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ABSTRACT

We consider simulation-based estimation where the inputs are calibrated from predictive models generated

by random forests (RFs). RF is a common technique to produce ensemble predictions by aggregating many

individual decision trees. This problem arises in data-driven applications such as individualized surgery

operations scheduling and supply chain management. We investigate the estimation of the output variance

contributed from the noises in the input prediction, which can be used to construct output confidence

intervals. In particular, we study the integration of simulation runs with a recently proposed infinitesimal

jackknife estimator that can reduce the computational burden from double layers of bootstrapping. We

demonstrate our scheme with an elementary numerical example.

1 INTRODUCTION

Modern simulation analysis has been increasingly linked with learning-based predictive modeling; see,

e.g., the recent literature in simulation analytics (Jiang, Hong, and Nelson 2016). This paper presents a

study along this line, and considers simulation analysis driven by input distributions that are generated from

predictive models. More precisely, consider the estimation of ψ(F1, . . . ,Fm)where ψ(·) is an output summary

of interest that can be simulated from the input distributions F1, . . . ,Fm. Here, Fi’s are distributions given

individual sets of covariates that are calibrated by learning from historical data. Our interest is uncertainty

quantification schemes for the simulation output ψ(F1, . . . ,Fm) under this setting, in particular the estimation

of the variance stemming from the noises in building the predictive model, and subsequently the construction

of an output confidence interval.

This particular problem arises from the authors’ own encounter in individualized surgery operations

scheduling (Meisami et al. 2017). In this context, ψ(F1, . . . ,Fm) is the expected daily total waiting time in

a surgery room. F1, . . . ,Fm denote the distributions of the surgery times for m scheduled patients. These

distributions come from a predictive model given each patient’s characteristics, such as age, gender, past

medical history etc. Clearly, an informed decision-making based on the performance measure requires

proper quantification of the variability due to the errors coming from the input prediction.

Another natural instance of this problem, in the area of supply chain and inventory management, is

the common newsvendor problem. For instance, in an m-product multi-stage newsvendor problem, the

decision maker has to choose the order quantity of each product at different times based on the predicted

demand such that cumulative back-order and inventory cost is minimized. The decision maker often has

access to information such as customer demographics, seasonality, economic conditions, etc. and use such

data to predict the product demand distributions F1, . . . ,Fm. The quantity ψ(F1, . . . ,Fm) here refers to the
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expected cumulative cost under a given ordering policy. Much like the surgery scheduling scenario, it is

operationally important to capture the variation and uncertainty in deciding a desirable policy.

One common method in building predictive models for Fi’s with covariates, which we focus on in this

paper, is the quantile regression forest (QRF) (Meinshausen 2006). This is a generalization of random

forest (RF) that produces ensemble prediction by aggregating many decision trees together, where each tree

is grown by random splitting and a bootstrap replication of the data set (known as bootstrap aggregating,

or bagging in short; Breiman 1996, Breiman 2001). RF and bagging have been shown, both theoretically

and empirically, to have desirable properties (e.g., variance reduction, stability; Büchlmann and Yu 2002,

Efron 2014), and have become one of the most popular off-the-shelf learning methods. QRF differs from

the standard RF in that the output of each tree is a probability distribution on the response variable, so

that their aggregation give rise to an overall predicted distribution. Along a similar vein as RF, QRF has

been shown to demonstrate superior predictive power than standard tools like quantile regression in certain

scenarios (Meinshausen 2006).

Our current work on uncertainty quantification, through estimating the variance contributed from input

noises and its subsequent use in confidence interval construction, follows the stream of literature on input

uncertainty (e.g., Barton (2012), Song, Nelson, and Pegden (2014), Lam (2016)). In particular, we utilize

the general technique of the bootstrap and the delta method. Cheng and Holland (1997) considers the

estimation of input-induced variance via both the delta method and the bootstrap, the latter used together

with an analysis-of-variance adjustment to reduce bias. Cheng and Holland (1998) and Cheng and Holland

(2004) suggest a more efficient refinement of the delta method called the two-point method. Song and

Nelson (2015) studies the bootstrap on a mean-variance model in capturing input uncertainty.

To estimate the sampling variance from QRF (or RF) for a prediction problem, standard bootstrapping

would require running two layers of resampling, one on the original data and one on the resampled data

used to construct the QRFs. In simulation driven by these QRFs, there is an additional effort of simulation

runs, thus posing enormous computational burden. As the main focus of this paper, we investigate the

integration of simulation with an infinitesimal jackknife (IJ) estimator, proposed by the recent work Efron

(2014) and Wager, Hastie, and Efron (2014) that avoids double-layer bootstrapping for RFs in prediction

problems, in estimating the output variance contributed from the input noises of the QRF. Throughout this

paper we will focus on the essential ideas and omit the rigorous mathematical developments.

In the rest of this paper, Section 2 will first describe the basics of QRF and how to use it in simulation

analysis. Section 3 then introduces the IJ estimator and discusses how to blend it efficiently in output

uncertainty quantification. Section 4 shows a numerical example.

2 SIMULATION ANALYSIS DRIVEN BY QUANTILE REGRESSION FORESTS

We first describe some basics of QRF, followed by a discussion on how it is used for input modeling in

simulation analysis.

2.1 Basics of Quantile Regression Forest

We follow the discussion in Meinshausen (2006). Given a collection of i.i.d. data (X j,Yj), j = 1, . . . ,n,

where X j ∈ B for some appropriate space B is the covariate or feature vector, and Yj ∈R is the response,

the goal is to estimate F(y|X = x) = P(Y ≤ y|X = x) for all y ∈ R, the conditional probability distribution

of the response Y given the feature X = x.

To start, we first grow a tree by splitting the feature space B into non-overlapping rectangular subspaces,

say Rl, l = 1, . . . ,L, each representing a leaf. This tree is generated randomly, by using a bootstrap resample

{(X∗
i ,Y

∗
i )}i=1,...,n, i.e., a sample of size n drawn from {(X j,Yj)} j=1,...,n under sampling-with-replacement,

and also randomly splitting the feature space according to some independent random source denoted by

θ . For each feature value x, we denote Rl(x,θ) as the leaf that x lies on. For convenience, we denote

(X∗,Y ∗) = ((X∗
j ,Y

∗
j ) : j = 1, . . . ,n) as the bootstrapped data set. The output of a tree, given x, is the
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empirical distribution of Y ∗ inside the same leaf, i.e.,

t(y;x,(X∗,Y ∗),θ) =
∑ j:X∗

j ∈Rl(x,θ)
I(Y ∗

j ≤ y)

#{ j : X∗
j ∈ Rl(x,θ)}

We grow these random trees many times, say B times, where each tree contains the bootstrap sample

(Xb,Y b) = ((Xb
j ,Y

b
j ) : j = 1, . . . ,n) and random realization θ b. Then the QRF outputs the average of all

trees, i.e., given x, it outputs

F̂(y|X = x) =
1

B

B

∑
b=1

t(y;x,(Xb,Y b),θ b) (1)

Besides its superior empirical performance (e.g., compared to quantile regression, especially for extremal

quantiles), QRF has been shown to be consistent, nonparametrically, when the leave sizes of the trees

(measured by the proportions of data) are grown at a suitable rate relative to the sample size and the

splitting mechanism are properly taken (Meinshausen 2006). However, convergence rate results appear

only available in the case of subsampled trees (i.e., the bootstrap resample size grows at a smaller rate than

n); see, e.g., Mentch and Hooker (2016), Wager and Athey (2017).

2.2 Input Modeling

Consider the performance measure described in the introduction ψ(F1, . . . ,Fm), where given Fi’s, ψ(·) can

be estimated by running simulation. An example would be the expectation-type measure

ψ(F1, . . . ,Fm) = EF1,...,Fm
[h(Y1, . . . ,Ym)] (2)

where Yi denotes a sequence of i.i.d. variates generated from Fi, and h is some cost function that can be

evaluated given the Yi’s.

We consider the situation where each input distribution Fi is a conditional distribution given a feature

value xi, i.e., Fi(y) = P(Y ≤ y|X = xi). As mentioned in the introduction, these Fi’s could represent the

distributions of the random surgery times given patients’ observed characteristics. Using the QRF, a natural

estimate for ψ(F1, . . . ,Fm) will be ψ̂(F̂1, . . . , F̂m), where F̂i(y) = F̂(y|X = xi) is given by (1), and ψ̂ is a

simulation approximation of ψ . In the context of (2), this means

ψ̂(F̂1, . . . , F̂m) =
1

R

R

∑
r=1

h(Yr
1, . . . ,Y

r
m)

where each Yr
i consists of independent realizations of variates generated from input distribution F̂i. Under

the assumptions that guarantee nonparametric consistency of QRF and mild regularity conditions on ψ(·),
ψ̂(F̂1, . . . , F̂m) is consistent for estimating ψ(F1, . . . ,Fm) when the bootstrap size B in the QRF and the

simulation size R grow to ∞, and hence ψ̂(F̂1, . . . , F̂m) is a justified estimate of the performance measure.

For reliable decision-making, we need a measure of the variability on the point estimate of ψ(F1, . . . ,Fm).
This variability comes from both the noises of the simulation replications (called stochastic or simulation

uncertainty) and the input data (called input uncertainty); see, e.g., Barton (2012), Song, Nelson, and Pegden

(2014), Lam (2016). This variability can be captured by a confidence interval (CI), with a confidence level

say 1−α , given by

[
ψ̂(F̂1, . . . , F̂m)− z1−α/2

√
σ2 +

τ2

R
, ψ̂(F̂1, . . . , F̂m)+ z1−α/2

√
σ2 +

τ2

R

]
(3)

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution. The variance component σ2 is the

input-induced variance, whereas τ2/R is the simulation-induced variance. Interval (3) has assumed that the
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bootstrap size B is large enough to make the resampling variance negligible, and a Gaussian approximation

is asymptotically valid. This assumption is not formally justified here. In Section 3, we will consider a

modified version of (3) and provide further discussion.

The quantity τ2 is relatively easy to estimate, for instance by taking the sample variance of all the

simulation replications. The quantity σ2, in the nonparametric setting, typically involves estimating the

variance of the so-called influence function of ψ(·), which can be viewed as a functional derivative with

respect to the input distributions (Hampel et al. 2011, Huber 2011). It could be difficult to efficiently

estimate σ2 by directly using the form of the influence function (e.g., in a long-horizon problem). Therefore,

bootstrapping has been used as a major tool for estimating σ2 (e.g., Cheng and Holland 1997, Song and Nelson

2015). In the current context, this is done by repeatedly drawing bootstrap resamples from {(Xi,Yi)}i=1,...,n.

For each resample, fit the QRF pretending the resample is the original data, and calculate ψ̂(F̂1, . . . , F̂m).
The variance of these outcomes gives the bootstrap variance that approximates σ2.

Note that the above scheme for estimating σ2 requires two layers of bootstrapping, the first corresponding

to the generation of resamples on which QRFs are trained on, and the second to the generation of trees in

constructing the QRFs and subsequently the drive of simulation runs. The overall computational effort is

on the order of the product of the outer bootstrap size and the sum of the tree and the simulation replication

sizes.

3 SIMULATION-BASED INFINITESIMAL JACKKNIFE ESTIMATOR

Given the difficulties in approximating σ2 in (3), we consider an alternate approach that requires looking at

a slightly different point estimator. For convenience, let F = (F1, . . . ,Fm) and F∗(y) = (t(y;xi,(X
∗,Y ∗),θ ∗) :

i = 1, . . . ,m) as the vector of input distributions predicted by each tree. Our point estimator depicted

in Section 2.2 can be expressed as ψ̂(Ê[F∗]) where Ê[·] denotes the sample average of B independent

realizations of trees. As the numbers of trees and simulation replications grow to ∞, this approximates

ψ(E∗[F
∗]) where E∗[·] denotes the expectation generated by the bootstrapped trees. CI (3) is derived from

the conjectured central limit theorem ψ(E∗[F
∗])∼ N(ψ(F),σ2).

Our considered alternate point estimator takes the form

Ê[ψ̂(F∗)] (4)

that interchanges Ê and ψ̂ . As the numbers of trees and simulation replications grow to ∞, the estimator

(4) approximates

E∗[ψ(F∗)] (5)

where E∗[·] denotes the expectation with respect to the bootstrap. We note that (5) is equivalent to

E∗[ψ
∗(F∗)], (6)

where ψ∗(F∗) denotes an unbiased simulation replication in estimating ψ(F∗) given F∗ (e.g., h(Y1, . . . ,Ym)
with Yi being i.i.d. sequence generated from F∗

i ), and with slight abuse of notation, E∗[·] in (6) denotes

the expectation generated from the combination of a bootstrapped tree and the simulation replication. Note

that (6) can be viewed as the limiting output of a bagging scheme, where each “base learner” is now a

realization of ψ∗(F∗). From this view, an implementable bagging scheme to approximate (6) is

Ê[ψ∗(F∗)] =
1

B

B

∑
b=1

h(Yb
1, . . . ,Y

b
m) (7)

where (Yb
i )i=1,...,m is generated from Fb = (t(y;xi,(X

b,Y b),θ b) : i = 1, . . . ,m). This is similar to using

the established QRF, but instead of outputting t(y;x,(Xb,Y b),θ b) for each tree, we output a copy of the

simulation output generated by the input models Fb.
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Our subsequent analysis assumes that when n is large and under smoothness conditions on ψ(·),
F∗ ≈ E∗[F

∗] and E∗[ψ
∗(F∗)] = E∗[ψ(F∗)]≈ ψ(E∗[F

∗]) well enough so that a central limit theorem holds

for E∗[ψ
∗(F∗)] and implies E∗[ψ

∗(F∗)]
approx.
∼ N(ψ(F),σ2). Thus, together with the simulation variability,

a (1−α)-level CI for ψ(F) is

[
Ê[ψ∗(F∗)]− z1−α/2

√
σ2 +

τ2

R
, Ê[ψ∗(F∗)]+ z1−α/2

√
σ2 +

τ2

R

]
(8)

The main purpose of using Ê[ψ∗(F∗)] instead of ψ̂(F̂) in Section 2.2 is the availability of an estimate for

σ2 without resorting to a double-layer bootstrapping, given by the infinitesimal jackknife (IJ) estimator

proposed by Efron (2014) and Wager, Hastie, and Efron (2014), in the form

V̂IJ =
n

∑
i=1

Cov∗(N
∗
i ,ψ

∗(F∗))2 (9)

where N∗
i is the number of counts of the observation (Xi,Yi) appearing in the bootstrap resample for building

F∗, and Cov∗(·, ·) denotes the covariance generated by the boostrapping. Under some conditions using

subsampled trees, it is shown that V̂IJ/σ2 p
→ 1 (Wager and Athey 2017). However, as far as we know, there

have been no such convergence results available for QRFs with full-size trees, and we may need to resort

to the use of subsampled trees for a rigorous analysis leading to (8).

A bias-reduced estimator for (9) using a finite tree size B (Wager, Hastie, and Efron 2014) is given by

V̂ B
IJ =

n

∑
i=1

Ĉov
2

i −
n

B2

B

∑
b=1

(ψb(Fb)−ψ∗(F∗))2 (10)

where

Ĉovi =
1

B

B

∑
b=1

(Nb
i −1)(ψb(Fb)−ψ∗(F∗))

Nb
i and ψb(Fb) denote the realizations of N∗

i and ψ∗(F∗) in the b-th tree, and ψ∗(F∗) = (1/B)∑
B
b=1 ψb(Fb).

As explained in Wager, Hastie, and Efron (2014), the first term in (10) is the plug-in estimator of (9), and

the second term corrects the bias of the plug-in estimator from order σ2/(nB) to order nσ2/B. We note

that Wager, Hastie, and Efron (2014) focuses on the mean prediction, but their analysis clearly applies to

any type of function on the response, including ψ∗(F∗).
We have used one intra-tree simulation replication in the illustration above. Note that (6) remains

unchanged if one increases the intra-tree simulation replication size from one to any number ((5) is an

extreme that uses an infinite number of simulation replications). The conjectured asymptotic analysis

remains the same except that the intra-tree variance for ψ∗(F∗) decreases in the usual Monte Carlo rate.

Thus, one can use V̂ B
IJ with ψb(·) redefined accordingly. Our numerical experiment in the next section

indicates that under a fixed budget, a single intra-tree replication does appear to perform superior to other

choices.

4 NUMERICAL EXAMPLE

In this section we provide numerical results on the method discussed in Section 3 using the well-known

“Auto MPG” data set that was analyzed in Wager, Hastie, and Efron (2014). We use 7 features (number

of cylinders, displacement, horsepower, weight, acceleration, year, and origin) over a training set of 312

observations to build our QRF. For this proof-of-concept example, we fix four feature values in a separate

test set, and consider a performance measure

ψ(F1, . . . ,F4) = EF1,...,F4
[h(Y1, . . . ,Y4)] (11)

3270



Meisami, Lam, and Van Oyen

where h is a simple sum function

h(y1, . . . ,y4) = y1 + y2 + y3 + y4

and Yi’s are four independent miles-per-gallon (MPG) responses generated from the QRF given the four

feature values. We use simulation to estimate ψ(F1, . . . ,F4) (even though it can be computed exactly).

We should mention that, although we choose to use a very simple h, the same procedure essentially

applies when h is the total waiting and overtime cost of a surgery schedule and Yi’s denote the predicted

surgery durations. Similarly, h can be the overall back-order and holding cost in a multi-product newsvendor

problem and Yi’s denote the predicted product demands.

We first show two results (Figures 1 and 2) following the analysis in Wager, Hastie, and Efron (2014).

Figure 1 shows the point estimate of (11), given by (7), and the standard deviation estimate, given by (10),

on 20 instances of (11) with different feature values. We use one intra-tree simulation replication in our

experiment. The behaviors of these values show similar patterns as Figure 1 in Wager, Hastie, and Efron

(2014), except that the variation of the standard deviation estimate appears more uniform regardless of the

distance to the actual values. This may be explained by the summation operation h that gives an averaging

effect.

Figure 1: Point and standard deviation estimates on (11) with the “Auto MPG” data set, following the

representation of Figure 1 in Wager, Hastie, and Efron 2014. We depict the results on 20 different instances

of (11). The dot and the half-length of each interval represent the point and standard deviation estimates

respectively.

Next, Figure 2 shows a comparison between the IJ variance estimate and the estimate generated by

direct bootstrapping. The latter requires a double-layer bootstrap, first on the generation of the resample

used to build QRF, and second on the generation of the trees within each QRF. We use a resample size

of 1,000 in each layer and one intra-tree simulation replication. We use B = 2000 and also one intra-tree

simulation replication in the IJ estimate. Figure 2 shows that the IJ variance estimate is generally close to

the direct bootstrap, suggesting the validity of the former.

We now consider varying the intra-tree simulation replication size, denoted R, as discussed at the end

of Section 3. We consider three different scenarios under a total simulation budget of 2000 replications,

first with 200 trees and 10 intra-tree replications, second with 400 trees and 5 intra-tree replications, and

third with 2000 trees and only one intra-tree replication. Table 1 shows that the variance estimates are
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Figure 2: Variance estimates using IJ and direct boostrapping, on 20 different instances of (11). Solid line

shows IJ, and dashed line shows direct bootstrapping. The half-height of the gray band is the standard

deviation of the bootstrap distribution in using the direct bootstrapping.

most uniform in the B = 2000 case, which are also significantly higher than the other two cases. Since

Figure 2 demonstrates that the estimates using B = 2000 matches closely with direct bootstrapping, they

can serve as a reasonable benchmark. This implies that increasing R under a fixed budget in this example

may degrade the estimation reliability.

5 CONCLUSION

We have studied the estimation of the variance contributed from input noise, as a way to quantify input

uncertainty and construct a confidence interval, in stochastic simulation driven by input models calibrated

from QRFs. Standard bootstrapping on this problem requires double layers of resampling and simulation

runs. We study the integration of an IJ scheme recently proposed in the context of prediction problems,

which avoids the use of double-bootstrapping, into the simulation-based estimation of the input-induced

variance. We present a strategy and demonstrate it through an elementary numerical example. Future work

includes the mathematical analysis and more extensive testing of our approach.
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