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Abstract

When a confined elastic layer is under tension, undulations can occur at its exposed
surfaces, giving the fingering or fringe instability. These instabilities are of great concern in the
design of robust adhesives, since they not only initiate severe local deformations in adhesive layers
but also cause non-monotonic overall stress vs. stretch relations of the layers. Here, we show that
the strain stiffening of soft elastic materials can significantly delay and even suppress the fringe
and fingering instabilities, and give monotonic stress vs. stretch relations. Instability development
requires local large deformation, which can be inhibited by material-stiffening. We provide a
quantitative phase diagram to summarize the stiffening’s effects on the instabilities and stress vs.
stretch relations in confined elastic layers. We further use numerical simulations and experiments

to validate our findings.
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Material-Stiffening Suppresses Elastic Fingering and Fringe Instabilities

1. Introduction

Confined elastic layers are ubiquitous in nature such as mussel plagues, tendons and
ligaments (Benjamin et al., 2006; Desmond et al., 2015; Waite et al., 2005) and widely adopted in
engineering applications such as insulators, sealants, artificial joints, and versatile adhesives
(Biggins et al., 2013; Creton and Ciccotti, 2016; Liu et al., 2017; Shull, 2002; Yuk et al., 2017).
When a confined elastic layer is under tension, fringe instability (Lin et al., 2016) or fingering
instability (Biggins et al., 2013; Shull et al., 2000) can form at its exposed surfaces, leading to
various modes of failures including interfacial detachment and cohesive fracture in relevant
structures (Chaudhury et al., 2015; Crosby et al., 2000; Zhao et al., 2006). The approaches to
suppress these instabilities are of great importance to the design of robust adhesives (Yuk et al.,

2016a), which nevertheless have not been explored so far.

Here, we show that both fringe instability and fingering instability can be suppressed if the
confined layer stiffens significantly at moderate stretches. We adopt a Gent solid (Gent, 1996)

with shear modulus 4 and limit of the strain invariant J, to model the mechanical behavior of

stiffening layers under tension. From combined experiments and simulation, we identify two

critical values for J of a material: J _ below which the tensile stress vs. stretch relation of a

confined layer is monotonic, although either fringe or fingering instability may set in the layer;

and J.

. below which both fringe instability and fingering instability are fully suppressed. To
further experimentally validate the suppression of both fringe and fingering instabilities in a
stiffening layer, we perform a set of controlled experiments by applying tensile load on an Ecoflex

layer and a hydrogel layer, representing stiffening material and non-stiffening material

respectively. The understanding on suppression of elastic instabilities in a confined strain
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Figure 1. a) Schematic of the formation of fingering instabilities in elastic layers with diameter of D
and thickness of H . Fingering instability initiates at the middle-plane of the elastic layer. b) Schematic
of the formation of fringe instabilities in elastic layers with diameter of D and thickness of H . Fringe
instability initiates at the plane close to the fringe portion of the elastic layer. The aspect ratio of the
layer is definedas a =D/ H .

stiffening layer can serve as a guideline for the design of robust adhesives for engineering
applications (Yuk et al., 2016a; Yuk et al., 2016b). Moreover, it may also elucidate one possible

reason why stiffening layers such as cartilage, ligament and mussel thread (Sharma et al., 2016;

Silverman and Roberto, 2007) are adopted in nature.



2. Formulation of the problem

As illustrated in Fig. 1, we focus on an elastic layer of cylindrical shape with height H
and diameter D at the undeformed state. A tensile force F' is applied on the layer to elongate the
layer to the current height /. The applied nominal stress S and the applied stretch A is defined
as:

LI (1)

S:—2 N
D H

Geometrically, the cylindrical elastic layer in the undeformed state occupies a region

0<R<D/2,0<0<2r,and —H/2<Z<H/2. The corresponding dimensionless parameters

are defined as R = and Z = HL/2 with R e [O,l] and Z e [—1,1]. The deformation gradient

D/2
of the elastic layer reads as F=1+Vu with u(R,0,Z)=uze, +uye,+use, being the
displacement vector of a point initially at (R, 0,7 ) , where u,, u, and u, areradial displacement,
hoop displacement, and axial displacement, respectively. The elastic layer is taken as a Gent solid
(Gent, 1996), with the free energy reading as:

1//=—’UTJ’”ln(l—%]+Kan, (2)

m

where u is the shear modulus, x is the bulk modulus, J :det(F) , the strain invariant
J, = tr(l_?l_?T)—3 with F=J""F and J,, 1s the material constant which identifies the limiting

value of J,. We set the elastocapillary length of the layer to be much smaller than the macroscopic

dimensions of the sample (i.e. D and H ), therefore having negligible effects on the emergence

of elastic instabilities. Moreover, we set k' / u as large as 2000, thus the slight incompressibility

does not have observable effect on emergence of elastic instabilities. The parameters affecting the



mechanical behavior of the elastic layer are: layer’s aspect ratio & = D/ H and material constants

4 and J . The material particles in the layer satisfy the stress equilibrium by DivS =0, with the

nominal stress tensor S = % {J”F - % tr (I_TI_TT )F*T } +xIn(J)F " and F=J""F . The
m- Y1

displacement boundary conditions are: u, (Z = il) =0, u, (Z = J_rl) =0, u, (Z = 0) =0 and

u, (Z = 1) is the imposed displacement on the top surface of the layer.

We use the commercial finite element software Abaqus/Explicit by writing a VUMAT
subroutine to simulate the deformation of elastic layer and capture the onset of instabilities. The

ratio between bulk modulus x and shear modulus y is set as x/ £ =2000 for all cases in this
paper, to approximate the incompressibility of the layer. The type of the element is taken as C3D8
and the mesh size is taken as ~ 1/10 of the smallest feature dimension.

When the elastic layer is under tension, the exposed surface of the layer initially deforms
into a parabolic shape. When the applied stretch reaches a critical value A (or the applied nominal
stress reaches S, ), undulations emerge at the exposed surfaces of the layer, giving fringe
instability or fingering instability (Biggins et al., 2013; Lin et al., 2017). We take the vertical
location that gives the highest undulation amplitude Z = ZO as the location where the undulations

Initiate in simulation.

3. Effects of Material Stiffening on fingering and fringe instabilities
In previous study on non-stiffening materials (i.e. J —o0) , we find the aspect ratio

a =D/ H determines the selection of the mode of instability (Lin et al., 2017). As shown in Fig.

1, for the samples with large aspect ratio ¢ in which fingering instability sets in, the instability



initiates at the middle section of the exposed meniscus (i.e. ZO =0) ; while for the samples with
small aspect ratio «, the instability initiates at the fringe portion of the exposed meniscus (i.e.

ZO # (), giving fringe instability. The critical aspect ratio between fringe instability and fingering
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Figure 2. a) Illustration of the amplitude of undulations at various vertical locations. b) The normalized
amplitude A4 /D versus vertical location Z at the onset of fingering instability in the layers with large

aspect ratio (i.e. & =14) for both non-stiffening layers (i.e. J, —> c0) and stiffening layers with various
limits of strain invariant J, . The vertical location with maximum amplitude identifies the vertical plane
where undulations initiate (i.e. Zo =0), at middle-plane of the layer. ¢) The normalized amplitude
A, / D versus vertical location Z at the onset of fringe instability in the layers with small aspect ratio
(i.e. o =2) for both non-stiffening layers (i.e. J,, —> 00) and stiffening layers with various limits of
strain invariant J, . The vertical location with maximum amplitude identifies the vertical plane where

undulations initiate (i.e. Zo =0.8), close to fringe portion. d) The vertical plane where undulations

initiate for the layers with various aspect ratios and various limits of strain invariant. For the samples
with large aspect ratio ¢ in which fingering instability sets in, the instability initiates at the middle

section of the exposed meniscus (i.e. ZO =0) ; while for the samples with small aspect ratio ¢, the

instability initiates at the fringe portion of the exposed meniscus (i.e. Zo #0), giving fringe instability.



instability has been identified as @, eeine =2 for non-stiffening materials (Lin et al., 2017).
Here, we further investigate the effect of material-stiffeningon a .. 7.0, OY performing a set of

numerical simulations for the samples with various aspect ratios ¢ ranging from 1 to 10 and
various limits of the strain invariant (i.e. J, =24, J =45 and J, =72). We extract the contour
of exposed surface at each vertical location of the layer at the onset of instabilities as shown in Fig.
2a. The difference between the maximum radius »__ and the minimum radius 7 defines the
amplitude of the contour 4, . We further plot the normalized amplitude 4, /D versus vertical
location Z in the layer. As shown in Fig. 2b, for the layers with large aspect ratio (i.e. @ =14) in
which fingering instability sets in, the vertical location that gives the maximum amplitude is at the

middle plane (i.e. Z,=0) for the layers in both non-stiffening layers and stiffening layers with
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Figure 3. Theoretical and simulation results on the critical points of fingering instability and fringe
instability. a) Comparison of the critical stretch A, for the onset of instabilities between theory and

simulation. b) Comparison of the critical mode number @, between theory and simulation. Solid line
denotes the theoretical results for non-stiffening layers (i.e. J, —>00). Solid circular dots denote
simulations results non-stiffening layers (i.e. J, —>00). Hollow square dots, circular dots and

triangular dots denote simulation results for stiffening layers with J, =24, J =45 and J =72.



J,=24,J =45 and J =72. As shown in Fig. 2¢, for the layers with small aspect ratio (i.e.
a =2) in which fringe instability sets in, the vertical location that gives the maximum amplitude
is at the plane Z, =0.8 for the layers in both non-stiffening layers and stiffening layers with
J, =24, J =45 and J =72. We summarize the vertical location that gives the maximum

amplitude at the onset of instabilities in both stiffening layers and non-stiffening layers. As shown

in Fig. 2d, the limit of the strain invariant J,does not affect the critical aspect ratio between fringe
instability and fingering instability significantly, which is the same as that in a non-stiffening layer

(l'e' cz_ﬁ’inge—ﬁngering = 5 )
We further explore the effect of material-stiffening on the onset of instabilities in elastic

layers. In previous study on non-stiffening materials (i.e. J —o0), we derive the analytical
solution of the deformation field and predict the critical stretch A, and the critical number of
undulations @, for the onset of instabilities in elastic layers. We summarize the theoretical

analysis for the onset of instabilities in non-stiffening materials in Appendix. With the increase of

the layer’s aspect ratio «, the critical stretch A, decreases while the critical number of undulations
@, increases. We first perform a set of simulations for the layers with moderate J (i.e. J =24,
J, =45 and J =72). As shown in Fig. 3, material-stiffening has negligible effect on the critical

stretch A_ and slightly increases the critical number of undulations @, .



Next, we study the effect of material stiffening on the suppression of both fingering and
fringe instabilities. We first study fingering instability (in the samples with & =6) for both

stiffening and non-stiffening materials. As shown in Fig. 4a and Fig. 4c, for a non-stiffening layer
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Figure 4. Suppression of fingering instability in the sample with aspect ratio of & =6. a) Fingering
instability emerges in a neo-Hookean layer. b) Fingering instability suppressed in a Gent solid with the

limit of the strain invariant J,, =1.3. ¢) The radius of the outer surface at the middle plane of the layer

where undulations initiate and d) the maximum strain invariant (J1 )max at the plane where instability

initiates. Dots represent the onset of fingering instabilities.



(i.e. J, =), as the applied stretch reaches 4, =1.62, the radius of the external surface » at the
middle plane where undulations initiate (i.e. ZO =0) bifurcates, giving the fingering instability.
Right after the onset of fingering instability, the maximum strain invariant (J;)  at the plane

where instability initiates (i.e. Z, =0 ) increases dramatically, corresponding to the first-order

transition of fingering instability (Biggins et al., 2013) (see Fig. 4d). In contrast, for a stiffening

layer with moderate J, (e.g. J, =15.8), the bifurcation of the radius at the middle plane is
partially suppressed, manifested by the decreasing undulation amplitude . —r . (see Fig. 4¢).
In addition, the maximum first strain invariant (J | )max in the layer increases less steeply than that
of the non-stiffening layer. For an elastic layer which stiffens at early stretches (e.g. J, =1.3),

fingering instability can be fully suppressed and no bifurcation can be observed even when the

maximum first strain invariant within the layer (J1 )max approaches the limit of J_  (see Fig. 4b,

Fig. 4c and Fig. 4d). We next study fringe instability (in the samples with ¢ =1) for both
stiffening and non-stiffening materials. As illustrated in Fig. 5a, fringe instability emerges in a

non-stiffening layer when the applied stretch reaches A, =4, corresponding to the bifurcation of
the radius of the outer surface initiating at the plane of ZO =0.9 (see Fig. Sa). While for the
stiffening layer with J, =9, no bifurcation occurs at the exposed surface even when the maximum
first strain invariant (J,)  at the plane where instability initiates (i.e. Z, =0.9) increases up to the

limit of J (see Fig. 5b, Fig. Sc¢ and Fig. 5d).
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Figure 5. Suppression of fringe instability in the sample with aspect ratio of & =1. a) Fringe instability
emerges in a neo-Hookean layer. b) Fringe instability suppressed in a Gent solid with the limit of the

strain invariant J, =9. c¢) The radius of the outer surface at the plane Zo =0.9 where undulations

initiate and d) the maximum first strain invariant (J | )max . Dots represent the onset of fringe instabilities.



As shown in Fig. 4 and Fig. 5, both fingering instability and fringe instability can be
suppressed in elastic layers with early stiffening. To identify the critical limit of the first strain

invariant J, = below which fingering instability (or fringe instability) can be fully suppressed, we
perform a set of simulations with decreasing J, and varying « . As shown in Fig. 6, the maximum
strain invariant(./,) of the layer at the plane where instability initiates is nearly constant for the
layer with moderate J, , while slightly increases and approaches the limit of the strain invariant
J,, (the dashed line in Fig. 6) when J decreases. When J, further decreases to a critical limit

of the strain invariant J.

inst

(see the marked cross points in Fig. 6), instabilities are fully suppressed.
It is also shown that the critical limit of the strain invariant J, , decreases with the increase of the

layer’s aspect ratio « .
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Figure 6. The maximum strain invariant (J1 )max at the plane where instability initiates with various

limit of first strain invariant J and aspect ratio of @ =2, a =6 and a =14 at the onset of

instabilities.



4. Effects of Material Stiffening on stress vs stretch relation

The applied nominal stress-stretch curve of a confined elastic layer under tension has been
of great interests in the design of robust adhesives. It has been reported that, for a non-stiffening
layer, the stress-stretch curve is monotonic for fringe instability in the samples with small aspect
ratios (i.e. & <5); non-monotonic for fingering instabilities in the samples with large aspect ratios
(i.e. a>5) (Linetal., 2017). The non-monotonic stress-stretch relation in general is not preferred
in adhesives, since it can cause catastrophic failures of the adhesives under increasing tensile stress.
In this section, we will show that material-stiffening can change stress vs. stretch relation from

non-monotonic to monotonic.
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Figure 7. The stress-stretch curves for the sample with a) aspect ratio of & =6 and b) & =10. Dots
represent the onset of fingering instabilities.

As shown in Fig. 7a and Fig. 7b, both layers with aspect ratio of &« =6 and a =10 show
non-monotonic stress vs. stretch relation for non-stiffening layer (i.e. J, — o) and the onset of
fingering instability corresponds to the maximum applied stress. With the decrease of J , the
normalized nominal stress S/ u increases and the stress vs. stretch relation transits from non-

monotonic to monotonic in both layers. For the layer which stiffens at moderate stretches (e.g.

J,=24and J =45 for a=6, J =24 and J =72 for ¢=10), the onset of fingering



instability is corresponding to a kink of the stress-stretch curve while the stress keeps increasing.
For the layers with early stiffening (e.g J =12.9 for a =6, J =11.5 for a =10), instabilities
are shown to be fully suppressed and stress monotonically increases with the applied stretch. The
transition of the stress vs. stretch relations from non-monotonic to monotonic gives the other

critical limit of the strain invariant./ below which the tensile stress vs. stretch relation of a

mono

confined layer is monotonic. As shown in Fig. 8, we summarize J,  forthe layers with the aspect

ratio from 5 to 20.

5. Phase diagram for the suppression of instabilities in confined layers

In Section 3, we first identify the critical aspect ratio between fringe instability and

fingering instability &, . 1.0, and we further show the critical limit of first strain invariant J,

inst
below which both fringe instability and fingering instability are fully suppressed. In Section 4,
we 1dentify the other critical limit of first strain invariant J,_, below which the tensile stress vs.
stretch relation of a confined layer is monotonic. In this section, we summarize the results in
previous sections and further construct a phase diagram in the plot of aspect ratio « and limit of

the strain invariant.J , elucidating the effect of material-stiffening on selection of modes and

suppression of both fringe and fingering instabilities. As shown in Fig. 8, for a layer with early

stiffening (i.e. J <J, ), there is no fringe instability or fingering instability setting in. For a layer

with moderate stiffening (i.e. J, , <J, <J ), undulations can initiate at the exposed surface of

mono

the layer and the applied stress monotonically increases with the applied stretch. For a layer which

shows negligible stiffening (i.e. J, >J ), the stress vs. stretch relation applied on the layer is

mono

non-monotonic and the onset of the instability (i.e. fingering instability) is correlated with the point



of maximum stress. The phase diagram can serve as a guideline on selection of the mode of
instability and monotonicity of stress vs. stretch relation
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Figure 8. A phase diagram elucidating the suppression of fringe or fingering instabilities and the stress
vs. stretch relation in confined elastic layers with respect to layer’s aspect ratio & and limit of the strain
invariant J .

6. Experimental validations

To validate the suppression of both fringe and fingering instabilities in experiment, we

chose Ecoflex rubber and Polyacrylamide hydrogel as the representative stiffening solid and non-
stiffening solid, respectively. The Ecoflec rubber is fabricated by mixing the Ecoflex 00-30

(Smooth on) with the ratio of 1:1. The polyacrylamide hydrogel consists of 12 wt% acrylamide

(AAm), 2 wt% alginate and 500puL 0.23 wt% N,N'-Methylenebisacrylamide in 10 ml total

solution. The detailed fabrication method is described in our previous papers (Lin et al., 2017). To



measure the shear modulus 4 and limit of the strain invariant./, , we make dog-bone samples,
performing uniaxial tensile tests. The measured shear modulus # is 15 kPa and 1.1 kPa for
Ecoflex rubber and polyacrylamide hydrogel, respectively. The limit of the strain invariant J, for

Ecoflex rubber and polyacrylamide hydrogel are measured to be 30 and 270, respectively.
Recalling the phase diagram in Fig. 8, the limit of the strain invariant for Ecoflex is much lower

than J  (i.e. J

mono mono

=100 for o =6) but slightly higher than J.

inst

(ie. J.

inst

=18.9 for =2

and J,  =11.5 for a =6); while that for hydrogel is much larger thanboth J  (i.e. J =100

mono

=189 for ¢ =2 and J.

inst

fora=6)and J, (e J,

st =11.5 for ¢ =6).
As shown in Fig. 9a, for the samples with aspect ratio of « =2, fringe instability forms at

the critical stretch of A, =3.9 and the critical stress of S, =3.8 in hydrogel sample as reported in

our previous work (Lin et al., 2016). While for the rubber sample with the identical dimensions, it
deforms with uniform shrinkage and the applied normalized nominal stress S/ u increase
dramatically (see Fig. 9b). There are negligible fringe undulations even when the applied stretch
approaches the limiting locking stretch. We further perform a pair of controlled experiments for
the samples with aspect ratio of @ =6 (see Fig. 9¢). Fingering instability forms at the exposed
surface of the hydrogel sample while the exposed surface of the rubber sample remains uniform
circular shape with negligible undulations. The normalized nominal stress S/ z in Ecoflex rubber

1s much larger than that in hydrogel sample, which manifests the effect from material-stiffening as

well (see Fig. 9d).
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Figure 9. Experimental validation of the suppression of fingering and fringe instability in a stiffening
layer. a) The evolution of the deformation in a hydrogel layer and rubber layer with aspect ratio of

a =2 and b) corresponding applied stress-stretch curves. c¢) The evolution of the deformation in
hydrogel layer and rubber layer with aspect ratio of & =6 and d) corresponding applied stress-stretch

curves. Dots represent the onset of the instabilities.
7. Concluding remarks
In this paper, we explore the effect of material-stiffening on the onset of both fringe and

fingering instabilities and stress vs. stretch relations. We show that for a layer with early stiffening,



the local large deformation for instability development can be highly inhibited and both fringe and
fingering instabilities can be delayed and even fully suppressed. In addition, we show the transition

of stress vs. stretch relation from non-monotonic to monotonic with decreasing J, . Most tough

biological tissues indeed show stress-stretch curves with J-shape owning to the hierarchical
integration of the strong coil-shape collagen and the surrounding soft matrices (Lin et al., 2014b;
Motte and Kaufman, 2013). The systematic understanding of the material-stiffening on the effect
of elastic instabilities in confined elastic layers may reveal the underlying toughening mechanisms,
which the biological tissues (e.g. cartilage, ligament and mussel thread) adopt in nature to avoid
these instabilities for long-term functionality. Moreover, the findings in this paper can evoke the
need to design hydrogel-based composite structures (Huang et al., 2017; Lin et al., 2014a;
Tummala et al., 2017), which can mimic the nature’s strategy and as a result exhibit ultra-robust

performances.
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Appendix A. Theoretical analysis for the onset of fingering and fringe instability in non-
stiffening layers.

In previous paper, we derive the theoretical analysis for deformation field and perform
linear perturbation for the onset of fingering and fringe instability in non-stiffening layers (Lin et
al., 2017). We make a single assumption that any horizontal plane at the un-deformed state remains

planar upon deformation. The displacement field in the cylindrical elastic layer can be specified
as u,(R,Z)=Ru,(Z) and u,(Z)=u,(Z) . The deformation gradient in the layer can be

expressed as:

/’i’rR 0 yrZ
F=[0 A, O |, (AD)
0 0 A

. 1 1 1 = . . )
with A, =4, =1+——u,, A, =1+ u, and = —— Ru/ . For a non-stiffening material
'R ) DM S Viz /o g

with the strain energy density function w:%[tr(FTF)—ﬂ , the nominal stress tensor S is

expressed through S=uF—p'F", where p is the Lagrange multiplier to enforce the
incompressibility and p=p"/ u is the corresponding dimensionless form. By enforcing the
equilibrium equation DivS=0 with boundary conditions that du, /dZ |Z:0=0, u(Z==1)=0,
u, (Z =0) =0and traction free at the middle plane, the deformation field and Lagrange multiplier

in the elastic layer can be analytically solved as:

7)= D| cosh(xZ) _
u(2)= 2{ cosh(x) 1}’ o
_._ H|[sinh(2x) tanh(xZ) -
u,(Z2) = 9 { 2k tanh(x) Z}’ )



4 2,2 ( _ cosh’(xZ
pot| SOMEoshtn [+ 52| R (2 )_ L h— . (a
2| cosh (K'Z ) 2 cosh” x cosh" x| cosh”k

where K is an internal loading parameter which is correlated with the applied stretch through

_ sinh(2x)
2K

2 (A3)

We further perform perturbation on both deformation field and Lagrange multiplier with
first order perturbation as X = (X)O + €X and ]32(1_9)0 +&p, where ¢ is a dimensionless small
parameter, (X)O =uye, +u.e, and (1_7)0 = p are the un-perturbed solutions in Eq. (A2), = and ~
are perturbed fields following the forms:

- 4(Z)cos(a®)e, + 4,(Ryu,(Z)sin(w®)e, + 4, (R)u,(Z)sin (w0 )e,,, (A4)
p=A4,(Z,R)cos(w0), (AS)
where A4, (i=1,2,3,4) are the amplitudes of perturbation. Therefore, the perturbed deformation

gradient may write as F = (F)0 +&Grad™ , where (F)0 is the un-perturbed deformation gradient at

base state expressed in Eq. (A2). By inserting the perturbed displacement field, the deformation

gradient reads as:

Ap+EAU cos(®)  —¢ Aot d u, sin(@w®) V., +&Au] cos(wO)
b Ao+ A4 ;o
F=| &Au,sin(wO) Ago +&——u, cos(w®) & A,u; sin(w®) . (A6)
) Ao . ,
& Asu, cos(wO) —& >y u, sin(@®) A, + & Au; cos(w®)

The incompressibility of the elastic layer is enforced by detF =1, which implies:

A+ 4

A A, + 2, Uy =¥, Ay + A, Auy =0 (AT)



The perturbation in deformation gradient will further induce a perturbation in nominal stress which

results in the nominal stress reading as S/ = (S)0 / u+¢& .Here, S is the perturbed normalized

nominal stress writing as - *(F)" - ﬁF‘T] . A balance of the forces exerted on

an element of the perturbed elastomer further leads to three equations of equilibrium through

Div S = 0. The four unknown A, (i=1,2,3,4) can be fully specified by these three equations and
the incompressibility condition in Eq. (8) with boundary conditions that the traction t, =S-e,

shall be zero at R=1. The four equations can be simplified by eliminating A, and A4, .
Furthermore, we notice that fingering instability is an instability mode with 4, =0 and fringe
instability with the layer’s aspect ratio slightly smaller than the transition aspect ratio & ;... cine

between fingering instability and fringe instability is an instability mode with 4,«< 4, and 4« 4, .

Therefore, the only governing ODE to be solved is with respect to the amplitude along radius

direction 4, in the dimensionless form, reading:

[SS]

RAD+6R 4D +(5-20° )R 47~ (208 +1) R4 + (0" ~1) 4,

~ AR R 47+ 3R4 (" -1) 4] =0 (A8)
K’a’
with 4, = -1 By setting the boundary conditions of traction free at R =1, namely , ,
YR
o and ., the two boundary conditions in the dimensionless form read as:

AP +44 ) +[1-20" ~ (0’ - 4, | 4()+[ & -1+ &'’ - 4] [4(1)=0, (A9a)

A0+(2-8)4M)+¢ (0" 1) 4(1) =0, (A9b)

with



$(Zy) = %Kzaz +%ﬂ,,,f +C AL, (A9c)

C, = 12 I:l—lKZOlz:|—lCOS4K‘. (A9d)
cos"k| 2 2

The existence of the non-trivial solution for Eq. (A8) with two boundary conditions in Eq. (9)

depends on whether the following equation has solution or not:

(P’ 4, +14; ~P o4, )1;’-1—(/1’1)—(21@2/1; +200 -2 + 4))

2] h
1, .,(4
{21@2 +oA —lwA, MJ Ka’ =0, (A10)

where /=1+¢ .

By minimizing K through @ at each plane, we can have the critical stretch A_, the critical number
of undulations . and the vertical location of the plane where the undulations initiate Zo. As
shown in Fig. 3, the theoretical results for the critical stretch A, and the critical number of

undulations ¢, are compared with simulation results, showing good agreement.
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