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In this work, we focus on securing cyber-physical systems (CPS) in the presence of network-based attacks, such
as Man-in-the-Middle (MitM) attacks, where a stealthy attacker is able to compromise communication between
system sensors and controllers. Standard methods for this type of attacks rely on the use of cryptographic
mechanisms, such as Message Authentication Codes (MACs) to ensure data integrity. However, this approach
incurs significant computation overhead, limiting its use in resource constrained systems. Consequently, we
consider the problem of scheduling multiple control tasks on a shared processor while providing a suitable
level of security guarantees. Specifically, by security guarantees we refer to control performance, i.e., Quality-
of-Control (QoC), in the presence of attacks. We start by mapping requirements for QoC under attack into
constraints for security-aware control tasks that, besides standard control operations, intermittently perform
data authentication. This allows for the analysis of the impact that security-related computation overhead
has on both schedulability of control tasks and QoC. Building on this analysis, we introduce a mixed-integer
linear programming-based technique to obtain a schedulable task set with predefined QoC requirements.
Also, to facilitate optimal resource allocation, we provide a method to analyze interplay between available
computational resources and the overall QoC under attack, and show how to obtain a schedulable task set
that maximizes the overall QoC guarantees. Finally, we prove usability of our approach on a case study with
multiple automotive control components.
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1 INTRODUCTION

Security of embedded control systems and, recently, cyber-physical systems (CPS) has usually been
an afterthought. Yet, with the increase in network connectivity and system design complexity these
systems have become more susceptible to various types of attacks. This was illustrated in several
high-profile incidents including the Stuxnet [12] and automotive (e.g., [11, 13]) attacks. In many
cases, such as in automotive industry, these systems rely on perimeter security where internal
networks and ECUs are resource constrained, mostly depending on security of the gateway and
external communication channels. Yet, when attackers circumvent classical perimeter security
barriers, they can have a significant effect on systems’ operation [11, 13]. Also, some of the internal
system components may be tampered with, allowing the attacker direct access to the internal
network [11]. These network-based attacks present a major threat because they enable a remote
attacker to modify safety-critical messages (e.g., sensor measurements and actuator commands as
in [11, 12]) communicated over the low-level network.

In this work, we focus on securing CPS in the presence of network-based attacks, such as Man-
in-the-Middle (MitM) attacks, where the attacker is able to compromise all or some of the links
between the sensors/actuators and controllers; thus, the information delivered to and from the
controller may differ from the actual sensor measurements and actuator commands. In addition,
as most of these systems are safety-critical, with predefined procedures in case when a fault or
intrusion is detected, we consider stealthy attacks where the attacker wants to remain undetected
until his objective is achieved. As recently shown for a large number of systems, by changing
messages from a subset of sensors, a stealthy attacker can force the plant into any (potentially)
unsafe state through the actions of the controller [18, 24]. Even for systems for which the set
of states where the attacker could force the system is bounded, the attacker could easily move
the plant far from the desired reference point; that way, he would significantly degrade control
performance and even endanger system safety while remaining stealthy [27, 28].

These results introduce very conservative constraints on the number of sensors that if compro-
mised could cause unsafe system operation or at least significant control degradation. They are
also obtained on the assumption that once the communication channel between a sensor and the
controller is compromised, the attacker can inject attack signals in all measurements obtained from
the sensor. On one hand, some of these network-based attacks can be avoided by ensuring data
integrity and authentication with the use of standard cryptographic tools, such as adding message
authentication codes (MACs) to communicated measurements. On the other hand, authenticat-
ing all measurements from a suitable number of sensors (e.g., based on the design frameworks
from [21, 33]), incurs a significant computational overhead, making it unsuitable for these usually
resource-constrained systems. For instance, computing only a scalar PID controller update takes
an order of magnitude less time than computation of a 32-bit MAC — e.g., 12 ps for PID update on
96MHz 32-bit Cortex-M3, and ~100 us for the MAC computation. Thus, this common approach to
‘adding security’ into existing and new CPS could prevent schedulability of a number of control
tasks that always have to inspect integrity of the incoming data.

Consequently, in this work we consider the problem of scheduling multiple control tasks on a
shared processor, while providing a suitable level of security guarantees in the presence of attacks
on sensor data delivered to the controllers. Specifically, by security guarantees we refer to control
performance, i.e., Quality-of-Control (QoC), in the presence of attacks. While our results can be
extended for scenarios where actuator commands can also be compromised, in this paper we
focus on defense against false-data injection attacks into sensor measurements only; this is caused
by the fact that attacks on commands sent to actuators cannot in general remain stealthy while
significantly degrading system performance [18].
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We exploit recent results showing that attacker’s impact can be significantly limited even when
sensor data integrity is only intermittently enforced, for instance by occasionally adding MACs
to transmitted sensor measurements [15, 16]. Thus, we start by mapping requirements for QoC
in the presence of attacks for each control loop, into constraints for security-aware control tasks;
these tasks, in addition to the standard control-related operation, intermittently perform data
authentication as part of the controller’s execution. This, in turn, enables us to analyze the impact
of security-related computation overhead on both schedulability of control tasks and QoC in the
presence of attacks.

To achieve this, we transform the problem of scheduling of security-aware control tasks into
scheduling of specific multiframe tasks (relaxation of the model presented in [4, 25]). We then
introduce a technique to perform schedulability analysis for the task model and show how synthesis
of such feasible control task set can be formulated as a mixed-integer linear programming (MILP)
problem. In addition, to facilitate optimal allocation of system resources we provide a method to
analyze interplay between available computational resources and the overall QoC under attack
(i-e., for all control loops). For underutilized systems where the CPU has additional available
computation time, we show how QoC under attack can be improved by increasing the integrity
enforcement rate for control tasks that maximize the overall QoC. Similarly, if adding new tasks
would result in an overutilized (i.e., unschedulable) system, the presented method can be used
to optimally reduce the overall QoC under attack, while ensuring task schedulability. Finally, we
illustrate the applicability of the proposed techniques both on generic test-cases as well as a realistic
automotive case-study.

This paper is organized as follows. In Section 2, we define the problem considered in this work.
In Section 3, we present a framework to evaluate QoC in systems with intermittent integrity
enforcements. Furthermore, in Section 4 we present our approach to modeling security-aware tasks
in these systems, followed by methods for schedule synthesis with predefined QoC requirements
(Section 5). Section 6 introduces a technique for synthesis of feasible schedules that maximize QoC
guarantees in the presence of attacks. Finally, in Section 7, we evaluate our approach on generic
workloads as well as a realistic case study, before providing an overview of related work (Section 8)
and concluding remarks (Section 9).

2 MOTIVATION AND PROBLEM STATEMENT

Consider the problem of controlling N discrete-time control systems ¥;, i = 1, ..., N, of the form

x;[k + 1] = Ayx;[k] + By, [k] + w;[k]
yilk] = Cix;[k] + v;[k]

where x;[k] € R", u;[k] € R™, and y;[k] € R? denote state, input and output vectors of the
ih plant at time k, respectively. Also, w; € R" and v; € R? denote the process and measure-
ment noise, distributed as independent identically distributed Gaussian random variables, with
covariances Q; and R;, respectively. Since each of the discrete-time plant models is obtained by
discretizing the corresponding continuous plant with the sampling time T, we denote the plants
as 2;(A;,Bi, Ci, Qi, Ry, T, ).

Each system 2; is to be controlled by a feedback controller in the general form (e.g., capturing
observer-based state feedback)

%ilk + 1] = f; (%:[k], y7*' [K])
wi[k] = g (%[k], y?*'[K]) ,
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Fig. 1. System architecture for each control-loop. Fig. 2. General controller design.
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where f;(-) and g;(-) denote any linear mappings, X;[k] is the state of the controller (e.g., estimated
plant state) and y¢’[k] denotes sensor measurements received by the controller in step k over a
communication channel/network, as shown in Fig. 1. In general, the controller can be designed
using various techniques to ensure, for example, system stability or optimal performance. Finally,
each controller is executed as a periodic task T¢*" l(cl.” "l pi,d;) on a shared processor, with periods
pi = Ty, and worst-case execution time (WCET) c{* "L to simplify our notation we assume that each
task’s deadline d; = p; and denote the tasks as Tf”l(cf”l,pi).

Without attacks on communication between sensors and the controller, it follows that y?¢*[k] =
y;i[k]. However, with MitM attacks, the controller receives values that could potentially differ
from the actual sensor measurements, which would cause control performance degradation and
potentially unsafe control. To differentiate between system evolution with and without attacks, we
add superscript a to the variables affected by the attacker’s influence. For instance, the plant’s state
and outputs in the presence of attacks are denoted as x{[k] and y{[k], respectively. Now, attacks

on sensor measurements delivered to the controller can be modeled as

yretalk] = yo[k] + a;[k] = Cx%[k] + v4[k] + a; [k],

1

where a;[k] represents a sparse vector of values injected by the attacker. Sparsity of the vector
depends on the set of compromised sensor flows — if communication from a sensor to the controller
is not corrupted then the corresponding value in a;[k] has to be zero, for all k. This allows us
to capture any assumptions about the set of compromised sensor flows (e.g., the number of the
flows). However, to simplify our presentation, unless otherwise stated in this paper we present
the worst-case scenario, where the attacker can compromise all sensor flows — i.e., measurements
from all sensors.

Furthermore, in this work, we assume that the attacker can inject any false measurements to
be received by the controller (i.e., a;[k] can have any value), except at times when data integrity
is enforced with the use of standard cryptographic mechanisms (e.g., MACs). Our assumption is
that the attacker does not posses shared secret keys used to generate the MACs and thus cannot
corrupt those packets,! meaning that at these times a;[k] = 0. We also assume that the attacker
has full knowledge of the system, system dynamics and architecture, which would allow him to
manipulate the controller to force the system into a desired state, by carefully changing delivered
sensor measurements. In addition, the attacker knows the times when the MACs are to be used,
and can use the knowledge to plan ahead. Finally, the attacker’s goals are: (1) to maximally reduce
control performance (i.e., QoC) by manipulating the system into a state that differs from the
desired reference point/trajectory, and (2) to remain stealthy — i.e., undetected by the system;
hence, in addition to not inserting false data packets in time-frames when MACs are checked, the

!In this case, the attacker could potentially prevent these messages from being delivered. However, since Denial-of-Service
attacks are easier to detect in these systems that utilize low-level networks with reliable communication protocols, in this
work we do not consider such attacks.
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Fig. 3. Scheduling two security-aware control tasks — otherwise infeasible task set {Tf”l((z, 4), Tzc”l/(?), 4)}
becomes schedulable if authentication computations are required in every other period.

falsified sensor measurements should not trigger alarm in the controller’s Intrusion Detection
System (IDS).

Note that the common practice of enforcing integrity of all communication packets could become
infeasible due to additional computation costs. For instance, consider two control tasks Tlct r l(l, 4)
and Ty trl (2,4) which can be scheduled on a shared CPU. If for each task, authentication of received
sensor measurements required to update the controller, results in an increase of the execution
time by 1 time unit in every period, the equivalent tasks set with T*" (2,4) and Tzc”l/(?;, 4)
becomes infeasible. On the other hand, as recently shown in [15, 16], even intermittent data
integrity enforcement can significantly limit the attackers impact on the system. Therefore, from
the perspective of QoC under attack, it may be enough for each of the considered systems to
guarantee data integrity for every other control task execution, which would result in a schedulable
task set, with a schedule illustrated in Fig. 3.

Consequently, in this paper we focus on tradeoffs between the QoC in the presence of attacks and
integrity enforcement overhead for security-aware control tasks, in systems with hard real-time
tasks. Specifically, we address the following problems:

e In order to facilitate security-aware scheduling that considers computation overhead due to
integrity enforcements, how can we map requirements for QoC in the presence of attacks
into constraints for security-aware control tasks?

o How to schedule security-aware control tasks, while ensuring the desired control performance
for each of the control loops even in the presence of attacks?

e s it possible to allocate available resources (i.e., computation time) to each security-aware
control task such that the overall (i.e., for all tasks) security guarantees, in terms of control
performance under attacks, are maximized?

We start with the recently introduced framework for security-aware control with intermittent
data-integrity enforcements.

3 RELAXING INTEGRITY REQUIREMENTS FOR SECURE CONTROL

Common controller architecture, illustrated in Fig. 2, contains a state estimator, feedback controller
and, if security is a concern, an IDS. The IDS exploits physical properties of the system (i.e., model of
the plant ¥; and controller (f;, g;)) to raise alarm in the case of attack. Depending on the considered
control architecture and noise model, some controllers employ security-aware estimators (e.g., [28])
and set-based IDSs, or standard Kalman filter-based estimators with statistical IDSs (e.g., the y?
detector as in [16, 18, 24] or the Sequential Probability Ratio Test (SPRT) detectors as in [15]).

On one hand, by compromising a sufficient number of sensor flows,? an intelligent stealthy
attacker can use shortcomings of such detectors and system dynamics to force the system away
from the desired reference point and significantly reduce control performance. This is achieved by
introducing a state estimation error that deceives the controller into applying unsuitable actuation

2The exact number depends on the utilized control architecture and noise model. More details can be found in [18, 28] and
references therein.
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Fig. 4. Design-time framework to evaluate effects of integrity enforcement policies on QoC guarantees in the
presence of attacks.

inputs. On the other hand, for each of these IDSs, a stealthy attacker cannot immediately insert
any error in the state estimation; to avoid detection, the attacker rather has to craft attack signals
that slowly increase estimation error. Furthermore, no actuation inputs would immediately move
the system from the desired operating point due to intrinsic inertia present in all systems (which
is effectively captured by the plant model X;). Thus, some time has to pass after the attack starts
before it significantly reduces QoC; the actual time depends on physics of the system and the
compromised sensor flows.

As recently shown in [15, 16] the system (i.e., plant dynamics ¥; and employed IDS) and attack
models can be used to compute tight regions R[k] capturing evolution in time of the state estimation
error due to any stealthy attack. Formally, the reachable region R[k] of the state estimation error
under attack (i.e., e?[k]) is defined as

RIK] = { comn | e <E[[KIIE[[KI]T + yCou(ef), }

e’[k] = ef(a1. k), a1k € Ak

where a;_x = [a[1]T...a[k]T]T, Ay is the set of all stealthy attacks, and e{(a; . «) is the estimation
error evolution due to the attack a;_. Furthermore, the global reachable region R of the state
estimation error e“[k] is the set R = |} R[k]. Note that here, the attack model from Section 2 can
be extended with additional available information, such as the bound on the number of compromised
sensor flows; if no such information is given, it is assumed that measurements from all sensors can
be compromised. Furthermore, these techniques allow us to capture effects of data points in which
data integrity is enforced, specified by the integrity enforcement policy y, which can be formally
defined as follows.

Definition 3.1. Intermittent data integrity enforcement policy (y, 1), where p = {t;};_,, with
ti—1 <ty forall k > 0 and [ = sup., tx — k-1, ensures that a; =0, forall k > 0.

Note that the definition of intermittent integrity enforcement policies imposes a maximum time
between integrity enforcements; this is the main difference compared to the standard sporadic
tasks from the real-time systems literature (e.g., [8]) that can arrive at arbitrary points in time but
with predefined minimum inter-arrival times. The definition also captures periodic enforcements
when [ = t; — t;_; for all k > 0, and continuous integrity enforcements (with [ = 1). Since our goal
is to reduce the computation overhead associated with integrity enforcement, in this work we will
focus on policies where enforcements are maximally spread apart, i.e., for which [ = t — t;_; for
allk > 0.

We argue that the evolution of state-estimation error due to attack can be used as a performance
metric for QoC in the presence of attacks. This is caused by the fact that increase in the state
estimation error would, through the actions of state-feedback controller, result in QoC degradation.
Consequently, we obtain a design-time reachability-based framework, presented in Fig. 4. Since the
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Fig. 5. Evolution of the state estimation error regions R[k] due to attacks, with and without data integrity
enforcement at k = 4.

system and attack models are fixed for a control-loop under consideration, the presented framework
allows for capturing the impact of the integrity enforcement parameter [ on the attack-induced
state estimation error (and thus QoC), through . (I) functions defined as

J (1) = supp{llell> | e € R"}, where R' = U R'[K].

Here, R![k] denotes R[k] computed for all integrity policies with parameter . Functions J;(l) for
three automotive closed-loop systems are presented in Fig. 9. Thus, by facilitating computation
of J;(I) functions, the presented framework provides foundation to analyze tradeoffs between
QoC guarantees in the presence of attacks and required computation resources used for data
authentication. Also, QoC requirements for plant X;, such as a bound on J;(I), can be mapped into
requirements for /; — i.e., the number of controller invocations between consecutive data integrity
enforcements.

To illustrate the effects of integrity enforcement, in Fig. 5, we show R[k] for a two-state vehicle
model from [24], with compromised position sensor and valid velocity sensor. As can be seen,
without integrity enforcements the attacker is increasing the state estimation error in each step.
However, if we enforce integrity on sensor data at time k = 4, the estimation error significantly
reduces (but does not have to go to zero).

4 MODELING OF SECURITY-AWARE CONTROL TASKS

Consider our example of two control tasks T/*" 1(1,4) and ;! rl(2,4), and let us assume that to
satisfy requirements for QoC under attack, /; = I = 3 has to hold for both tasks. This results in
every third task invocation, referred to as peak, having extended execution time by 1 time unit (as
shown in Fig. 6(a), (b)). Standard real-time task model T;(c;, p;, d;), where c; is the WCET, could be
used to capture these security-aware tasks. However, the effective resource utilization would be
low, since the WCET of these tasks varies greatly among individual jobs. In [25] and subsequently
in [4], the multiframe task model was introduced and generalized. While this model allows us to
capture tasks with different execution times for different task activations, it is overly general for
our current discussion, and pessimistic in the sense of task start times. Due to restrictions in the
task model regarding references to any absolute time scale (in this case to the zeroth instant where
the schedule begins), adding start times of jobs to the multiframe task model is non-trivial as it
violates the fundamental task independence assumption [4]. Thus, a slightly modified approach
is needed, where task execution times are allowed to differ over individual invocations given a
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Fig. 6. Two task scheduling example: (a) and (b) show processor demand for Ty and T, respectively; the task
set is unschedulable if tasks were synchronous (total processor demand in the first period/frame of 4 time
units is 5). However, if peak frames are asynchronous, task set is schedulable with the Earliest Deadline First
(EDF) scheduler for s; = 0, s = 1 as shown in (c).

limited pattern, but also the start time of the first peak frame® needs to be a controlled variable, to
allow a degree of freedom during scheduling. Fig. 6(c) shows a feasible task schedule under Earliest
Deadline First (EDF) scheduler when start frames s; and s, of jobs with peak execution times (peak
frames) are adjusted.

Thus, we modify the multiframe task model so that the array of execution times supports exactly
two parameters. The first one equals the WCET of a normal control frame (i.e., initial control task).
The other is the WCET of an extended (peak) frame. Finally, we allow specification of the start time
of the first peak job. Consequently, we model security-aware control tasks as a set 7 = {T3, ..., Tn'},
where each task T;, 1 < i < N is a two-frame asynchronous task defined as a 4-tuple T;(Cy, pi, I;, si)
such that

e C; = [cf” L cf eak] contains the WCET of two frame types, normal control and peak, charac-
terizing task workload with and without MAC computation, respectively,

e p; is the frame period — i.e., time between consecutive task activations,

e [; captures inter-peak frame distance — i.e., every I; consecutive frames contain exactly one
peak frame,

e s; is the peak frame offset that satisfies 0 < s; < [; — 1, i.e,, the start time of the first peak
frame is s;p;.

In this task definition, we assume that deadlines of all normal and peak frames are equal to p;, and
are therefore omitted from the notation to simplify our presentation.* However, the approach used
in this work can be easily extended to cover the general case when individual job deadlines differ
from the corresponding task’s period, and there could exist job activation offsets within each period
(i.e., frame). This general case allows for direct capturing of effects such as worst-case network
delay and jitter.

Now, for each task Ti([cf”l,cfeak],pi, l;,s;) and the task set 7, we define the task (U;) and
task-set (Us) utilizations, respectively, as

eak
Cgtrl C{J _ C;‘trl

N
U=-"‘—+ s Ur = U;.
i pi lipi T ; i

3We will refer to task invocations (or jobs) as frames, similarly as proposed in [4, 25].
4Note that the two-frame task with peak frame offset provides the same modeling expressiveness as the composition of two
standard tasks one of which has offset s;p; and period /;p;, as long as precedence constraints are established among them.
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This definition allows us to obtain a schedulability condition that can be simply verified; the lemma’s
proof directly follows from [25].

LEMMA 4.1. The task set T is not schedulable under any scheduling policy if Uy > 1.

Recall our example task set consisting of two tasks (see Fig. 6). These tasks can now be specified
as: T1([1, 2], 4, 3, s1), Tz([2, 3], 4, 3, s2). Although Ug = 0.92, this task set is not schedulable under
EDF for some values of start times s;. However, for example, for s; = 0 and s, = 1, EDF can schedule
the tasks as illustrated in Fig. 6(c). Thus, the presented task set 7~ is incomplete, in the sense that
peak frame offsets sy, ..., sy are not specified. Given such an incomplete task set, first and foremost
we are interested in determining a set of peak frame offsets that makes this task set schedulable
under EDF, if that is at all possible; we consider EDF as it is known to be optimal non-idle scheduler.
Secondly, we wish to maximize utilization of available resources for feasible task sets, i.e., maximize
the overall QoC under attack while ensuring that the task set is still schedulable. As described
in Section 3, since for each control loop i, degradation of QoC in the presence of attacks can be
captured as a function of the times between consecutive integrity enforcements [; (i.e., J;(l;)), we
specify the overall QoC degradation as Zf\il ;9:(l;) for some positive weights w;, i = 1,..., N,
which are used to ‘emphasize’ QoC for some tasks compared to others.

Therefore, we can formally define the two problems as follows:

PROBLEM 1. For a task set T withl, ..., IN capturing prespecified QoC requirements, find feasible
peak frame offsets sy, ..., sy such that the obtained task set 7 is schedulable under EDF.

PROBLEM 2. For a task set 7 and a set of associated cost functions J;(l;), i = 1,..., N, find peak
frames’ offset values s1, ..., sy and optimal peak frame periods Iy, ..., Iy such that the resulting task
set T is schedulable under EDF and objective 2511 ©; Ji(l;) is minimized.

5 SCHEDULING WITH QOC REQUIREMENTS

In this section, we provide a method to find a set of feasible peak frame offsets sy, ..., sy based on
the processor demand criterion [5, 8].

Definition 5.1. [5] The demand function df; of a standard task T; on an interval [#1, t;] is

dfit)= Y e (1)

aj j=t, di’jStz

where ¢; is the WCET of the it? task, while a; j represents time of the jth job arrival, and d; ; its
respective deadline.

In other words, the demand function is equal to the sum of processor demand for all jobs of
the task that have both their activation time and deadline in the time period [t;, t;]. Intuitively,
it quantifies the amount of work the processor will be presented with during the interval [, £;].
For example, the demand function df; (0, t) for task T; from our running example, with s; = 0, is
shown in Fig. 7.

The following theorem formulates the necessary and sufficient condition for feasibility of asyn-
chronous task set.

THEOREM 5.2. [5] A task set T is schedulable by EDF if and only if 3.; dfi(t1, t2) < ty — t1, for all
t1, ty such thatt; < t.

Note that the condition from the above theorem can be significantly simplified for synchronous
tasks (for which start times of all tasks are fixed to the zeroth instant) with a feasibility test based
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Fig. 7. Demand function example: (a) Graphical representation of a two-frame task Ty ([1, 2], 4, 3, 0), and (b) a
demand function d f1 (0, t) for task Ty, as defined in (1) for varying t and start (¢1) at 0.

on the demand bound function dbf;(t) = max, dfi(t',t' +t) = dfi(0,t),Vt’ > 0. However, this
does not apply for our task model due to the asynchronicity involved in the peak frame start time.

Given the piecewise constant nature of the demand function and task periodicity, the schedulabil-
ity condition from Theorem 5.2 has to be evaluated only in a finite number of points corresponding
to task arrivals and deadlines [8]. We will refer to this set of time instants as the time-testing set.
Given that absolute deadlines of jobs in our task set are always exactly p; away from their activation,
the time-testing set can be obtained as

N
TS=U{t|t=kpi/\tsPH/\kEN0},

i=1
where Py = lem{ly - p1, 15 - p2, ..., IN - pN'} is the hyperperiod of the schedule and Icm(.) is the least
common multiple. For our running example (see Fig. 6(c) for schedule), hyperperiod and the time
testing set are Py = 12, TS = {0, 4, 8, 12}. It is worth noting that we only have to check up to Py
since our start times are constrained — i.e., absolute start time of the peak frame may not exceed
s;p;. Otherwise, for general start times, the result from [20] applies — the time bound up to which
the processor demand test should be conducted is max; ¢; + 2Py, where ¢; are absolute task start
times.

To devise the analytical expression for the demand function, we obtain the number of normal

control and peak jobs of our task activated and required to complete in an interval [, fx,] as

I];&p(tkl, t,) = max {0, iuJ — max {0, itﬁi} + 1} .
pi pi

Similarly, it can be calculated that the number of peak jobs contributing to the demand during the
same interval is

t, — (si + 1)p; Lk, — Sipi
ngeak(tkl’ tk,) = max {O, {MJ — max {0’ iﬂ}} + 1} .
! Lip; Lipi

Therefore, the processor demand function over [k, , t,] can be compactly captured as
] c& k
dfi(tys te,) = o0y 7 (b 1) + Dean] " (1, 1),

where Ac; = (cf’ cak —cstr 1Y, Finally, for a task set 7~ it follows from Theorem 5.2 and the discreteness
of the time testing set TS that a necessary and sufficient feasibility test can be formulated as

N

Zdﬁ(tkl,tkz) < iy = ey Vi te, € TS, ti, < b, )
i=1
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In the following subsection we analyze the transformation of the demand function to a set of
linear constraints, which will provide basis for our MILP-based scheduling with QoC requirements.

5.1 Mixed Integer Linear Programming Formulation for Schedule Synthesis

In Problem 1, our goal is to derive feasible peak frame offsets for all tasks in the task set such that
none of the deadlines are missed when the EDF scheduler is used. Note that at every instant from
the time testing set TS, the demand function df; is a function of the start time s; since all other
values are specified. Hence, the problem of testing feasibility of a task set under dynamic-priority
scheduling policies can be directly mapped into an MILP as follows.

Let ai be binary variables indicating that by the k™ instant from the time testing set, the j-th

peak frame of task T; has been scheduled to complete execution, where 1 < i < N,1<j < lp
2 < k < |TS|; note that here k > 2, since it must hold that a . = 0, and thus it is not necessary
to have a set of variables at the first point of time-testing set (1 e., for k = 1). The dependency of

variables a. ;to the task parameters can be formally captured as

ak’j =1t > (si+)pi+ (- Dip;. (3)
For instance, for the schedule shown in Fig. 6(c), corresponding variables are a2 =1 a3 =Lla}, =
1 for T and a% =0, a§ =1 a}l , = 1for task Ty, given that peak frame offsets were chosen as s; = 0,
ea Ell ;;;Il i i
s; = 1. Hence, from the definition of ryp (tk,, tk,) it follows that ryp (tr,» thy) = Z (a;<Z i a;q j).
=\ ) .

This implies that for any #;, and ty, (tx, > ti,) from the time-testing set TS, the demand function
for task T; can be expressed as a function of only binary variables a;C ;in the form
P
Lipi
_ctrl c&p i i
dfilte,, te,) =ei s P (b, 1) + Aci D (ah, -t ) - (4)
=1
Consequently, there exist feasible peak frame offsets sy, ..., sn, such that task set 7 is schedulable
with EDF, if and only if the following set of mixed-integer linear constraints has a feasible solution

N
D dfilthth) <ty =ty Vi, € TS 5)
i=1
(si+ Dpi + (= DIipi <t + M(1 - ay ) (6)
(Si + 1)pl + (_] - 1)llpl >t — Ma;;’j (7)
OSSiSli—l. (8)
Here, df; is defined as in (4), the variable indices satisfy
P
1<i <N, 1<J_l;’ 2 <k <|TS|,

and M is a large constant. Constraints (6) and (7) capture the logical condition specified in (3) using
the standard “Big M” method to capture indicator constraints [6].

REMARK 1. Most available MILP solvers require the set of constraints to be specified as non-strict
inequalities (i.e., in the form Ax < b). Thus, we can express constraint (7) as a non-strict inequality by
adding a small ¢ > 0 to every ty — i.e, as

(i + Dpi + (= Vlip; =ty — Ma;c,j +e )
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Yet, M and € have to be carefully chosen to avoid potential errors due to finite precision implementations
of MILP solvers. Consider that (9) expresses peak frame timing conditions when a; ;=0 Thus, M and
€ should be chosen so that the following inequalities are not violated

Méint + §constr <e<l1l- Maint - 5constrv

where 8;y and Scons:r are tolerances of MILP solvers. Specifically, &, is the maximum deviation
from an integer value a variable can have while still being considered an integer, and Sconstr is the
maximum discrepancy that can be involved in a linear constraint while it is still being considered
satisfied. Similarly, M has to be set sufficiently large so that for large ti-s from TS, (6)(7) are still
satisfied when tolerances are taken into account.

Note that we do not specify an objective function since solely feasibility is of interest here, i.e.,
we want to determine feasible peak frame offsets. If the given task set is schedulable, solving this
MILP problem will result in a concrete set of values for sy, ..., sn, which complete our task set. If
the feasible set of the MILP problem is empty, the task set under consideration is not feasible.

The schedulability constraints specified in (4)-(8) feature (|TS| — 1) 2N Fi:d binary (i.e., ak ])

i=1 ll-p
ITS\)

and N integer variables (i.e., s;). Furthermore, (5) results in ( constraints, while (6) and (7) each

add TS| 3N, IP I constraints. For our simple running example, there are 6 binary and 2 integer
variables, and a total of 18 constraints (not including variable bound constraints). As shown in Sec. 7,
the MILP problem’s size does not impose stringent limitations for realistic systems and workloads.

6 SYNTHESIS OF QOC-OPTIMAL SCHEDULES

The previous section presents a set of mixed-integer linear constraints that specify necessary and
sufficient schedulability conditions for predefined QoC requirements, which are captured as the
values of [; task parameters. On the other hand, to optimally use available resources, overall QoC
guarantees can be improved by increasing the rate of integrity enforcements for underutilized
systems or by decreasing QoC guarantees if the initial task set is infeasible. Thus, in this section
we present a MILP-based approach to solve Problem 2 which requires minimization of the overall
QoC degradation in the presence of attacks — i.e., Z?Ll ;i (l;) objective.

We start by noting that the set of schedulability constraints remains linear if /1, ..., [y become
variables, instead of predefined QoC parameters. Still, several challenges need to be addressed. First,
the time-testing set and thus the number of binary variables depend on the size of hyperperiod Py
and hence the values of [;, which in this case are variables. Since we assume that for each control
task, minimal QoC under attack requirements are specified in the form of the maximal allowed
inter-peak frame distance [["%*, it is possible to provide an upper bound on the size of hyperperiod

PH = max lcm(llpl,...,leN),

Le(l,..., [mex)
ie{1,...,N}

which can be precomputed. Note that this could potentially result in a larger than necessary
time-testing set TS, but would still guarantee schedulability if conditions from (2) are satisfied.

The second challenge is that the functions J;(l;) are obtained only through the use of the
presented reachability framework from Fig. 4 and thus no analytic solutions are available in the
general case. To address this, we start by noting that for realistic control systems the aforementioned
functions J;(I;) can be well-approximated using piecewise linear functions Ji(l). Examples of
these cost functions and their approximations are shown in Fig. 9. Let F; denote the number of
linear segments used to approximate the experimentally obtained QoC degradation function 7;(/;)
for the i task. For example, for the cost function shown in Fig. 9(a) there are F; = 2 segments:
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[} =1,I} =2]and [[? = 2,12 = 5], respectively. Then, the QoC degradation function can be
approximated as
Fi
Ji) =" ((afl + BbE) (10)
r=1
where all; + B! is the r'M linear segment [z, l_ir ], out of F;, such that [1, [***] = Ufl:1[-llr’ l_i’ ], and
bl are binary variables that select the corresponding linear segment based on the value of I;. This
is captured through a set of logical conditions

bl =1 = I'<l<Il', 1<r<F.

Similarly as before, using the “Big M” method, the above logical condition can be specified as a set
of the following linear constraints

=M@ -bl) <l <I + Mb.,

_ : - . (11)
I =Mb, <I; <17 + M(1-1y),

where M is a large constant. Additionally, a constraint limiting that only one linear segment is
active per task is needed — i.e.,

F;
Zb;':l, 1<i<N. (12)
r=1

Finally, in the objective function in (10), the only nonlinearities are the multiplications of variables
1;b.. These can be linearized by introducing a new set of variables c. = [;b%, which can be expressed
using the “Big M” method as the following linear constraints

¢l <bM, clxLi-(1-b)M, o0<cl <. (13)

The first constraint in (13) guarantees that ¢! = 0 when b% = 0, i.e., when the r'! segment is not
selected. The second constraint sets ¢! = I; when corresponding segment is selected, i.e., when
bl = 1. Therefore, the complete MILP formulation for QoC-optimal task set synthesis can be
specified as

N F;
min )" w; Y (afc} + ﬁ;b;)}
i=1 r=1

subject to: (4)-(8), (11)-(13) (14)

P
1<i <N, 1<ji<-2,  2<k<|TS.

1

In addition to (|TS| — 1) Zﬁ\il ;—’j binary (a;;’ji-s) and N integer variables (s;-s), this MILP formu-
lation adds N + Zfil F; integer variables (/;-s and c!-s), and Zfil F; binary variables (cost function
segment selector variables b.-s). In addition to (szsl) +2-|TS| Zfil l;—i’ constraints that exist in
the schedulable task set synthesis formulation, N restrictions for single linear segment selection
(expressed in (12)) and 4 - Zﬁ\il F; constraints covering (11) and (13) that constrain linearization
variables (ci-s) have to be added. For our running example, there are 76 binary and 8 integer
variables, and a total of 185 constraints, if two-segment linear curves are combined to form an
objective function. Trivial variable bound constraints are not included in this count.

Finally, let us revisit our introductory two-task example:

T]([I,Z],4, 3,31), Tz([2,3],4, 3,32). (15)
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Fig. 8. Execution times of Gurobi MILP solver with 95% confidence intervals for the task set in (16).

As we mentioned in previous sections, this task set is feasible under EDF for peak frame offset
assignment s; = 0,s, = 1. Consider the case when, for example, integrity enforcement for the
process loop controlled by task T is required every five periods instead of three, (i.e., [; = 5).
If schedulable task set synthesis formulation from Section 5.1 is applied, even though effective
processor utilization is lower, this task set becomes infeasible for any start time assignment. This
is indeed the case since peak frame periods are such that, under any assignment of peak frame
start times, peak frames of the two tasks will eventually align and cause the processor demand test
to fail (processor demand over a period of 4 time units will be 5). This is due to the fact that the
formulation specified in (5)-(8) only tests feasibility of the given task set and determines feasible
peak frame offsets if possible. However, if QoC-optimal scheduling formulation, as specified in
(14), is applied for ["** = 3,["** = 5, the result of optimization will be a feasible and optimal
assignment for variables /; and s;, that minimizes the QoC objective. In this case, [; = I, = 2 and
s1 = 0,8, = 1 is the output of the QoC-optimization, if standard QoC degradation functions are
used as objectives.

7 EVALUATION

To analyze scalability and performance of our approach, we evaluate the proposed framework both
on random workloads and a realistic automotive case-study.

7.1 General Evaluation and Limitations

We start our evaluation by considering execution times of Gurobi MILP solver [26] for generic task
sets. All execution times are measured on a platform with a 5/ generation 3.0GHz Intel i7 CPU
and 16GB of memory.

We construct generic task sets by varying overall processor utilization, and randomly generating
workloads according to the current utilization set point, while keeping the task periods fixed. It
is important to highlight that task sets that are constructed fully randomly do not give us full
insight about performance of our framework; this is caused by the fact that the size of our MILP
formulation is dominated by the size of the time-testing set (|TS|) and the number of tasks’ peak
frames during the scheduling hyperperiod (3., %), and is less affected by the number of tasks.

To illustrate this, consider a task set consisting of four tasks

T1([0.1,0.2],4,4,s1),  T»([0.1,0.3],4,4,s5),
T3([0.1,0.4],12,6,s3),  T4([0.1,0.3],12, 2, s4).

Due to relatively low processor demand with U < 0.1, this task set is schedulable. The MILP
formulation features a total of 936 binary and 4 integer variables, while cardinality of the time
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Fig. 9. Change in the maximal state estimation error with respect to integrity enforcement period for fuel
injection, driveline management and trajectory tracking systems. The estimation error for fuel injection
increases quickly, making integrity enforcement at all times inevitable, while state estimation errors for
driveline management and trajectory tracking systems reach unsafe levels for I > 10 and I3 > 5, respectively.
Finally, without integrity enforcements, the trajectory tracking system is a perfectly attackable system [18, 24],
meaning that the attacker can introduce unbounded estimation error.

testing set is 37. There is a total of 2538 constraints (not including variable bound constraints).
Note that task periods p;-s and the number of frames between two consecutive peak frames /;-s are
valued such that the size of the problem is relatively small. To obtain a schedulable task-set, Gurobi
MILP solver takes 8.3 ms. However, if task periods are such that the processor demand condition
(5) requires evaluation in a larger number of time instants, this results in a significant increase in
the problem size. This occurs when periods and peak frame distances are not harmonically related.
For instance, if T3’s periodicity is 13 time units instead of 12, the total number of variables becomes
21508, while the time testing set’s size is 193. The total number of constraints is 61540, and Gurobi
execution time increases to 535.4 ms.

On the other hand, in most control applications, periods of control tasks are multiples of a small
set of numbers (e.g., 10 ms and 20 ms in most automotive control applications), which enables
construction of reasonably sized problems that can be efficiently solved. Additionally, the described
interleaving of peak frames that is inevitable for certain combinations of task parameters (illustrated
with example in (15)) is much less likely to occur in real systems where the integrity enforcement
policy can be adjusted to avoid this. As a result, most realistic task sets can be efficiently scheduled
using our approach.
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Table 1. Automotive case-study task set with fuel injection (1), driveline management (T2), and trajectory
tracking (T3) tasks, as well as additional logging and supervision tasks; Shaded columns are results of QoC-
optimal schedule synthesis. Light shaded columns show optimization results for 71 = {T1, ..., Tg} (Uz; = 0.82);
dark shaded cells mark additional tasks and show optimization results for 72 = {T1, ..., Tg} (Ug; = 0.87).

] eak
pi CiCtr Cf max * * %

Task [ms] [ms] [ms] li S; i Si L
T; 10 1.6068 2.7012 1 0 1 0 1
T 20 2.6172 5.3346 10 0 2 0 2
T; 20 1.6068 2.7012 5 1 2 1 4
Ty 100 1.8258 - - = = = =
Ts 100 7.8652 - - = = = =
Ts 200 5.5587 - - = = = =
T; 40 1.4427 = = = = = =
T 50 0.8562 = = = = = =

Fig. 8 presents execution times of Gurobi MILP solver for both schedulable task set synthesis
with predefined QoC requirements and QoC-optimal schedule synthesis. We analyzed how Gurobi
execution times depend on utilization for task set

Ty ([, P py = 10,1 = 1,5),  To([e5, E°F, py = 20, ™) = 8,.5),

ctrl eak (max) ctrl eak (max) (16)
Ts([es'™, B 1.ps = 40,1, =4,s3), Tu(les™™, cB“" ], pa = 120, 1; =2,54).

Here, for synthesis of schedulable task sets with predefined QoC requirements we use [; = [["%*
from (16). While randomly generating task sets, normal and peak frame execution times were
chosen randomly 100 times so that utilization of a task is proportional to its period. Intuitively,
for higher utilizations, the optimizer explores a larger space in search for a feasible solution. In
the limit, a task set with utilization U = 1 is very unlikely to be feasible. Hence, an MILP solver
implementing branch and bound algorithm can easily prune out large portions of the variable space,
resulting in a decrease in execution time as shown in Fig. 8(b). Note that for schedule synthesis
(Fig. 8(a)), the variable space is relatively small and thus the solver execution time is very low
(57.3 ms for worst run).

7.2 Automotive Case Study

We demonstrate the usability of our approach on a realistic case study involving three automotive
control components. Here, we consider control tasks for fuel injection, driveline management, and
trajectory tracking (additional use of intermittent integrity enforcements on different platforms,
e.g., vehicle-to-vehicle/infrastructure (V2V/I) can be found in [15]). Modeling methodology for
these systems is thoroughly described in [31], [30], and [17], respectively. As described in Section 3,
we use the models of these systems to quantify QoC degradation in the presence of attacks using
cost functions J;(I;). These functions along with their piecewise-linear approximations (j (I;) as
captured by (10)) are shown in Fig. 9.

We abstract the computational workload of controlling these systems with tasks T;,T3, and T,
respectively. Task set parameters are given in Table 1. For the fuel injection system, we observe
that relatively small error in state estimation results in significant changes in air-to-fuel ratio
(AFR), which is one of the main controlled states in this system. Small changes in AFR can have
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Fig. 10. Reference trajectory and obtained position under attack with and without integrity enforcement are
shown. Simulation duration is 200 s and the attack starts at 100 s.

significant impact on engine performance (increased emissions, poor power output, and overheat-
ing). Therefore, we choose to enforce integrity on every data point (i.e., [*** = 1). The driveline
management system features drive-shaft torsion, engine speed, and wheel speed as its states. Given
that significant change in torsion leads to increased wear of mechanical components of driveline
and potential permanent damage, we choose to limit the maximum allowed state estimation error
to 0.02 rad (or 1.15°) for drive-shaft torsion. Since engine speed is typically significantly larger
than wheel speed, we set the limits on the remaining states’ estimation errors to 1 ”;—d and 0.25 ”;—d
respectively. These constraints result in maximal allowed state estimation error of e)*** = 1.12. By
mapping this value through the QoC degradation function in Fig. 9(b), we obtain the maximum
inter-enforcement period of J’®* = 10 control periods. For trajectory tracking, we allow additional
error induced by the attacker to be very small, precisely no more than 0.35 %* in estimated speed,
and 0.3 m in position. This gives us the maximum state estimation error of e]*** = 0.461. Mapping
through Fig. 9(c) gives us the maximum sample distance between two integrity enforcements of
[nex =5,

To capture realistic scenarios where ECUs are shared between control- and non-control tasks, we
also add tasks T4-T specified in Table 1 as standard real time tasks which have no QoC degradation
function associated with them. These tasks execute additional logging and supervision functions
(e.g., gearbox oil temperature checking and logging with period 200 ms). Notice that no changes
in our formulation are necessary to allow admission of such tasks (simple declaration cf’ eak — 0,
I; = 1 suffices). Utilization for task set 77 = {Ty, ..., T} is Ug; = 0.82.

For the aforementioned task set, Gurobi takes 3.9 ms to find a feasible set of peak frame offsets
S1, .-+ S¢. For QoC-optimal task synthesis the MILP solver’s execution time is 764.3 s, and the results
are shown in the light shaded columns of Table 1 (optimal s} and [}'). For these values, to illustrate
QoC under attack, we simulate the vehicle motion with a figure eight-shaped reference trajectory
that fits inside a 100 X 100 m square. Simulation duration is 200 s, and attack start time is set to 100 s.
Fig. 10 shows the difference between reference and obtained vehicle trajectories during simulation
time. As can be seen, integrity enforcement prevents the attacker from significantly diverting the
system away from the desired trajectory.

To examine system scalability and evaluate performance degradation due to increase in task
set utilization, we add two more tasks to our task set, namely T; and Ts. Task parameters and the
result of the new optimization problem based on the extended task set 7, = {T1, ..., Tg} are shown
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Fig. 11. Tracking error over the course of the simulation. The error is presented in the case without and with
the presence of attack for I3 = 2, and I3 = 4. Note that design-time performance requirements are satisfied in
all cases.

in darker shaded cells of Table 1. Utilization for this task set is Ug; = 0.87. Schedule synthesis with
predefined QoC requirements for this task set takes 4.2 ms to execute, while Gurobi execution time
for QoC-optimal task synthesis is 729.6 s. As a result of higher processor utilization and specific
task periods, task T3 authenticate sensor data only as often as every fourth control period, instead
of every other.

A typical QoC metric for trajectory tracking systems is the tracking error, i.e., the difference
between the obtained and desired trajectories. As can be seen from Fig. 11, the decrease in integrity
enforcement rate increases potential influence of the attacker. Nevertheless, the tracking error is
still maintained under design requirements.

Finally, when we increase the utilization up to 0.9936 by adding more tasks, we observer that
the values for Iy, [, and /5 obtained from the optimization are equal to design-time limits, i.e., [] = 1,
[; =10, I; = 5, meaning that even with this utilization our task set is still schedulable while QoC
requirements are satisfied. It is worth noting that in this case data integrity is enforced in only 15%
of time steps for controllers implemented in tasks T, and T3, allowing for execution of additional
tasks on the shared CPU.

8 RELATED WORK

Security challenges due to the tight interaction of cyber and physical components in CPS have
attracted a lot of attention in recent years. One focus has been on the use of control theory to
develop attack-resilient algorithms and architectures (e.g., see a recent study [23] and references
therein). While some of existing works consider implementation issues such as jitter [28], to the
best of our knowledge, this work is the first to address closed-loop performance (i.e., QoC), data
integrity, and schedulability guarantees within an integrated resource-aware design and analysis
framework.

Intermittent use of integrity enforcements for embedded control systems is similar in spirit to
event- and self-triggered control [1, 2] control. In addition, adding security mechanisms to resource
constrained embedded and CPS, and effects on real-time scheduling of existing tasks was addressed
in [14, 22, 32]. In [14], opportunistic execution of security tasks in legacy systems is proposed,
by optimizing their execution parameters while ensuring feasibility of existing tasks. Also, [32]
presents a scheduling policy that takes into account security requirements together with real-time
requirements for embedded systems. In [22], active security services are optimally chosen with
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respect to schedulability conditions, while simultaneously guaranteeing schedulability through
modified conditions for EDF. Yet, in all these works, security guarantees are captured with the use of
abstract security levels; there is no connection between the available resources and performance of
the main system functionalities (e.g., QoC for control tasks) in the presence of attacks. On the other
hand, the proposed framework based on intermittent integrity enforcements facilitates tradeoff
analysis between system resources and QoC guarantees.

Some of these problems can be framed as task adaptation in overutilized systems. In [9], an
elastic task model is presented that adapts Quality-of-Service (QoS) in control applications where
relaxation of timing constraints is allowed. Similarly, QoC captured as a standard quadratic control
cost, is used in [10] for adaptation of task periods in order to track a predefined utilization setpoint.
These methods cannot be directly applied to adaptation of multiframe security-aware real-time
control tasks, since they are based on the standard task model, for which they alter control tasks’
periods, while we assume that periods of existing control tasks cannot be changed and focus on
optimal inclusion of integrity enforcements.

Finally, MILP is used in real-time systems for multiprocessor sporadic task partitioning [3] and
to find feasible deadlines under EDF for a given performance index [7]. In [29], task parameter
adaption for multiframe tasks is solved via MILP; still, only the worst case alignment of frames is
considered, and unlike our approach to finding feasible offsets, the focus is on period and deadline
optimization.

9 CONCLUSION

We have presented a method to add security guarantees, in terms of Quality-of-Control in the
presence of attacks on sensor measurements, to control tasks executed on a shared processor. We
have exploited the fact that even intermittent data integrity enforcements significantly limit the
attacker’s impact on the system and shown how to obtain the relationship between the integrity
enforcement rate and QoC under attack. This has allowed us to map the problem into scheduling of
security-aware multiframe tasks, for which we have presented an MILP formulation. Furthermore,
we have introduced a MILP-based approach for optimal resource (i.e., CPU time) allocation, which
allows for the maximization of the overall QoC while ensuring task system schedulability. Finally,
the usability of our approach has been illustrated on an automotive case study.

Note that the proposed approach results in periodic data integrity enforcements, though with a
significantly reduced rate and thus significantly reduced overhead. For instance, we have shown
that we can have satisfiable QoC under attack with as low as 15% of controller executions for which
data integrity is guaranteed. An avenue for future work is the use of fully intermittent integrity
enforcement policies, which could potentially allow for QoC improvements for desired utilization
levels. We will also combine the presented framework with our recent work on scheduling of
authenticated network packets [19], to provide a holistic approach for security-aware scheduling
in distributed embedded control.

REFERENCES

[1] A. Anta and P. Tabuada. 2009. On the Benefits of Relaxing the Periodicity Assumption for Networked Control Systems
over CAN. In 2009 30th IEEE Real-Time Systems Symposium. 3-12. https://doi.org/10.1109/RTSS.2009.39

[2] A. Anta and P. Tabuada. 2010. To Sample or not to Sample: Self-Triggered Control for Nonlinear Systems. IEEE Trans.
Automat. Control 55, 9 (Sept 2010), 2030-2042. https://doi.org/10.1109/TAC.2010.2042980

[3] Sanjoy Baruah and Enrico Bini. 2008. Partitioned scheduling of sporadic task systems: an ILP-based approach.
Proceedings of the International Conference on Design and Architectures for Signal and Image Processing (DASIP) (2008).

[4] Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. 1999. Generalized Multiframe Tasks. Real-Time Systems
17,1 (01 Jul 1999), 5-22. https://doi.org/10.1023/A:1008030427220

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.


https://doi.org/10.1109/RTSS.2009.39
https://doi.org/10.1109/TAC.2010.2042980
https://doi.org/10.1023/A:1008030427220

131:20 Vuk Lesi, llija Jovanov, and Miroslav Pajic

5]

—
(=)
—_

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. 1990. Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2, 4 (01 Nov 1990), 301-324. https:
//doi.org/10.1007/BF01995675

Pietro Belotti, Pierre Bonami, Matteo Fischetti, Andrea Lodi, Michele Monaci, Amaya Nogales-Gomez, and Domenico
Salvagnin. 2016. On handling indicator constraints in mixed integer programming. Computational Optimization and
Applications 65, 3 (01 Dec 2016), 545-566. https://doi.org/10.1007/s10589-016-9847-8

Enrico Bini and Giorgio Buttazzo. 2009. The space of EDF deadlines: the exact region and a convex approximation.
Real-Time Systems 41, 1 (01 Jan 2009), 27-51. https://doi.org/10.1007/s11241-008-9060-7

G. C. Buttazzo. 2011. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications (3rd ed.).
Springer, 110-114. https://doi.org/10.1007/978-1-4614-0676-1

Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. 2002. Elastic Scheduling for Flexible Workload
Management. IEEE Trans. Comput. 51, 3 (March 2002), 289-302. https://doi.org/10.1109/12.990127

Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Arzén. 2002. Feedback-Feedforward Scheduling of Control
Tasks. Real-Time Systems 23, 1 (01 Jul 2002), 25-53. https://doi.org/10.1023/A:1015394302429

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher,
Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In Proceedings of the 20th USENIX Conference on Security (SEC’11). USENIX Association, Berkeley, CA,
USA, 6-6. http://dl.acm.org/citation.cfm?id=2028067.2028073

T. M. Chen and S. Abu-Nimeh. 2011. Lessons from Stuxnet. Computer 44, 4 (April 2011), 91-93. https://doi.org/10.
1109/MC.2011.115

A. Greenberg. 2015. Hackers Remotely Kill a Jeep on the Highway, Wired Magazine. (2015).

M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni. 2016. Exploring Opportunistic Execution for Integrating Security
into Legacy Hard Real-Time Systems. In 2016 IEEE Real-Time Systems Symposium (RTSS). 123-134. https://doi.org/10.
1109/RTSS.2016.021

L. Jovanov and M. Pajic. 2017. Relaxing Integrity Requirements for Resilient Control Systems. CoRR abs/1707.02950
(2017). https://arxiv.org/abs/1707.02950

L. Jovanov and M. Pajic. 2017. Sporadic Data Integrity for Secure State Estimation. In 55th IEEE Conference on Decision
and Control (CDC).

Andrew J. Kerns, Daniel P. Shepard, Jahshan A. Bhatti, and Todd E. Humphreys. 2014. Unmanned Aircraft Capture
and Control Via GPS Spoofing. J. Field Robot. 31, 4 (July 2014), 617-636. https://doi.org/10.1002/rob.21513

C. Kwon, W. Liu, and I. Hwang. 2014. Analysis and Design of Stealthy Cyber Attacks on Unmanned Aerial Systems.
Journal of Aerospace Information Systems 11, 8 (2014), 525-539. https://doi.org/10.2514/1.1010201

V. Lesi, L. Jovanov, and M. Pajic. 2017. Network Scheduling for Secure Cyber-Physical Systems. In 38th IEEE Real-Time
Systems Symposium (RTSS).

Joseph Y.-T. Leung and M.L. Merrill. 1980. A note on preemptive scheduling of periodic, real-time tasks. Inform. Process.
Lett. 11, 3 (1980), 115 — 118. https://doi.org/10.1016/0020-0190(80)90123-4

Chung-Wei Lin, Bowen Zheng, Qi Zhu, and Alberto Sangiovanni-Vincentelli. 2015. Security-Aware Design Methodology
and Optimization for Automotive Systems. ACM Trans. Des. Autom. Electron. Syst. 21, 1, Article 18 (Dec. 2015), 26 pages.
https://doi.org/10.1145/2803174

M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu. 2009. Static Security Optimization for Real-Time
Systems. IEEE Transactions on Industrial Informatics 5, 1 (Feb 2009), 22-37. https://doi.org/10.1109/TI1.2009.2014055
Yuriy Zacchia Lun, Alessandro D’Innocenzo, Ivano Malavolta, and Maria Domenica Di Benedetto. 2016. Cyber-Physical
Systems Security: a Systematic Mapping Study. CoRR abs/1605.09641 (2016). http://arxiv.org/abs/1605.09641

Y. Mo, E. Garone, A. Casavola, and B. Sinopoli. 2010. False data injection attacks against state estimation in wireless
sensor networks. In 49th IEEE Conference on Decision and Control (CDC). 5967-5972. https://doi.org/10.1109/CDC.2010.
5718158

A. K. Mok and D. Chen. 1996. A multiframe model for real-time tasks. (Dec 1996), 22-29. https://doi.org/10.1109/
REAL.1996.563696

Gurobi Optimization Inc. 2014. Gurobi optimizer reference manual. (2014). http://www.gurobi.com

M. Pajic, I. Lee, and G. J. Pappas. 2017. Attack-Resilient State Estimation for Noisy Dynamical Systems. IEEE Transactions
on Control of Network Systems 4, 1 (March 2017), 82-92. https://doi.org/10.1109/TCNS.2016.2607420

M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. J. Pappas. 2014. Robustness of attack-resilient
state estimators. In 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS). 163-174. https:
//doi.org/10.1109/ICCPS.2014.6843720

B. Peng and N. Fisher. 2016. Parameter Adaption for Generalized Multiframe Tasks and Applications to Self-Suspending
Tasks. In 2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 49-58. https://doi.org/10.1109/RTCSA.2016.15

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.


https://doi.org/10.1007/BF01995675
https://doi.org/10.1007/BF01995675
https://doi.org/10.1007/s10589-016-9847-8
https://doi.org/10.1007/s11241-008-9060-7
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1109/12.990127
https://doi.org/10.1023/A:1015394302429
http://dl.acm.org/citation.cfm?id=2028067.2028073
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/RTSS.2016.021
https://doi.org/10.1109/RTSS.2016.021
https://arxiv.org/abs/1707.02950
https://doi.org/10.1002/rob.21513
https://doi.org/10.2514/1.I010201
https://doi.org/10.1016/0020-0190(80)90123-4
https://doi.org/10.1145/2803174
https://doi.org/10.1109/TII.2009.2014055
http://arxiv.org/abs/1605.09641
https://doi.org/10.1109/CDC.2010.5718158
https://doi.org/10.1109/CDC.2010.5718158
https://doi.org/10.1109/REAL.1996.563696
https://doi.org/10.1109/REAL.1996.563696
http://www.gurobi.com
https://doi.org/10.1109/TCNS.2016.2607420
https://doi.org/10.1109/ICCPS.2014.6843720
https://doi.org/10.1109/ICCPS.2014.6843720
https://doi.org/10.1109/RTCSA.2016.15

Security-Aware Scheduling of Embedded Control Tasks 131:21

[30] M. Pettersson. 1997. Driveline modeling and control. Ph.D. Dissertation. Department of Electrical Engineering, Linkoping
University.

[31] C.T. Wei. 2009. Modeling and control of an engine fuel injection system. Master’s thesis.

[32] Tao Xie and Xiao Qin. 2007. Improving Security for Periodic Tasks in Embedded Systems Through Scheduling. ACM
Trans. Embed. Comput. Syst. 6, 3, Article 20 (July 2007). https://doi.org/10.1145/1275986.1275992

[33] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti. 2016. Cross-Layer Codesign for Secure Cyber-Physical
Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 5 (May 2016), 699-711.
https://doi.org/10.1109/TCAD.2016.2523937

Received April 2017; revised May 2017; accepted June 2017

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.


https://doi.org/10.1145/1275986.1275992
https://doi.org/10.1109/TCAD.2016.2523937

	Abstract
	1 Introduction
	2 Motivation and Problem Statement
	3 Relaxing Integrity Requirements for Secure Control
	4 Modeling of Security-Aware Control Tasks
	5 Scheduling with QoC Requirements
	5.1 Mixed Integer Linear Programming Formulation for Schedule Synthesis

	6 Synthesis of QoC-Optimal Schedules
	7 Evaluation
	7.1 General Evaluation and Limitations
	7.2 Automotive Case Study

	8 Related Work
	9 Conclusion
	References

