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Abstract—With the prevalence of smartphones, pedestrians
and joggers today often walk or run while listening to music.
Since they are deprived of their auditory senses that would have
provided important cues to dangers, they are at a much greater
risk of being hit by cars or other vehicles. In this paper, we
build a wearable system that uses multi-channel audio sensors
embedded in a headset to help detect and locate cars from
their honks, engine and tire noises, and warn pedestrians of
imminent dangers of approaching cars. We demonstrate that
using a segmented architecture and implementation consisting
of headset-mounted audio sensors, a front-end hardware that
performs signal processing and feature extraction, and machine
learning based classification on a smartphone, we are able to
provide early danger detection in real-time, from up to 60m
distance, near 100% precision on the vehicle detection and alert
the user with low latency.

I. INTRODUCTION

Smartphones have transformed our lifestyles dramatically,
mostly for the better. Unfortunately, listening to music while
walking has also become a serious safety problem for many
people in urban areas around the world. Pedestrians listening
to music, texting, talking or otherwise absorbed in their phones
are making themselves more vulnerable by tuning out the
traffic around them [30], as reported by the Washington Post.
Since a pedestrian is deprived of auditory input that would
have provided important cues to dangers such as honks or
noises from approaching cars, he or she is at a much greater
risk of being involved in a traffic accident. We have seen a
sharp increase in injuries and deaths from such incidents in
recent years. According to a study by Injury Prevention and
CNN, the number of serious injuries and deaths occurring to
pedestrians who were walking with headphones has tripled
in the last seven years in the United States [25]. This phe-
nomenon affects cities globally, and is an important societal
problem that we want to address by introducing advanced
sensing techniques and intelligent wearable systems.

We tackle these challenges in PAWS, a Pedestrian Audio
Wearable System aimed for urban safety. PAWS is a low-
cost headset-based wearable platform that combines four
MEMS microphones, signal processing and feature extraction
electronics, and machine learning classifiers running on a
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smartphone to help detect and locate imminent dangers, such

as approaching cars, and warn pedestrians in real-time.

With newer smartphones equipped with multiple built-in
microphones, it may be tempting to re-purpose those micro-
phones in software to localize cars based on time difference
of arrival (TDoA) or other localization techniques. However,
these approaches require the user to hold constantly hold their
phones steady and to not block the built-in microphone while
walking [20] [31], in addition, most built-in microphones are
designed for voice and are often band-limited. These two lim-
itations prevent the smartphone from capturing useful features
produced by approaching cars in realistic urban environments.

This is a challenging problem as the battery-powered wear-
able platform needs to detect, identify, and localize approach-
ing cars in real-time, process and compute large amounts
of data in an energy and resource constrained system, and
produce accurate results with minimal false positives and false
negatives. For example, if a user’s reaction-time is 500ms,
the system has 360ms to detect a 25mph car and alert the
user when it is 10m away from him. This problem is further
compounded by high levels of mixed noise, typical of realistic
street conditions in metropolitan areas.

To tackle these challenges, we develop a segmented ar-
chitecture and data processing pipeline that partitions com-
putation into processing modules across a front-end hard-
ware platform and a smartphone. Four channels of audio are
collected by a microcontroller-based front-end platform from
four MEMS microphones that are strategically positioned on
a headset. Temporal-spatial features such as relative delay,
relative power, and zero-crossing rate are computed inside the
front-end platform using the 4 channels and transmitted wire-
lessly to a smartphone. A fifth standard headset microphone
is also connected to the audio input of the smartphone, and
together with the data sent from the front-end platform, clas-
sifiers are trained and used to detect an approaching car and
estimate its azimuth and distance from the user. We evaluate
PAWS using both controlled experiments inside parking lots
as well as real-world deployments on urban streets.

We make the following contributions in this paper:

o« We create an end-to-end, low-cost, wearable system and
smartphone application that provide real-time alerts to
pedestrians in noisy urban environments with good ac-
curacies. We demonstrate that inattentive pedestrians can
immediately benefit from our system.
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Fig. 1: An inattentive pedestrian wearing a PAWS headset, and
a screen shot of the PAWS application user interface.

e We develop a segmented architecture and data processing
pipeline that intelligently partitions tasks across the front-
end hardware and the smartphone and ensures accuracy
while minimizing latency.

+ We propose a new acoustic feature which is designed to
capture frequency domain characteristics of low-frequency
noise-like sounds, such as the sound produced by the friction
between a car’s tires and the road. We develop classifiers
to recognize cars approaching the user and to localize
approaching cars, with respect to the user, in real-time.

o« We share with the community our entire data set, which
includes high-fidelity multi-channel audio recordings of
moving car sounds, honks, and street noises, that we have
collected in a metropolitan area and in a college town.

As the industry is investing heavily in intelligent head-
phones [8], [14], our hardware-software co-design approach
presents a compelling solution towards protecting distracted
pedestrians.

II. STUDYING THE PROBLEM

Before developing PAWS into a wearable system, we stud-
ied the car sound recognition and localization problem using
a validation platform. The objective of this exercise was
to analyze the feasibility and complexity of our proposed
solution and to determine the specifications required to capture
the necessary information, e.g., audio sampling rate, sensor
placement, and most relevant features for the machine learning
algorithms.

As shown in Figure 2, the platform directly connects eight
MEMS microphones to a computer. The microphones were
placed on a mannequin head to reproduce the physical phe-
nomenons of the final setup, such as the acoustic shadow of
the human head [26] and the approximate spacings among
sensors on a real user.

The study has been done in five different locations in two
different cites: a metropolitan area and a college town. The
locations were two parking spaces, a four-way intersection,
and two multi-lane streets. We recorded audio from a total of
47 cars. Other than the parking spaces, where we conducted
our first set of controlled experiments with labeled distances,
directions, and precise time-keeping of honks and car passing,
all other scenarios were uncontrolled.

Fig. 2: Validation system: reference mannequin with eight MEMS
microphones and data acquisition board in a low-noise controlled
experiment setup.
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Fig. 3: Spectrogram of one of the recordings from the controlled
environment. The car was approaching the mannequin at 25mph.

A. Recording Specifications

In order to characterize the sounds we are interested in, such
as an approaching vehicle’s tire friction, engine noise, and
honks, we conducted controlled experiments in two parking
spaces (Figure 2 shows one of the experiments). These results
are later cross-checked against uncontrolled experiments’ for
consistency.

Figure 3 shows the spectrogram of one of the recordings
from the controlled experiments. Both the top and the bottom
figures correspond to the same recording. Approximately 5s
after the recording starts, a car honks, resulting in distinct
stationary tones with fundamental frequencies near 500Hz.
The vehicle then accelerates towards the mannequin. In the
bottom figure, where the lower part of the spectrogram is
zoomed, we see the engine noise. The engine noise follows
its RPM. In an automatic car, the engine noise is bounded
between 60Hz and 200Hz (at the 7 seconds mark, the shift
in the engine gear is noticeable). Once the vehicle gets closer
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Fig. 4: Distribution of honks and other types of sounds in a 2D
feature space.

to the mannequin, the friction noise from the tires and asphalt
gets louder. This noise has a band-limited spectrum with more
energy below 3kHz. When the car crosses the system near the
12s mark, a burst of air causes a loud white noise. Similar
spectrum components were found on several recordings of
different approaching cars at similar speed (20-30mph) on dry
asphalt.

These observations indicate that to identify warning honks
and vehicles that are still approaching the user, the system
audio must reliably capture frequencies from 50Hz to 6kHz.
This requirement means that the system needs custom micro-
phone drivers with a cut-off frequency of less than 10Hz (in
contrast to standard headset microphones with 100Hz cut-
off frequency) and analog-to-digital converters with sampling
rates above 12kSamples/s.

B. Presence of a Car

The presence of a car can be determined from high-energy,
sharp sounds like honks, as well as from low-energy, noise-
like sounds such as the sound of friction between a tire and
the road.

Honks are louder and, thus, easier to detect than car tire or
engine sounds. We analyze the Mel-Frequency Cepstral Coef-
ficients (MFCC) [28] of honks and compare them with non-
honk street sounds. We start with MFCC, since it is one of the
most commonly used acoustic features for detecting various
types of sounds [21] [18] [27] [19] including car sounds [5].
For visualization purpose, we reduce the 13-dimension MFCC
features to two dimensions (using PCA [24]) and the result is
shown in Figure 4. We observe that honks are separable from
other sounds as they cluster around a different point in space.
Honks are easily detectable using all 13 coefficients.

MEFCCs, however, are not effective in detecting other types
of car noises such as tire-road frictions. The fundamental
reason behind this is that the Mel-scale, expressed by m =
25951og;o(1 + f/1000), was originally designed to mimic
human hearing of speech signals that maps frequencies f <
1kHz somewhat linearly, and maps f > 1kHz logarithmically.
Our analysis on tire friction sounds shows that about 60%
signal energy is attributed to frequency components below 1
kHz. Hence, to model such low-energy, low-frequency, noise-
like sounds, we need to develop a new feature that captures
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Fig. 6: Relative delay versus time of a car driving
mannequin from its left to right.
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these sub-kHz characteristics of audio signals. Section III-C1
describes this new acoustic feature.

C. Direction of a Car

To determine the direction, we record audio of cars ap-
proaching from different directions and analyze their effect
on the microphone set. Some of these recordings also have
honks in them. Intuitively, microphones that are closer to the
sound source and are not obstructed by the human head should
receive signals earlier, and the signals should be stronger.
Hence, the relative delays and the relative energy of the
received signals should be strong indicators of the direction
of an approaching car.

In Figure 5, we plot the relative delays of the microphones
with respect to the front microphone for left and right side
honks. We see that the relative delays change signs for left
and right honks. We do similar tests with eight directions
(each covering a 22.5° 3D cone surrounding the mannequin)
to successfully determine the directions of honks near the user.

Similarly, we plot the relative delays of the microphones
for a car that passes the mannequin from its left to the
right (Figure 6). We observe that the relative delays are quite
random on both left and right ends. As the car approaches the
mannequin, we see a trend in all the curves with one or more
of them reaching their peaks. The trend reverses as the car
passes the mannequin. This behavior suggest that patterns in
relative delays (when they are looked at together) are useful
to determine the direction of passing. Hence, by learning the
trend and the point when the trend reverses, it is possible to
differentiate between a car on the left from a car on the right,
as well as their angular directions.



D. Distance of a Car

In an attempt to estimate the distance, we formulate a
regression problem that maps sound energy to distances. Later
we realize that due to environmental noise and the weakness
of car sounds, a fine grained location estimation is extremely
inaccurate when the car is farther than 30m from the audio
recorder. When the car is within 30m, we find that the
maximum value of the cepstral coefficients (computed every
100 ms) is approximately linearly correlated with distance,
as shown in Figure 7 for a car that is driven toward the
mannequin. This relationship can be exploited to form a
regression problem that maps maximum cepstral coefficients
to distances.
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Fig. 7: The maximum cepstral coefficient follows a trend when
an approaching car is within about 30m from an observer.

For cars farther than 30m, although we are able to detect
their presence and estimate their direction, a precise distance
estimation results in a large error. However, we learn that the
distance estimation problem can be formulated as a multi-
class classification task by dividing the absolute distances into
a number of ranges such as (0, 20m], (20m, 40m], and (40m,
60m]. Each of these ranges can be characterized by signal-
energy and zero-crossing rates, and can be classified accurately
using a machine learning classifier.

Therefore, PAWS uses a two-level approach for distance
estimation. The first level employs a classifier to determine
a coarse-grained distance range, and if a car is detected
within the nearest range, it applies regression to obtain a
fine grained distance estimate. Figure 8 shows a scatter plot
of actual distances and estimated distances of cars coming
toward the user wearing the PAWS headset during a controlled
experiment.

III. OVERVIEW OF PAWS

PAWS is a wearable headset platform together with a
smartphone application that uses five microphones and a
set of machine learning classifiers to detect, identify, and
localize approaching cars in real-time and alerts the user using
audio/visual feedback on his smartphone.

The system consists of three main components: sensors
and their drivers, front-end hardware for multi-channel audio
feature extraction, and a smartphone host for machine-learning
based vehicle detection and localization, which are shown in
Figure 9. Four of the MEMS microphones, labeled MIC1 to
MICA4, are distributed over the user, at the left and right ear,
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Fig. 8: Estimated distances for cars within 30m are on average
2.8m off of actual distances.
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Fig. 9: A block diagram of PAWS.

back of the head, and chest of the user, to provide relevant
information about the sound source’s location. The front-end
hardware synchronously acquires analog signals from these
microphones and locally extracts acoustic features that are
used by an application running on the smartphone. PAWS
performs signal processing inside the front-end hardware so
that only features need to be transmitted wirelessly to the
smartphone (via BLE) instead of the large volume of raw audio
data

The standard microphone of the headset (the fifth micro-
phone, MIC5) is connected to the 3.5mm audio input of the
phone. Data from the fifth microphone is directly acquired by
the smartphone. Using the features computed by the front-end
hardware and an audio stream from the headset microphone as
inputs, machine learning classifiers running inside the PAWS
application detects the presence of an approaching vehicle and
estimates its position relative to the user. Our architecture uses
a single low-power microcontroller in the front end to reduce
energy and relies on the smartphone to run machine-learning
classifiers to deliver reasonable latency.

A. Front-End Hardware

The front-end hardware is responsible for three blocks on
the PAWS signal flow: synchronous ADC of microphone
channels, embedded signal processing, and wireless commu-
nication with the smartphone. The integration of these blocks
in a wearable resource-constrained system is a challenging
task, and computational bottlenecks such as memory and data
transfer rate require a careful distribution of resources.



Fig. 10: (Left) Teardown of the PAWS headset; the front-end
hardware is exposed inside the left ear housing. (Right) Close up
of the PCB that comprises the PAWS front-end hardware.

In order to demonstrate PAWS’s system architecture and
algorithms, off-the-shelf components were used to build the
system. We are in the process of building a nano-watt custom
IC to further reduce energy in future iterations. As shown in
Figure 9, four MEMS microphones are wired to an MCU.
The MCU synchronously collects the signals, calculates the
temporal-spatial features, and sends the result to a smart BLE
module via UART. The BLE module sets the link between the
front-end hardware and the smartphone. The front-end hard-
ware is powered by standard AAA batteries and is designed
to fit inside the left ear housing of a commercial headset, as
shown in the left figure in Figure 10.

B. Front-End Signal Processing

In this section we discuss the operations that are processed
by the front-end hardware. The MCU must sample the data
from the four MEMS microphones and perform feature ex-
traction, while the BLE module is responsible for transferring
the calculated features to the smartphone. Since cars may be
traveling at high speeds, fast response times and low latency
are critical. PAWS uses a Cortex-M4 MCU to perform data
acquisition and processing in real-time. The design choices
and evaluation are explained in detail in Section IV.

1) Sampling Data: Audio is captured from four micro-
phones at 32kSamples/s with an 8-bit successive approxima-
tion ADC and a four channel analog multiplexer running in
the microcontoller. The sampling frequency was chosen as
a compromise between the lowest rate necessary to capture
the spectral content, as explained in Section II, and the
performance enhancement achieved by a delay estimation with
finer granularity.

2) Feature Extraction: Running the feature extraction algo-
rithms in real-time in a Cortex-M4 is challenging due to the
complexity and number of computations required across the
four channels. In order to service a continuous stream of in-
coming data, it is imperative that the feature extraction finishes
before the next window of data is completely received. The
feature extraction calculations were simplified to achieve low
latency; complex multiplications and division were avoided.
The following features were calculated on the acquired four
channel data: relative power of each channel with respect to
MIClI, relative delay with respect to MIC1, and zero-crossing

rate of each channel. These features are calculated for every
time window of 100ms with 50% window overlap.

The relative power (Iipy,1) is calculated by summing the
difference of squares between samples from each microphone
to the reference microphone, MICI.

Wy

Rpna = Y (X%l — X)) (1)

i=1

N is the channel number, W, is the window length (in this
case 3200 samples), Xy is the channel signal, and X is the
reference MIC1 signal.

The relative delay is calculated using cross-correlation. The
lag between the channels is defined as the index where the
cross-correlation (XCORRYy;,1) is maximum.

WL
XCORRy 1[d] = Y~ Xnli — d]. X [i )
i=0

This is the most computationally expensive calculation
of the front-end system. Since the physical separations of
microphones are limited, e.g. the average spacing between
ears is ~25cm, the range of valid relative delay is bounded,
making it possible to compute and compare the XCORR
only for d € [—40, 40]. According to [35], these limits on the
interest interval of the cross correlation result make the time-
domain calculation of the cross correlation more efficient than
frequency domain approaches.

The zero-crossing rate (ZCy) is the number of times a signal
changes sign within a given time window.

W

ZCx =Y (Jsen(Xnli]) —sgn(Xn[i—1))))  @3)

i=1

3) Data Transfer: The BLE module gathers the resultant
10-element feature values and sends them to the smartphone
following a custom protocol in 40 byte packets. The protocol
consists of a validation header (3 bytes), followed by a set of
hardware configuration flags (1 byte), payload size (1 byte),
and the feature values (1 x 3 bytes for relative delays of MIC
{2,3,4}, 8 x 3 bytes for relative powers of MIC {2, 3,4}, and
2 x 4 bytes for ZC of all four microphones).

C. Smartphone Data Processing

The PAWS smartphone app receives a 44.1kHz, single
channel audio stream from the headset via the standard mi-
crophone jack and 10-element acoustic features over BLE in
the front end, and processes them in real-time in a service.
The application comes with a graphical user interface that is
used to start/stop the service, configure alerts, and display a
timeline of approaching cars along with their distances and
directions.

Figure 11 shows the data processing pipeline of the PAWS
smartphone application. The application implements a two-
stage pipeline for detecting and localizing cars, respectively.
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1) Car Detection Stage: Two offline-trained classifiers are
used in this stage to detect cars honks and engine/tire sounds.
The first classifier uses standard MFCC features to detect the
presence of car honks. For the other type of car noises, we
propose a new acoustic feature, termed as the Non-Uniform
Binned Integral Periodogram (NBIP), that unequally divides
the frequency scale in order to capture variation in spectral
energy at the lower end of the frequency spectrum which
characterizes the car noises. The steps to compute the NBIP
features are as follows.
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Fig. 12: Illustration of the basic idea of non-uniform binning of
spectral energy in NBIP.

« Step 1: The FFT of each audio frame x(t) is computed to
obtain the Fourier spectra X (f). Only the left half of this
symmetric spectra is retained.

o Step 2: The periodogram of z(t) is obtained from X(f)
by normalizing its magnitude squared, and then taking its
logarithm.

Pa(f) = 201ogyy (51X (F))

Fs and N denote the sampling frequency and the signal
length, respectively.

e Step 3: The frequency range is divided into a total of B
bins, such that the frequencies below a threshold a are
equally divided into b bins, and the higher frequencies are
equally divided into B —b bins. The binning process is illus-
trated in Figure 12. The optimal values of the parameters B,

a, and b are empirically determined, which we will describe
shortly.
« Step 4: The P,(f) is integrated in each bin to obtain a B

dimension feature vector v = (v1,va,...,VB).
kA
/ Bf)df,  if1<k<b
_ ) J(k=1)Ay
Vg = a+(k—b) Ay
/ P,(f)df, otherwise
(L+(k‘—b—1)A2
where, A; = ¢ and Ay = % are the bin sizes for

frequencies below and above the threshold a, respectively.
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Fig. 13: NBIP search space for parameter optimization.

In order to find the optimum values of the parameters a,
and b, we vary the parameters 0 < a < land 1 <b < Bin
small increments and compute the vector difference between
features of car noises and all other non-car sounds. Figure 13
shows the search space for a and b for a fixed value of
B = 20. We observe that when ¢« = 0.3 and b = 18, the
vector difference between the car noise features and the non-
car sound features is maximized. Figure 14 shows the mean
and standard deviation of each component of the two types of
feature vectors (i.e. NBIP and MFCC), for the two classes of
sounds. We observe that most of the NBIP feature components
(e.g., the first 10 components) are very dissimilar for the two
classes, whereas the MFCC features for both classes are very
similar. Unlike MFCCs, NBIPs are designed to maximize their
vector representations for car engine/tire vs. non-car sounds,
which makes them effective in recognizing cars with a very
high accuracy.

The features described above are used to detect approaching
cars/engine and tire noises only. As honk is not a noise like
sound, we can not use our proposed feature NBIP in this
scenario. So, we use MFCC in this case. For both types of
classification (honks vs. engine/tire noises), we train separate
Random Forest classifiers [7] which perform significantly
better than other classifiers (e.g., Support Vector Machine [11])
that we applied on our data set.

2) Car Localization Stage: If the presence of a car is
detected, the second stage of the pipeline is executed. In
this stage, the smartphone acquires and uses the four-channel
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Fig. 14: (a) The proposed NBIP feature vector for car tire
and engine sounds are designed to maximize their dissimilarity
from non-car street noises like human chatter, human motions,
machine sounds, and loud music. (b) standard MFCC features
are not as effective in separating the two classes as NBIP features.

acoustic features received from the embedded front-end system
to estimate the distance and direction of the car. Four multi-
class Random Forest classifiers are used to classify eight direc-
tions and three distance levels based on honks and engine/tire-
friction sounds, respectively. Because the feature vectors are
only of 10 dimensions, we feed all the features into both
classifiers for a simpler implementation. However, our analysis
of principal components (PCA) reveals that relative delay
and relative powers are more relevant features for direction
classification, whereas relative delay combined with ZC and
relative power are relevant features for distance estimation.
Relative delay is relevant to the direction of the sound source
because the microphone closer to the sound source will receive
the audio signal sooner than the other microphones.

In addition to determining one of the three levels of
distances, when a car is detected within the nearest level
(within 30m, PAWS runs a linear regression-based fine-grained
distance estimator. This step includes computing the cepstral
coefficients and then fitting the maximum value to an actual
distance in meters. This step does not add any significant cost
as we obtain the cepstral coefficients as a byproduct of MFCC
computation (which are computed during the car detection
stage).

3) Alert Mechanism: The application alerts a user with
audio/visual feedback. If a car is detected within a user-
configured distance range (e.g., 40m) — the phone vibrates,
lowers the volume, and beeps. It can also be configured to play
a customized message, e.g., “a car is {approaching, honking}
on your {direction, left, right}”. The application also visually
shows the location and direction of the car on its user interface,
as shown in Figure 1.

IV. PLATFORM EVALUATION
A. Real-Time Performance

In this section we discuss the real-time performance of the
system, the timing constraints involved, and how we designed
our system to meet them. Response time is crucial for our
system, as milliseconds can make a difference in saving the
life of our user. The embedded front-end hardware is handling
32kSamples/s with 8 bits per sample for each of the 4 channels
with MEMS microphones. To minimize latency, we compute
features in 100ms windows every 50ms in a pipeline fashion.
This means that features are being calculated every 50ms
with 50% window overlap. The MCU uses a dedicated ADC
module with direct memory access (DMA) to leave more
CPU cycles available for feature calculation. The ADC is
continuously sampling audio and storing them in RAM while
features from the previous frame are being calculated. The
data transfer from the MCU to the BLE module is also done
via a dedicated UART module. In order for this pipeline to
work in real-time, all features from the current frame must be
calculated before the acquisition of the following frame ends,
and the UART module must finish sending the current feature
vector before the next feature is ready to be sent. The timing
of the different parts of this pipeline can be seen in Figure 15.
The features calculation consumes 36ms of the available 50ms
in one time slot, and the UART module completes each feature
vector transmission in 1.9ms.

t=0 t=50ms t=100ms
Frame 1 Frame 1 Ready Frame 2 Ready
‘Starts ‘Frame 2 Starts 86ms  88ms IFrame 3 Starts
f T I
ADC CONTINUOUSLY ADC CONTINUOUSLY ADC CONTINUOUSLY
RUNNING RUNNING = RUNNING
[ FEATURES CALC. } I FEATURES CALC. |

[

Fig. 15: Pipeline of the MCU processing. The “Features Calc.”
block represents all the operations involved in the features ex-
traction, and “TX” represents the UART communication between
the MCU and BLE module.

Another crucial timing aspect of the system is the latency to
transmit the features from the BLE module to the smartphone.
This latency will not only add to the response time of the
system, but it can also cause a mismatch between the vehicle
detection and its localization. If the temporal-spatial features
calculated in the front-end hardware take too long to reach
the smartphone, the location estimation displayed to the user
might refer to a different sound source than the vehicle that the
system just detected. To verify that the smartphone will receive
the data within an acceptable time interval, an adaptation to
the system was made, as shown in Figure 16. A button was
simultaneously connected to one of the inputs of the front-end
hardware and the microphone input of the smartphone (as the
regular microphone buttons). A verification app was developed
to compare the difference between the time when the button-
press event was detected by the smartphone application and
when the smartphone received the data packet containing the



same event. All aspects of the MCU and the BLE module
firmware remain equivalent to the setup for standard operation.
The average delay is on the order of 55ms as shown in
Figure 17. Since the event can be captured by the MCU
anywhere within the 50ms sampling windows, this latency
is not expected to be lower than the 38ms required for the
calculations and transmission. However, due to randomness
in the delay on the smartphone path, a few samples on the
histogram have lower latencies.

The front-end hardware and the smartphone will have small
physical distance as both of them will be on the user’s
body. This small distance will ensure very little effect on the
connection due to the presence of multiple Bluetooth devices
in the environment.
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Fig. 16: Block diagram of the test setup for the latency between
the features from the front-end hardware and the smartphone.
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Fig. 17: Histogram of the front-end hardware to smartphone
latency acquired with the Figure 16 test setup.
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Fig. 18: Execution times of various components of the PAWS
smartphone app.

Figure 18 shows the execution times of various components
inside the smartphone application. The application runs four
threads in parallel. Thread 1 is responsible for getting audio

data using the single channel microphone. We have taken 10
frames per window (448ms) for robust feature calculations.
Thread 2 is responsible for receiving acoustic features over
BLE. Thread 3 runs the car detector, which takes 86ms. The
distance and direction estimators, which also runs in Thread
3, takes merely 2ms since these classifiers use precomputed
features. The UI thread (Thread 4) takes 3ms to update the Ul
and to notify the user. The worst case execution time for the
PAWS app is 91ms. Because we use a 50% overlap between
successive windows, the PAWS app runs the full classification
pipeline every 448/2 = 224ms, and detects and localizes cars
in 91ms (i.e., in real-time), giving users plenty of time to
respond to oncoming dangers.

B. Power Consumption and Price Breakdown

We evaluate the energy consumption of PAWS by measuring
the power consumptions for both the embedded platform and
the smartphone during idle and active states. In the active
state, data is processed, features are computed, and results are
transmitted to provide danger feedback to the user, whereas in
the idle state, the smartphone application is not connected to
the headset and most of the clocks in the embedded front-end
platform are turned off to conserve power. The sole purpose
of the idle state is to conserve power when the user is not
using the system (e.g. when the headset is not paired with the
phone).

The embedded platform uses an STM32f4 Cortex-M4 chip
as the MCU that samples and extracts features, as well as a
BMD-300 module that acts as the BLE transceiver. Operating
at 180MHz clock speed, the STM32 MCU consumes the most
power at S0mA when active. While not in active use, the
power can be reduced to 4.37mA. The Cortex-M4 architecture
provides a familiar environment for firmware development
with an acceptable energy footprint and a low cost of U$3.20 at
major part suppliers. The BMD-300 BLE transceiver module
transmitting at 0dBm power consumes 7mA when active and
consumes 0.46mA when in idle mode and only transmitting
advertisement packets. The BMD-300 module integrates the
Nordic nRF52 BLE chipset and antenna in a small footprint
component that fits this application for a low price of U$6.40.
The other components of the front-end hardware are the 3.3V
regulator, the MEMS microphones, and the pre-amplifiers.
They consume 0.1mA, 0.48mA, and 2.34mA per component,
and cost U$0.50, U$0.40, and U$1.60 per unit respectively.
The overall power consumption of the system is below 70mA,
allowing for 17 hours of continuous operation when powered
by 3 standard AAA Alkaline batteries. As shown in Table I,

TABLE I: Power Consumption and Price Breakdown

Idle [mA] Active [mA]  Unit Price [U$]
MCU (STM32f4) 4.37 50 3.20
BLE Transciever (nRF52) 0.46 7 6.40
MEMS Mics x4 0.48 x4 048 x4 0.40 x4
Amplifiers x4 2.34 x4 2.34 x4 1.60 x4
3.3V regulator 0.1 0.1 0.50
Total 16.21 68.4 18.10




TABLE II: CPU and Memory Footprint.

CPU Memory
STM32f4 (Active) 75.8% 84.916 KB
STM32f4 (Idle) 0% 6.908 KB
PAWS App (Active) 17.88%  32.58 MB

the total cost for the main electrical components is around
U$18.00 per board.

For the smartphone, the most energy consuming component
is the display, which is only used to configure the app,
and therefore, it is not necessary to keep it always on. The
BLE communication consumes about 0.2mA. The energy
consumption for the rest of the application is between 0.3uAh
to 0.8uAh per frame.

C. CPU and Memory Footprint

We measure the CPU and memory footprints of both the
front-end data acquisition system as well as the smartphone
application. The portion of the embedded front-end that con-
sumes the most amount of resources (memory and CPU
cycles) is the feature extraction process on the STM32f4.

Table II shows the average CPU and memory usages of the
STM32f4 chip in PAWS. The CPU usage is almost 76% when
the system is actively sampling and extracting features from
audio sampled at 32kHz and in 50ms time slots. However
when the system is idle, the CPU usage reaches 0%. This is
because when the system is idle, the CPU of the STM32 and
all of its main clocks are shut down; the system is only able
to wake up again when it receives an external event from the
BMD-300 BLE module, which is generated by the smartphone
application on demand. Because of this, PAWS is able to save
energy and CPU/memory resources when not actively in use.

V. REAL-WORLD EVALUATION

To evaluate the end-to-end performance of the complete
PAWS system in realistic settings, experiments were conducted
in three environments with different characteristics: 1) a street
inside a university campus; 2) by the side of a highway; and
3) in a metropolitan area.

A. Experimental Setup

PAWS USER

Fig. 19: Experiment scenario in campus street.

1. Campus street. The first experiment was done in a
campus street with a speed limit of 25mph. We used three
fixed markers (yellow cones) on the sidewalk and the PAWS
app to evaluate the detection, direction, and distance accuracy
of PAWS. Every time a vehicle passed a cone, a volunteer

TABLE III: Summary of Deployment Events.

Deployment User (Facing Angle) Honks Car Events
Metro Area 0°, +45°, 180° 48 165
Campus 0°, £45°, 90°, +135°, 180° 0 97
Highway 0°, £45°, 90°, +135°, 180° 0 65

raised a flag and the event was logged in the original PAWS
app. The setup is shown in Figure 19. The experiment was
repeated multiple times. Each time the user faced the road at
a different angle, 6, so that we could test the accuracy of the
direction and distance estimation for as many different angles
as possible.

2. Side of highway. The second experiment was done by the
side of a highway (NC HWY-54) where we observe a constant
flow of cars of diverse models, e.g., sedans, SUVs, trucks, and
buses. The speed limit for the vehicles in this segment of the
highway is 45 mph as it is close to residential areas. As this
experiment was done beside a highway, we were exposed to
less pedestrian-borne noise but a heavy noise due to wind. For
ground truth collection, we marked the road in the similar way
as we did in the campus street. However, unlike the campus
street, cars on the highway were driven at a higher speed
(around 50-55 mph) and they were large in number. Therefore,
instead of appointing human volunteers, we recorded a time-
stamped video and analyzed the video offline to obtain the
ground truth.

3. Metropolitan area. The third experiment was done in
streets of Manhattan, New York City, where the number of
cars, adjacent streets, and buildings in the surrounding area is
very dense. Just as with the second experiment conducted near
a highway, a time-stamped video was recorded and analyzed
offline to obtain the ground truth. To evaluate the detection,
direction, and distance classifiers, the classifier outputs were
logged by PAWS and compared against the video ground
truth. During all the experiments we simulated a distracted
pedestrian’s ability to detect cars by logging car events while
listening to music in parallel with PAWS.

Table III provides some statistics of the deployment in all
environments. For each one, the table shows how the PAWS
user faced the road, and the number of logged honks and car
events.

B. Results

We measure the car detection accuracy of PAWS and
compare its performance with that of the ground truth col-
lector’s and distracted user’s reports. Figure 20 compares the
exact counts of total logged approaching car events for all
environments. We see that almost all the cars logged by the
ground truth collector have been identified by PAWS, whereas
the distracted participant missed about 19%-36% of them. This
shows that PAWS is a highly efficient system for detecting and
alerting pedestrians of approaching cars. In summary, the car
event detection accuracy is 97.30%, 99.48% and 95.59% in
metro area, campus and highway respectively. Additionally, a
confusion matrix for the detection classifier running on PAWS
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Fig. 20: Car detection performance.

is presented in Figure 21 for the metro area. The difference
in the counts shown in Figure 21 and Figure 20 is that in
Figure 20, the values correspond to car events. For instance
if one car passes by the user, it will count as a single car
event in this figure, but PAWS will have multiple frames or
windows it processes that will show up as car detections from
the raw classifier outputs. Figure 21 on the otherhand displays
the confusion matrix for each individual frame computed
by the PAWS application. We see that only one frame was
misclassified as a noncar in the case where a car was present,
and around 5% of the noncar samples were misclassified
as cars. These values show that PAWS has fairly low false
positive and false negative rates as well as high true positive
and true negative rates. However, we see from this figure that
the number of false examples (no car cases) is around twenty
times larger than the number of positive examples. This is
because the amount of time we encounter a car when we are
outside is much less than the amount of time when there is no
car nearby. As such, the accuracy measure is largely dominated
by the negative examples. Since the true negative rate is very
high (95.2%), the accuracy of PAWS in the metropolitan area
will also be very high regardless of the outcome of the true
positive cases or situations where there is a car nearby. To get
a better sense of accuracy, we use F1 score [1] for such a rare
event detection system. The F1 score is calculated from true
positive (TP), false positive (FP) and false negative (FN) using

the formula Wﬁ%, whereas the regular definition
TP+TN

of accuracy is measured with TPITNFNTFP:

We also compute the accuracy of distance and direction
classification of PAWS and show the results in Figure 22
for all environments. We assume that the distances and di-
rections reported by the ground truth collector is accurate.
Each reported distance and direction is at first mapped to
the corresponding distance level and direction class and then
compared with the classification results of PAWS to compute
the accuracy numbers. We observe that the overall accuracy
of the distance classifier is 63% — 78%, and that the average
direction classifier ranges from 80% —98.5% depending on the
environment. There are also some cases where a user logged
the location to an area close to the boundary between two
classes while using the ground truth collector, which reduces
computed accuracy.

Figure 23 shows the combined confusion matrix for all
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Fig. 22: Car localization accuracy.

distance predictions in all tested environments. Each distance
section presents an accuracy of 77.9%, 76.4%, and 72.3% for
ranges from above 60m to 40m, to 20m from the user. The
overall accuracy for distance estimation is 75.6%. Figure 24
breaks down the direction estimation result for different cones
in 360°, which has an average accuracy of 86.7%. The reason
for these errors is that the participants naturally yaw their head
about +£22.5% as they stand by the street. This effect could
have been neutralized had we used an IMU to determine the
staring angle of a user with respect to his body. We leave this
enhancement of PAWS as a future work.

PAWS is able to alert a distracted user about an approaching
car with around 98% accuracy. While the distance classifica-
tion accuracy is around 63% — 78%, as long as the majority
of vehicles are correctly detected once they are within 60m,
the user will have time to react. From Figure 24, we find
that direction classifications for eight quadrants have varying
degrees of accuracy. However, for most users, correctly deter-
mining left or right is sufficient, of which our system achieves
between 94% — 99% accuracy depending on the environment.

C. Limitations and Future Work

The authors acknowledge that some scenarios can reduce the
accuracy of the current system. Their effects on the predictions
are detailed below.

1) Noisy Streets: PAWS is designed to detect the presence
of cars in real-world environments. Streets may contain diverse
kinds of noise, some of which are vastly different from the
ones we have trained our system for. PAWS should be trained
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Fig. 24: Combined accuracy for PAWS directions prediction.

in as many scenarios as possible to be able to handle these
new types of sounds.

2) Nearby Cars: The current design of PAWS considers
only the positions of vehicles relative to the user, but not
their trajectories. We can foresee occasions where a pedestrian
is walking parallel to a busy road, and the system is giving
warnings, even though the user is not in danger of being hit.
Future work that takes into account the trajectory of both the
vehicle and the user is under development.

3) Multiple Approaching Cars: The presence of multiple
cars at the same time can impair the localization of vehicles.
PAWS predicts the location of the loudest source. However,
the loudest source may not always be the most relevant vehicle
to the user. Sound source separation and multiple sound source
localization techniques are being investigated to improve the
system.

Ultra-Low-Power Font-end Hardware An application
specific integrated circuit (ASIC) is currently being developed
to further reduce the power consumption of the front-end
hardware. The ASIC will assist the system in the extraction
of the acoustic features and will consume orders of magnitude
less energy than the current approach. The current system
will serve as a platform for evaluation and comparison of
the ASIC based feature-extraction techniques combined with
the machine-learning classification algorithms. The ultra-low-

11

power ASIC will significantly relieve the computational bur-
den of the system and allow enhancements to the algorithm.

VI. RELATED WORK

Object recognition and localization have been vastly ex-
plored in the literature. Almost all of them mirror techniques
that are present in nature, such as the use of stereo imaging [4],
ultrasonic radars [3], and acoustic source localization [12]. In
vehicular tracking, video based approaches have been widely
used [37] [4] [22]. The amount of information that can be
extracted from images is undoubtedly greater than any other
types of sensors; it isn’t by chance that humans learned to rely
so much on their visual system. Commonality in vehicles’
shapes and standardized road signs have enabled the use
of sophisticated machine learning algorithms to identify and
predict the movement of cars [39]. Although such systems
offer outstanding solutions for devices that can be hosted
in large platforms, e.g. in an autonomous car for collision
prevention [32], these are not suitable for use in wearable
systems. A major limitation is the computational requirements
of real-time imaging processing and how feasible it is to
develop a low-cost, power-efficient, fast-response product.
Another major issue is the privacy of the user. As it was
previously pointed out, having images of someone’s activities
being constantly taken reveals an alarming amount of personal
identifiable information.

Active techniques like radar and LIDAR can certainly be
used to detect the presence of obstacles and even some of
its spatial behaviors [17] [9], but such solutions face great
challenges in classifying what those obstacles are. This is
particularly problematic in urban environments where moving
and stationary obstacles are abundant, but only a few are
real threats to the user. On the implementation side, the
inherently high power dissipation of active transducers are
usually discouraging for portable devices.

Passive audio sensors, on the other hand, provide enough
information to allow classification and localization of the
source with less computational and power requirements. But,
unlike other techniques already published [6] [12] [34], PAWS
uses machine learning algorithms to improve its predictions.
By doing so, the system sacrifices resolution and requires a
large amount of learning data, but gains in flexibility, speed,
and complexity. Audio classification has been used for event
detection like, coughing detection [15], gun shot detection
[10], human activity (e.g. talking, crying, running etc) de-
tection [2]. These works are mostly focused on identifying
prominent sounds like gun shot or shouting rather than noise-
like car sounds. [33] classified subtle sounds like keyboard
typing, door knock etc. but all of the sounds were in an isolated
environment not in real life noisy environment. [23] considered
bus and trucks as events but had a very low accuracy of 24%.
Other signals like video [29] [38] or seismic [13] signals have
been used for vehicle detection. But they are not suitable for
a wearable system like PAWS.

Other works for pedestrian safety have been done using other
sensors like shoe sensors [16] or mobile app [36]. None of



these handles the possibility of the pedestrian listening to
music or talking using headphones.

VII. CONCLUSION

This paper presents PAWS, a wearable system that uses mul-
tiple audio sensors to protect pedestrians by identifying and
localizing approaching vehicles. PAWS is carefully designed
to recognize honks and noises of an approaching vehicle.
Using machine learning algorithms, PAWS is able to identify
honks and tire/engine sounds with near 100% precision across
all tested environments. It further provides feedback on the
direction of the sound source with 80% — 98.5% accuracy
and predicts the distance from the user with 62% — 78%
accuracy. As technology evolves and new distractions and
dangers surround modern cities, innovative safety systems
must and will arise as solutions to balance the common-citizen
welfare.

REFERENCES

[1]
[2]

F1 score. https://en.wikipedia.org/wiki/Precision_and_recall.

P. K. Atrey, N. C. Maddage, and M. S. Kankanhalli. Audio based
event detection for multimedia surveillance. In Acoustics, Speech and
Signal Processing, 2006. Proceedings. International Conference on.
IEEE, 2006.

B. Barshan and R. Kuc. A bat-like sonar system for obstacle localization.
Systems, Man and Cybernetics, IEEE Transactions on, 22(4), 1992.
M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele. Stereo vision-based
vehicle detection. In IEEE Intelligent Vehicles Symposium, 2000.

N. Bhave and P. Rao. Vehicle engine sound analysis applied to traffic
congestion estimation. In Proc. of International Symposium on CMMR
and FRSM2011, 2011.

M. S. Brandstein, J. E. Adcock, and H. F. Silverman. Microphone-array
localization error estimation with application to sensor placement. The
Journal of the Acoustical Society of America, 99(6), 1996.

L. Breiman. Random forests. Machine Learning, 45(1), 2001.

A. Champy. Google pixel budswireless headphones that help you do
more, October 2017. [Online].

Z. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and
D. Rus. Synthetic 2d lidar for precise vehicle localization in 3d
urban environment. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013.

C. Clavel, T. Ehrette, and G. Richard. Events detection for an audio-
based surveillance system. In Multimedia and Expo, 2005. ICME 2005.
IEEE International Conference on. IEEE, 2005.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3), 1995.

J. H. DiBiase, H. F. Silverman, and M. S. Brandstein. Robust localization
in reverberant rooms. In Microphone Arrays. Springer, 2001.

N. Evans. Automated Vehicle Detection and Classification Using
Acoustic and Seismic Signals. PhD thesis, University of York, 2010.
M. Galleso. Airpods: An easy guide to the best features. 2016.

A. Harma, M. F. McKinney, and J. Skowronek. Automatic surveillance
of the acoustic activity in our living environment. In Multimedia and
Expo, 2005. ICME 2005. 1EEE, 2005.

S. Jain, C. Borgiattino, Y. Ren, M. Gruteser, Y. Chen, and C. F.
Chiasserini. Lookup: Enabling pedestrian safety services via shoe
sensing. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys *15. ACM, 2015.
S.-L. Jeng, W.-H. Chieng, and H.-P. Lu. Estimating speed using a side-
looking single-radar vehicle detector. Intelligent Transportation Systems,
IEEE Transactions on, 15(2), 2014.

[3

=

[4

=

[6]

[7]
[8]

[9

—

(10]

(11]
[12]
[13]
[14]
[15]

[16]

(17]

12

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

(39]

T. Kinnunen, E. Chernenko, M. Tuononen, P. Frinti, and H. Li. Voice
activity detection using mfcc features and support vector machine. In
Int. Conf. on Speech and Computer (SPECOMO07), 2007.

S. G. Koolagudi and K. S. Rao. Emotion recognition from speech: a
review. International journal of speech technology, 15(2), 2012.

S. Li, X. Fan, Y. Zhang, W. Trappe, J. Lindqvist, and R. E. Howard.
Auto++: Detecting cars using embedded microphones in real-time. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 1(3):70, 2017.

A. Martin, D. Charlet, and L. Mauuary. Robust speech/non-speech
detection using lda applied to mfcc. In Acoustics, Speech, and Signal
Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International
Conference on, volume 1. IEEE, 2001.

G. J. McDonald, J. S. Ellis, R. W. Penney, and R. W. Price. Real-
time vehicle identification performance using fpga correlator hardware.
Intelligent Transportation Systems, IEEE Transactions on, 13(4), 2012.
A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen. Acoustic event
detection in real life recordings. In Signal Processing Conference, 2010
18th European. 1EEE, 2010.

B. Moore. Principal component analysis in linear systems: Control-
lability, observability, and model reduction. Automatic Control, IEEE
Transactions on, 26(1), 1981.

M. Park. Injuries while walking with headphones tripled, study finds,
January 2012. [Online].

C. J. Plack. The sense of hearing. 2005.

J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad, and A. Serralheiro.
Non-speech audio event detection. In Acoustics, Speech and Signal
Processing, ICASSP 2009. 1EEE, 2009.

R. S. S. Molau, M. Pitz and H. Ney. Computing mel-frequency cepstral
coefficients on the power spectrum. In Acoustics, Speech, and Signal
Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International
Conference on. IEEE, 2001.

D. A. Sadlier and N. E. O’Connor. Event detection in field sports
video using audio-visual features and a support vector machine. /EEE
Transactions on Circuits and Systems for Video Technology, 2005.

K. Shaver. Safety experts to pedestrians: Put the smartphones down and
pay attention, September 2014. [Online].

K. G. Shin and Y.-C. Tung. Real-time warning for distracted pedestrians
with smartphones, Sept. 25 2015. US Patent App. 14/865,262.

Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection: A review.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006.
A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and M. Omologo.
Clear evaluation of acoustic event detection and classification systems.
In International Evaluation Workshop on Classification of Events, Ac-
tivities and Relationships. Springer, 2006.

J.-M. Valin, F. Michaud, and J. Rouat. Robust localization and tracking
of simultaneous moving sound sources using beamforming and particle
filtering. Robotics and Autonomous Systems, 55(3), 2007.

B. Van Den Broeck, A. Bertrand, P. Karsmakers, B. Vanrumste, M. Moo-
nen, et al. Time-domain generalized cross correlation phase transform
sound source localization for small microphone arrays. In Education
and Research Conference, 2012 5th European DSP. IEEE, 2012.

T. Wang, G. Cardone, A. Corradi, L. Torresani, and A. T. Campbell.
Walksafe: A pedestrian safety app for mobile phone users who walk and
talk while crossing roads. In Proceedings of the Twelfth Workshop on
Mobile Computing Systems, Applications, HotMobile *12. ACM, 2012.
W. Wang. Reach on sobel operator for vehicle recognition. In Artificial
Intelligence, International Joint Conference on. IEEE, 2009.

M. Xu, N. C. Maddage, C. Xu, M. Kankanhalli, and Q. Tian. Creating
audio keywords for event detection in soccer video. In Multimedia and
Expo, 2003.. Proceedings. International Conference on. IEEE, 2003.
S. Zhou, J. Gong, G. Xiong, H. Chen, and K. Iagnemma. Road detection
using support vector machine based on online learning and evaluation.

In Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010.



