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ABSTRACT

This paper presents a unified framework to learn to quantify per-
ceptual attributes (e.g., safety, attractiveness) of physical urban
environments using crowd-sourced street-view photos without hu-
man annotations. The efforts of this work include two folds. First,
we collect a large-scale urban image dataset in multiple major cities
in U.S.A., which consists of multiple street-view photos for every
place. Instead of using subjective annotations as in previous works,
which are neither accurate nor consistent, we collect for every place
the safety score from government’s crime event records as objective
safety indicators. Second, we observe that the place-centric percep-
tion task is by nature a multi-instance regression problem since the
labels are only available for places (bags), rather than images or
image regions (instances). We thus introduce a deep convolutional
neural network (CNN) to parameterize the instance-level scoring
function, and develop an EM algorithm to alternatively estimate
the primary instances (images or image regions) which affect the
safety scores and train the proposed network. Our method is ca-
pable of localizing interesting images and image regions for each
place. We evaluate the proposed method on a newly created dataset
and a public dataset. Results with comparisons showed that our
method can clearly outperform the alternative perception methods
and more importantly, is capable of generating region-level safety
scores to facilitate interpretations of the perception process.

1 INTRODUCTION

1.1 Background

The task of visual urban perception [9] [12] [13] [18] aims to quan-
tify the connections between the physical appearance of urban
environment and perceptual attributes (e.g., safety, attractiveness,
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Figure 1: Place-centric visual urban perception. (a) The map

of San Diego, U.S.A. (b) The density map of crime events for

San Diego. The crime events were collected by various gov-

ernment agencies. The color of a place represents its densi-

ties. (c) The ground-truth densities (or safety ranks) for the

2000 testing places. (d) The density map estimated by the

proposed method.

wealth). The well known broken windows theory [14] [27] sug-
gests that visual signs of environmental disorder, such as bro-
ken windows, abandoned cars, litter and graffiti, can induce neg-
ative social outcomes of and increase crime levels. Other stud-
ies [4] [15] [21] [23] also found the associations between envi-
ronment disorder and criminal behaviors, health outcomes, inci-
dences of obesity, and rates of female alcoholism. More recently,
researchers in multi-media computing and Artificial Intelligence
take as inputs geo-tagged street-view photos [8, 31], and develop
learning-based methods using human-annotated street-view pho-
tos. The popularity of high throughput data collection methods
(e.g., AMAZON MTurk) has increased the availability of urban



perception data, and thus enables the learning based systems for
automatic predictions.

However, existing efforts on visual urban perception are still lim-
ited in two aspects. First, the perception labels are usually crowd-
sourced by human annotators and there are huge variances or
inconsistent annotations across subjects. For example, it is diffi-
cult for a human to consistently label the safety level of a scene
from street-view photos. The labels might vary over time or across
psychological statuses. Moreover, different annotators might give
different ratings over the same photo. Second, most existing per-
ception methods aim to learn scoring functions from individual
images while the perception labels are actually associated with
places. Figure 2 shows eight street-view photos of the same place
(highlighted on the center map). These photos together provide a
panoramic imagery description of the place, which is much more
informative than a single street-view photo. For example, the safety
level of a place might be mainly affected by one of the photos, which
includes broken windows or other disorder visual patterns, but not
other photos. Therefore, there is a demand for an urban perception
method to develop a capability of learning from place-centric visual
data.

1.2 Overview of this work

The goal of this work is to address the above issues with two inno-
vative efforts. The first one is to collect a large-scale image-based
urban perception dataset, which distinguishes itself from existing
datasets by two aspects: (i) place-centric: providing multiple pho-
tos for every place, as shown in Figure 2; and (ii) objectiveness:
mining the perceived level of safety using publicly available crime
events records. The dataset includes about 20, 000 places in 5 ma-
jor cities of U.S.A., and 8 street-view photos per place. To obtain
the perceived safety level for every place, we collect crime event
records from the government agencies in the past ten years and
perform clustering analysis to obtain the crime density map for
each city. Figures 1 (a) and (b) show the city map and crime density
map for the city of San Diego, CA, U.S.A. To our best knowledge,
the proposed objective and place-centric urban perception dataset
is the first one in its catalog.

The other effort of this work is to develop a weakly supervised
method to regress the perceived safety label for each place. We cast
the learning of such a regression function in the multi-instance
setting. Our method employs a multi-layer bag-instance represen-
tation: each place is described with a bag of street-view photos
and each photo (at a particular viewpoint) with a bag of image
regions. An image region can recursively decompose into a bag of
sub-regions. This Place-Photo-Region-Subregion hierarchy forms
a rich and redundant representation, and in the training stage,
only place-level labels are available. We employ a deep convolu-
tional neural network (DCNN) to parameterize the scoring function,
which maps an input image or image region to a real-valued safety
label. Our method follows the traditional rules of multi-instance
regression [22]:(i) only a portion of the instances in a bag will af-
fect the regression function to be learned; (ii) the bag-level label
specifies the upper-bound of the predictions over all instances in
the bag, i.e. that instance-level predictions should be less than or
equal to the bag-level real-valued label. We divide all instances of

Figure 2: A place with eight street-view photos of varying

viewpoints. The perception labels (i.e. safety level) for these

street-view photos should be collectively assigned.

a bag into a primary subset and a non-primary subset, and use
the instances in the primary subset to estimate the scoring func-
tion. The primary/nonprimary labels of parent-children instances
should be collectively assigned so that (i) all children nodes of
non-primary node are non-primary instances as well; (ii) for any
primary-instance, there is at least one primary child node. We refer
our method to hierarchical deep multi-instance regression (HDMiR),
which is different from the conventional multi-instance methods
with two-layer bag-instance representation.

We develop a novel Expectation-Maximization (EM) [30] method
for training HDMiR from weakly supervised street-view photos.
Our method alternates between estimating primary instances for
each bag (E-step), and optimizing the CNN parameters (M-step).
In the E-step, we apply the current DCNN to score every instance
(images or regions) and introduce a clustering method to robustly
assign the highly scored instances to be primary instances and
the others to be non-primary ones. We also introduce two bottom-
up/top-down label propagation steps in order to preserve the above
parent-children consistencies. In the M-step, we use the stochastic
gradient descent (SGD) method to train the DCNN network in order
to maximize the complete data likelihood defined over primary
instances.

We apply the proposed EM method over a public dataset and a
newly created dataset, and compare it to the alternative urban per-
ception methods. Results show that the proposed HDMiR method
can significantly improve perception accuracy on both datasets.
This is a considerably improvement since the proposed method only
requires place-level labels, instead of instance-level annotations.
More importantly, the proposed method is capable of discovering
the most influenced instances (e.g., images or regions) which might



affect the safety score of a place, which results in an explainable
urban perception method.

1.3 Contributions

The two major contributions of this work include (i) a new large-
scale place-centric urban street-view dataset with objective safety
scores; (ii) a hierarchical multi-instance regression method for ur-
ban perceptionwhich can learn a deep scoring function fromweakly
supervised data. The proposed EM method can be used for learning
multi-instance regression functions, and has great potentials in a
wide variety of image-based applications.

2 RELATIONSHIPS TO PREVIOUS WORKS

The proposed urban perception method is closely related to three
research streams in the multimedia community.

Visual Urban Perception aims to predict perceptual responses
to scene images and play critical roles in public health and other
socio-economic activities. In the past literature, researchers already
developed a wide variety of perception models for predicting aes-
thetics [13], memorability [12], interestingness [6], virality [5]. In
particular, Naik et al. [20] contributed a visual perception dataset,
known as Place Pulse 1.0, and proposed to use various image fea-
tures and support vector regression for predicting the perceived
safety of street-view images. Dubey et al. [8] made efforts to a
large-scale urban perception dataset, i.e. Place Pulse 2.0, through
crowd-sourcing human annotations from online tools. While being
remarkable successful, these datasets are restricted to the variances
of human perceptions as well as mistakes or errors made during
labeling. Moreover, human annotations are provided for images,
instead of places, and might impose inconsistent labels for different
street-view photos of the same place. In this work, we propose to
create a large-scale place-centric dataset with place-level objective
safety scores which are mined from crime event records.

Learning based perception methods can take advantages of
large-scale labeled data and become much more feasible with the
availability of high throughput online survey websites. These meth-
ods can be divided into two categories. The first category aims to
directly learn a regression function to assign a real-valued label
to the input images [22] [2] [10]. Such methods are limited since
human annotators are not good at providing annotations in continu-
ous space [8]. The second category, in contrast, aims to learn to rank
pairs of images according to their perception scores. For example,
Kiapour et al.[16] employed image features and manual annota-
tions to learn to rank images according to their clothing styles. Zhu
et al. [33] ranked facial images for attractiveness, for generating
better portrait images. Wang et al. [25] introduced a deep rank-
ing method for image similarity metric computation. Zagoruyko
and Komodakis [29] developed a Siamese architecture for com-
puting image patch similarity for applications like wide-baseline
stereo. The predicated ranks of scene images are often convented
to real-valued label in post-processing steps, e.g.,using the Microsft
Trueskill algorithm [11], which might bring considerable errors.

Multi-instance Perception Learning We identify that visual
urban perception is essentially a multi-instance learning (MIL) prob-
lem since the perceived labels, e.g., safety, are by its nature asso-
ciated with places, instead of images (of specific viewing angles).

Traditional MIL classification methods [7] [19] [1] [3] assume that
the aggregation function over instance labels is an OR function, i.e.
that a positive bag contains at least one positive instance and a neg-
ative bag contains only negative instances. A number of approaches
relax the assumption and propose other forms of aggregation. Wei-
dmann et al. [26] considers a generalization where the presence of
a combination of instance types determines the label of the group.
Xu and Frank [28] assume that all instances contribute equally and
independently to a bag’s class label. Zhou et al. [32] build a model
that solves MIL through semi-supervised learning techniques by
considering a negative label for every instance in a negative group.
These solutions are typically tailored to handle specific assumptions
about the whole-part relationships between groups and instances.
The focus of this work is on the predictions of real-valued labels, e.g.,
safety scores, which is different from the discrete labels. Ray and
Page [22] proposed an alternative procedure to find the primary in-
stances and estimate regression functions. Our proposed approach
generalizes such two-level bag-instance relationships through ex-
ploring multi-level place-image-region-subregion relationships in
a hierarchy of instance representation.

3 OUR APPROACH

The goals of this work include two aspects: creating a place-centric
urban perception dataset with objective safety scores, and develop-
ing deep machine perception algorithms which can leverage weak
supervisions.

3.1 Community-Centric Urban Safety Dataset

An distinctive effort of this work is to collect an urban percep-
tion dataset, including both street-level photos and objective safety
scores for each place. To do so, we employ crime event records (e.g.,
theft, fight, incidents, robbery etc.), which are publicly available
in websites of government agencies, e.g., county police depart-
ments. The records include various details of crime events in the
past decades (usually 10-15 years), e.g., date, time, place (longi-
tude and latitude), and event types. Figure 1 (c) maps crime events
in San Diego City, where each point represents a crime event. In
this dataset, we obtain a total of 1, 056, 533 crime events for the
five major cites in U.S.A., including San Diego, Chicago, Seattle,
San Francisco and New York City. Given places of these events,
we employ the Parzen Window method to estimate the density
of each place, and quantize a density label into five levels: 1 to
5. Places with lower density level is safer. These scores are au-
tomatically mined from historical community data and serve as
objective measurements of place-wise safety indicators, which are
much more accurate than human annotated labels used in existing
datasets [8] [20].

These original place data, though informative, are obviously re-
dundant since, for example, two places might be physically close
to each other. In order to create a compact place dataset, we per-
form cluster analysis over the place clouds to group adjacent places
together. In particular, we represent each place using its longi-
tude/latitude coordinates, i.e. a two-dimensional feature vector, and
run the K-means method over these vectors. We empirically set
K and calculate the center location of each cluster of places. We
consider each cluster as a place and set its safety level to be the
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Figure 3: Visual places used in four major cities in U.S.A, including Chicago, San Francisco, Seattle, New York City. For each

city, we visualize the locations of crime events in the left and the discovered places using cluster analysis in the right. The

crime events are collected from local government agencies.

average safety level of its membership places. In this work, we set
K = 5000 for all cities. Figure 3 shows the places generated for four
cities: Chicago, Seattle, San Francisco, and New York City. For each
cell, we show the original places (longitude/latitude) with crime
densities (colored) in the left figure, and the clustered 5000 places
in the right figure. The selected places are well distributed over the
urban areas of the cities.

We employ the Google Street-View API to retrieve scene pho-
tos for each place in the dataset. The API provides access to the
panoramic 360 degree views of a place using two parameters: lo-
cation and point-of-view (or heading angles w.r.t. the true north).
We evenly quantize heading angles into 8 bins and retrieve one
street-level image for each bin at each location. Figure 2 shows the
8 street-view images downloaded for a place in San Diego. Thus, we
obtain a place-centric urban image dataset, where safety scores are
available for places only, rather than images or image regions. In
contrast, most existing urban datasets utilize image-level perception
labels while training machine learning models.

3.2 Learning Deep Multi-instance Regression
for Urban Perception

We formulate the learning of visual urban perception models in the
multi-instance setting. We consider a place as a bag of instances,
where each instance represents a street-view image or an image
region. In the training set, there are a set of n bags. Each bag con-
sists of multiple instances, and a real valued safety label. Our goal
is to learn a scoring function f (·) that returns a real value for each
instance. Classical multi-instance regression methods [22] often

divide all the instances of a bag into two categories: primary in-
stances and non-primary instances, and use only primary instances
to estimate the prediction function f (·). In this work, for example,
an image full of facade surfaces or corners of an intersection might
not be useful for determining the scoring function. We thus propose
to identify primary instances and use these instances to train the
proposed deep regression network.

In order to harness the recent technical breakthrough in deep fea-
ture learning, we employ deep convolutional network (DCNN) [17]
to parameterize the scoring function f (·). Figure 4 illustrates the
network architecture, which includes five convolution layers, three
pooling layer sand three fully connected layers. For any instance
x ∈ Rd , we perform forward propagation to get its activations of
the last fully connected layer f c8 which can be viewed as high level
features of the input image. We connect f c8 to an output unit, i.e.,
f (·). We take f (x) as the real-valued prediction of the instance x .
The outputs f (x) of all instances in the same bag are connected to
an aggregate layer in order to get the bag-level prediction. In this
work, we use max() as the aggregate function.

Formally, let xk = {xki , zki }, i = 1, 2, . . . ,n denote a bag of n
instances, where each instance xki represents an image or image
region, and zki = 1 if zki is a primary instance and 0 otherwise.
Let f (xki ) denote the prediction on the instance xki . Let zk = [zki ]
pool over the latent variables for the bag k . The prediction over a
bag xk is defined as

f (xk ;θ , zk ) = ϕ
(
f (xk1), . . . , f (xki ), . . . ,

)
, (1)

where ϕ represents the aggregate function, θ represents the DCNN
parameters. Only primary instances, i.e., zki = 1, are used in the



above aggregate function and thus the non-primary instances do
not affect the training of the deep scoring function f ().
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Figure 4: Deep Multi-instance Regression network. There

are five convolution layers, three pooling layers, and three

fully connected layers. All these layers are shared across the

instances of the same bag.

When the hidden labels z are available, the objective function
of the proposed multi-instance regression method is defined as
follows,

J (θ ; z) = − log P(y|x;θ , z) =
M∑

k=1

L
(
f (xk ;θ , zk ),yk

)
(2)

where zk = [zki ] pools over the hidden variables for the instances
of the bag k ,M is the number of bags, L(· · · ) is the loss function.
We use the least square method, i.e. L = [yk − f (xk ;θ , zk )]

2.
We develop an Expectation-Maximization (EM)method to jointly

estimate the hidden labelsz and learn the neural network from
weakly supervised data. Let x = [xk ],y = [yk ],k = 1, 2, . . . ,M . We
use the following probabilistic graphical model:

P(x,y, z;θ ) =
∏
x ∈x

P(x)
(∏

k,i

P(zki |x ;θ )
)
P(y|z,x) (3)

The model P(x) is a background reference distribution, P(y|z,x) is
the observation model.

Our EM method includes two iterative steps. In the M-step, with
the estimated hidden variables ẑ, we aim to estimate the network
parameters θ through maximizing the following expected complete-
data likelihood model,

Q(θ ;θ ′) =
∑
z

P(z|x;θ ′) log P(z|x;θ ) ≈ log P(ẑ|x;θ ) (4)

In the E-step, with the estimated network parameters θ ′, we aim to
solve the latent variables z by

ẑ = argmax
z

∏

k,i

P(zki |xki ;θ
′)P(y|z,x) (5)

= argmax
z

∑

k,i

log P(zki |xki ;θ
′) + log P(y|z,x) (6)

The model log P(zki |xki ;θ
′) is defined over the outputs of the CNN

regression network with the newly updated parameters θ ′. In partic-
ular, we specify P(zki = 1|xki ;θ

′) ∝ f (xki ;θ
′), i.e. the predicated

safety score for the instance xki . We set the observation model
log P(y|z,x) to be a constant which allows us to estimate the hidden

variables for each bag separately. In particular, we employ cluster-
ing methods, e.g., K-Means, to group all instances of a bag into two
clusters according to their real-valued predictions f (xki ;θ

′) with
the current network parameters θ ′, and consider the higher-scored
cluster as the primary subset. The predictions yki , however, might
not be accurate at early stages of the EM iterations. To address this
issue, we represent each instance xki using the activations h(xki )
of the last layer of the CNN network, and develop algorithms to
solve the two center features ckp ,p = 1, 2 and zki iteratively. For
the bag k , we aim to optimize the following objective function.

minckp,zki

∑
p=1,2

∑
zki=p

‖cp − h(xki )‖
2

+α
∑
zki=1

∑
zk j=0

1
(
f (xki ) ≥ f (xk j

)
(7)

which is an integer optimization problem. The first team is a classi-
cal data objective for clustering and the second term encourages
the ordering of the two desired clusters.

We develop a constrained clustering method to solve Eq. (7).
Our method, like K-Means, randomly selects two instances and use
their activations as the center vectors c1 and c2. Then, we employ
three alternative steps: (i) to assign every instance into one of the
two groups, which has closer center vector; (ii) to swap instances
between the two clusters so that all instances in the first group
have higher safety scores than the other group; (iii) to calculate the
new center vector for each group. We alternate these three steps
multiple times until convergence. The swapping step is used to
enforce the constrains defined in Eq. (7).

We further extend the above constrained clustering method to
explore the hierarchical relationships between places, street-view
photos and image regions. An image region can further decompose
into multiple sub-regions in a recursive fashion. In such a hierar-
chical setting, it is convenient to denote the number of layers to be
L. The nodes of top layer (i.e., places) are provided with real valued
safety labels, while the other nodes are not available. An node of
layer l includes multiple children nodes of layer l + 1, which are
labeled as primary or non-primary instances. There are two multi-
instance assumptions: (i) all the children nodes of a non-primary
node are non-primary as well; (ii) a primary node should have at
least one primary child node.

Algorithm 1 summarizes the sketch of identifying primary in-
stances in the hierarchy. We employ two propagation steps to en-
sure consistencies of parent-child label assignments. The top-down
propagation is used to set the children nodes of a non-primary node
to be non-primary and the bottom-up propagation is used to set
the ancestor nodes of an primary node to be primary. These two
steps are performed once for each iteration.

3.3 Sketch of HDMiR

Algorithm 2 summarizes the proposed HDMiR method. In the E-
step, we use Algorithm 1 to estimate the latent variables; in the
M-step, we employ the stochastic gradient descent method to op-
timize the network parameters θ . Note that regions of varying
resolutions are resized and used to train the same deep network. Us-
ing a single deep network for multiple purposes have been proved
to be successful in the past efforts [24].



Algorithm 1 Hierarchical Primary Instance Recognition

1: Input: streetview photos of a place and their features;
Output: Latent variables zki for individual instance nodes in
the hierarchy.

2: Initialize two centroids: ck1, ck2;
3: Iterate until convergence,

- Assign every instance to one of the two groups with
closer centroid;

- Swap instances between the two clusters if they violate
the constraints in Eq. (7);

- Top-down Propagation: for any non-primary node, set
its offspring nodes to be non-primary nodes;

- Bottom-up Propagation: for any primary node, set its
ancestor nodes (including parent nodes) to be primary
nodes;

- Re-calculate the centroids for each cluster;

Algorithm 2 Sketch of the proposed EM algorithm

1: Input: multiple places with their street-view photos and place-
level safety scores;
Output: deep multi-instance regression network parameters θ

2: Initialize θ with pretrained network models;
3: Iterate until convergence,

- E-step: estimate the latent variables z by Algorithm 1;
- M-step: train the network parameters θ by the stochas-
tic gradient descent method;

The proposed HDMiR method can be also applied over the tra-
ditional image-centric urban perception dataset, considering each
image as a hierarchy of region-subregions. In experiments, we will
show that such a deep network with alternative optimization tech-
niques can significantly improve urban perception quality on both
traditional image-centric public datasets and the newly created
place-centric image datasets.

4 EXPERIMENTS

In this section, we apply the proposed hierarchical deep multi-
instance regression (HDMiR) method over both public datasets and
the newly created urban perception dataset and evaluate it in both
qualitative and quantitative ways.

4.1 Evaluation Protocols

Datasets

We use two datasets to evaluate the proposed regression method.
The first one is a newly created dataset, which includes safety ranks
(or scores) for 20, 000 places in five major U.S.A. cities and 8 photos
for each place. We retrieve these 160, 000 images using the Google
Street-view API and mine their safety scores from the historical
crime records maintained by local government agencies. We divide
each photo into 5 subregions to enable the proposed hierarchical
multi-instance regression method. For evaluation purposes, we split
the places of each city into two subsets: 3000 places for training
and validation, and 2000 for testing. More details of this dataset can
be found in Section 3.1.

The second dataset StreetScore includes 4109 images in two cities:
Boston and New York. Each image is provided with a safety score
(between 0 and10). The scores are derived from pair-wise rankings
of photo pairs in response to the question ‘which place looks safer?’.
A total of 208, 738 comparisons were collected from an online game,
which are converted to ranked scores using the Microsoft Trueskill
algorithm [11]. It is noteworthy that the upgraded version of this
dataset, known as Place Pulse 2.0 [8], provides pair-wise ranking
annotations only and is not applicable for the regression purposes.
In particular, the TrueSkill algorithm usually needs 24 − 36 com-
parisons per image for obtaining stable ranking, whereas there
are only 3.35 comparisons per image in the Pulse 2.0. We evenly
split the images of StreetScore dataset into two subsets and use
one for training and the other for testing. Note that this dataset is
image-centric, and only individual street-view photos are provided
with safety scores. To apply multi-instance methods, we consider
each street-view photo as a bag of instances, and each instance
represents an image region.

Implementation

We implement the proposed hierarchical deep multi-instance
regression (HDMiR) method as follows. For the E-Step, we set the
maximal iteration of the Algorithm 1 to be 20. For the M-step, we
use the stochastic gradient descent method with mini-batches to
train the network [17]. Each mini-batch contains 30 bags. The initial
learning rate is 0.001 and is decreased by a factor of 0.1 after every
2000 iterations. We set the momentum to be 0.9 and the weight
decay to be 0.0005. The maximal iteration is set to be 120, 000.
The network parameters θ are pre-trained on the ImageNet for
classification purpose. Fine-tuning the proposed network on the
newly created dataset takes about 96 hours on a NVIDIA Telsa K40
GPU. The average inference time for one image is about 0.1 seconds.
We resize all images or image regions in the instance hierarchy to
be 224 by 224 pixels, and use them as inputs to to the deep neural
network.

Baseline Methods

We compare the proposed method to alternative regression meth-
ods in both supervised setting or multi-instance setting. In the su-
pervised setting, we directly assign bag-level labels to instances and
train various machine learning models using either manually engi-
neered features or deep learned features. These methods include.
(I) Streetscore [20], which uses support vector regression (SVR) and
a group of appearance features, including GIST, Texton histogram,
color histogram, HOG, Dense SIFT, LBP etc. (II) SVR with deep
features over pre-trained networks. In particular, for each image or
image region, we feed it to the pretrained CNN network (VGG Net-
work [24]), and use the activations (of 4096 dimensions) as features.
(III) Deep regression networks, including the AlexNet [17], the
VGGNet [24] and the PlacesNet [31], which are trained in an end-
to-end fashion. For these deep models, we used their pre-trained
models publicly available in the Caffe framework, and fine-tuned
them on the two datasets separately for regression purposes. We
use least square loss for all these three regression networks.

In the multi-instance setting, we use the multi-instance regres-
sion (MIR) [22] method, which employs an alternative method to
jointly discover a single primary instance for each bag, and to solve
the regression problem. The original work used linear regression
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Figure 5: Results for the places in Chicago. Left: groundtruth safety levels for the 2000 testing places; right: the safety levels

predicated by the proposed algorithm. Highlighted areas include failure places.
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Figure 6: Results for the places in San Francisco. Left: groundtruth safety levels for the 2000 testing places; right: the safety

levels predicated by the proposed algorithm. Highlighted areas include failure places.

which is not suitable for dealing with high-dimensional image data.
Instead, we use the deep regression network VGGNet, as introduced
before, to regress the primary instances.

Metrics

We use the coefficient of determination R2 [20] between true
scores y and predicated scores ŷ to evaluate the accuracy of a
regression model. R2 is a quantitative measure for the proportion
of total variance of true data explained by the prediction model. Let
ȳ denote the average predicated safety level of all testing samples.

We defined R2 = 1 −
∑
i (yi−ŷi )

2∑
i (yi−ȳ)

.

Results on the place-centric dataset

We apply the proposed HDMiR method over the newly created
place-centric image data for learning to predict instance-level safety
levels. Table 1 reports the quantitative results of various methods.
In order to analyze the effects of the proposed instance hierar-
chy, we implement a variant of Algorithm 2 which uses two-layer

bag-instance image representation, called Deep Multi-instance Re-
gression (DMiR). From the table, we found that proposed weakly
supervised deep regression method methods (DMiR and HDMiR)
clearly outperform the classical regression method Streetscore [20]
and the more recent end-to-end learning based deep methods. It is
noteworthy that the three networks AlexNet, VGGNet and Places-
Net are popular deep learning models which achieved remarkable
successes in multiple domains. These improvements are because
of the proposed weakly supervised framework which can takes
advantages of the bag-instance constraints. Moreover, from the
comparisons between DMiR and HDMiR, we can observe that the
proposed instance hierarchy can further enhance system accuracy.

Figures 5 and 6 visualize the predicated safety levels (1-5) for
two cities, Chicago and San Francisco, respectively. Each point
represents a testing place in longitude/latitude coordinates. The
predictions are obtained by the proposed HDMiR method. For each
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Figure 7: Exemplar results on places in San Diego. Each row

shows four street-view photos of different places, which are

successfully classified by the proposed HDMiR (within 0.5

distance from the true level) and are not classified correctly

by the baseline methods. For each image, we show the re-

gions with highest safety score.

figure, we show the ground-truth labels in the left column and
the predicated labels in the right column. Figure 1 visualizes the
predications for the places in San Diego. Note that we learn a sin-
gle regression model for all the five cities. We can observe that
the predications are consistent with the true safety levels. We also
highlight a few areas which include obvious wrong ranks. Figure 7
visualizes four exemplar street-view photos (one per place), which
are correctly predicated by the proposed HDMiR method, but are
mis-predicated by the other baseline methods. We consider a pre-
diction to be correct if it is 0.5 away from the ground-truth level.
Each image is overlaid with the highest scored instance, either a
subregion or a whole image. These exemplar street-view photos
are very challenging because, for example, the photos of level 1
have similar appearance as the photos of level 2, and existing urban
perception methods failed to predict the correct safety level. In
contrast, the proposed method can work well through exploring
the consistencies in the hierarchy of instances.

Results on the StreetScore dataset

Table 2 reports the quantitative results on the StreetScore dataset [20].
We consider each photo as a bag of five regions, and apply the
proposed HDMiR method or other multi-instance regression meth-
ods. It is noteworthy that similar observations can be drawn from
the comparisons between the proposed multi-instance regression
methods and alternate methods. These results demonstrate that the
proposed regression method for place-centric street-view data can

Algorithms R2

Streetscore [20] 0.49
SVR+Deep Features 0.51

AlexNet [17] 0.53
VGGNet [24] 0.61
PlacesNet [31] 0.65

MIR [22]+VGGNet Features 0.69
DMiR 0.78
HDMiR 0.81

Table 1: Quantitative results (R2 )on the Place-centric

Dataset.

be generalized to the image-centric image data, and can achieve
equally promising perception accuracies.

Algorithms R2

Streetscore [20] 0.54
SVR+Deep Features 0.58

AlexNet [17] 0.62
VGGNet [24] 0.68
PlacesNet [31] 0.69

MIR [22]+VGGNet Features 0.72
HDMiR 0.84

Table 2: Quantitative results R2 on the StreetScore Dataset.

5 CONCLUSIONS

This paper presented a hierarchical deep multi-instance regression
(HDMiR) method for learning robust visual perception models from
weakly supervised images. We used advanced neural networks as
base models, and introduced a multi-instance regression network
to predict safety scores for instances, i.e. street-view images or
their image regions. We contributed an innovative hierarchical
instance representation and developed an EM algorithm to jointly
identify primary instances for each bag, and to learn the deep
regression network. Another significant effort of this work is to
create a novel place-centric urban perception dataset with objective
safety scores, which is different from most existing datasets which
crowd-sourced image-based safety scores from human beings. We
apply the proposed regression method over both the newly created
dataset and publicly available dataset. Results with comparisons
to alternative methods clearly demonstrated the advantages of the
proposed methods.

The proposed HDMiR method has great potentials in various
regression problems, and the developed deep networks and EM
techniques can be applied to solve other types of perception tasks,
e.g., house pricing, market analysis, and transportation demand
estimations.
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