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ABSTRACT

Stochastic simulation is an indispensable tool in operations and management applications. However,

simulation models are only approximations to reality, and often bear discrepancies with the generating

processes of real output data. We investigate a framework to statistically learn these discrepancies under the

presence of data on past implemented system configurations, which allows us to improve prediction using

simulation models. We focus on the case of general continuous output data that generalizes previous work.

Our approach utilizes (a combination of) regression analysis and optimization formulations constrained on

suitable summary statistics. We demonstrate our approach with a numerical example.

1 INTRODUCTION

Stochastic simulation is used ubiquitously in decision analytics in many operations and management

applications. It describes system dynamics under alternate configurations that can be used for analytical

tasks. While modelers often attempt to build models as realistic as possible, due to resource constraints

and ignorance of unobserved system features, these models are at best approximations and in almost all

practical cases bear discrepancies with reality. For example, in operational settings that are naturally cast

as “queues”, the serial structures of interarrival times (e.g., Livny et al. 1993), discretionary or strategic

behaviors (e.g., balking, reneging, queue selection; Pazgal and Radas 2008, Veeraraghavan and Debo 2009),

individualized and contextual behaviors of the customers and servers (e.g., Aksin et al. 2007), and structural

server changes over time (e.g., Brown et al. 2005) are all difficult to capture. Inadequate reflection of these

features can degrade the predictive power of the simulation model and potentially affect the reliability of

decision-making.

In this paper, we investigate a general framework that builds on our previous work Plumlee and Lam

(2016, 2017) to learn about the imperfectness of stochastic simulation models and subsequently use this

information to improve prediction. To describe our investigation, we first introduce some notations and

define the notion of model discrepancy. Imagine that we are interested in an output variable, Y ∈ Y ,

from a stochastic system which has a true distribution π(·). The variable can represent waiting time,

queue length, reward, other responses or any collections of them that are relevant to decision-making. A

typical performance analysis consists of evaluating a quantity ρ(π), which in this paper we focus on the

expectation-type performance measure Eπ [ f (Y )] for some function f (·) : Y → R.

When real-world observations from π are abundant, the performance analyses can be accurately

approximated by replacing π with data, e.g., the empirical distribution. However, in decision analyses (e.g.,

optimality or feasibility tests), we are typically interested in system designs that are sparsely sampled or

1808978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Lam, Plumlee, and Zhang

even never adopted before. So, instead, model builders use “simulation models” that generate outputs with

distribution, say, π̃(·), as an approximation to π(·) that can be estimated much more easily via simulation

replications. If π̃(·) �= π(·), then ρ(π̃) may not equal ρ(π) and the outcomes of the analysis become

erroneous. Our interest is to combine both the observations on π and the simulation model π̃ to generate

prediction for ρ(π) that is better than using either one alone.

Our approach hinges on estimating the difference between π̃(·) and π(·) and then integrating this bias

estimate with the simulation model to predict ρ(π). It requires the existence of some control variable or

design point x ∈ X that represents the set of system parameters, and that real system observations are

available at some x. The value of a design point can include decision variables (e.g., number of servers,

routing policy) and important components of the system (e.g., arrival rate of customers). The availability of

observations from different design points provides an opportunity to learn and correct for the imperfectness

of π̃ , including at un- or under-observed points, by data-pooling.

We consider the class of mappings P : X ×Y → R, such that if p ∈ P , then p(x, ·) is a valid

probability measure over Y . We expand the definition of the true model π and the simulation model π̃ to

be in P . In general, we have the pointwise relationship

π(x,y) = π̃(x,y)+δ (x,y) (1)

where we call δ (·, ·) the model discrepancy. When π̃ �= π , we have δ �= 0 and model discrepancy is present.

The relationship (1) can be viewed as a stochastic counterpart of a similar discrepancy notion in the

literature of deterministic computer experiments (where no y in (1) is present). The latter is under the

framework of model calibration that refers generally to the refinement or correction of a hypothetical

simulation model through real-world data to enhance the model prediction capability. Starting with the

seminal statistical article of Kennedy and O’Hagan (2001), calibration for deterministic simulation has

been substantially investigated (e.g., Bayarri et al. 2012, Oakley and O’Hagan 2004, Higdon et al. 2004,

Plumlee 2016). In the stochastic simulation literature, other than parameter calibration (implemented

in some simulation software such as Anylogic), calibration on model structure is commonly conducted

together with model validation, integrated in the model development process, through various techniques

including running statistical tests (e.g., Balci and Sargent 1982, Kleijnen 2015, Sargent 2013, Kleijnen,

Cheng, and Bettonvil 2001, Kleijnen and Sargent 2000). This paper detours from the common approach,

and utilizes the idea of inferring model discrepancies in deterministic computer experiments to improve

the prediction of stochastic simulation. Compared to the established practice, the avoidance of building

increasingly sophisticated models could potentially save costs and time in refining the model, and prevent

the unfortunate situation in case an ultimately satisfactory model is absent.

We will consider two methods in this paper. The first one estimates ρ(δ (x, ·)) := ρ(π(x, ·))−ρ(π̃(x, ·))
directly by regression against the covariate x. The second method exploits further the fact that π and π̃
are probability distributions, so that they satisfy standard conditions for valid probability measures that

constrain the possible values of ρ(π). This second method can be thought of as inferring the difference

of distributions δ (x, ·) = π(x, ·)− π̃(x, ·) and using it to calculate ρ(π). However, since δ (x, ·) can be a

high- or even infinite-dimensional object (in the case of continuous output distributions) that is challenging

to estimate, our second approach instead operates on a collection of summary statistics on δ (x, ·), and

posits suitable optimization formulations to compute bounds that take into account the relation among these

summary statistics induced by the probability distribution structure.

As mentioned before, this work builds on Plumlee and Lam (2016, 2017) and generalizes their

investigation. Besides the difference regarding the representation of model discrepancy (additive versus

multiplicative form), Plumlee and Lam (2016, 2017) focus on finite-valued outputs in a Bayesian framework.

In this paper, we are primarily interested in outputs that are continuous, which pose substantial additional

challenges since they are now infinite-dimensional objects. Our aforementioned second method novelly uses

summary statistics to facilitate tractable statistical estimation, but with infinite-dimensional optimization

programs posited over the space of probability distributions to recover bounds incurred by the continuous

1809



Lam, Plumlee, and Zhang

distributions. With well-chosen functions to define the summary statistics, these optimization programs

can be reformulated by duality as tractable finite-dimensional programs. These developments provide an

implementable mechanism to take into account distributional information that is infinite-dimensional in

nature.

In the rest of this paper, we first describe the two proposed methods in Sections 2 and 3. Then we

provide an extensive numerical study and compare our performance with both simulation-only and data-only

predictions in Section 4. We conclude this paper in Section 5.

2 LEARNING MODEL DISCREPANCY VIA REGRESSION

Consider a collection of design point values, say {1, . . . ,s}. For each value x = i, suppose there are i.i.d.

real-world output observations Yi j ∼ π(i, ·), j = 1, . . . ,ni. The sample size ni can be possibly zero for some

i (so that no Yi j exists).

We assume there is enough computational resource, so that the simulation output distribution π̃ can

be exactly obtained.

Suppose we are interested in ρ(π(x0, ·)) = Eπ(x0,·)[ f (Y )] for some x0. Using data alone, we will output

Ȳx0· = (1/nx0
)∑

nx0

j=1 f (Yi j). Clearly, if there is no data at x0, this approach does not apply. On the other

hand, the simulation model gives ρ(π̃(x0, ·)) = Eπ̃(x0,·)[ f (Y )] as the predicted value of ρ(π(x0, ·)).
To combine both {Yi j} and π̃ in our prediction, we consider the estimation of ρ(δ (x0, ·)) by the

regression problem

f (Yi j)−ρ(π̃(i, ·)) = h(i)+ εi j (2)

where h(·) is an unknown function of the design point x, and εi j, j = 1, . . . ,ni are mean-zero i.i.d. noises

from the real data, for each i. The responses in the regression are f (Yi j)−ρ(π̃(i, ·)) whose mean values

are the model discrepancies ρ(δ (i, ·)).
Regression (2) can be conducted by a variety of tools; we use local linear regression with a standard

R package in our experiments. This gives us a confidence interval (CI) for ρ(δ (x0, ·)), say [L,U ]. Our

prediction of ρ(π(x0, ·)) is then expressed as a CI [ρ(π̃(x0, ·))+L,ρ(π̃(x0, ·))+U ]. Clearly, if [L,U ] indeed

covers the true ρ(δ (x0, ·)) with probability 1−α , then [ρ(π̃(x0, ·))+L,ρ(π̃(x0, ·))+U ] covers ρ(π(x0, ·))
with the same probability.

The above scheme can be modified with

f (Yi j) = βρ(π̃(i, ·))+h(i)+ εi j (3)

The additional unknown scaling parameter β represents a multiplicative model discrepancy. The response

in (3) now has mean ρ(π(i, ·)). The CI for ρ(π(x0, ·)) can be obtained directly from the regression (3).

3 COMBINING REGRESSION OUTCOMES WITH OPTIMIZATION

We consider an enhancement of the method in Section 2 by introducing the auxiliary statistics γk(π(x, ·)) =
Eπ(x,·)[gk(Y )] for k = 1, . . . ,m. One of these statistics can be taken as ρ(π(x, ·)), e.g., let g1 = f . Then,

instead of using (2) only, we impose the multivariate-output regression

gk(Yi j)− γk(π(i, ·)) = hk(i)+ εi jk (4)

where hk(·) is the individual regression function for the k-th statistic. Similar to Section 2, εi jk, j = 1, . . . ,ni

are mean-zero i.i.d. noises, for each i, and gk(Yi j)− γk(π(i, ·)) has mean equal to γk(δ (i, ·)).
The idea is that estimates of γk(δ (x0, ·)),k = 1, . . . ,m give more information than using ρ(δ (x0, ·))

alone. For convenience, we denote γ = (γk)k=1,...,m and g= (gk)k=1,...,m. To incorporate the new information,

we first need a confidence region (CR) for γ(δ (x0, ·)). As in Section 2, this can be done by a variety of

statistical tools, and here we use a basic scheme of running individual local regression at each k, making an

additional assumption that εi jk,k = 1, . . . ,m are independent for each i, j. For each individual regression,
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we can obtain the point estimate of γk(δ (x0, ·)), say γ̂k, and its standard error, say sk. Under standard

assumption we have γ̂k
approx.∼ N(γk(δ (x0, ·)),σ2

k ), independent among the k’s, where σ2
k is the sampling

variance that can be estimated by s2
k . This gives us a CR

U =

{

(z1, . . . ,zm) ∈ R
m :

m

∑
k=1

(zk − γ̂k)
2

s2
k

≤ χ2
1−α,m

}

(5)

for γ(δ (x0, ·)), where χ2
1−α,m is the (1−α)-quantile of a χ2-distribution with degree of freedom m.

We then impose the optimization problems

max ρ(q) subject to γ(q)− γ(π̃(x0, ·)) ∈ U (6)

and

min ρ(q) subject to γ(q)− γ(π̃(x0, ·)) ∈ U (7)

where the decision variable q is a probability distribution on the response space Y . The constraints in

(6) and (7) incorporate information on the possible values of γ(q) with probability 1−α . Given this

information, the outcomes of (6) and (7) give the best upper and lower bounds on ρ(π(x0, ·)). If the CR

U contains the true γ(π̃(x0, ·)) with confidence level 1−α , then (6) and (7) will form a CI for ρ(π(x0, ·))
with at least the same level. This idea originates from the literature of data-driven distributionally robust

optimization (e.g., Delage and Ye 2010, Ben-Tal et al. 2013, Goh and Sim 2010, Wiesemann et al. 2014),

where U is often known as the uncertainty set or the ambiguity set. We also mention that the use of

multiple simulation outputs has also been considered in the conventional model validation literature, in

which Bonferroni correction is commonly suggested when conducting the relevant statistical tests (e.g.,

Sargent 2013, Kleijnen 2015).

Note that (6) and (7) are generalized moment problems, where the optimization contains an objective

function and constraint functions that are all moments of a random variable. By using conic duality, (6)

can be reformulated as the dual problem

minκ,ν∈R,λ∈Rm κ +(γ(π̃(x0, ·))+ γ̂)Tλ +
√

χ2
1−α,mν

subject to κ +g(y)Tλ − f (y)≥ 0 for all y ∈ Y

‖sTλ‖2 ≤ ν

(8)

where γ̂ = (γ̂k)k=1,...,m and s = (sk)k=1,...,m, and similarly for (7) (by considering −max{−ρ(π)}). Strong

duality holds if γ(q)−γ(π̃(x0, ·)) lies in the interior of U and under appropriate topological assumptions on

Y (e.g., Shapiro 2001). Without the condition, weak duality still implies that (8) provides a conservative

approximation for (6).

Note that (8) still has an infinite number of constraints, but for specific choices of f and g one can

reduce (8) to finite-dimensional optimization problems. We focus here on the setting that Y = [0,UB]⊂R

where UB is the largest possible value of Y , and f (y) and gk(y) are in the form yr where r is a rational

number. This allows us to reduce (8) to finite-dimensional semidefinite programs (SDP) by generalizing the

technique in Bertsimas and Popescu (2005), which consider moment equalities only and does not contain

the second order cone constraint in the dual formulation (8). For example, in the case that f (y) = y and

gk(y) = yk/m̃ for k = 1,2, · · · ,m, (8) becomes

minκ ,ν∈R,λ∈Rm κ +(γ(π̃(x0, ·))+ γ̂)Tλ +
√

χ2
1−α,mν

subject to κ +
m

∑
i=1

λiy
i/m̃ − y ≥ 0 for all y ∈ [0,UB]

‖sTλ‖2 ≤ ν

(9)
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By a change of variable y1/m̃ → y, we can transform the algebraic constraints into positive semidefinite

constraints, and get

minκ,ν∈R,λ∈Rm,U∈R(m+1)×(m+1) κ +(γ(π̃(x0, ·))+ γ̂)Tλ +
√

χ2
1−α,mν

subject to U 
 0

∑
i, j:i+ j=2l+1

ui j = 0, l = 1, · · · ,m

∑
i, j:i+ j=2l+2

ui j =
l

∑
r=0

yr

(

m̃−r
l−r

)

UBr/m̃, l = 0, · · · ,m

‖sTλ‖2 ≤ ν

(10)

where y0 = κ,yi = λi1i�=m̃+(λi−1)1i=m̃, [U ]i j = ui j. Similarly, for (7), the objective function can be written

as −max{−ρ(π)}. The dual formulation of max{−ρ(π)} remains as (10) except that ym̃ is replaced by

λm̃ +1.

We choose the power in gk(·) as k/m̃ instead of integers so as to avoid a blow-up in the magnitude

of the moment as k increases. Note that there are other plausible choices of statistics, e.g., quantile-type

statistics in the form gk(y) = I(y ≤ bk) for some bk, or a combination of these and the power moments,

which can also be similarly converted into SDP.

As in Section 2, an alternative is to consider the regression

gk(Yi j) = βkγk(π̃(i, ·))+hk(i)+ εi jk, (11)

with responses gk(Yi j) and additional scaling parameters βk. We can form a CR U for γ(π(x0, ·)) in this case

as (5), where γ̂k is now the point estimate of γk(π(x0, ·)) under the regression and sk is the corresponding

standard error. Then we use the optimization problems

max ρ(q) subject to γ(q) ∈ U

and

min ρ(q) subject to γ(q) ∈ U

The maximization can be dualized to (8) and in the special case considered above to (10) (without the

γ(π̃(x0, ·)) term). Similar treatments for the minimization as discussed above also hold.

We note that the accuracy of our proposed approach, here and in Section 2, depends on the complexity

of the simulation model and the reality, in that it determines how challenging it is to find an acceptable

regression model for capturing the model discrepancy. In the next section, we will test our approach with

some numerical studies on a simple queueing system.

4 NUMERICAL STUDY

We use a queueing example to test the approaches we propose in Sections 2 and 3. We first consider a

simulation model and the “real” system generated as follows: The simulation model is a M/M/x queue

with arrival rate λ = 5 and service rate μ = 0.05. The real system is a M/M/x queue with a random arrival

rate as an absolute value of a normally distributed random variable with mean 5 and standard deviation

5 · 0.1, and a random service rate as an absolute value of a normally distributed random variable with

mean 0.045 and standard deviation 0.045 ·0.1 (Think of these as, e.g., some random daily characteristics).

In addition, each customer has a probability 0.2 to abandon the queue if the waiting time is larger than

an exponential random variable with mean 450
x

where x is the number of servers. The output quantity of

interest Y is the average waiting time among the first 50 customers.

The design point x corresponds to the number of servers, which ranges on x = 10,11, · · · ,25. For this

example, we can easily run plenty of simulation, say 105 replications, to get π̃ that can be considered as
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exactly obtained. For each x = 10, . . . ,24, we generate 10 observations on the real system. We deliberately

collect no observations for x = 25 as a test point.

We use f (y) = y and gk(y) = yk/m̃, so that we can use the SDP (10) when adopting the optimization-

enhanced approaches. We use a confidence level 1−α = 95% in the experiment.

We consider five methods:

• Data-only method (Method D) only utilizes real data Yi j. For i = 1, . . . ,24, the CI is

[

Ȳi − z1−α/2

σ̂i√
10

,Ȳi + z1−α/2

σ̂i√
10

]

,

where Ȳi =

10

∑
j=1

Yi j

10
, σ̂i =

√

10

∑
i=1

(Yi j−Ȳi)2

10−1
, and z1−α/2 is the (1−α/2)th quantile of a standard normal

distribution. For x = 25, there is no data so Method D does not apply.

• Regression-only method 1 (Method R1) is based on the regression problem (2) in Section 2.

• Optimization-enhanced method 1 (Method O1) is based on optimizing over the CR obtained from

(4) in Section 3.

• Regression-only method 2 (Method R2) is based on (3) in Section 2.

• Optimization-enhanced method 2 (Method O2) is based on optimizing over the CR obtained from

(11) in Section 3.

• Simulation-only method (Method S) uses the (accurate) point estimate of our simulation model.

Each method except Method S outputs a lower bound and a upper bound value for each experiment,

thereby forming a (1−α)-level confidence interval. For Methods R1, O1, R2, and O2, we use the R

function “npreg” in the “np” package to make local linear regressions.

4.1 Comparisons with Data-only and Simulation-only Methods

We first investigate the coverage probabilities of the prediction bounds generated by the methods. Table

1 shows the estimated coverage probabilities from repetition of 100 experiments with gk(y) = yk/10,k =
1, · · · ,10. For each entry in the table, we use a±b to denote the CI of the estimated coverage probability

from the 100 experiments, i.e., a is the average number of success in covering the true value and b is the

half-width of the associated CI for the coverage probability.

For Method D, the coverage probability ranges from 0.816 to 0.999. It is roughly around the theoretical

coverage probability 95% but there are mild fluctuations due to the small number of repetitions. That being

said, both regression-only and optimization-enhanced methods obtain more fluctuated values as the number

of servers varies. For example, the coverage probability ranges from 0.372 to 0.999 for Method R1 and

ranges from 0.493 to 1 for Method O1. Therefore, the data-only method shows a more reliable performance

overall. Even though in some cases (e.g., when x = 20) the correction methods (i.e., Methods R1, O1, R2,

O2) all obtain reasonable coverages, the data-only method has uniformly better performances and is the

best in other cases (e.g., x = 10). However, if one considers the case x = 25 (i.e., the extreme case where

there is no data), then Method D does not apply, but the correction methods still give reasonable coverage

(though the performances vary). That the correction methods tend to have poorer coverage probabilities

could be due to the crudeness of the regression models, whose assumptions and post-hoc analyses have not

been carefully conducted in this experiment. In other words, the regression models used in this example

could deviate from the true behavior of ρ(δ (x, ·)) or ρ(π(x, ·)).
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Table 1: Coverage probabilities for different methods.

Number of

servers

Method D Method R1 Method O1 Method R2 Method O2

10 0.88±0.064 0.47± 0.098 0.59±0.097 0.57±0.098 0.66±0.093

11 0.91±0.056 0.59± 0.097 0.63±0.095 0.67±0.093 0.77±0.083

12 0.96±0.039 0.67± 0.093 0.78±0.082 0.81±0.077 0.88±0.064

13 0.88±0.064 0.77± 0.083 0.83±0.074 0.90±0.059 0.93±0.050

14 0.89±0.062 0.76± 0.084 0.79±0.080 0.90±0.059 0.90±0.059

15 0.91±0.056 0.79± 0.080 0.78±0.082 0.98±0.028 0.96±0.039

16 0.93±0.050 0.85± 0.070 0.91±0.056 0.94±0.047 0.96±0.039

17 0.88±0.064 0.91± 0.056 0.95±0.043 0.98±0.028 0.97±0.034

18 0.93±0.050 0.93± 0.050 0.91±0.056 0.95±0.043 0.93±0.050

19 0.92±0.053 0.95± 0.043 0.97±0.034 0.90±0.059 0.94±0.047

20 0.92±0.053 0.96± 0.039 0.96±0.039 0.99±0.020 0.97±0.034

21 0.95±0.043 0.96± 0.039 0.97±0.034 0.95±0.043 0.94±0.047

22 0.95±0.043 0.90± 0.059 0.89±0.062 0.99±0.020 0.95±0.043

23 0.91±0.056 0.89± 0.062 0.88±0.064 0.99±0.020 0.95±0.043

24 0.95±0.043 0.89± 0.062 0.92±0.053 0.87±0.066 0.87±0.066

25 - 0.81± 0.077 0.70±0.090 0.87±0.066 0.73±0.087

Besides coverage probability, we are interested in gaining some understanding on how conservative

the methods are. This can be measured by the difference between the lower and upper confidence bounds

for each method. We call these differences the prediction gaps. Table 2 shows the statistics of this gap for

each of the methods, among the 100 experiments with gk(y) = yk/10,k = 1, · · · ,10. For each entry in the

table except the ones in the last column, we use a±b to denote the CI of the prediction gap from the 100

experiments (i.e., a is the average gap, and b is the CI half-width). The last column shows the absolute

difference between the point estimate of the simulation model and the truth, which can be viewed as the

magnitude of the model error made in using the simulation.

Table 2: Prediction gaps for different methods.

Number of

servers

Method D Method R1 Method O1 Method R2 Method O2 Method S

10 7.488 ± 0.355 1.820 ± 0.263 2.035 ± 0.242 2.660 ± 0.205 2.943 ± 0.171 0.413

11 6.005 ± 0.346 1.561 ± 0.190 1.670 ± 0.155 2.631 ± 0.176 2.884 ± 0.161 0.348

12 5.527 ± 0.275 1.325 ± 0.150 1.486 ± 0.127 2.322 ± 0.125 2.489 ± 0.094 0.236

13 4.751 ± 0.249 1.315 ± 0.140 1.467 ± 0.133 2.127 ± 0.085 2.360 ± 0.077 0.191

14 4.490 ± 0.220 1.334 ± 0.134 1.371 ± 0.103 1.979 ± 0.040 2.188 ± 0.050 0.137

15 3.878 ± 0.208 1.172 ± 0.087 1.247 ± 0.083 1.890 ± 0.031 2.035 ± 0.041 0.041

16 3.582 ± 0.177 1.143 ± 0.087 1.184 ± 0.086 1.797 ± 0.030 1.933 ± 0.030 0.027

17 2.987 ± 0.144 1.038 ± 0.053 1.060 ± 0.049 1.713 ± 0.037 1.808 ± 0.031 0.018

18 2.791 ± 0.138 1.000 ± 0.057 0.981 ± 0.050 1.627 ± 0.051 1.679 ± 0.038 0.059

19 2.533 ± 0.125 0.981 ± 0.046 0.973 ± 0.047 1.527 ± 0.065 1.557 ± 0.046 0.093

20 2.274 ± 0.108 0.958 ± 0.043 0.945 ± 0.045 1.579 ± 0.067 1.470 ± 0.047 0.101

21 2.112 ± 0.098 0.906 ± 0.026 0.886 ± 0.029 1.489 ± 0.075 1.383 ± 0.054 0.140

22 1.831 ± 0.086 0.893 ± 0.025 0.849 ± 0.028 1.452 ± 0.081 1.306 ± 0.045 0.136

23 1.673 ± 0.088 0.885 ± 0.024 0.832 ± 0.030 1.522 ± 0.082 1.272 ± 0.048 0.143

24 1.501 ± 0.077 0.898 ± 0.019 0.806 ± 0.026 1.462 ± 0.084 1.165 ± 0.050 0.164

25 – 0.999 ± 0.084 0.871 ± 0.078 1.514 ± 0.080 1.157 ± 0.067 0.162

Table 2 shows that the prediction gaps using correction methods are significantly shorter than that

using data-only method for every x. For example, at x = 18, Method D has a prediction gap about 2.791,

but Method R1 has 1 and Method O1 has 0.981. Moreover, at some particular x, both high coverage

probability and small prediction gap are obtained simultaneously for correction methods. For instance, the

coverage probabilities at x = 18 for both data-only and correction methods are roughly around 95% and the

probabilities only differ by 5% ∼ 10% for some other choices of x such as 15,16,23,24. This shows that,

while the coverage probabilities are more reliable when using only data, their predictions are generally
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much more conservative. The correction methods use information on the simulation model to reduce the

conservativeness.

Considering the last column in Table 2, we see that the simulation model errors are in overall smaller

than the prediction gaps in this example. However, simulation method in this example is, in a sense, always

erroneous as the Monte Carlo errors of an inaccurate model are washed away with abundant simulation

runs, leaving point estimates that are different from the truth. We note that different simulation model will

give different model error, and there is no direct guarantee whether the model error as we define will be

smaller or larger than the prediction gaps from the correction methods.

4.2 Comparisons Among Regression-only and Optimization-enhanced Methods

Next we repeat the experiment, using a smaller number, but higher orders, of moments gk(y) = yk/2,k =
1, · · · ,3. Tables 3 and 4 give the coverage probabilities and prediction gaps respectively under this new

scheme. The data are all newly generated in this experiment, and hence the results for Method D differ

slightly from the previous experiment. We also realize that the R function “npreg” for local linear regression

seems to give slightly different prediction value each time even with identical input data, possibly due to

numerical issues. For regression-only method R1, these fluctuations are negligible and consequently the

difference of results with the previous experiment mainly arises from the random data generation. For

method R2, the changes range from 0.01 to 0.05 in both the coverage probability and the prediction gap,

which arises from a combination of random data generation and the R function “npreg”.

Table 3 shows that the coverage probabilities for regression-only methods and optimization-enhanced

methods are comparable to each other for every x. For example, for x = 16, the coverage probabilities

differ by only roughly 0.02. Table 4 shows that the prediction gaps obtained from optimization-enhanced

methods are generally shorter than that from regression-only methods. For instance, at x = 14, Method R1

has a prediction gap about 1.223 and Method O1 has 1.142, whereas at say x = 19 Method R2 has 1.670

and Method O2 has 1.478. Besides the shorter gaps, optimization-enhanced methods give prediction gaps

that have smaller variability. For example, the CI length of the prediction gap is shorter for Method O2

than for Method R2 for almost every x.

Table 3: Coverage probabilities for different methods under a different set of moments.

Number of

servers

Method D Method R1 Method O1 Method R2 Method O2

10 0.89 ± 0.06 0.39 ± 0.10 0.41 ± 0.10 0.54 ± 0.10 0.47 ± 0.10

11 0.93 ± 0.05 0.59 ± 0.10 0.59 ± 0.10 0.76 ± 0.08 0.71 ± 0.09

12 0.87 ± 0.07 0.70 ± 0.09 0.66 ± 0.09 0.87 ± 0.07 0.86 ± 0.07

13 0.91 ± 0.06 0.79 ± 0.08 0.75 ± 0.09 0.92 ± 0.05 0.90 ± 0.06

14 0.97 ± 0.03 0.82 ± 0.08 0.79 ± 0.08 0.94 ± 0.05 0.86 ± 0.07

15 0.90 ± 0.06 0.82 ± 0.08 0.79 ± 0.08 0.95 ± 0.04 0.93 ± 0.05

16 0.92 ± 0.05 0.88 ± 0.06 0.86 ± 0.07 0.97 ± 0.03 0.95 ± 0.04

17 0.92 ± 0.05 0.89 ± 0.06 0.85 ± 0.07 0.95 ± 0.04 0.94 ± 0.05

18 0.94 ± 0.05 0.99 ± 0.02 0.99 ± 0.02 0.95 ± 0.04 0.92 ± 0.05

19 0.90 ± 0.06 0.98 ± 0.03 0.98 ± 0.03 0.99 ± 0.02 0.97 ± 0.03

20 0.84 ± 0.07 0.93 ± 0.05 0.94 ± 0.05 0.99 ± 0.02 0.98 ± 0.03

21 0.93 ± 0.05 0.97 ± 0.03 0.97 ± 0.03 0.95 ± 0.04 0.94 ± 0.05

22 0.89 ± 0.06 0.93 ± 0.05 0.93 ± 0.05 0.98 ± 0.03 0.97 ± 0.03

23 0.87 ± 0.07 0.93 ± 0.05 0.93 ± 0.05 0.98 ± 0.03 0.97 ± 0.03

24 0.94 ± 0.05 0.83 ± 0.07 0.87 ± 0.07 0.95 ± 0.04 0.95 ± 0.04

25 – 0.74 ± 0.09 0.68 ± 0.01 0.77 ± 0.08 0.78 ± 0.01
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Table 4: Prediction gaps for different methods under a different set of moments.

Number of

servers

Method D Method R1 Method O1 Method R2 Method O2 Method S

10 7.165 ± 0.390 1.753 ± 0.238 1.581 ± 0.190 2.583 ± 0.176 2.377 ± 0.149 0.413

11 6.156 ± 0.293 1.498 ± 0.187 1.345 ± 0.132 2.314 ± 0.150 2.079 ± 0.124 0.348

12 5.544 ± 0.285 1.358 ± 0.157 1.288 ± 0.129 2.304 ± 0.115 2.074 ± 0.097 0.236

13 4.850 ± 0.260 1.295 ± 0.122 1.202 ± 0.098 2.146 ± 0.084 1.950 ± 0.068 0.191

14 4.468 ± 0.208 1.223 ± 0.117 1.142 ± 0.095 2.048 ± 0.056 1.812 ± 0.041 0.137

15 3.729 ± 0.162 1.229 ± 0.097 1.150 ± 0.077 1.885 ± 0.026 1.665 ± 0.026 0.041

16 3.637 ± 0.176 1.104 ± 0.082 1.041 ± 0.064 1.803 ± 0.030 1.583 ± 0.034 0.027

17 3.145 ± 0.184 1.082 ± 0.079 1.018 ± 0.060 1.754 ± 0.031 1.585 ± 0.039 0.018

18 2.920 ± 0.138 1.048 ± 0.066 0.999 ± 0.050 1.659 ± 0.047 1.492 ± 0.051 0.059

19 2.563 ± 0.126 0.977 ± 0.044 0.941 ± 0.035 1.670 ± 0.061 1.478 ± 0.061 0.093

20 2.244 ± 0.120 0.962 ± 0.039 0.922 ± 0.029 1.523 ± 0.065 1.362 ± 0.064 0.101

21 2.053 ± 0.102 0.917 ± 0.031 0.904 ± 0.026 1.557 ± 0.076 1.383 ± 0.071 0.140

22 1.879 ± 0.089 0.889 ± 0.025 0.875 ± 0.024 1.526 ± 0.083 1.373 ± 0.075 0.136

23 1.690 ± 0.077 0.867 ± 0.019 0.873 ± 0.025 1.523 ± 0.082 1.376 ± 0.073 0.143

24 1.565 ± 0.072 0.909 ± 0.026 0.897 ± 0.028 1.532 ± 0.078 1.378 ± 0.071 0.164

25 – 1.017 ± 0.066 0.966 ± 0.005 1.519 ± 0.080 1.345 ± 0.008 0.162

In comparing different regression models (2) and (3), we see that correction methods based on (3)

generally give higher coverage probabilities compared with those based on (2). For example, at x = 12,

Method R1 obtains coverage probability 0.67± 0.093 and Method R2 obtains 0.81± 0.077 in Table 1,

and 0.70± 0.09 and 0.87± 0.07 respectively in Table 3. Likewise, for optimization-enhanced methods,

Method O1 obtains coverage probability 0.78±0.082 and Method O2 obtains 0.88±0.064 in Table 1, and

0.66±0.09 and 0.86±0.07 respectively in Table 3. However, higher coverage probabilities seem to come

with the price of wider prediction gaps. For instance, Method R1 gives prediction gaps 1.325±0.015 and

Method R2 gives 2.322±0.0125 in Table 2, and 1.358±0.157 and 2.304±0.115 respectively in Table 4.

Likewise, for optimization-enhanced methods, Method O1 gives prediction gaps 1.486±0.127 and Method

O2 gives 2.489± 0.094 in Table 2, and 1.288± 0.129 and 2.074± 0.097 respectively in Table 4. From

these observations, there does not seem to be a concrete conclusion which regression model is better. One

who prefers a higher coverage probability at the cost of a conservative prediction gap may plausibly choose

the second regression model, and vice versa.

Next we analyze the sensitivity to the choice of moments in the constraints. We choose four sets of

parameters as follows: (m, m̃) = (3,3),(6,6),(10,10),(3,2). We classify two categories in the choices of

moment constraints with given functions f (y) = y,gk(y) = yk/m̃,k = 1, · · · ,m. The first category is m ≤ m̃

and the second category is m > m̃. Hence, (m, m̃) = (3,3),(6,6),(10,10) are under the first category while

(m, m̃) = (3,2) belongs to the second category. In the first category, the order of moments in the constraints

does not exceed that of the objective function. On the other hand, the second category allows higher-order

moments in the constraints. In this experiment, we focus on Methods R1 and O1.

Tables 5 and 6 give the coverage probabilities and prediction gaps respectively under the above

four sets of parameters. Table 5 shows that optimization-enhanced methods under the first category

generally give higher coverage probabilities than regression-only methods, while vice versa under the

second category. For example, at x = 16, Method R1 outputs coverage probability 0.85. Under the first

category, (m, m̃) = (3,3),(6,6),(10,10) give coverage probabilities 0.88,0.88,0.87 respectively. Under

the second category, namely (m, m̃) = (3,2), the coverage probability is 0.83. Similar to an observation

made before, lower coverage probability generally comes with a shorter prediction gap. Table 6 shows

that optimization-enhanced methods under the first category generally give wider prediction gaps than

regression-only methods, and vice versa under the second category. For instance, at x = 16, Method R1

outputs a prediction gap 1.214. Under the first category, (m, m̃) = (3,3),(6,6),(10,10) output prediction

gaps 1.327,1.306,1.273 respectively. Under the second category, namely (m, m̃) = (3,2), the prediction

gap is 1.122. We attribute such phenomenon to a stronger impact from moments that are higher order,

i.e., in the second category, on constraining the possible values of the performance measure, which shrinks
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the prediction gap. Under the first category, the effect of moments is weaker, and the combined additional

statistical errors in estimating these moments lead to wider prediction gaps than regression-only methods.

Table 5: Coverage probabilities for different methods and different settings.

Number of

servers

Method D Method R1 Method O1

m = m̃ = 3

Method O1

m = m̃ = 6

Method O1

m= m̃= 10

Method O1

m= 3 m̃= 2

10 0.91 ± 0.06 0.45 ± 0.10 0.56 ± 0.10 0.52 ± 0.10 0.50 ± 0.10 0.40 ± 0.10

11 0.91 ± 0.05 0.59 ± 0.10 0.67 ± 0.09 0.67 ± 0.09 0.66 ± 0.09 0.58 ± 0.10

12 0.87 ± 0.07 0.7 ± 0.09 0.71 ± 0.09 0.70 ± 0.09 0.69 ± 0.09 0.65 ± 0.09

13 0.92 ± 0.06 0.72 ± 0.09 0.73 ± 0.09 0.74 ± 0.09 0.72 ± 0.09 0.66 ± 0.09

14 0.93 ± 0.03 0.76 ± 0.08 0.80 ± 0.08 0.79 ± 0.08 0.78 ± 0.08 0.72 ± 0.09

15 0.92 ± 0.06 0.81 ± 0.08 0.84 ± 0.07 0.83 ± 0.07 0.81 ± 0.08 0.79 ± 0.08

16 0.91 ± 0.05 0.85 ± 0.07 0.88 ± 0.06 0.88 ± 0.06 0.87 ± 0.07 0.83 ± 0.07

17 0.94 ± 0.05 0.89 ± 0.06 0.92 ± 0.05 0.91 ± 0.06 0.90 ± 0.06 0.87 ± 0.07

18 0.94 ± 0.05 0.95 ± 0.04 0.97 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.92 ± 0.05

19 0.9 ± 0.06 0.94 ± 0.05 0.98 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.94 ± 0.05

20 0.91 ± 0.07 0.97 ± 0.03 0.97 ± 0.03 0.95 ± 0.04 0.95 ± 0.04 0.92 ± 0.05

21 0.94 ± 0.05 0.97 ± 0.03 0.95 ± 0.04 0.94 ± 0.05 0.94 ± 0.05 0.92 ± 0.05

22 0.91 ± 0.06 0.93 ± 0.05 0.96 ± 0.04 0.96 ± 0.04 0.96 ± 0.04 0.94 ± 0.05

23 0.95 ± 0.07 0.92 ± 0.05 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05 0.93 ± 0.05

24 0.93 ± 0.05 0.89 ± 0.06 0.92 ± 0.05 0.88 ± 0.06 0.86 ± 0.07 0.91 ± 0.06

25 – 0.73 ± 0.09 0.84 ± 0.01 0.81 ± 0.01 0.76 ± 0.01 0.73 ± 0.01

Table 6: Prediction gaps for different methods and different settings.

Number of

servers

Method D Method R1 Method O1

m = m̃ = 3

Method O1

m = m̃ = 6

Method O1

m= m̃= 10

Method O1

m= 3 m̃= 2

Method S

10 7.375 ± 0.396 1.993 ± 0.252 2.207 ± 0.247 2.102 ± 0.226 2.049 ± 0.218 1.714 ± 0.188 0.413

11 6.154 ± 0.337 1.747 ± 0.196 2.010 ± 0.205 1.980 ± 0.189 1.943 ± 0.179 1.588 ± 0.152 0.348

12 5.470 ± 0.267 1.578 ± 0.156 1.797 ± 0.159 1.781 ± 0.150 1.749 ± 0.144 1.442 ± 0.119 0.236

13 4.815 ± 0.237 1.462 ± 0.131 1.635 ± 0.127 1.624 ± 0.121 1.589 ± 0.117 1.332 ± 0.096 0.191

14 4.560 ± 0.234 1.370 ± 0.115 1.522 ± 0.114 1.506 ± 0.109 1.470 ± 0.105 1.250 ± 0.084 0.137

15 3.961 ± 0.190 1.282 ± 0.095 1.411 ± 0.094 1.389 ± 0.090 1.355 ± 0.087 1.177 ± 0.070 0.041

16 3.413 ± 0.160 1.214 ± 0.084 1.327 ± 0.085 1.306 ± 0.083 1.273 ± 0.080 1.122 ± 0.060 0.027

17 3.307 ± 0.181 1.143 ± 0.075 1.245 ± 0.082 1.213 ± 0.075 1.177 ± 0.072 1.073 ± 0.058 0.018

18 2.748 ± 0.133 1.071 ± 0.059 1.160 ± 0.067 1.125 ± 0.063 1.092 ± 0.061 1.011 ± 0.044 0.059

19 2.578 ± 0.132 1.011 ± 0.048 1.088 ± 0.054 1.056 ± 0.051 1.026 ± 0.049 0.965 ± 0.036 0.093

20 2.384 ± 0.132 0.956 ± 0.034 1.017 ± 0.037 0.980 ± 0.035 0.951 ± 0.035 0.915 ± 0.024 0.101

21 2.149 ± 0.119 0.920 ± 0.027 0.981 ± 0.033 0.948 ± 0.032 0.921 ± 0.032 0.889 ± 0.025 0.14

22 1.904 ± 0.102 0.900 ± 0.026 0.950 ± 0.030 0.912 ± 0.031 0.884 ± 0.031 0.871 ± 0.027 0.136

23 1.716 ± 0.077 0.885 ± 0.020 0.926 ± 0.024 0.886 ± 0.024 0.858 ± 0.025 0.862 ± 0.024 0.143

24 1.558 ± 0.079 0.907 ± 0.020 0.921 ± 0.030 0.870 ± 0.031 0.837 ± 0.032 0.870 ± 0.027 0.164

25 – 1.021 ± 0.056 0.998 ± 0.006 0.928 ± 0.006 0.894 ± 0.006 0.946 ± 0.005 0.162

Under the first category, the coverage probability and prediction gap is generally smaller as the number

of moments increases for every x. For example, at x = 14, as (m, m̃) ranges from (3,3) to (10,10), the

coverage probability decreases from 0.80± 0.08 to 0.78± 0.08, and the prediction gap shortens from

1.522±0.114 to 1.470±0.105 respectively. However, this phenomenon may not always occur. In general,

as the number of moments increases, we gain more related information about the true distribution, thereby

shrinking the feasible region. For example, in setting (m, m̃) = (6,6) we capture information not only about

EY 1/3,EY 2/3,EY 3/3 but also EY 1/6,EY 3/6,EY 5/6, the latter not utilized in the case (m, m̃) = (3,3). On the

other hand, as we add more constraints, the inequalities on the moments may become looser due to more

estimation requirements. More moments means a smaller feasible region while the additional estimation

on the ranges of these moments enlarges the feasible region, so it remains unclear which factor dominates.

Finally, we compare the two categories by keeping the number of moments the same, i.e., compare

(m, m̃) = (3,3) with (3,2). The second category seems to offer smaller coverage probability and prediction

gap for every x. For instance, at x = 12, the second category has a coverage probability that is roughly

0.06 smaller than the first, and the prediction gap is roughly 0.355 shorter.
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5 CONCLUSION

We investigate an approach based on a combination of regression and optimization to learn and correct for the

model discrepancy of a simulation model with real-world observations. Our approach targets at continuous

output variables that are not directly handleable by previous work due to their infinite-dimensional nature.

One version of our approach regresses the objective function of interest on the observed model discrepancies,

or the observations themselves, against the design points. Another version further regresses the moments of

the model discrepancies or observations and uses a moment optimization to compute bounds that account

for the distributional nature of the outputs. We present the regression details and how to reformulate

and subsequently solve the optimization in the second version via duality and semidefinite programming.

Our experimental results show that the data-only approach could give better coverage probability in the

availability of data, but could be more conservative in terms of wider confidence interval length than

our correction methods. Moreover, the data-only approach is only applicable for historically observed

design points but trivially breaks down in the new design points. Our results also show that our correction

methods improve pure simulation models that are misspecified, in that the simulation-only estimates are

systematically different from the truth while our correction methods generate interval estimates that cover

or are closer to it.
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