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Abstract— We consider the problem of network-based at-
tacks, such as Man-in-the-Middle attacks, on standard state esti-
mators. To ensure graceful control degradation in the presence
of attacks, existing results impose very strict integrity require-
ments on the number of noncompromised sensors. We study the
effects of sporadic data integrity enforcement, such as message
authentication, on control performance under stealthy attacks.
We show that even with sporadic data integrity guarantees, the
attacker cannot introduce an unbounded state estimation error
while remaining stealthy. We present a design-time framework
to derive safe integrity enforcement policies, and illustrate its
use; we show that with even 20% of authenticated messages we
can ensure satisfiable state estimation errors under attacks.

I. INTRODUCTION

Increasing complexity and communication capabilities in
modern control systems have also opened new alleyways for
malicious interference, as was recently illustrated in Stuxnet
attack [1], Ukrainian power-grid breach [2], and a few
automotive attacks (e.g., [3]). Critically, network connectivity
potentially allows for a remote attacker to compromise sys-
tem components and obtain access to the low-level network
used to communicate control-related messages.

From the controls perspective, these attacks can be mod-
eled as additional malicious signals injected into the sys-
tem [4]. Thus, significant research efforts have focused on
development of techniques for attack detection and attack-
resilient control (e.g., [5]–[11]). One avenue explored the
use of unknown input observers (e.g., [8], [12]) and resilient
state estimators [5]–[7]. Another has considered the use of
standard residual probability-based detectors, such as χ2

detectors, to detect attacks on sensor measurements [9]–
[11]. Each of these methods also establishes prerequisites to
enable attack detection. However, these conditions introduce
very conservative constraints on the system, by limiting the
number of sensors whose measurements can be compromised
while providing suitable resiliency guarantees. For instance,
for attack-resilient state estimation at least half of the sensors
cannot be tampered with [5]. The reason is that the common
assumption used to develop these techniques is that once a
sensor or its channel to the estimator is compromised, all
measurements received from the sensor could be corrupted.

In case of network-based attacks, these assumptions can
be satisfied with continuous use of standard cryptographic
tools, such as adding message authentication codes (MACs)
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to the communicated measurements in order to guarantee
data integrity and authentication. This, however, imposes
significant bandwidth requirements on the network; adding
MAC bits can significantly increase the size of communi-
cation packets, making scheduling of several control loops
over a shared network unfeasible. As an illustration, consider
scheduling communication packets for two control loops
over a shared network (Fig. 1). Without data authentication,
communication packets can be sent within sampling periods
(Fig. 1(a)). With the increase in packet sizes due to authen-
tication of all sensor transmissions, there does not exist a
feasible communication schedule (Fig. 1(b)). Yet, when it is
not necessary to authenticate every sensor message, messages
with MACs can be sent in every other period, resulting in
feasible schedules for both control loops (Fig. 1(c)).

In this paper we study the effects of sporadic integrity
guarantees for communicated sensor measurements on state
estimation error in the presence of Man-in-the-Middle
(MitM) attacks. We extend the system models from [9],
[11] by considering systems in which, by the use of authen-
tication mechanisms, it is possible to occasionally ensure
that the obtained sensor measurements are valid. We show
that even sporadic enforcement of sensed data integrity
can significantly limit a stealthy attacker’s capabilities, even
if the attacker knows the times when data integrity will
be enforced; specifically, we show that the attacker will
be unable to introduce unbounded state estimation errors
while remaining stealthy. Furthermore, we introduce a design
framework to evaluate the impact of stealthy attacks on the
state estimation error under a specific integrity enforcement
policy, as well as design safe integrity enforcement policies.

This paper is organized as follows. In Sec. II, we introduce
the considered problem and system model. Sec. III describes
a method to capture attacker’s impact on the system, while
Sec. IV introduces sporadic integrity enforcement policies
and shows that they significantly limit effects of the attacks.
In Sec. V, we present a framework for design and analysis of
integrity enforcement policies. Finally, Sec. VI provides an
illustrative case-study, before concluding remarks in Sec VII.

Notation and Terminology: The transpose of matrix A
is specified as AT , while the ith element of a vector xk
is denoted by xk,i. Also, ‖A‖i denotes the i-norm of a
matrix A and, for a positive definite matrix P, ‖∆zk‖P−1 =
‖P−1/2∆zk‖2. N (A) is the null space of A, and nullity(A)
denotes the dimension of N (A). R,N and N0 denote the
sets of reals, natural numbers and nonnegative integers,
respectively. For a set S , we use |S| to denote the cardinality
(i.e., size) of the set. In addition, for a set K ⊂ S , with K{

we denote the complement set of K with respect to S – i.e.,



Fig. 1. Scheduling two secured sensor flows over a shared bus: (a) commu-
nication schedule without the use of authentication, (b) no feasible schedule
exists when all messages contain MACs, (c) scheduling communication
messages is only feasible if data integrity is sporadically enforced (e.g., for
every other packet).
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Fig. 2. System architecture – by launching Man-in-the-Middle (MitM)
attacks, the attacker can inject adversarial signals into plant measurements
delivered to the estimator.

K{ = S \K. Finally, the support of vector v ∈ Rp is the set
supp(v) = {i | vi 6= 0} ⊆ {1, 2, ..., p}.

II. MOTIVATION AND PROBLEM DESCRIPTION

Before introducing the problem formulation, we describe
the considered system and attacker model, shown in Fig. 2.

A. System Model without Attacks

We consider an observable linear-time invariant (LTI)
system whose evolution without attacks can be represented as

xk+1 = Axk + Buk + wk,

yk = Cxk + vk
(1)

where xk ∈ Rn and uk ∈ Rm denote the plant’s state and
input vectors, at time k, while the plant’s output vector yk ∈
Rp contains measurements provided by p sensors from the
set S = {s1, s2, ..., sp}. Also, w ∈ Rn and v ∈ Rp denote
the process and measurement noise; we assume that x0, wk,
and vk are independent Gaussian random variables.

A Kalman filter is used for state estimation. Since Kalman
gain usually converges in only a few steps, to simplify the
notation we assume that the system in steady state before the
attack. Hence, the Kalman filter estimate x̂k is updated as

x̂k+1 = Ax̂k + Buk + K(yk+1 −C(Ax̂k + Buk)), (2)

K = ΣCT (CΣCT + R)−1, (3)

where Σ is the estimation error covariance matrix and R is
the sensor noise covariance matrix. Also, the residue zk ∈ Rp
at time k and its covariance matrix P are defined as

zk = yk −C(Ax̂k−1 + Buk−1),

P = E{zkzTk } = CΣCT + R.
(4)

Finally, the state estimation error is defined as ek = xk−x̂k.
The system employs a χ2 intrusion detector, defined as

gk = zk
TP−1zk. The alarm triggers when the value of de-

tection function gk satisfies that gk > threshold. Therefore,
the probability of the alarm at time k can be captured as

βk = P (gk > threshold). (5)

B. Attack Model
We assume that the attacker is capable of launching MitM

attacks on communication channels between a subset of the
plant’s sensors K ⊆ S and the estimator; however, we
do not assume that the set K is known to the system or
system designers. Thus, to capture the attacker’s impact on
the system, the system model from (1) becomes

xak+1 = Axak + Buak + wk

yak = Cxak + vk + ak.
(6)

Here, xak and yak denote the state and plant outputs in the
presence of attacks. In addition, ak ∈ Rp denotes the signals
injected by the attacker at time k; ak is a sparse vector with
support in set K – i.e., ak,i = 0 for all i ∈ K{ and k ≥ 0.1

We consider the following threat model where:
(1) The attacker has full knowledge of the system – plant
dynamics, employed Kalman filter and detector, as well as
the used secure-communication mechanisms. Specifically,
we consider systems that utilize message authentication to
ensure data integrity, and thus assume that the attacker is
aware at which time points integrity will be enforced; to
avoid detection, the attacker will not launch attacks in these
steps and will take them into account in attack planning.
(2) The attacker has the required computation power to
calculate suitable attack signals, while planning ahead as
needed. In addition, he has the ability to inject any signal
using communication packets mimicking sensors from the
set K, except at times when data integrity is enforced; for
example, when MACs are utilized to ensure integrity and
authenticity of sensor messages, our assumption is that the
attacker does not have access to the shared secret key used
to generate the MACs.

The goal of the attacker is to maximize the error of state
estimation while ensuring that the attack remains stealthy
– i.e., the attacker wishes to maximize eak, while ensuring
that increase in the probability of the alarm βak is not sig-
nificant. Here, to formally capture this objective along with
the stealthiness constraint, we denote the state estimation,
residue, and estimation error of the compromised system by
x̂ak, zak, and eak, respectively. We also define as

∆ek = eak − ek, ∆zk = zak − zk,

the change in the estimation error and residue, respectively,
caused by the attacks. From (1) and (6), they evolve as

∆ek+1 = (A−KCA)∆ek −Kak+1, (7)
∆zk = CA∆ek−1 + ak, (8)

with ∆e0 = 0. Note that the above dynamical system
is noiseless (and deterministic), with input ak controlled
by the attacker. Therefore, since E[ek] = 0 for the non-
compromised system in steady state, it follows that

∆ek = E[∆ek] = E[eak]. (9)

1Although a sensor itself may not be directly compromised with MitM
attacks, but rather communication between the sensor and estimator, we
will also refer to these sensors are compromised sensors. In addition, in this
work we sometimes abuse the notation by using K to denote both the set
of compromised sensors and the set of indices of the compromised sensors.



Because ∆ek provides expectation of the state estimation
error under the attack, this signal can be used to evaluate
the impact that the attacker has on the system.2 Thus, we
specify the objective of the attacker as to maximize the state
estimation error ‖∆ek‖. This is additionally justified by the
fact that since ak is controlled by the attacker, it follows that

Cov(eak) = Cov(ek) = Σ.

To capture the attacker’s stealthiness requirements, we use
the probability of alarm in the presence of an attack

βak = P (gak > threshold), where gak = zak
TP−1zak. (10)

Therefore, to ensure that attacks remain stealthy, the at-
tacker’s constraint in each step k is to maintain

βak ≤ βk + ε, (11)

for a small predefined value of ε > 0.

C. Problem Formulation

As shown in the next section, for a large class of systems,
a stealthy attacker can introduce an unbounded state esti-
mation error with MitM attacks on communication channels
between some of the plant sensors and the estimator. On
the other hand, existing communication protocols commonly
incorporate security mechanisms (e.g., MAC) that can ensure
integrity of delivered sensor measurements. Specifically, this
means that the system could enforce ak = 0 if integrity
for all transmitted sensor measurements is enforced at some
time-step k. Yet, the integrity enforcement comes at sig-
nificant communication and computation cost, effectively
preventing their continuous use in resource-constrained con-
trol systems. Hence, we focus on evaluating the impact of
stealthy attacks in systems with intermittent (i.e., sporadic)
use of data integrity enforcement mechanisms.3

III. IMPACT OF STEALTHY ATTACKS ON STATE
ESTIMATION ERROR

To capture impact of the stealthy attacks on the system’s
performance we start with the following definition.

Definition 1: The set of all stealthy attacks up to time k is

Ak = {a1..k|βak′ ≤ βk′ + ε, ∀k′, 1 ≤ k′ ≤ k}, (12)

where a1..k = [aT1 . . . a
T
k ]T .

Definition 2: [13] The k-reachable region Rk of the state
estimation error under the attack (i.e., ∆ek) is the set

Rk =

{
∆ek ∈ Rn ∆ek,∆zk satisfy (7) and (8),

∆ek−1 ∈ Rk−1, βak ≤ βk + ε

}
,

(13)
where R0 = 0 ∈ Rn. Also, the global reachable region R
of the state estimation error eak is set R =

⋃∞
k=0Rk.

Theorem 1: For any ε > 0 there exists a unique α > 0
such that βak ≤ βk + ε if and only if ‖∆zk‖P−1 ≤ α.

Proof: Without attacks, in steady-state gk has χ2

distribution with p degrees of freedom, since the residue

2For this reason, and to simplify our presentation, in the rest of the paper
we will refer to ∆ek as the (expected) state estimation error instead of the
change of the state estimation error caused by attacks.

3Formal definition of such policies is introduced in Section IV.

zk is zero-mean (E[zk] = 0) with covariance matrix P =
CΣCT +R. Furthermore, from (7) and (8), ∆zk = zak−zk,
is output of a deterministic system controlled by a1..k, and
thus zak is a non-zero mean with covariance matrix P –
i.e., the attacker is only influencing the ∆zk = E[zak−zk] =
E[zak]. Therefore, gak = zak

TP−1zak will have a non-central
χ2 distribution with p degrees of freedom; the non-centrality
parameter of this distribution will be λ = ‖∆zk‖2P−1 .

Let h be the detector threshold in (5), and (10); the alarm
probabilities βk = 1−P (gk ≤ h) and βak = 1−P (gak ≤ h)
can be computed from the distributions for gk and gak as

βk = 1− Fχ2(h, p), βak = 1− Fncχ2(h; p, λ),

where Fχ2(h, p) and Fncχ2(h; p, λ) are cumulative distribu-
tion functions of χ2 and noncentralized χ2 respectively, at
h, with p degrees of freedom and noncentrality parameter λ.
Since p and h are fixed by the system design, it follows that
βk will be a constant, and βak will be a function of λ.

Consider ε = βak − βk. Since for noncentralized χ2,
the cumulative distribution function can be expressed as
Fncχ2(h; p, λ) = 1 − Q p

2
(
√
λ,
√
h), where Q p

2
(
√
λ,
√
h) is

a Marcum Q-function [14], it follows

ε = Q p
2
(
√
λ,
√
h)− βk. (14)

Since Q p
2
(
√
λ,
√
h) is smooth and monotonously increasing

with respect to
√
λ [15], for any ε there will exist exactly one√

λ = ‖∆zk‖P−1 = α that (14) holds. Also, for any ε′ lower
than ε, the corresponding

√
λ′ = ‖∆zk‖P−1 from (14) must

be lower than α, and vice versa, concluding the proof.
Since the bound α for ‖∆zk‖P−1 in Theorem 1 depends on ε,
h and the fact that the χ2 detector with p degrees of freedom
is used, we can denote such value as α = αχ2(ε, p, h).

Remark 1: Related results from [10], [13] focus only on
sufficient conditions for stealthy attacks; showing that if
‖∆zk‖P−1 ≤ α, it follows that βak ≤ β+ ε, – i.e., satisfying
the stealthiness requirement. However, the proven full equiv-
alence between conditions ‖∆zk‖P−1 ≤ α and βak ≤ β + ε
will allow us to use both conditions interchangeably when
reasoning about the boundness of the reachability region.

The previous results introduce an equivalent ‘robustness-
based’ representation for the set of stealthy attacks.

Theorem 2: Rk is bounded if and only if the set

R̂k =

{
∆ek ∈ Rn ∆ek,∆zk satisfy (7) and (8),

∆ek−1 ∈ R̂k−1, ‖∆zk‖P−1 ≤ α

}
(15)

is bounded, where R̂0 = 0 ∈ Rn and α > 0.
Proof: Follows directly from Def. 1 and Thm. 1.

A. Perfectly Attackable Systems

We start by considering dynamical systems for which there
exists a stealthy attack sequence that results in an unbounded
expected state estimation error – i.e., for such systems, given
enough time, the attacker can make arbitrary changes in the
system states without risking detection.

Definition 3: A system is perfectly attackable (PA) if the
reachable set R of the system is unbounded.



As shown in [9], [11], for LTI systems without any
additional data integrity guarantees, the set R̂ =

⋃∞
k=0 R̂k

can be bounded or unbounded depending on the system
dynamics and the set of compromised sensors K. From
Theorem 2, this property is preserved for the set R as
well. For this reason, we will be using the definition of
R̂ to analyze the boundedness of R, and to simplify the
notation due to linearity of the constraint we will assume
that α = 1. Furthermore, observe that 1

|λmax|‖∆zk‖2 ≤
‖∆zk‖P−1 ≤ 1

|λmin|‖∆zk‖2, where λmax, λmin are the
largest and smallest, respectively, eigenvalues of P. Thus, the
region R̂ will be bounded for the P−1-norm constraint if and
only if it is bounded with a 2-norm stealthiness constraint –
i.e., for sake of determining boundedness of R̂ we consider
the stealthiness attack constraint as

‖∆zk‖2 ≤ 1, k ∈ N0. (16)

Now, the next result follows from [9], [11].
Theorem 3: A system from (6) is perfectly attackable if

and only if the matrix A is unstable, and at least one
eigenvector v corresponding to an unstable mode satisfies
that supp(Cv) ⊆ K and v is a reachable state of the
dynamical system (7).

IV. STEALTHY ATTACKS IN SYSTEMS WITH SPORADIC
INTEGRITY ENFORCEMENT

In this section, we analyze the effects of global sporadic
data integrity enforcement policy. To formalize this notion,
we start with the following definition.

Definition 4: Global sporadic data integrity enforcement
policy (µ, f, L), where µ = {tk}∞k=0, with tk−1 < tk for all
k > 0 and L = supk>0 tk − tk−1, ensures that

atk = atk+1 = ... = atk+f−1 = 0, ∀k ≥ 0.

Intuitively, a global sporadic data integrity policy ensures
that the injected attack ak will be equal to zero in at least f
consecutive points, where the starts of these ‘blocks’ are at
most L time-steps apart. The definition also captures periodic
integrity enforcements when L = tk − tk−1 for all k > 0.
Finally, the definition also captures policies with continuous
integrity enforcements, by specifying L ≤ f .

Note that in most systems networks are commonly shared
among several control loops; thus, sporadic increases of
network communication for these processes can be carefully
interleaved without violating the network’s bandwidth con-
straints. This would not be the case if all these processes
impose integrity enforcements at every step, which is a
common practice based on existing secure control methods.

The following theorem specifies that when a global spo-
radic integrity enforcement policy is used, a stealthy attacker
can not insert an unbounded expected state estimation error.

Theorem 4: Consider an LTI system from (1) with a
global data integrity policy (µ, f, L), where

f = min
(
nullity(C) + 1, qun

)
, (17)

and qun denotes the number of distinct unstable eigenvalues
of A. Then the system is not perfectly attackable.
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Fig. 3. System evolution between two consecutive endpoints of integrity
enforcement intervals.

The above theorem makes no assumptions about the set of
compromised sensors K; since in general, system designers
do not have this type of guarantees in design-time, no
restrictions are imposed on the set, neither regarding the
number of elements or whether some sensors belong to it.

To prove Theorem 4, we exploit the following result (we
use the notation from Theorem 4).

Theorem 5: Consider k ∈ N, such that k + 1 ∈ µ
(i.e., at time k + 1 an integrity enforcement block in the
policy µ starts). If ∆ek is a reachable state of the system
(A−KCA,K) under stealthy attacks and if the vectors
CA∆ek,CA∆ek+1, . . . ,CA∆ek+f−1 are bounded, then
the vector ∆ek+f is bounded for any stealthy attack.

Proof: Due to space constraints we omit the proof,
which is available in [16].

Using the previous theorem, we now prove Theorem 4.
Proof: [Proof of Theorem 4] Consider any time-point

tk + f such that tk ∈ µ – i.e., tk is the start of an integrity
enforcement block. Thus, atk = ... = atk+f−1 = 0. From
(8), we have ∆ztk+j = CA∆etk+j−1, and thus from (16)

‖CA∆etk+j−1‖2 ≤ 1, j = 0, ..., f − 1.

Now, from Theorem 5 it follows that the expected state es-
timation error ∆etk+f−1 has to be bounded for any stealthy
attack; this holds for all time points at the ends of integrity
enforcement intervals. Since in the proof of Theorem 5, we
have not used any specifics of the time points, there exists
a global bound on state estimation error at the end of all
integrity enforcement periods (as illustrated in Fig. 3).

Finally, consider an expected state estimation error vector
at any time j. From Definition 4, there exists ti ∈ µ such that
j ∈

[
t̂i, t̂i + L

)
, where t̂i = ti + f (Fig. 3). From (7), (8)

∆ej = Aj−t̂i∆et̂i −
j−t̂i∑
l=1

Aj−t̂i−lK∆zt̂i+l. (18)

Thus, the evolution of the expected state estimation error
vector between two time points with bounded values can be
described as evolution over a finite number of steps of a
dynamical system with bounded inputs (as ‖∆zt̂i+l‖2 ≤ 1);
from the triangle and Cauchy-Schwarz inequalities it follows

‖∆ej‖2 ≤ ‖A‖j−t̂i2 ‖∆et̂i‖2 +

j−t̂i∑
l=1

‖A‖j−t̂i−l2 ‖K‖2. (19)

Hence, the state estimation error vector ∆ej is bounded for
any j, and the system is not perfectly attackable.

Theorem 4 assumes that the attacker has the full knowl-
edge of the system’s integrity enforcement policy – i.e., at



which time-points integrity enforcements will occur. As
shown in Section VI, this allows the attacker to plan attacks
that maximize the error, while ensuring stealthiness of the
attack by reducing estimation errors to the levels that will
not trigger detection during integrity enforcement intervals.
However, if the attacker is not aware of the time points
in which integrity enforcements would occur, the integrity
enforcement requirements can be additionally relaxed. This
is caused by the fact that the attacker has to ensure that if at
any point he is unable to inject malicious data, the residue
would still remain below the triggering threshold from (16).

Theorem 6: Any LTI system from (1) with a global data
integrity policy (µ, 1, L) is not perfectly attackable for a
stealthy attacker that does not have the knowledge of µ.

Proof: Let us assume that the expected state estima-
tion error ∆ek can be unbounded, and denote by nk the
unbounded part of the vector, as in the proof of Theorem 5.
Note that the unbounded part of A∆ek (denoted as Ank in
the proof of Theorem 5), can not always belong to N (C), if
the attacker wants to introduce an unbounded expected state
estimation error. If it did, (i.e., if Ank ∈ N (C), for all k),
from (8) and (16) it would follow that ak is always bounded.
This would imply that the dynamics from (7) has bounded
inputs, which since the matrix (A−KCA) is stable (K is
the Kalman gain), would imply that ∆ek can not diverge –
the reachable set R can not be unbounded.

Thus, there exists k such that Ank /∈ N (C), which im-
plies that CA∆ek is unbounded and ‖CA∆ek‖2 > 1. Then,
if global data integrity is enforced at the time-step k + 1,
from (8) it would follow that ‖∆zk+1‖ = ‖CA∆ek‖2 > 1,
violating the stealthiness requirement from (16).

Theorems 4 and 5 consider a worst-case scenario without
any constraints or assumptions about the set of compromised
sensors K (e.g., that less than q sensors are compromised).
Yet, some knowledge about the set K may be available at
design-time. For instance, for MitM attacks some sensors
cannot be in set K, such as on-board sensors that do not use
a network to deliver information to the estimator, or sensors
with built-in continuous data authentication. In these cases,
the number of integrity enforcements can be reduced.

Corollary 1: Consider a system from (1) with a
global data integrity policy (µ, f, L), where f =
min

(
nullity(C) + 1, q∗un

)
and q∗un denotes the number of

distinct unstable eigenvalues λi of A for which the corre-
sponding eigenvector vi satisfies supp (Cvi) ∈ K. Then the
system is not perfectly attackable.

Proof: Again, we assume that the expected state esti-
mation error ∆ek can be unbounded, and denote by nk the
unbounded part, as in the proof of Theorem 5. Let α1, . . . , αn
be coefficients such that ∆ek = α1v1 + · · ·+ αnvn, where
v1, . . . ,vn are generalized eigenvectors of A, and nk =
α1v1+· · ·+αrvr. As shown in the proof of Theorem 6, Ank
can not always belong to N (C). Then, the proof directly
follows the proofs of Theorems 4 and 5, with the only
difference that all αi →∞ in nk also have to correspond to
the unstable eigenvectors vi satisfying that supp (Cvi) ∈ K;
otherwise, consider αi → ∞, from a decomposition of a

‘large’ ∆ek such that Ank /∈ N (C), and the corresponding
eigenvector vi where supp (Cvi) /∈ K. Then, from (8) the
components of the residue ∆zk+1 whose indices are in
supp (Cvi) but not in the set K cannot be influenced by
attack signal ak+1. Thus, their large values due to αi →∞
cannot be compensated for by the attack signal, and thus will
violate the stealthiness condition (16).

V. SAFE INTEGRITY ENFORCEMENT POLICIES

With sporadic integrity enforcements, a stealthy attacker
cannot introduce an unbounded state estimation error, irrele-
vant of the set K. However, we still need to provide methods
to evaluate if a specific integrity enforcement policy ensures
safe estimation errors, either for a specific set K or the worst
case K = S . While several metrics can be used to capture
safety requirements, we require that the norm of induced
estimation errors is always below a prespecified threshold ρ.

1) Evaluation of the State Estimation Error Regions:
There exist algorithms that approximate estimation error
regions (e.g., [10]), but with significant limitations due to
the level of overapproximation or the fact that they do not
support analysis with integrity enforcement in addition to
the stealthiness constraints. Thus, we developed a method to
estimate reachable regions in our case.

As ‖∆zk‖∞ ≤ ‖∆zk‖2 ≤ ‖∆zk‖P−1 |λmax| ≤ α|λmax|,
the k-reachable regions can be overapproximated by cap-
turing the stealthiness constraint as ‖∆zk‖∞ ≤ α|λmax|.
Due to linearity of the constraints, we set the constraint to
be ‖∆zk‖∞ ≤ 1, and multiply obtained values by α|λmax|
after. Thus, the system and attacker have to satisfy

∆ek = −
[

(A−KCA)k−1K ... K
]

︸ ︷︷ ︸
Mk

a1..k

∆zk =
[
−CAMk−1 I

]︸ ︷︷ ︸
Nk

a1..k

|∆zj,i| ≤ 1, i ∈ {1, . . . , p}, j ∈ {1, . . . , k},

(20)

where a1..k = [(a1)T ... (ak)T ]T . This can be summarized as
In+pk

MkP
†
Q

−N1P
†
K 0p×(k−1)q

. . .

−NkP
†
Q

02pk×n
Ikp
−Ikp

02pk×kq


︸ ︷︷ ︸

(Ωk)(n+3pk)×(n+pk+kq)



∆ek
∆z1
. . .

∆zk
PKa1

. . .
PKak


︸ ︷︷ ︸

rrez
k

≥
[

0n+pk

−12pk

]
︸ ︷︷ ︸

bk

(21)
Here, PK ∈ R|K|×p is the projection matrix that keeps only
elements from the set K, and PQ is block-diagonal with k
matrices PK on the diagonal.

Let us introduce a k-reachable region R̃k as in (15) with
one difference - instead of the ‖∆zk‖P−1 ≤ α requirement,
we impose that ‖∆zk‖∞ ≤ α|λmax|. In addition, we intro-
duce R̃ = ∪∞k=0R̃k. Since, ‖∆zk‖P−1 ≤ α ⇒ ‖∆zk‖∞ ≤
α|λmax| it follows that R̂ ⊆ R̃, and we use R̃ to bound R̂.

From (21), R̃k is a polyhedron in Rn. Note that the
maximal value of ‖∆ek‖2 over a polyhedron can be obtained
in a vertex of the polyhedron [17]. The vertices of R̃k satisfy
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Fig. 4. 4-step reachable regions for 2-norm and ∞-norm.

that kq constraints from (20) are active. This means that all
equalities and kq inequalities from (20) are active rows in
(21). We define matrix Ωact

k that contains all active rows of
Ωk from (21). Let {(Ωact

k )1, ..., (Ωact
k )full} be the set of all

such Ωact
k with the full rank. Then, if (bactk )i, 1 ≤ i ≤ full

represent the corresponding values from bk, we define
(rrezk )i = ((Ωact

k )i)†(bactk )i (22)
where ((Ωact

k )i)† denotes the pseudoinverse matrix of
(Ωact

k )i. Thus, the set of vertices of R̃k can be expressed
as {(rrezk )i : (i ∈ {1, 2, ..., full}) ∧ ((rrezk )i satisfies (21))}.
Finally, to determine the vertices of R̃k in case when
integrity is enforced at time points H ⊆ {1, . . . , k}, we add
aj = 0, ∀j ∈ H to the system (20), and repeat the process.

The above procedure provides an estimate of the maximal
estimation error in each step k. On one hand, the computation
time grows exponentially with k and calculations for higher
numbers of steps could become unfeasible. On the other
hand, since we evaluate reachable state estimation errors
to provide guidance on the effects and design of integrity
enforcement policies, we did not face limitations caused by
the computation times for analyzed systems; even after first
integrity enforcements we would observe that new R̃k ⊂
∪k−1i=0 R̃i, which was exploited to reduce problem size.

In addition to the case study presented in Section VI, we
evaluated the proposed reachable region estimation method
on a simple vehicle model from [10], and analyzed the
level of over-approximation due to the use of ∞-norm. For
example, as shown in Fig. 4, the 4-step reachable region
obtained by our method is a very good approximation of the
actual reachability region. Similar results were obtained for
other reachable regions. We also compared our method to
the algorithm from [10] that recursively over- and under-
approximates the estimation error with outer and inner
ellipsoids. Although the method from [10] requires lower
computation time, it does not directly allow for capturing the
effects of integrity enforcement. It may also make arbitrarily
large over-approximation for the outer ellipsoids, depending
on the shape of the actual region. For example, using 4-step
outer ellipsoidal region estimations presented in [10] would
approximately double the required frequency of integrity
enforcements compared to the one obtained by our method.

2) Determining safe integrity enforcement policies: Pa-
rameters of a safe integrity enforcement policy (µ, f, L) are
obtained as follows. Value of f is chosen directly from (17).
We determine elements of µ in iterative manner. First, we
determine t1 ∈ µ as the maximal time such that the first
integrity enforcement at t1 causes the attacker to reduce

estimation error before ‖∆ek‖2 reaches ρ.4 We similarly
obtain t2 ∈ µ, but starting from Rt1 as the initial region.
Note that we do not search through all possible t2 − t1; we
rather evaluate candidates obtained as the minimal time an
overapproximationsimilar to (19) needs to reach the safety
threshold and return to the initial region. When this method
was repeated, we observed that the time between starts of
consecutive blocks would quickly settle and the policy would
effectively move to periodic enforcement blocks.

Two caveats are in order. First, while this procedure is
computationally heavy, it is performed at design-time (as
opposed to runtime). Also, while the proposed policy would
ensure system safety even in the presence of attack, providing
optimal policies (e.g., that minimize average frequency of
integrity enforcements) is an avenue for future work.

VI. CASE STUDIES
We illustrate the use of sporadic data integrity enforce-

ments on vehicle trajectory tracking, based on a model
from [18]. The two-axis model is decoupled into separate
one-axis models. After discretizing the system with sampling
period Ts = 0.01 s, we obtain state-space system matrices

Ad =

[
1 0.01
0 1

]
Bd =

[
0.0001
0.01

]
, (23)

with Kalman gain K =
[
0.6180 0.0011
0.0011 0.6180

]
. We assume that the

system is equipped with position and speed sensors, and
consider the case where the attacker modifies values sent
from both sensors. The system is perfectly attackable since
the matrix Ad is unstable and supp(Cv) ∈ K.

We set the largest safe estimation error on position and
speed as 0.025 m and 0.025 m

s respectively, resulting in
‖∆emax‖2 = 0.0354. Furthermore, we use α ≤ 0.013 as
the attacker’s constraint from Theorem 1. Since the system
has a double-eigenvalue in 1, a stealthy attacker can force
the state estimation error to increase linearly, crossing this
threshold after three steps if no integrity enforcements are
used. We studied several integrity enforcements policies –
for all these policies f = 1. Specifically, we started with
three global integrity enforcement policies that are periodic
with periods T = 3, 5 and 6.

Using our framework from Section V, we show that the
first two policies are safe and the third with period T = 6
could violate safety constraints, as illustrated in Fig. 6. Also,
we generated a safe integrity enforcement policy µ4 with
t1 = 6, followed by t2 = 5 = t3 = ...; Fig. 6 presents the
state estimation error with this policy for a stealthy attack
that also considers integrity enforcement times (referred to as
Epoch Attack). Even when enforcing integrity on less than
20% of messages, we obtain low estimation errors in the
presence of attacks on all sensors.

Finally, we show these effects on a simulation of a vehicle
moving in a circular path of 100 m radius, at the speed
of 3.14 m

s , and under attack from 100 s. Behavior of the

4The attacker may breach the threshold but would not be able to remain
stealthy. To also ensure that the stealthiness constraint is violated before the
bound is breached, a lower threshold should be used to generate the policy.
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Fig. 5. State estimation of the vehicle trajectory, the attack starts at 100 s - without integrity enforcements a stealthy attacker can introduce a significant
estimation error in a short period of time. Yet, even with the sporadic integrity enforcement in less than 20% of steps, the attack effects are negligible.
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Fig. 6. Maximal estimation error for Epoch Attacks (EA) with four integrity
enforcement policies (all with f = 1) – three periodic with periods T =
3, 5, 6, and one obtained by the framework from Sec. V with t1 = 6 and
t2 = 5 = t3 = .... All policies are safe, except the periodic with T = 6.

system under a stealthy attack without integrity enforcement
is shown in Fig. 5(a). When a periodic integrity enforcement
policy with T = 4 is used, state estimates are shown in
Fig. 5(b), with a close-up portion presented in Fig. 5(c).

VII. CONCLUSION

We have considered the problem of network-based data-
injection attacks on Kalman filter-based estimators, where
the attacker can compromise sensor measurements sent from
a subset of system sensors to the estimator (e.g., Man-in-the-
Middle attacks). For these scenarios existing results impose
very strict requirements to ensure limited control degrada-
tion. Thus, we have studied the effects of sporadic integrity
enforcement policies, such as message authentication, on
control performance in the presence of stealthy attacks. We
have shown that even a sporadic enforcement of sensor data
integrity significantly limits a stealthy attacker’s capabilities
– the attacker will not be able to introduce unbounded
state estimation errors. We have also presented a design-
time framework to derive integrity enforcement policies that
ensure safe estimation errors. Finally, we have illustrated
that even with very low utilization of integrity enforcement
mechanisms, we can ensure satisfiable control performance,
enabling resilient control implementation even on resource-
constrained platforms shared by several control loops.
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