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Abstract     

When a confined elastic layer is under tension, undulations can occur at its exposed 

surfaces, giving the fingering or fringe instability. These instabilities are of great concern in the 

design of robust adhesives, since they not only initiate severe local deformations in adhesive layers 

but also cause non-monotonic overall stress vs. stretch relations of the layers. Here, we show that 

the strain stiffening of soft elastic materials can significantly delay and even suppress the fringe 

and fingering instabilities, and give monotonic stress vs. stretch relations. Instability development 

requires local large deformation, which can be inhibited by material-stiffening. We provide a 

quantitative phase diagram to summarize the stiffening’s effects on the instabilities and stress vs. 

stretch relations in confined elastic layers. We further use numerical simulations and experiments 

to validate our findings. 
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Material-Stiffening Suppresses Elastic Fingering and Fringe Instabilities 

1. Introduction 

Confined elastic layers are ubiquitous in nature such as mussel plagues, tendons and 

ligaments (Benjamin et al., 2006; Desmond et al., 2015; Waite et al., 2005) and widely adopted in 

engineering applications such as insulators, sealants, artificial joints, and versatile adhesives 

(Biggins et al., 2013; Creton and Ciccotti, 2016; Liu et al., 2017; Shull, 2002; Yuk et al., 2017). 

When a confined elastic layer is under tension, fringe instability (Lin et al., 2016) or fingering 

instability (Biggins et al., 2013; Shull et al., 2000) can form at its exposed surfaces, leading to 

various modes of failures including interfacial detachment and cohesive fracture in relevant 

structures (Chaudhury et al., 2015; Crosby et al., 2000; Zhao et al., 2006). The approaches to 

suppress these instabilities are of great importance to the design of robust adhesives (Yuk et al., 

2016a), which nevertheless have not been explored so far. 

Here, we show that both fringe instability and fingering instability can be suppressed if the 

confined layer stiffens significantly at moderate stretches. We adopt a Gent solid (Gent, 1996) 

with shear modulus   and limit of the strain invariant 
mJ  to model the mechanical behavior of 

stiffening layers under tension. From combined experiments and simulation, we identify two 

critical values for  
mJ  of a material:  

monoJ  below which the tensile stress vs. stretch relation of a 

confined layer is monotonic, although either fringe or fingering instability may set in the layer; 

and 
instJ  below which both fringe instability and fingering instability are fully suppressed. To 

further experimentally validate the suppression of both fringe and fingering instabilities in a 

stiffening layer, we perform a set of controlled experiments by applying tensile load on an Ecoflex 

layer and a hydrogel layer, representing stiffening material and non-stiffening material 

respectively. The understanding on suppression of elastic instabilities in a confined strain 



stiffening layer can serve as a guideline for the design of robust adhesives for engineering 

applications (Yuk et al., 2016a; Yuk et al., 2016b). Moreover, it may also elucidate one possible 

reason why stiffening layers such as cartilage, ligament and mussel thread (Sharma et al., 2016; 

Silverman and Roberto, 2007) are adopted in nature. 

 
 

 
Figure 1. a) Schematic of the formation of fingering instabilities in elastic layers with diameter of D  

and thickness of H . Fingering instability initiates at the middle-plane of the elastic layer. b) Schematic 

of the formation of fringe instabilities in elastic layers with diameter of D  and thickness of H . Fringe 

instability initiates at the plane close to the fringe portion of the elastic layer. The aspect ratio of the 

layer is defined as /D H  . 

 



2. Formulation of the problem 

As illustrated in Fig. 1, we focus on an elastic layer of cylindrical shape with height H  

and diameter D  at the undeformed state. A tensile force F is applied on the layer to elongate the 

layer to the current height h . The applied nominal stress S  and the applied stretch   is defined 

as: 
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Geometrically, the cylindrical elastic layer in the undeformed state occupies a region 
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displacement vector of a point initially at  , ,R Z , where 
Ru , u

 and 
Zu  are radial displacement, 

hoop displacement, and axial displacement, respectively. The elastic layer is taken as a Gent solid 

(Gent, 1996), with the free energy reading as: 
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where   is the shear modulus,   is the bulk modulus,  detJ  F , the strain invariant 

 T

1 tr 3J  FF  with  
1/3J F F  and 

mJ  is the material constant which identifies the limiting 

value of 
1J . We set the elastocapillary length of the layer to be much smaller than the macroscopic 

dimensions of the sample (i.e. D  and H ), therefore having negligible effects on the emergence 

of elastic instabilities. Moreover, we set /   as large as 2000, thus the slight incompressibility 

does not have observable effect on emergence of elastic instabilities. The parameters affecting the 



mechanical behavior of the elastic layer are: layer’s aspect ratio /D H   and material constants 

  and 
mJ . The material particles in the layer satisfy the stress equilibrium by Div S 0 , with the 

nominal stress tensor   2/3 T T T

1

1
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1/3J F F . The 

displacement boundary conditions are:  1 0Ru Z    ,  1 0u Z    ,  0 0Zu Z    and 

 1Zu Z   is the imposed displacement on the top surface of the layer. 

We use the commercial finite element software Abaqus/Explicit by writing a VUMAT 

subroutine to simulate the deformation of elastic layer and capture the onset of instabilities. The 

ratio between bulk modulus   and shear modulus   is set as / 2000    for all cases in this 

paper, to approximate the incompressibility of the layer. The type of the element is taken as C3D8 

and the mesh size is taken as ~ 1/10 of the smallest feature dimension.  

When the elastic layer is under tension, the exposed surface of the layer initially deforms 

into a parabolic shape. When the applied stretch reaches a critical value 
c  (or the applied nominal 

stress  reaches 
cS ), undulations emerge at the exposed surfaces of the layer, giving fringe 

instability or fingering instability (Biggins et al., 2013; Lin et al., 2017). We take the vertical 

location that gives the highest undulation amplitude 
0Z Z  as the location where the undulations 

initiate in simulation. 

 

3. Effects of Material Stiffening on fingering and fringe instabilities 

In previous study on non-stiffening materials (i.e. 
mJ  ) , we find the aspect ratio 

/D H   determines the selection of the mode of instability (Lin et al., 2017).  As shown in Fig. 

1, for the samples with large aspect ratio   in which fingering instability sets in, the instability 



initiates at the middle section of the exposed meniscus (i.e. 
0 0Z  ) ; while for the samples with 

small aspect ratio  , the instability initiates at the fringe portion of the exposed meniscus (i.e. 

0 0Z  ), giving fringe instability. The critical aspect ratio between fringe instability and fingering 

 

 
 

Figure 2. a) Illustration of the amplitude of undulations at various vertical locations. b) The normalized 

amplitude /mA D  versus vertical location Z  at the onset of fingering instability in the layers with large 

aspect ratio (i.e. 14  ) for both non-stiffening layers (i.e. 
mJ ) and stiffening layers with various 

limits of strain invariant 
mJ . The vertical location with maximum amplitude identifies the vertical plane 

where undulations initiate (i.e. 
0 0Z  ), at middle-plane of the layer. c) The normalized amplitude 

/mA D  versus vertical location Z  at the onset of fringe instability in the layers with small aspect ratio 

(i.e. 2  ) for both non-stiffening layers (i.e. 
mJ ) and stiffening layers with various limits of 

strain invariant 
mJ . The vertical location with maximum amplitude identifies the vertical plane where 

undulations initiate (i.e. 
0 0.8Z  ), close to fringe portion. d) The vertical plane where undulations 

initiate for the layers with various aspect ratios and various limits of strain invariant. For the samples 

with large aspect ratio   in which fingering instability sets in, the instability initiates at the middle 

section of the exposed meniscus (i.e. 
0 0Z  ) ; while for the samples with small aspect ratio  , the 

instability initiates at the fringe portion of the exposed meniscus (i.e. 
0 0Z  ), giving fringe instability. 



instability has been identified as 5fringe fingering    for non-stiffening materials (Lin et al., 2017). 

Here, we further investigate the effect of material-stiffening on 
fringe fingering 

by performing a set of 

numerical simulations for the samples with various aspect ratios   ranging from 1 to 10 and 

various limits of the strain invariant (i.e. 24mJ  , 45mJ   and 72mJ  ). We extract the contour 

of exposed surface at each vertical location of the layer at the onset of instabilities as shown in Fig. 

2a. The difference between the maximum radius 
maxr  and the minimum radius 

minr  defines the 

amplitude of the contour 
mA . We further plot the normalized amplitude /mA D  versus vertical 

location Z  in the layer. As shown in Fig. 2b, for the layers with large aspect ratio (i.e. 14  ) in 

which fingering instability sets in, the vertical location that gives the maximum amplitude is at the 

middle plane (i.e. 
0 0Z  ) for the layers in both non-stiffening layers and stiffening layers with 

 

 
 

Figure 3. Theoretical and simulation results on the critical points of fingering instability and fringe 

instability. a) Comparison of the critical stretch 
c  for the onset of instabilities between theory and 

simulation. b) Comparison of the critical mode number 
c  between theory and simulation. Solid line 

denotes the theoretical results for non-stiffening layers (i.e. 
mJ  ). Solid circular dots denote 

simulations results non-stiffening layers (i.e. 
mJ  ).  Hollow square dots, circular dots and 

triangular dots denote simulation results for stiffening layers with 24mJ  , 45mJ   and 72mJ  . 



24mJ  , 45mJ   and 72mJ  . As shown in Fig. 2c, for the layers with small aspect ratio (i.e. 

2  )  in which fringe instability sets in, the vertical location that gives the maximum amplitude 

is at the plane  
0 0.8Z   for the layers in both non-stiffening layers and stiffening layers with 

24mJ  , 45mJ   and 72mJ  . We summarize the vertical location that gives the maximum 

amplitude at the onset of instabilities in both stiffening layers and non-stiffening layers. As shown 

in Fig. 2d, the limit of the strain invariant 
mJ  does not affect the critical aspect ratio between fringe 

instability and fingering instability significantly, which is the same as that in a non-stiffening layer 

(i.e. 5fringe fingering   ).  

We further explore the effect of material-stiffening on the onset of instabilities in elastic 

layers. In previous study on non-stiffening materials (i.e. 
mJ  ), we derive the analytical 

solution of the deformation field and predict the critical stretch 
c  and the critical number of 

undulations 
c  for the onset of instabilities in elastic layers. We summarize the theoretical 

analysis for the onset of instabilities in non-stiffening materials in Appendix. With the increase of 

the layer’s aspect ratio  , the critical stretch 
c  decreases while the critical number of undulations 

c  increases. We first perform a set of simulations for the layers with moderate 
mJ  (i.e. 24mJ  , 

45mJ   and 72mJ  ). As shown in Fig. 3, material-stiffening has negligible effect on the critical 

stretch 
c  and slightly increases the critical number of undulations

c . 

 



Next, we study the effect of material stiffening on the suppression of both fingering and 

fringe instabilities. We first study fingering instability (in the samples with 6  ) for both 

stiffening and non-stiffening materials. As shown in Fig. 4a and Fig. 4c, for a non-stiffening layer 

 

 
 

Figure 4. Suppression of fingering instability in the sample with aspect ratio of 6  . a) Fingering 

instability emerges in a neo-Hookean layer. b) Fingering instability suppressed in a Gent solid with the 

limit of the strain invariant 1.3mJ  . c) The radius of the outer surface at the middle plane of the layer 

where undulations initiate and d) the maximum strain invariant  1 max
J at the plane where instability 

initiates. Dots represent the onset of fingering instabilities. 

 



(i.e. 
mJ ) , as the applied stretch reaches 1.62c  ,  the radius of the external surface r  at the 

middle plane where undulations initiate (i.e. 
0 0Z  ) bifurcates, giving the fingering instability. 

Right after the onset of fingering instability, the maximum strain invariant  1 max
J  at the plane 

where instability initiates (i.e. 
0 0Z  ) increases dramatically, corresponding to the first-order 

transition of fingering instability (Biggins et al., 2013) (see Fig. 4d). In contrast, for a stiffening 

layer with moderate 
mJ  (e.g. 15.8mJ  ), the bifurcation of the radius at the middle plane is 

partially suppressed, manifested by the decreasing undulation amplitude 
max minr r  (see Fig. 4c). 

In addition, the maximum first strain invariant  1 max
J  in the layer increases less steeply than that 

of the non-stiffening layer. For an elastic layer which stiffens at early stretches (e.g. 1.3mJ  ), 

fingering instability can be fully suppressed and no bifurcation can be observed even when the 

maximum first strain invariant within the layer  1 max
J  approaches the limit of 

mJ  (see Fig. 4b, 

Fig. 4c and Fig. 4d). We next study fringe instability (in the samples with 1  ) for both 

stiffening and non-stiffening materials. As illustrated in Fig. 5a, fringe instability emerges in a 

non-stiffening layer when the applied stretch reaches 4c  , corresponding to the bifurcation of 

the radius of the outer surface initiating at the plane of 
0 0.9Z   (see Fig. 5a). While for the 

stiffening layer with 9mJ  , no bifurcation occurs at the exposed surface even when the maximum 

first strain invariant  1 max
J  at the plane where instability initiates (i.e. 

0 0.9Z  ) increases up to the 

limit of 
mJ  (see Fig. 5b, Fig. 5c and Fig.  5d).  



 

 
 

 
Figure 5. Suppression of fringe instability in the sample with aspect ratio of 1  . a) Fringe instability 

emerges in a neo-Hookean layer. b) Fringe instability suppressed in a Gent solid with the limit of the 

strain invariant 9mJ  . c) The radius of the outer surface at the plane 
0 0.9Z   where undulations 

initiate and d) the maximum first strain invariant  1 max
J . Dots represent the onset of fringe instabilities. 

 



As shown in Fig. 4 and Fig. 5, both fingering instability and fringe instability can be 

suppressed in elastic layers with early stiffening. To identify the critical limit of the first strain 

invariant 
instJ  below which fingering instability (or fringe instability) can be fully suppressed, we 

perform a set of simulations with decreasing 
mJ  and varying  . As shown in Fig. 6, the maximum 

strain invariant  1 max
J of the layer at the plane where instability initiates is nearly constant for the 

layer with moderate
mJ  , while slightly increases and approaches the limit of the strain invariant 

mJ   (the dashed line in Fig. 6) when 
mJ  decreases. When 

mJ  further decreases to a critical limit 

of the strain invariant 
instJ (see the marked cross points in Fig. 6), instabilities are fully suppressed. 

It is also shown that the critical limit of the strain invariant 
instJ  decreases with the increase of the 

layer’s aspect ratio  .  

 

 

 
 

Figure 6. The maximum strain invariant  1 max
J  at the plane where instability initiates with various 

limit of first strain invariant 
mJ  and aspect ratio of 2  , 6   and 14   at the onset of 

instabilities. 



4. Effects of Material Stiffening on stress vs stretch relation 

The applied nominal stress-stretch curve of a confined elastic layer under tension has been 

of great interests in the design of robust adhesives. It has been reported that, for a non-stiffening 

layer, the stress-stretch curve is monotonic for fringe instability in the samples with small aspect 

ratios (i.e. 5  ); non-monotonic for fingering instabilities in the samples with large aspect ratios 

(i.e. 5  ) (Lin et al., 2017). The non-monotonic stress-stretch relation in general is not preferred 

in adhesives, since it can cause catastrophic failures of the adhesives under increasing tensile stress. 

In this section, we will show that material-stiffening can change stress vs. stretch relation from 

non-monotonic to monotonic.  

As shown in Fig. 7a and Fig. 7b, both layers with aspect ratio of 6   and 10   show 

non-monotonic stress vs. stretch relation for non-stiffening layer (i.e. 
mJ ) and the onset of 

fingering instability  corresponds to the maximum applied stress. With the decrease of 
mJ , the 

normalized nominal stress /S   increases and the stress vs. stretch relation transits from non-

monotonic to monotonic in both layers. For the layer which stiffens at moderate stretches (e.g. 

24mJ  and 45mJ   for 6  , 24mJ  and 72mJ   for 10  ), the onset of fingering 

 
 

 
Figure 7. The stress-stretch curves for the sample with a) aspect ratio of 6   and b) 10  . Dots 

represent the onset of fingering instabilities. 



instability is corresponding to a kink of the stress-stretch curve while the stress keeps increasing. 

For the layers with early stiffening (e.g 12.9mJ   for 6  , 11.5mJ   for 10  ), instabilities 

are shown to be fully suppressed and stress monotonically increases with the applied stretch. The 

transition of the stress vs. stretch relations from non-monotonic to monotonic gives the other 

critical limit of the strain invariant
monoJ , below which the tensile stress vs. stretch relation of a 

confined layer is monotonic. As shown in Fig. 8, we summarize 
monoJ  for the layers with the aspect 

ratio from 5 to 20. 

 

5. Phase diagram for the suppression of instabilities in confined layers 

In Section 3, we first identify the critical aspect ratio between fringe instability and 

fingering instability 
fringe fingering 

 and we further show the critical limit of first strain invariant 
instJ

below which both fringe instability and fingering instability are fully suppressed.  In Section 4, 

we identify the other critical limit of first strain invariant 
monoJ , below which the tensile stress vs. 

stretch relation of a confined layer is monotonic. In this section, we summarize the results in 

previous sections and further construct a phase diagram in the plot of aspect ratio   and limit of 

the strain invariant
mJ , elucidating the effect of material-stiffening on selection of modes and 

suppression of both fringe and fingering instabilities. As shown in Fig. 8, for a layer with early 

stiffening (i.e. 
m instJ J ), there is no fringe instability or fingering instability setting in. For a layer 

with moderate stiffening (i.e. 
inst m monoJ J J  ), undulations can initiate at the exposed surface of 

the layer and the applied stress monotonically increases with the applied stretch. For a layer which 

shows negligible stiffening (i.e. 
m monoJ J ), the stress vs. stretch relation applied on the layer is 

non-monotonic and the onset of the instability (i.e. fingering instability) is correlated with the point 



of maximum stress. The phase diagram can serve as a guideline on selection of the mode of 

instability and monotonicity of stress vs. stretch relation. 

 

 

6. Experimental validations 

To validate the suppression of both fringe and fingering instabilities in experiment, we 

chose Ecoflex rubber and Polyacrylamide hydrogel as the representative stiffening solid and non-

stiffening solid, respectively. The Ecoflec rubber is fabricated by mixing the Ecoflex 00-30 

(Smooth on) with the ratio of 1:1. The polyacrylamide hydrogel consists of 12 wt% acrylamide 

(AAm), 2 wt% alginate and 500μL  0.23 wt% N,N'-Methylenebisacrylamide in 10 ml total 

solution. The detailed fabrication method is described in our previous papers (Lin et al., 2017). To 

 

 
 

Figure 8. A phase diagram elucidating the suppression of fringe or fingering instabilities and the stress 

vs. stretch relation in confined elastic layers with respect to layer’s aspect ratio   and limit of the strain 

invariant 
mJ . 

 



measure the shear modulus   and limit of the strain invariant
mJ , we make dog-bone samples, 

performing uniaxial tensile tests. The measured shear modulus   is 15 kPa and 1.1 kPa for 

Ecoflex rubber and polyacrylamide hydrogel, respectively. The limit of the strain invariant 
mJ  for 

Ecoflex rubber and polyacrylamide hydrogel are measured to be 30 and 270, respectively. 

Recalling the phase diagram in Fig. 8, the limit of the strain invariant for Ecoflex is much lower 

than 
monoJ  (i.e. 100monoJ   for 6  ) but slightly higher than 

instJ  (i.e. 18.9instJ   for 2   

and 11.5instJ   for 6  ); while that for hydrogel is much larger than both 
monoJ  (i.e. 100monoJ   

for 6  ) and 
instJ (i.e. 18.9instJ   for 2   and 11.5instJ   for 6  ).  

As shown in Fig. 9a, for the samples with aspect ratio of 2  , fringe instability forms at 

the critical stretch of 3.9c   and the critical stress of 3.8cS   in hydrogel sample as reported in 

our previous work (Lin et al., 2016). While for the rubber sample with the identical dimensions, it 

deforms with uniform shrinkage and the applied normalized nominal stress /S   increase 

dramatically (see Fig. 9b). There are negligible fringe undulations even when the applied stretch 

approaches the limiting locking stretch. We further perform a pair of controlled experiments for 

the samples with aspect ratio of 6   (see Fig. 9c). Fingering instability forms at the exposed 

surface of the hydrogel sample while the exposed surface of the rubber sample remains uniform 

circular shape with negligible undulations. The normalized nominal stress /S   in Ecoflex rubber 

is much larger than that in hydrogel sample, which manifests the effect from material-stiffening as 

well (see Fig. 9d). 



 

 

7. Concluding remarks 

In this paper, we explore the effect of material-stiffening on the onset of both fringe and 

fingering instabilities and stress vs. stretch relations. We show that for a layer with early stiffening,  

 

 
 

Figure 9. Experimental validation of the suppression of fingering and fringe instability in a stiffening 

layer. a) The evolution of the deformation in a hydrogel layer and rubber layer with aspect ratio of 

2  and b) corresponding applied stress-stretch curves.  c) The evolution of the deformation in 

hydrogel layer and rubber layer with aspect ratio of 6  and d) corresponding applied stress-stretch 

curves.  Dots represent the onset of the instabilities. 
 



the local large deformation for instability development can be highly inhibited and both fringe and 

fingering instabilities can be delayed and even fully suppressed. In addition, we show the transition 

of stress vs. stretch relation from non-monotonic to monotonic with decreasing 
mJ  . Most tough 

biological tissues indeed show stress-stretch curves with J-shape owning to the hierarchical 

integration of the strong coil-shape collagen and the surrounding soft matrices (Lin et al., 2014b; 

Motte and Kaufman, 2013). The systematic understanding of the material-stiffening on the effect 

of elastic instabilities in confined elastic layers may reveal the underlying toughening mechanisms, 

which the biological tissues (e.g. cartilage, ligament and mussel thread) adopt in nature to avoid 

these instabilities for long-term functionality. Moreover, the findings in this paper can evoke the 

need to design hydrogel-based composite structures (Huang et al., 2017; Lin et al., 2014a; 

Tummala et al., 2017), which can mimic the nature’s strategy and as a result exhibit ultra-robust 

performances. 
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Appendix A. Theoretical analysis for the onset of fingering and fringe instability in non-

stiffening layers. 

In previous paper, we derive the theoretical analysis for deformation field and perform 

linear perturbation for the onset of fingering and fringe instability in non-stiffening layers (Lin et 

al., 2017). We make a single assumption that any horizontal plane at the un-deformed state remains 

planar upon deformation. The displacement field in the cylindrical elastic layer can be specified 

as    1,Ru R Z Ru Z and    2Zu Z u Z . The deformation gradient in the layer can be 

expressed as:  
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equilibrium equation Div =S 0  with boundary conditions that 
1 0

d / d 0|
Z

u Z

 , 

1( 1) 0u Z    , 

2( 0) 0u Z   and traction free at the middle plane, the deformation field and Lagrange multiplier 

in the elastic layer can be analytically solved as: 
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2 cosh( )

D Z
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 
 24 2 2

4 2

2 2 24

cosh1 cosh 1 1
cosh

2 2 cosh cosh coshcosh

Z
p R

Z

  


  

   
       

   
   

.      (A2c) 

where   is an internal loading parameter which is correlated with the applied stretch through 

sinh(2 )

2





 .                                                         (A3) 

We further perform perturbation on both deformation field and Lagrange multiplier with 

first order perturbation as  and , where   is a dimensionless small 

parameter,  
0

R zu u R Zx e e  and  
0

p p  are the un-perturbed solutions in Eq. (A2), x  and p  

are perturbed fields following the forms: 

     1 1 2 1 3 2( ) ( )cos ( ) ( )sin ( ) ( )sinR ZA R u Z A R u Z A R u Z       x e e e ,         (A4) 

,                                                   (A5) 

where 
iA  ( 1,2,3,4i  ) are the amplitudes of perturbation. Therefore, the perturbed deformation 

gradient may write as  
0

Grad F F x , where  
0

F  is the un-perturbed deformation gradient at 

base state expressed in Eq. (A2). By inserting the perturbed displacement field, the deformation 

gradient reads as: 
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F  .          (A6) 

The incompressibility of the elastic layer is enforced by det 1F , which implies:  

2 1
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The perturbation in deformation gradient will further induce a perturbation in nominal stress which 

results in the nominal stress reading as  
0

/ /   S S S . Here,  is the perturbed normalized 

nominal stress writing as    
0 0 T T1

Grad p p


    
 

S x F F . A balance of the forces exerted on 

an element of the perturbed elastomer further leads to three equations of equilibrium through 

. The four unknown 
iA  ( 1,2,3,4i  ) can be fully specified by these three equations and 

the incompressibility condition in Eq. (8) with boundary conditions that the traction 
R R t S e  

shall be zero at 1R  .  The four equations can be simplified by eliminating 
2A and 

4A . 

Furthermore, we notice that fingering instability is an instability mode with 
3 0A   and fringe 

instability with the layer’s aspect ratio slightly smaller than the transition aspect ratio 
fringe fingering 

between fingering instability and fringe instability is an instability mode with 
3A ≪ 1A  and 

3A ≪ 2A . 

Therefore, the only governing ODE to be solved is with respect to the amplitude along radius 

direction 
1A  in the dimensionless form, reading: 
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with 
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rR
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 


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
. By setting the boundary conditions of traction free at 1R  , namely 0rRS  , 

0RS   and 0zRS  , the two boundary conditions in the dimensionless form read as: 
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The existence of the non-trivial solution for Eq. (A8) with two boundary conditions in Eq. (9) 

depends on whether the following equation has solution or not: 
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where 1l   . 

By minimizing through   at each plane, we can have the critical stretch 
c , the critical number 

of undulations 
c  and the vertical location of the plane where the undulations initiate 0Z . As 

shown in Fig. 3, the theoretical results for the critical stretch 
c  and the critical number of 

undulations 
c are compared with simulation results, showing good agreement. 
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