)) by the following quantitative
version due to Fusco et al. [26].

Lemma 4.3. (c.f. [26, Section 1.2]) Let E C R? be a bounded domain. We define
the Fraenkel asymmetry A(E) € [0, 1] as

|EA(xo +7B)|

A(E) :=inf
") m{ IE|

x0 € R%, 7r? = IEI} ,
where B is the unit disk. Then there is some constant ¢ € (0, 1), such that
P(E) > 2J7V|E| (1 n cA(E)2> ,

where P(E) = H'(E) denotes the perimeter of E.

We begin with the following simple observation regarding the Fraenkel asym-
metry.
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Lemma 4.4. Let E C R? be a bounded domain. For all U C E satisfying |U| >
|E|(1 — 28, we have

A(E)
> 7
AWz =

Proof. Assume the statement is not true, so there exists some disk By with the
same area as U so that

[UABy|  A(E)
< .
U] 4
Since |U| = |By|, we have [UABy| = 2(lU| — |U N By|). Hence the above
inequality becomes
A(E)

|UﬂBU|>|U|<1—T).

Let Bg be a disk with the same area as E that contains By. Then since |U| =
EI(1 = 4G,

[EN Bgl 21U N Byl > |E| (1 - A(f)> (1 _ A<8E)> > 1B <1 B 3AéE))'

Therefore,

EAB 2(E|—|ENB 3
| el _ 20E] | ED _ 3aE).
|E| |E| 4

which contradicts the fact that A(E) < |EABEg|/|E|. This gives the result. O

With this lemma, we are now able to conclude a stronger upper bound on F (£2)
than provided by Proposition 4.2.

Proposition 4.5. Under the same assumptions as Proposition 4.2, there exists a
constant cy € (0, 1), such that

F(Q) £ —coA(Q)%1Q%

Proof. We follow the proof of Proposition 4.2, with the following difference:
instead of applying the isoperimetric inequality (4.13) to the set 2 in inequal-
ity (4.12), we now apply the quantitative version from Lemma 4.3 to obtain

gk < —4m (14 CA(Qk)2)2 < 47 (14 cA@0?).

To relate A(€2y) with A(S2), we apply Lemma 4.4 to obtain that A(2;) 2 @ for
any k such that g(k) = ||(1 — @). In other words, we have

cA(Q)? A(Q)

4

g k) £ —4r (1 + > for all k such that g(k) > |Q| (1 -

(4.15)
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We claim that this implies

2
gk) < |Q| — 47 (1 4 A )k for all k € (0, M) . (4.16)
16 32

To see this, note that for all k € (0, %), the right hand side of (4.16) is greater
than |2|(1 — %ﬂ)) since 1 + cA(2)?/16 < 2. As a result, if (4.16) is violated at
some ko € (0, 252120 then we musthave g (k) = [2|(1—252) forall k € (0, ko),
since g is a decreasing function. We can then integrate (4.15) in (0, ko) to conclude
that (4.16) actually holds at ko, a contradiction.

Leth(k) = (|2|—4mk) . Inequality (4.16) implies that g (k) < h(k)—%)glg2|
at k = %. For &k > %, recall that by inequality (4.14), we have
g'(k) £ —4x for k € (0, supg g), and by definition of i, we have h'(k) = —4x
in (0, |2|/(47)). This gives that g(k) < h(k) — %);IQ\ for A(Q)|2|/32n <
k < |R2|/4x. Since A(2) < 1 this range of k is larger than |2|/87, and since
g(k) < h(k) for all k, we have

/Oog(k)dk < /ooh(k)dk _ cA(Q)*|Q? _ 122 B cA(Q)3Q)2
0 ~Jo 2000 87 2000

Finally, this gives

o) 2 3 2
Y cA(R2)°1L]
F(Q) = o -2 < ,
) /0 80 =5 = 72000

hence the result holds with ¢ := ﬁ. O

4.3. Convergence of Energy Functional as t — 00

In this section, we aim to show that, along the solution px(-, t), the energy
functional E~, converges to its global minimizer as t — +00. We begin by esti-
mating the rate of change of the second moment along ps,. Combining Proposition
4.5 with our heuristic computation (4.1) suggests that

d
3 Malpoo ] = —coA(R(1))*|R201%.

We now show that this inequality is indeed true in the time-integral sense, even if
€2(t) does not have smooth boundary.

Proposition 4.6. Let Qo € R? be a bounded domain with Lipschitz boundary, and
let poo (-, 1) = xq() be the gradient flow of E with initial data py = xg,. Then
we have

T
My [poo(T)] — Malpo] £ —colR0]? /0 AQ0)3dxdr forall T 20, (4.17)

where co € (0, 1) is the constant given in Proposition 4.5.
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Proof. Since the evolution of the second moment is already given by Proposition
4.1, it remains to show

1 T T
—2—|S20|2T+4/ / ui(x, 1) dxdr < —c0|90|2/ AQ(1))  dt, (4.18)
T 0 Q1) 0

where 11 is the half-relaxed limit of p,, defined in Lemma 3.15.

Let Q'(t) = {u1(-,t) > 0}. By Theorem 3.17 (a) and (b), we have Q!(r) =
Q(t) almost everywhere, so A(Q2(¢)) = A(Q (1)), and |8§21(t)| =0forallt €
[0, T]. Hence for any ¢ > 0 and ¢t € [0, T], we can find a set D (t) € R? with
smooth boundary such that Q1(r) € D.(¢), and |D,(r) \ '(r)] < e. For any
t = 0, we then have a classical solution pg (-, ) such that —Ap, (-, t) = 1 in D (z),
and pg(-,¢t) = 0on dD.(¢t) and D.(¢). In addition, we may choose D, (¢) so that
dDg(t) is continuous in time with respect of Hausdorff distance of sets, which
ensures that p, is continuous in time.

We first aim to show that

up(x, 1) < pelx, ). (4.19)

It suffices to show that uy (x, t) < ape(x, t) forany a > 1. Towards a contradiction,
assume that there exists some a > 1, such that sup,cp2 ;[0 71(#1 — ape) > 0.
Since p; is continuous in both space and time, and u is upper semicontinuous by
definition as the half-relaxed limit, u; — ap, achieves a strictly positive maximum
at some (xg, f9). Furthermore, since p. = 0, we have u| (xg, o) > 0. Again using
that (11, X1) is a subsolution of (P)s, we have that —aAp,(xg, to) < 1, which
implies that —Ap,(xo, fo) < 1. However, since xo € Q! (t9) € D¢ (tp), we must
have —Ap,(xo, to) = 1, which gives the contradiction.

We now show inequality (4.18). Since |D(¢) \ Ql(t)| < &, there exists C
depending on || so that A(Q'(r)) = A(Q(r)) £ A(D.(t)) + Ce. Combining
this observation with (4.19) and Proposition 4.5, we obtain the following bound for
the left hand side of (4.18), where C depends on ¢ and T':

r 1
/ (——|QO|2+f ul(x,t)dx) dr
0 27 Q)

r 1
/ <__|Ds(t)|2+/ pg(x,t)dx> dr + Ce
0 27 D¢ (1)

T T
—co/ A(D.())?|D.(1))*dt + Ce < —Co|§20|2/ A(Q1))> dt + Ce.
0 0

A

A

Sending ¢ — 0 gives the result. O

Corollary 4.7. Under the assumptions of Proposition 4.6, for any T > 0, there
exists some ty € (0, T), such that

A(Q1)) £ C(Q)T '3, (4.20)

where C(Q2) := (MZ[XQO]/C0|QO|2)1/3,f0V co as in Proposition 4.5.
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Proof. Fix T > 0. Towards a contradiction, assume A(Q(79)) > C(20)T /3 for
all tp € (0, T). By Proposition 4.6 and the definition of C(£2p),

T
M>[poo(T)] = Malpol — CO|QO|2/(; A(Q(0) dx di

< Malpol — col Q> T (C(Q0)T ') =0,
which contradicts with the fact that M5[ps ()] must be positive for all time. O

The above corollary does not directly yield that lim;_, o, A(€2(¢)) = 0. To show
this and conclude that €2 (¢) converges to a disk, we will use the fact that the energy
E is decreasing in time along p (-, 7). In the next lemma, we show that if A(£2)
is small, then the energy is close to its minimum.

Lemma 4.8. Let Q@ C R? be a bounded domain, and let Bg C R2 be a disk with
|Bo| = |2|. Then,

0= Ex(x@) — Eco(XBg) < 401Q[(1 + Q] + Ma[xeDV A(RQ)

Proof. The firstinequality is a direct consequence of Riesz rearrangement inequal-
ity [34, Theorem 3.7]. To prove the second one, let us first rewrite Exo(xQ) —
E 00 (X Bg ) as

1
Eoo(X@) = Eco(XBo) = 7 /fRz Rz()(Q(x) — xBo () (xa(y)

+ xBo(y))log|x — yldxdy
1 1
=: Zh + le,
where I; and I, denote the integral in the domains |x — y| < 1 and |x — y| > 1,
respectively.
First, we consider /7. Note that for any x € R2, we have
/ log [x — y|dy
lx—yl=1

=T,

/ (x@(¥) + xBo(¥)) log |x — yldy‘ <2
yeB(x,1)
hence

I = llxe—xBelh

/ (x@(¥) + xBa)) log|x — y|dy H S wllxe—xBell-
yeB(x,1)

o0
Now, we consider I;. For |[x — y| > 1,log|x — y| < |x —y| < x|+ |y| £
(I + xDA +[y)), so

= (fR () = X8 (D1 + |x|)dx) (/Rz(m(y) + X () (1 + |y|>dy)
) 1/2
< lxe = xas (/R () = xBa (0|1 + |x|)2dx)

12
-2|ep'? (/R Ixe@ () + xBo I + |y|)2dy)

1/2
<2V2120"?1xq — xas 11> (Malxal + Malxs,] + 2I2).
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Combining the above estimates on /7 and I with the facts that || xo — x5, 11 < 2|€|
and 1/ < 1, we have

1 1
Ex(xo) — EOO(XBQ) = gll + EIZ
1/2
<1Q1"2xa — x5 11721 + Malxal + Malxsg] + 2120).

4.21)

The proof is then split into the following two cases: A(2) = 1/2 and A(Q) <
1/2.

Case 1: A(2) = 1/2. In this case, we have || xqo — xB, 1 < 2|Q| < 4A(Q)|2]
for any disk Bg with the same measure as 2. Since E, is invariant under transla-
tions, we can simply choose Bg to be centered at 0. Such a choice directly yields
MalxBo] £ Ma[xql, hence (4.21) becomes

Eoo(x2) — Eco(XBg) = IQ1"2(4A)IQD2(1 +212] + 2Ma[x2])
<411 4 12| + Malxe)VA(RQ),

which gives the result.
Case 2: A(2) < 1/2. In this case, we choose Bg to be the disk minimizing
|2A Bg|, which then gives

Ixe — xBalll = A(S)[S2]. (4.22)

This choice of Bg no longer directly gives us Ma[xp,]1 < Ma[xq], but we claim that
we still have Mz [ x o] < 36Ma2[ xql. To see this, first note that A(2) < 1/2 implies
|Bq \ 2| < |Bg|/2. Also, a simple computation yields that for any x, y € Bg, we
have |x|* < (Iy| 4 |x — yD? < 2|y[* + 2|x — y[* < 2|y|* + 8|R|/7. Therefore,

MZ[XBQ]=/ lx|?dx < |Bg| max |x|?
Bq xeBg

8
< 2|Bg N Q| max |x|2§2/ (2|y|2+—|sz|> dy
xeBg T

BqoNQ

16 122
< 4Ms[xel + ;IQI2 S AMo[xal + 32 (?) < 4Ma[xal

Viel/z
132 / r? 2mrdr | < 36Malxal,
0

Combining this and equation (4.22) with inequality (4.21) then yields
Eco(X) = Eso(xBa) < 121(1 + 37Malxal + 212D A2,
which completes the proof. O

Combining the above results, we are now able to show that, along the solution
Poo (1), the energy functional E is converging towards its global minimizer with
an explicit rate.
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Theorem 4.9. Let Qo € R? be a bounded domain with Lipschitz boundary, and let
Poo (s, 1) = Xq(r) be the gradient flow of Eo with initial data py = xg,. Suppose
By is a disk with the same area as Q2. Then, for any t > 0, we have

0 < Eco(x2() — Eco(XBy) < C1(1Q20], Ma[Q01)t ™18,

where C1(1Q0], Ma2[Q0]) = C21Q1*3 (10| + M2[Q01)7/® and C is a universal
constant.

Proof. By Corollary 4.7, we have that, for any ¢ > 0, there exists some #y € (0, 1),
so that

1/3
AQ0)) £ (Malxa/col0l?) 1772,

By definition of the discrete gradient flow and the lower semicontinuity of E,
E«(pso(t)) is nonincreasing in time. Therefore, at time ¢, we may apply Lemma 4.8
to conclude

Eso(x2t) — Eco(XB,)
< Ecc(XQay) — Eoo(XBy)
< 40[Q2 (o) 1(1 + |20] + Malxa(to) )V A(2(10))

N\ 16
< 401220(1 + Q0] + Malxa,)) (Mz[sto]/COIQOI ) 1
< C2I01*3 (1 + 0] + Ma[20])7/52 7V, O

Remark 4.10. While the rate in Theorem 4.9 is probably not optimal, the following
example shows that the optimal power cannot go beneath —1. For 0 < ¢ < 1, let
Q5 = B(x, &) U B(0, R;), where x, := (¢71,0) € R? and R, := +1—¢2
is chosen such that [23] = 7. This definition ensures that M>[] is uniformly
bounded for all ¢ < 1. Since 3, (N * xp.1))(r) ~ r~1 for r > 1, the extra
&2 amount of mass will stay outside B(0, (28)’1) for all ¢ € [0, c;e~2], where
c1 > 0 is independent of ¢. During this time interval, the free energy is at least
6‘282| log ¢| greater than its global minimizer for some ¢, > 0. Hence Eoo (x0¢(7.)) —
Es(XB0,1) 2 Ts_l |log T:| for T, = c1e~2, implying that the optimal power of ¢
in Theorem 4.9 cannot be less than —1.

4.4. Convergence of poo(t) ast — 00

‘We now conclude our study of asymptotic behavior by showing that, as r — oo,
Poo(t) converges to xp, in L? for any 1 < g < oo, where By is the disk with the
same area and the center of mass as €2¢. We begin with the following lemma, which
ensures that the center of mass of poo () is preserved for all time:

Lemma 4.11. Let Qo € R? be a bounded domain with Lipschitz boundary, and let
Poo (-, 1) = X be the gradient flow of Eo with initial data po = xg,. Then for
any T > 0, we have fRZ Poo (X, Txdx = fR2 Poo (X, 0)xdx.
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Proof. We proceed as in the proof of Proposition 4.1. For any m > 1, let p,, be the
weak solution of (PME-D),, with initial data (’”n—;l po)l/ (m=1) " \where po is as in
equation 1.9. For i = 1 or 2, we take our test function to be x;, the i-th component
of x. Then, for any 7 > 0,

T
/ om(x, T)x;dx —/ om(x, 0)x;dx = —/ / Pm0i P1/m(x, t) dx dr.
R2 R2 0 JRr?
(4.23)
By Lemma 3.13, the left hand side of (4.23) converges to fRZ Poo (X, T)x;dx —
f]RZ Poo(x, 0)x;dx as m — oo. The right hand side can be controlled in the same
way as the term I3 in the proof of Proposition 4.1, which gives

m—0oQ

lim Pm0i P1/m(x, t)dx / Poc0i D (x, t)dx
R2 R2

1 Xi = Yi
~_ Poo(X) Poo (¥) dedy = 0.
2 R2xR2 |x — y|

Hence, sendingm — oo in (4.23), wehave [po poo (x, T)Xidx = [ poo(x, 0)x;dx
fori = 1, 2, which finishes the proof. O

With this control on the center of mass of p (x, ) in hand, we now turn to the
proof of the main result.

Theorem 4.12. Let Q9 € R? be a bounded domain with Lipschitz boundary, and
let By C R? be adisk such that | By| = || and fBo xdx = fQo xdx. Let poo (-, 1) =
X be the gradient flow of E, with initial data xg,. Then forany 1 < g < 400,
we have

t1_1>nolo |00 (s 1) — XByllLa w2y = O-

Proof. We first show that, for any f € Cj,(R?), the space of bounded, continuous
functions,

—>00

lim Poo(x, 1) f(x)dx = / XBo f (x)dx. 4.24)
R2 R2

To show this, take any diverging time sequence (#,);°,. By Proposition 4.6,
M>[pso(t,)] is uniformly bounded for all n. Hence by Prokhorov’s Theorem [2,
Theorem 5.1.3], there exists a subsequence (t,,,(),‘j‘;1 and u € L1+((1 + |x|)2dx) SO
that

tim [ oot f0de = [ o fos
k—o00 R2 R2

for all f € Cp(R?). Choosing suitable test functions f, we have f udx = |Qo]
and || illoo < sup;>g |90 (s )llo = 1. In addition, by letting the test function f
approach f(x) = x, we have

lim Poo (X, by, )xdx :/ w(x)xdx. (4.25)
2 R2

k—o0 JR
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Since the energy functional E, is lower-semicontinuous with respect to weak-*
convergence of probability measures [20, Proposition 4.5], by Theorem 4.9,

Exo(p) = 1ikrgi£f Eoo (P00 (tny)) = Eoo(XBy)-

As the only global minimizers of Eo, are translations of xp,, /t must equal some
translation of xp, almost everywhere. Finally, recall that Lemma 4.11 and the
definition of By give that [po poo(x, t)xdx = [ xgexdx = [ xp,xdx for all time.
Combining this with (4.25), we obtain [ pu(x)xdx = [ xp,xdx, leading to o =
X B, almost everywhere. Thus, any diverging time sequence contains a subsequence
satisfying (4.24), so we conclude that (4.24) must hold.

We now show that poo (-, 1) — xp, in L'(R?). Since 0 < pno < 1, we have
Poo = XB, almost everywhere in By and po = xp, almost everywhere in Bg .
Hence

||poo(, t) - XB()”I = 2/]]%2()(30 - )OOO(xv t))XBodx-

Thus, by choosing f € Cp(R?) sufficiently close to x B, and applying (4.24), we
can show that, for any ¢ > 0, || peo(-, 1) — xB,Il1 < & for sufficiently large ¢. This
shows that poo (-, 1) — x5, in L'(R?). Finally, for I < ¢ < oo, the convergence in
L4 follows directly from the L! convergence and the fact that || poo (-, 1) — x Bo lloo
<1. O

Remark 4.13. A natural question is whether the convergence rate of the energy
functional towards its minimizer would give some convergence rate of || poo (-, 1) —
XBoll1. Such questions have been studied by Burchard and Chambers [12] for the
Newtonian interaction energy in three dimensions, where they prove that E« (xQ) —
Eoo(XBg) 2 c(|QDA(R)2, with A(S2) defined as in Lemma 4.3. We expect that a
similar result would also hold in two dimensions, but for the sake of brevity, we
will not pursue this direction further.

5. Appendix

5.1. Further Properties of Gradient Flows of Eso, Eoo, and Ey,

In this section, we collect several results on the gradient flows of E, Eoo, and
E,,. We begin by proving Proposition 2.3, which provides elementary estimates on
the Newtonian potential of a bounded, integrable function. We use these estimates
to conclude that £, is w-convex along generalized geodesics. (See [20, Theorem
4.3, Proposition 4.4].)

Proof of Proposition 2.3. The fourth inequality is a classical potential theory
result (c.f.[17, Proposition 2.1], [28, Lemma 2.1]), and the fifth inequality is due to
Loeper [38, Theorem 2.7]. (While Loeper only considers the case d = 3, the same
argument applies ind = 2.)
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For the bound on VNp, note that if B = B;(0),
IVNplloo = VNI 1 g)llolloc + IVN Il L) ol = Ca-

Likewise, for the lower bound on f Nodp, if we let N~ (x) denote the negative
part of ' (x),

/diu > /N— « pR() 2 — N % plloo = — IV 110s) 10 lloc
SN e ol = —Ca.

Next, we prove Proposition 2.6, which ensures that p, is Lipschitz in time,
with respect to the Wasserstein metric.

Proof of Proposition 2.6. By [20, Theorem 3.11], the function S(¢) : D(Ex) —
D(Ex) : (-, 0) = poo(:, 1) is a semigroup, that is S(r +s) = S(#)S(s)u for
t,s = 0. Therefore, it suffices to show that W (pso(?), poo(0)) < 2C,t for all
t=0.

Let p? be the discrete gradient flow of E, with initial data p = poo(0) and time
step T > 0, as defined by equation (i). By [20, Theorem 3.8], if we take t = ¢/n
for any ¢ 2 0, then lim;,— 1 o Wz(,ot”/n, Poo(t)) = 0. Therefore,

n
Walpoo(t). poc(0) = lim Wa(p}),. p) £ Tim 3 Walpy),. pi,) < 2Cat.
i=1

where the last inequality follows from Lemma 2.16, which ensures W» (pf n pf]n] )
< 2Cq(t/n).

We now turn to the proof of Proposition 2.7, which concerns the regularity of
VNpso(x, t) in space and time.

Proof of Proposition 2.7. The fact that VNp (x, t) is log-Lipschitz in space is
an immediate consequence of Proposition 2.3. We now consider the continuity
with respect to time. By Proposition 2.6, ps is Lipschitz in time with respect to
the Wasserstein metric, so it suffices to translate this into continuity in time with
respect to the Euclidean norm.

Fix ¢ € CSO(R") so that supp ¥ € B(0) and | ¥/ |lco < 1, and let ®(x,t) =
Npoo(x, 1) and @1y, := ® * ¢1/,,. Combining the fifth inequality in Proposition
2.3 with Proposition 2.6,

IVOi/m(x, 1) = V@ /m(x, )| = [¥1/m * (VNp(x, 1) — VNp(x, 5))]
= 1V1ymll L2 way | VNpoo (1)
— VNPoo ()l 2mdy S mY>Wa(pso (1), poo(s)) < 2Cqm™/?|t — s|.
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We now use this inequality controlling the continuity in time of V®,,,(x, 1)
to estimate the continuity in time of V® (x, ). By Proposition 2.3,

VO (x, 1) = Vb1 (s )] = '/ (VO (x, 1) — VO — y. 1)) Y1 /m )y
< cd/a(|y|)w1/m<y)dy
< Cao(1/m) / 1m0y = Cao (1/m).

Therefore,

IVO(x,t) — VD (x,s)|
SIVO(x, 1) = VO (x, )] + [V Py (x, 1) = Vi (y, 1)]
+ VO m(y, 1) — VO(y, 1)
< 2C 0 (1/m) + 2Cqm*|t — s|.

Let p = 1/2d.Since |t —s| < e(’l’ﬁ)/z,ifwechoosem = |t—s|2/DU=P) > 1,
we have m?/?|t — s| = |t — s|P, which takes care of the second term in the above
inequality. Furthermore, ¢ = 1/(2(2 — 1/d)) < 1/2 ensures | log(x)| < x~1/2 <
x4~ for 0 < x < 1. Therefore,

(1/m)d  if 1/m < e=1=V2)/2
3/m i1 m = e 1mV22
<3(1/m)? = 3|t — 5|/ DA=P) = 31 5|7,

o(l/m) = {

Therefore, |[V®(x, 1) — V& (x, s)| < 10C4|r — s|'/>¢, which gives the result.

In the next proposition, we show that, while the discrete time sequence corre-
sponding to E~, may not be unique, the distance between any two such sequences
converges to zero as the time step t — 0.

Proposition 5.1. Fix T > 0 and initial data p € D(Ex) and let p}! and [i} be
two choices for the time discrete time sequence corresponding to Eoo, as defined
in Definition 2.14 (ii). Then there exist positive constants N and C, depending on
the dimension, T, and Ex(p), so that fort =t/nandall0 <t < T andn > N,

FEDW3 (B, 1) £ Co (D).
Proof. By Corollary 2.17, we have the following crude bound foralli =1, ..., n:
Wa(pL, ih) < Wa(pL, p) + Wa(fih, p) < 4CyT.

To obtain a more refined bound, we use Proposition 2.9. First, we estimate the
behavior of the energy E~ along the discrete time sequence. By Proposition 2.3,
Lemma 2.16, and the definition of p. as a minimizer
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Eoc (i7" pl)
= Eoo(By 107 + Eso(B "5 pp) = Eoc (B 071
= Encl: ) +/N/5i’1d(pi — o
Eac (B2 pi7 1) + CaWa(pl, pi7") < Eso (5% pi71) 4+ 2C37
- < Ess(p; py) +2CT.

IVANIVAN

Likewise, we may control the first term on the right hand side by
Eoo(p: p1) = 2Eoo(p) + Esc(p: p1) — Eoo(p: p)
=2Ex(p) + / Npd(p! — p) < 2Ex(p) +2Ct.

Thus, there exists C > 0 (which we allow to change from line to line) depending
only on the dimension, T, and E,(p) so that

Ex(pi'p) S C.

Likewise, by Proposition 2.3, Eoo(~; -) is uniformly bounded below by —Cy.

Due to these estimates, we may apply Proposition 2.9 to conclude that there
exist positive constants C and N depending on the dimension, 7', and E~(p) so
thatfort =¢/n,0 <r < T,andn > N,

FE W3, aly)
S Wi AN 4 Caro(CWa (L, 7i7h))
+2T(Eoo(i7Y5 p1) — Eoo(pl; pL)) + CT2.

By Lemma 2.16(ii), we may bound the second term by Cytw(C7) and the third

term by 4C§rz. Therefore, foralli =1, ...,n,
FEW3 B, i) £ W3t B + Cro(o). (5.1)
We now show that, forall j = 1,...,n,
FEPOWE B ) = W3 (B i) + 2CTe (D) ). 5-2)

Once we have this, taking j = n gives the result. We prove (5.2) by induction. The
base case, when j = 1, is a consequence of (5.1). Suppose that the result holds for

j_ l’
FRUTD Wi, @h)) £ Wi @ 4 2Ctw () (- 1.

By Proposition 2.8, applying f,(z) to both sides,

FEPW B D) £ FP W@ @) +2Ct0(@)( - D + €7
< Wi, gt ’)+2th(f)1

where the second inequality is a consequence of (5.1) and the fact that Ct> <
Ctw(t). This gives the result. O
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Now, we turn to the proof that the discrete time sequence p7 ,, corresponding
to E,, converges to the very weak solution of (PME-D),, as the time step goes to
zero. (See [51, Definition 6.2] for the definition of very weak solution.)

Proposition 5.2. Given initial data p € D(Es), let p7,, be the discrete time
sequence given in Definition 2.14 (iii). Then, for any t 2 0, pt"/n,m converges as
n — +00 to a limit py, (t), and there exist positive constants C and N depending
on the dimension, Ex(p), and T so thatforalln 2 N,m 2 d+1,and0 <t < T,

W20}y s P (1)) < C~ 116547,
Furthermore, py,(t) is the unique very weak solution of (PME-D),,.

Proof. Given initial data p € D(E), let p? be the discrete gradient flow of E,
as in Definition 2.14 (i). Using this sequence, we define a time dependent energy
EZ i by

E7 ,(v) = Ey(v; p7)

_ ﬁ Ra VO™AX + [pa Yiym * Npt (x)dv(x) if v < L9,
+o0 otherwise.

Then p7 ,, given in Definition 2.14 (iii) is the time varying discrete gradient flow
of this energy in the sense that

n : 1 2, n—1 n 0o .
Pz, € argmin Z—Wz (Pzm V) + E7,(v) ¢ and p; = p. (5.3)
vePy(Rd) 12T

Consequently, we may apply the first author’s results on convergence of the discrete
gradient flow of time dependent energies [20, Theorem A.3], provided that we can
show E) satisfies [20, Assumption A.2].

First, by [20, Theorem 4.3, Proposition 4.4], E?! satisfies [20, Assumption 2.18]
uniformly forn € N, m > 1, and t > 0. In particular, there exists a solution to the
minimization problem (5.3) and E? is w-convex along generalized geodesics, for
Ao = —Cq as in Proposition 2.3 and w (x) as in equation (2.4).

Next, we estimate the behavior of the energies and Wasserstein distance along
the discrete gradient flow. By Lemma 2.16 (iii), forall 1 < i < n,

. . 2T . .
Wa(pl s 1) g\/ = (kI = k) +2Ca

<2t (1 +n7C3/2) 4+ 2Cq4t.

where, in the second inequality, we use that || pom < 1. Likewise, by Corollary

2.17,
Wa(pp, ¢ p) < /4nT(1 4 8Cgn1).
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Finally, since Proposition 2.3 ensures E7 , is uniformly bounded below by —Cy,
there exists a constant Cy > 0, depending only on the dimension, so that

E2,.(p) — E" (0" ,) S Em(p,p) +Cq 1

+/N,0(X)1ﬁ1/m % p(x)dx + Cy < Cq + Eco(p),

where in the last inequality we use that Np (x) is a continuous function with at most
m——400

quadratic growth and Y1/, * o % 0, SO pr(x)l/fl/m * p(x)dx
2
S Np(x)p(x)dx.
It remains to show that E7 , possesses sufficient continuity in n7. To do this,
we first estimate the continuity of p! in nt. By Lemma 2.16, we have the following
crude bound

W3 (p", pf) £ (2C4(nt + kh))* < 16C3T.

Combining this with Proposition 2.8 (iii)_and [_20, Theorem 3.6], we obtain that for
any T > 0,thereexistsT = T(T,d)andC = C(T,d)sothatforall0 < h <t < 7T
andk,n € Nwithkh,nt < T,

Fan(W2(p", pk)) < € [\/ (nT — kh)? + 20 + hkd(/T) + h*k + cb(hz)k]
4 2h(Eoo(p) — inf Eno) 4+ Cqw(16C3THT /1.

Since F;(x) is decreasing in ¢, this implies there exists C = C(T,d, Ex(p)) so
that for0 <t < 7,

Far (W3 (ol pf)) < € [Vt —k)? + Vil log]]. (5.4)

Since Fo7(x) is strictly increasing and convex in x, FZ_Tl (x) is strictly increasing

and concave. Therefore,
o (x) =/ Fy7 (V)

is a continuous, nondecreasing, concave function that vanishes only at zero.
In particular, o (x) is also subadditive, so (5.4) implies that, for some C’' =
C/(Tv d’ EOO(p))a

Wa(p, pf) £ ¢’ [a ((m’ - kh)z) +o <t| logrlz)] . (5.5)

We use this estimate to show that E7 ,, is continuous in n7, up to an error that

decreases with 7. Since f := N(¥1/p * ,oi’m) eCl, by Lemma 2.2,
|E2 0k ) = Efp (04,01 = |En (0% i p2) = Em(ph i o)

= ' / N1 /m * pL,)d (02 — o))
Rd

<NV fllo [o ((nr - kh)z) to (‘L’| logt|2)] :
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Finally, ||V f |l is bounded uniformly in m, i, and 7, since for B = B;(0), there
exists ¢ depending only on the dimension (and which we allow to change from line
to line) so that, forallm = d + 1,

IV flloe S VNl zo@eargy + VNI Lo ) 105 ol ety

< e+ (1) ™DV pl Ll ra)

1/m
¢ (1 + llplln + (n = DTCF/2) ) <c

A

where the fourth inequality uses Lemma 2.16.

Thus, [20, Assumption A.2] is satisfied, so by [20, Theorem A.3], we conclude
that for all 0 < ¢t < T, there exists C = C(Ex(p), T, d) (which we allow to
change from line to line) so

For (W3(0}s ()
<c [r/ﬁ tiw (m) o @/n)+o(/n] 10g(t/n)|2)] .
Hence, using again that F;(x) is decreasing in ¢,
For (W3 (0> ()

<cC |:n_1/2 logn + \/FZ}I (t//n) + \/Fz}l (/t/n| log(t/n)|)] .

For0 < x < e_l_ﬁ, F(x) = x¢“" and n~121logn = 0n="*), so for n
sufficiently large,

)zezch

_ 2C,T
(Wz(p?/n,m,pm(t» SC VYT — Wap) e o (0))

< cp /166
Finally, it remains to show that the limit p,, is the unique very week solution of
(PME-D),,. Following a parallel argument as in Jordan, Kinderlehrer, and Otto’s

original work on the convergence of the discrete gradient flow to solutions of the
Fokker—Planck equation [27], one can show that for all ¢ € Cgo (Rd x [0, +00)),

+00
0=/ pm<x,0>c<x,0)dx+/ / P (2 $) (D52 (2. 5)
R4 0 R4
—V®im(x,s)VE(x,s))dx ds (5.6)

+00
+f / om(x, )AL (x, s)dx ds.
0 R4

Therefore, p,, (x, t) is a very weak solution of (PME-D),,, as defined in [51,
Definition 6.2]. (While this definition does not include a drift term, as in equation
(5.6) above, it generalizes naturally to our setting.) Finally, by [51, Theorem 6.5]
(suitably generalized to the presence of drift), this very weak solution is unique
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whenever p,,, (om)" € L2(R¢ x (0, T)). By Remark 3.9 and the fact that p,, is
compactly supported at any time, we conclude that p,, (x, t) is the unique very weak
solution of (PME-D),,. O
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