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Single-View 3D Scene Reconstruction and
Parsing by Attribute Grammar

Xiaobai Liu

, Yibiao Zhao, Member, IEEE, and Song-Chun Zhu, Fellow, IEEE

Abstract—In this paper, we present an attribute grammar for solving two coupled tasks: i) parsing a 2D image into semantic regions;
and ii) recovering the 3D scene structures of all regions. The proposed grammar consists of a set of production rules, each describing a
kind of spatial relation between planar surfaces in 3D scenes. These production rules are used to decompose an input image into a
hierarchical parse graph representation where each graph node indicates a planar surface or a composite surface. Different from other
stochastic image grammars, the proposed grammar augments each graph node with a set of attribute variables to depict scene-level
global geometry, e.g., camera focal length, or local geometry, e.g., surface normal, contact lines between surfaces. These geometric
attributes impose constraints between a node and its off-springs in the parse graph. Under a probabilistic framework, we develop a
Markov Chain Monte Carlo method to construct a parse graph that optimizes the 2D image recognition and 3D scene reconstruction
purposes simultaneously. We evaluated our method on both public benchmarks and newly collected datasets. Experiments
demonstrate that the proposed method is capable of achieving state-of-the-art scene reconstruction of a single image.

Index Terms—3D scene reconstruction, region partition, scene parsing, attribute grammar

1 INTRODUCTION

THE goal of computer vision, as coined by Marr [32], is to
compute what and where, which correspond to the tasks
of recognition and reconstruction respectively. The former
is often posed as parsing an image in a hierarchical repre-
sentation, e.g., from sketches, semantic regions, objects, to
scene categories. The latter recovers 3D scene structures,
including camera parameters [55], surface normal orienta-
tions and depth [21], and local Manhattan world [6]. While
the recognition and reconstruction problems are usually
addressed separately or sequentially in the literature, it is
mutually beneficial to solve them jointly in a tightly coupled
framework for two reasons.

e 2D image recognition is capable of providing seman-
tic contextual knowledge for pruning the uncertain-
ties during 3D reconstruction. For example, if two
neighboring pixels are classified as different labels,
(e.g., ground and building), it is unlikely that they
are projections of the same 3D plane. In addition,
semantic region labels, e.g., building or ground-
plane, often provide strong prior on surface normal.

e 3D scene models can provide additional geometric
information to boost image recognition task. In the
literature, there have been a number of efforts that
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utilize scene geometry to help region segmenta-
tion [16], [31], objection detection [21], visual track-
ing [39] or event classification [49], etc.

To couple the above two tasks, we propose an attribute
grammar as a unified representation, which augments lev-
els of geometric attributes (e.g., camera parameters, vanish-
ing points, surface normal etc.) to the nodes in the parse
graph. Thus the recognition and reconstruction tasks are
solved in a joint parsing process simultaneously. Fig. 1
shows a typical result of the proposed approach.

1.1 Overview of Our Approach

We consider outdoor urban scenes that may contain multi-
ple local Manhattan worlds (LMW) or ‘mixture Manhattan
world’ [45], where, for example, buildings are composed of
multiple planar surfaces and touch the ground on contact
lines. In contrast to the widely used Manhattan world
assumption [6], this paper considers more general scenarios
where adjacent surfaces of a building may not be orthogonal
to each other (see the main building in Fig. 1). Curved surfa-
ces are approximated by piecewise linear splines. The sur-
face is further decomposed into super-pixels and edge
elements. These representational units can be naturally
organized in a hierarchical parse graph with the root node
being the scene and terminal nodes being the edges and
super-pixels. Fig. 2 illustrates a parse graph.

Different from the widely studied appearance attributes
of scenes in the vision literature [48] [49] [56], we aim to
model geometric attributes of all types of scene entities or
graph nodes in the parse graph. An edge segment has its
associated vanishing point, and a super-pixel has a surface
normal, a planar facet of a building has two vanishing
points and a surface normal, and a building has 3 vanishing
points, and finally the whole scene shares a set of camera

0162-8828 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIU ETAL.: SINGLE-VIEW 3D SCENE RECONSTRUCTION AND PARSING BY ATTRIBUTE GRAMMAR 711

(d)

Fig. 1. A typical result of our approach. (a) Input image overlaid with par-
allel lines, where each color indicates a family of parallel lines; (b) sur-
face normal map, where each color indicates a unique normal
orientation; (c) a synthesized image from a novel viewpoint; and (d)
depth map, where darker pixels are closer to the camera.

parameters (e.g., focal length). We amount these geometric
attributes to the parse graph, as shown in Fig. 2. In this attri-
bute parse graph, attributes of a node can be inherited by its
offspring, and thus impose geometric constraints in the
hierarchy. These constraints are expressed as additional
energy terms in the parsing algorithm so as to maintain con-
sistency in the hierarchy. Consequently, the parsing and
reconstruction problems are solved in a tightly coupled
manner. This attribute parse graph is different from, and
can be integrated with, other scene parsing problems, e.g.,
fine-grained scene classification [48] that uses appearance

attributes, e.g., “cast sky”, “yellow field”, etc.

Geometric

To construct the attribute parse graph, we define an attri-
bute grammar using a 5-tuple: G = (Vr, Vy, S,R, P). The
set of terminal nodes Vr include surface fragments or
superpixels, the non-terminal nodes V include planar sur-
faces, composite surfaces, building block and Manhattan
world, the root node S indicates the whole scene, and R is a
set of production rules, and P is the probability models
associated with the rules. Each node a € Vy (or A € Vy) is
associated with a set of geometric attributes.

We observe that a few production rules (or compositions)
are capable of explaining most of the outdoor urban scenes.
We introduce 5 production rules which are quite generic for

urban scenes. Each rule A — A, ..., A, represents a certain
spatial arrangement between the children surfaces
Ay, ..., A, and imposes constraints on the attributes of

X(A)and X(A,),..., X(Ar).

These composition rules compete with each other to
interpret the input image in a recursive way, which results
in a parse graph as a valid interpretation of the scene. The
parse graph includes both appearance models for 2D seg-
mentation and geometric models for 3D reconstruction.

We formulate the inference of attribute parse graph from
a single image in a probabilistic framework. The state space
is the set of feasible attribute parse graphs with large struc-
tural variations. To efficiently sample this complex state
space, we adopt the Data-Driven Markov Chain Monte
Carlo paradigm [47]. In particular, our inference method
starts with an initial parse graph constructed by a greedy
method, and then simulates a Markov Chain in the state
space by a set of diffusion-jump dynamics [2]. During the
initialization stage, we utilize a heuristic search procedure
for camera calibration, and introduce a belief propagation
method to obtain region labeling which leads to an initial
parse graph. During the following sampling stage, we intro-
duce five dynamics that are paired with each other to

T
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Attributes

Fig. 2. Parsing an image using attribute grammar. Left. global geometric attributes are associated with the root node (scene) of the parse graph,
including focal length of camera, and Cartesian Coordinate System defined by Manhattan frames. Right. parse graph augmented with local geomet-
ric attributes, such as surface normal orientations and vanishing points (VPs) associated with a surface, or multiple vanishing points for a building.

Ry,..., R; are the five grammar rules used for scene decomposition.
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exploit the joint solution space periodically, which can guar-
antee nearly global convergence [47].

A short version of this work appeared in IEEE
CVPR’2014 [31] and we extend it in both modeling and
inference. In modeling, [31] uses geometric attributes to
impose hard constraints that were used to switch on or
off the corresponding probability models, whereas this
work uses both semantic and geometric attributes to
impose soft constraints to define a set of calibrated ener-
gies models, resulting in a more flexible model. In infer-
ence, this work introduces a stage-wise MCMC sampling
method which is more effective than the method in [31].
Moreover, we collect and annotate a new dataset compris-
ing of 950 images, and evaluate both methods on it.
Results show that the newly proposed method achieves
much better performance in terms of convergence and
reconstruction/labeling accuracy.

1.2 Related Works

Our work is closely related to the following research
streams in computer vision.

Semantic scene labeling has been widely studied to deal
with appearance variations, low-resolution and semantic
ambiguities. A popular choice is the Conditional Random
Field model [27] that describes qualitative contextual rela-
tions between region segments. Such relations are proved to
be helpful in the recognition of outdoor objects. Choi
et al. [5] further studied a 2D context model to guide detec-
tors and produced a semantically coherent interpretation
for the given image. Felzenszwalb and Vekser [10] applied
the dynamic programming method for pixel labeling of 2D
scenes with “tiered” structure. These methods formulate
scene labeling as a pixel-wise labeling problem and ignore
the hierarchical and recursive composition relations
between semantic regions. In contrast, our method introdu-
ces a hierarchical parse graph that can explain the input
image at different levels, from pixels to regions to
scene layout.

Single-view 3D scene modeling has been extensively stud-
ied in previous literature. Han and Zhu [16] studied a gen-
erative model for reconstructing objects and plants from a
single input image. Hoiem et al. [20] explored rich geomet-
ric features and context information to recognize normal
orientation labels of 2D regions, and Heitz et al. [18] fur-
ther proposed to recognize geometric surface labels and
semantic labels simultaneously in a supervised way.
Gupta et al. [13] considered 3D objects as blocks and
inferred their 3D properties such as occlusion, exclusion
and stability. Mobahi et al. [33] reconstructed a single
view by extracting low rank textures on building facades.
Saxena et al. [42] and Haene et al. [15] proposed a fully
supervised model to build mappings between informative
features and depth values. Schwing et al. [44] presented an
exact inference method (i.e., branch-and-bound) for sin-
gle-view indoor scene reconstruction. Pero et al. formu-
lated the 3D reconstruction of room in a Bayesian
framework and proposed a sampling method for infer-
ence [36], [37], [38]. Ladicky et al. [26] proposed a discrimi-
natively trained boosting method for estimating surface
normal. The above mentioned methods tried to recover
global 3D scene without an explicit representation of

camera model and 3D geometric structures. In contrast,
our method introduces an attribute grammar as the uni-
fied representation of semantic regions and their geometric
attributes, which can provide interpretable decomposi-
tions of the input image in both 2D and 3D. More impor-
tantly, the hierarchical representation is interpretable and
explainable and can be used to facilitate higher level visual
perception problems, e.g., object activity recognition.

Joint Recognition and Reconstruction has been investigated
for multiple computer vision tasks. Haene et al. [15] pre-
sented a continuous-discrete formulation for jointly solving
scene reconstruction and labeling of images of multiple
views. Ladicky et al. [25] proposed to train a depth-wise
classifier for each scene category, used to predict semantic
categories and depth maps for a single image. Their method
requires groundtruth depth maps for training. Carbral
et al. [3] tried to recover planar-wise 3D scene model from
panorama images of office areas, which extended the previ-
ous works by Xiao et al. [50].

The other studies include jointly solving object recogni-
tion and object modeling. Haene et al. [14] proposed to learn
3D shape priors from surface normal orientations, which
has been proved to be very successful. Hejrati et al. [19] pro-
posed to synthesize 2D object instances from 3D models
and used the instances to help solve object recognition task.
Schwing et al. [43] introduced a method for recovering 3D
room layout and objects simultaneously. Xiao et al. pre-
sented a supervised method for localizing 3D cuboids in 2D
images [52]. They also introduced a benchmark [51] for joint
structure-from-motion and object labeling. Payet and
Todorovic [34] proposed a joint model to recognize objects
and estimate scene shape. Zhang et al. [54] proposed to
reconstruct a room using panoramic images by exploiting
both object parsing (e.g., table detection) and scene geome-
try (e.g., vanishing points).

Moreover, joint formulation has also been applied for
simultaneous tracking and reconstruction [24] [53], joint
object recognition and reconstruction [1] [29], floor-plan lay-
out estimation [30] and video reconstruction [24]. Our work
follows the same methodology and contributes an attribute
grammar for joint image labeling and scene reconstruction.
The developed techniques can be applied to the above men-
tioned joint tasks as well.

Scene Grammar. Koutsourakis et al. [23] proposed a shape
grammar to reconstruct building facades, which focused on
rectifying facade images but not recovering 3D geometry.
Han and Zhu [17], Zhao and Zhu [56] and Pero et al. [35]
developed various generative scene grammar models to
explore the composition of scene entities of indoor images.
Furukawa et al. [11] studied the reconstruction of Manhat-
tan scenes from stereo inputs. In contrast, we relax the Man-
hattan assumption and generalize the scene grammar
model to handle cluttered outdoor scenes. We contribute a
hierarchical representation for urban scene modeling and
augment it with both semantic and geometric attributes.

In summary, the three contributions of this work include:
i) a grammar model with geometric attributes for solving
the 2D image parsing and 3D scene reconstruction tasks
simultaneously; ii) a stage-wise sampling inference method
that is capable of exploiting the constrained space effi-
ciently; iii) state-of-the-art computer vision systems that can
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generate high-quality results for both recognition and
reconstruction on images from both public datasets and
newly collected datasets.

1.3 Paper Organization

The rest of this paper is organized as follows. We introduce
a hierarchical scene representation in Section 2, present a
probabilistic grammar model in Section 3, and discuss the
inference algorithm in Section 4. We report the experimental
results in Section 5, and conclude this paper with a discus-
sion in Section 6.

2 REPRESENTATION: ATTRIBUTE HIERARCHY

Given an input image, our goals include: i) recovering the
scene geometry structure, ii) partitioning the image into
semantic planar regions, and iii) reconstructing the planar-
wise 3D scene model. These goals can be unified as solving
the optimal parse graph with geometric and semantic attrib-
utes. In this section, we overview the hierarchical represen-
tation of scene entities and their attributes.

Camera Parameter We assume that there is no distortion,
no skew, and that the camera optical center coincides with
the image center. Thus we need to estimate camera focal
length f and camera viewing directions. The viewing direc-
tions can be described by Manhattan frames since we con-
sider Manhattan type urban scenes. We subtract the image
center from the coordinate of each pixel to facilitate
representation.

2.1 Geometric Attributes from Edge Statistics

In man-made scenes, texture gradients and edges are not
arbitrarily oriented, but reflect camera orientations with
respect to the scene and surface layout in 3D world. Hence,
we can extract the geometric attributes from edge statistics.

2.1.1 Attributes of Edges and Parallel Lines

In pinhole camera model, a family of parallel lines share the
same direction in 3D space and project to straight edges
which all point to the same point on the image plane, i.e,,
the vanishing point. Thus each line segment in images has
two geometric attributes:

e A vanishing point (z;,y;) on the image plane to
which an edge points to. This can be directly
obtained by clustering oriented edges based on their
2D directions in images [28].

e A 3D direction. Every family of parallel lines is asso-
ciated with a vanishing point. As Fig. 3 illustrates, it
follows from perspective geometry that a 3D ray
from the camera center O to a vanishing point is par-
allel to the associated family of parallel lines. There-
fore, the direction of an edge pointing to the
vanishing point (z;,;) is the unit vector by normal-
izing the triple vector (x;,y;, f) where f is the camera
focal length.

2.1.2 Attributes of Local Manhattan World

Outdoor urban scene often contains a mixture of local Man-
hattan worlds [6]. Each local Manhattan world is a block of
well aligned buildings with three sets of orthogonal parallel

‘b (x2,y2,f)

‘= (x1,y1,f)

Fig. 3. lllustration of surface normal. A planar region often contains two
sets of orthogonal parallel lines converging at two vanishing points
(x1,11) and (z2,y2), respectively. f is the camera focal length. Thus the
surface normal is the cross-product of the two Manhattan axes (z1,y1, f)
and (x2,y2, f) in the camera coordinate (taking camera position O as the
origin).

lines. Each set of parallel lines has a vanishing point (z;, y;)
and 3D direction 6 = (z;, y;, f). We refer to the rays from the
camera origin O to the vanishing points as the Manhattan
axes. Thus each local Manhattan world has the following
geometric attributes:

e A Manhattan frame with three orthogonal Manhat-

tan axes {('rla Y1, f)? (x2a Y2, f)? (353»93, f)}
e An estimated focal length f following [4]

f2 = _(xhyi) : (5'377%)7

This follows the orthogonal condition that

i#je{1,2,3) )

It is worth noting that the estimated focal length will be
propagated to the scene node in the attribute parse graph.
The equation (z;,y;) - (zj,y;) = (@k, Yx) - (x;,y;) poses con-
sistency conditions among the attributes of Manhattan axes.

2.2 Attribute Planar Representation

The region-based hierarchy comprises of three representa-
tions: surface fragments, planar surfaces, and composite
surfaces. Fig. 4 summarizes the attribute planar
representation.

We augment every hierarchical entity with both semantic
and geometric attributes. The semantic attribute of an entity,
e.g., planar surface, is simply its semantic category. In this
work, we consider a few semantic categories for outdoor
scenes, including “building”, “tree”, “ground”, “sky” and
“other”. A composite surface might include two or more
categories. The geometric attributes of scene entities are
used to describe the spatial properties of the hierarchy,
which will be introduced in the rest of this section.

2.2.1 Geometric Attributes of Surface Fragment

We assume that each super-pixel in images is the projection of
a surface fragment in 3D space. A super-pixel is a small region
of pixels that are connected and share similar appearance
features, and often have the same semantic label. Since these
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Surface Surface Normal;
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Focal Length ;
Scene Vanishing Points;

Manhattan Frames;

Fig. 4. lllustration of hierarchical scene entities in the attribute planar
representation and their associated geometric attributes. Each entity is
also entitled with a semantic attribute, e.g., building, sky etc.

super-pixels often correspond to regions in buildings or
marked road/highways/ground, which have edges or tex-
ture gradients, from which we can extract short edges and
estimate which vanishing points they point to.

As Fig. 3 illustrates, each super-pixel has two geometric
attributes:

e Two vanishing points: {(z1, 1), (22, y2) } and thus two
Manbhattan axes {vi = (z1,y1, f), v2 = (29,¥2, /) };
e A surface normal direction which is the cross-product
of the two Manhattan axes n = (x1,y1, f) X (22, y2, f).
For each superpixel, we extract its vanishing points and
surface normal from local edge statistics, which might not
be necessarily accurate. To improve robustness against
noises, these statistics will be pooled together in a bottom-
up process and propagated to other nodes in the attribute
parse graph. For a super-pixel that does not contain suffi-
cient number of edges, its surface normal will be inferred
from the surrounding scene context.

2.2.2 Geometric Attributes of Planar Surface

We group spatially connected super-pixels into planar sur-
faces based on two types of features. i) Appearance features.
We extract color and texture features to train a supervised
classifier and assign a region to a few categories, e.g.,
‘building’, ‘tree’, etc. ii) Geometry features. Superpixels in
the same planar region should share the same surface nor-
mal. Both features are used in the iterative parsing process
to form planar surfaces.
Each planar surface has three geometric attributes

e Two vanishing points: {(z1,v1), (z2,42)} and thus
two Manhattan axes {(x1,v1, f), (2, y2, /) };

e Normal direction. As aforementioned, surface nor-
mal is simply the cross-product of the two Manhat-
tan axes.

e A contact line and thus its 3D relative depth. The
surface plane will intersect with other planes and

form the contact lines. For example, Fig. 4 shows
three planar surfaces of the building and their
ground contact boundaries which can be approxi-
mated by straight lines respectively.

The contact lines may be occluded (e.g., between a build-
ing facade and the ground) or blurred (line between two
surfaces of the building). Fortunately this can be solved by
calculating the intersection line between adjacent surface
planes, which usually points to one of the Manhattan axes
associated with the surface planes. These geometric attrib-
utes are sufficient to reconstruct a planar-wise 3D scene
model [21].

2.2.3 Geometric Attributes of Composite Surface

A composite surface consists of several planar surfaces that
are physically connected. These surfaces might not belong
to the same Manhattan frame. A composite surface has set
of geometric attributes that pose consistency constraints
between its children nodes in the parse graph. Its geometric
attributes include:

e All vanishing points and surface normal of its planar
surfaces.
Contact lines between adjacent surfaces.
A linear spline fit of the contact lines with the
ground.

As planar surfaces, e.g., building facade, are usually
occluded by foreground objects, e.g., vehicles and trees, and
their boundaries to the ground plane are often partially visi-
ble. In Section 4 we shall introduce a robust method for esti-
mating contact splines under these severe occlusions.

2.3 Geometric Attributes of Scene
The whole scene will pool over the geometric attributes
from its components. As it is shown in Fig. 2, the root node
S has the following geometric attributes.

e Camera parameters are shared by all nodes in the
parse graph. Note that our model can be extended to
reason other camera parameters, including skew,
and optical center etc.

e m Manhattan frames {(z;;,yij, f),i =1,2,..., m,j =
1,2, 3.} for each local Manhattan world.

These global geometric attributes are used to constrain
the geometric attributes of the entities in the parse graph.
For example, the number of possible normal directions for
planar surfaces are determined by the number of Manhattan
axes detected for the global scene. In contrast, the past
methods [22] [21] usually fix the number of surface normal
orientations during inference.

3 PROBABILISTIC SCENE GRAMMAR

In this section, we introduce a probabilistic treatment of the
proposed attribute scene grammar.

3.1 Attribute Scene Grammar
Attribute grammar was first proposed by Han et al. in [17].
We extend it to model hierarchical scene representations in
both 2D images and 3D scene space.

An attribute grammar is specified by a five-tuple:
G = (Vn, V7, SR, P), where Vy is a set of non-terminal
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Texture Edge
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Fig. 5. lllustration of the five grammar rules. Each rule is associated with
a set of geometric attributes that impose constraints over the parent
node and children nodes. Layout rule: a children planar surface is sup-
porting the other n children entities; siding rule: two children planar sur-
faces of the same semantic label are spatially connected; affinity rule:
two children planar surfaces have the same appearance; mesh rule:
multiple children surfaces appear in a 2D mesh structure; instance rule:
links a terminal node and its image representation.

nodes, V7 is a set of terminal nodes, S is the root node for
the whole scene, R is a set of production rules for spatial
relationships, and P is a probability for the grammar.

These production rules can be recursively applied to gen-
erate a hierarchical representation of the input scene,
namely the Parse Graph. A parse graph is a valid interpreta-
tion of the input 2D image and the desired 3D scene. A
grammar generates a large set of valid parse graphs for one
given image of the scene.

Terminal Nodes. We partition the input image into a set of
superpixels and use them as terminal nodes. Each super-
pixel is the projection of a surface fragment in space. We
denote all terminal nodes as V; = {a, X(a)}, where X(a)
denotes a set of attribute variables.

Non-Terminal Nodes are sequentially produced by merg-
ing terminal nodes or other non-terminals with grammar
rules. Each node represents a planar surface or composite
surface in space. There is one root node for the whole scene,
i.e., S, and five production rules. Every non-terminal node
in the parse graph can be decomposed into children nodes
or grouped with other nodes to form parent nodes by apply-
ing the above grammar rules.

We denote all non-terminal nodes as Vy = {(S, X(5)),
(A, X(A))} where S denotes the root node for the whole
scene, A non-terminal node and X(A) the attributes of A.
Fig. 5 illustrates these five rules and Fig. 2 shows one parse
graph that is capable of generating the input image.

Global and Local Attributes. Each graph node is associated
with a number of attributes, which are either globally or
locally defined.

Global attributes X (S) are defined for the root node S and
inherited by all graph nodes. It includes i) a list of possible
categories (e.g.,’building’) that appear in the input image,
denoted as C; ii) geometric attributes, including the camera
focal length f and Manhattan frames detected in the
input image. Formally, we have X(S5) = (f,m,{M;},C),
t=1,..,m. As aforementioned, each Manhattan frame M;

TABLE 1
Definitions of Grammar Rules and Their Geometric Attributes

Rules Notations Geometric Attributes
Rizlayout A — (A, Ar,... Ay)  X(A) = (fym, My, 6, l,,lk,C)
RQZ Sldmg A— (Al, Az) X(A) (9“ I\/IZ, lk, )

Rg: Afﬁmty A— (Al,Ag) X(A) = (9, 1\’1, (J)

Ry: Mesh A— (A, Ay, .00 X(A) = (6,M,vy,v,0)
Rs:Instance A —a X(A) =(6,M)

In the parse graph, each graph node corresponds to a grammar rule, and the
attributes of a graph node are inherited by its offspring nodes.

contains three orthogonal axes. Local attributes are defined
over properties of scene entities, e.g., normal orientation for
planar regions. These attributes are usually inherited from
the global attributes and thus should be consistently
assigned. Fig. 2 illustrates global geometric attributes in the
left panel and local geometric attributes in the right panel.
Semantic attributes are not included in the figure. Both
global or local attributes are used to impose constraints to
confine the inference process.

3.2 Probabilistic Formulation for 3D Scene Parsing
We utilize a hierarchical parse graph to explicitly encode the
attribute hierarchy (introduced in Section 2) for joint recog-
nition and reconstruction purposes. In particular, terminal
nodes with semantic attributes are used to derive the
semantic region partition of the input image; the whole set
of graph nodes with geometric attributes can be used to
derive a full 3D scene model for reconstruction purpose.

Formally, let G denote the parse graph to solve, A all
attributes in G. Given an input image I, we aim to compute
a scene interpretation W in a joint solution space

= (A,G). (3)

The optimal solution W* can be obtained by maximizing a
posterior probability (MAP)

P(W|I) o exp{—|Vy| — X E(I, G, A)}, )

where |Vy| indicates the number of non-terminal nodes.
The first item is used to encourage compact parse graphs.
A8 is a weight constant.

The energy E(I, G, A) is defined over the hierarchy of G,
specifying how well G can generate the input image I. Let
r(A) indicate the grammar rule used for the graph node A.
We have,

E(,G,A) = Z ﬂr(A)Et(IaX(A)‘T(A))a (®)

AeVy

where r(A) € [1..5] indicate the grammar rule associated
with A, B, 4 is a weight constant that is dependent on r(A).
The energy term FE'(I, X(A)|r(A)) is associated with the
nonterminal node A and conditioned on the corresponding
grammar rule r(A).

Table 1 summarizes the definitions of grammar rules. In
the rest of this section, we introduce the definitions of the
five grammar rules.

3.2.1 Grammar Rule R, : Layout

The Layout rule Ry : A — (Ao, Ay, ..., A,) states that a pla-
nar surface A, is supporting n entities. In this work we
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Fig. 6. lllustration of piece-wise linear spline model for the contact
boundaries of composite surfaces. Each spline consists of several con-
trol points and the straight lines between these points. Note that each
straight line correlates with one planar region in the composite surface.

assume that all stuff (objects, building, etc.) are standing
upright on ground. A, indicates the ground region in
images (e.g., grass, road, side walk etc.), and A,,..., A,
indicate the n children surfaces or composite surfaces pro-
duced by the other grammar rules. Fig. 5 illustrates the use
of R;, which merges two building blocks/surfaces and the
ground. The rule R, is used to generate the root node S.

The geometric attributes of S include both global and
local attributes. Global attributes include a list of semantic
categories, camera focal length f and m Manhattan frames.
Each Manhattan frame includes three axes in space that are
orthogonal to each other. The latter includes the normal
directions of children surfaces, e.g., 6y for Ay, and the con-
tact lines between A and each of the m entities, denoted as
Iy Formally, we have X(S)= (f,m,M;,0,0;, I, )i,
k=1,...,n, where 6;; represents one of the normal orienta-
tions in the ¢th children node, C a list of category labels.

We use continuous splines l_;; to represent contact bound-
aries between Aj and {4;}s, which are assumed to be piece-
wise linear. Fig. 6 illustrates four typical scenes where con-
tact splines are highlighted in red. A piece-wise linear spline
consists of several control points and straight lines between
them. Each straight line corresponds to the contact bound-
ary of a planar region. In urban images, a contact line is usu-
ally parallel to one of the parallel families falling on the
support region. This gives rise to a useful observation: if we
can detect local edges in the given planar region and cluster
these edges to parallel families, the direction of a contact
line can be simply determined. With this observation, we
will develop an effective search algorithm for discovering
contact splines in Section 4.

We define the energy function for R; from two aspects.
First, the normal direction of Ay and normal directions of
the children surfaces should be as distinct as possible.
This is different from the previous works [13] [22] which
assume orthogonality between adjacent surfaces. Second,
contact lines are likely to go through vanishing points
that have edges falling on the children planar region Aj.
Thus, we have,

E'(L X(A)|Ry) =) D(60,0i;) + A™ > minD(I, v)
0] lely,
Yv e MM e X(4;),
(©)

where [ indexes the line segments included by the spline Iy,
M the Manhattan world in X(A), D the cosine distance

between two directions in 3D space. Note that v indicates
one of the Manhattan axes in the Manhattan world associ-
ated with A;.

3.2.2 Grammar Rule R,: Siding

The siding rule Ry : A — (A1, Ay) states that two planar sur-
faces or composite surfaces of the same label are spatially
connected in the scene. The parent node A is a composite
surface and the children nodes A;, A, could be planar surfa-
ces. It requires that children surfaces share the same seman-
tic label (e.g., building) but have different normal
orientations. These surfaces are usually, but not necessarily,
orthogonal with each other.

The attributes of R, include X(A) = {(6;, M), lx,c},
where 6; is normal direction of the children surface A;,
i=1, or 2, M; the Manhattan frame associated with A4, I,
the contact line between children surfaces, and ¢; the seman-
tic label.

The energy function for R; is derived from two aspects.
First, the normal directions of two siding surfaces should be
as distinct as possible, which is the case for most urban
images. Second, the contact line of A is likely to point to the
vertical vanishing point, denoted as vy, as Fig. 5 illustrates.
Formally, we have,

BN X(A)|Ry) = D™(6;,0;) + XY D (I, vo),  (7)
i#] k

where X4 is a weight constant. Note that the semantic attrib-
utes c are used as hard-constraints: a graph node of R is only
applicable for children surfaces that have the same label.

3.2.3 Grammar Rule Rs: Affinity

The affinity rule Ry : A — (A;, Ag) states that two planar sur-
faces have similar appearance and thus should belong to
the same planar surface. The children surfaces A4; and A,
should be spatially connected in 3D scene. In practice, since
they could be disjoint in images due to occlusions, we allow
the grouping of disjoint regions by this rule if they have
high affinity in appearance. The attributes of A are defined
as X(A) = (6,M, ¢) where 6 is the normal direction, M the
related Manhattan frame, and ¢ the semantic label, which
are shared by the two children surfaces.

The grammar rule R3 requires that the children surfaces
A; and A, should have the same surface normal. Thus, the
geometric attributes serve as hard constraints and we only
utilize the appearance information to define the energy
function E'(1, X(A)|R;3).

The energy function for R3 include both unary and pair-
wise terms, defined over superpixel partition of the parent
surface A. Let s and ¢ index two neighbor superpixels, ¢, the
semantic label of superpixel s. We have,

E'LX(A)Rs) =) ¢y(c) + XD 1(es =),  ®)

where ¢,(c;) returns the negative class likelihood ratio, and
1() is an indicator function. Like [46], we estimate ¢,(c;) by
applying a non-parametric nearest neighbor estimator over
training data. The second term is defined as a Potts/Ising
model [47] to encourage homogeneousness of the labeling.
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For a planar region, we estimate its surface normal based
on the statistics of the straight edges falling on this region,
as introduced in Section 2. However, if an image region
does not contain any straight edge, there is no cue to tell its
normal direction directly, and we need to infer its normal
from the scene context. In Section 4, we shall introduce a
robust inference method to deal with these uncertainties.

3.2.4 Grammar Rule R,: Mesh

The mesh rule Ry : A — (A;, Ag, A3, . ..) states that multiple
surfaces are arranged in a mesh structure. Children surfa-
ces should be spatially connected to each other and share
the same normal direction. In perspective geometry, a
mesh structure in images can be described by two orthog-
onal vanishing points. Formally, the attributes of A
include: X(A) = (0, M, vy, vy, ¢), where vi = (z1,y1, f), Ve =
(22,92, f) are the coordinates of two vanishing points,
0 = vy X vy is the normal direction of A, ¢ the semantic
label. The children surfaces share the same normal direc-
tion 6 with A.

The energy function for R, is defined over edge statistics.
As Fig. 6 illustrates, straight edges in a mesh region usually
merge at two vanishing points. Let £(A) denote the set of
local edges in A, and 1; = (z,y;,d;) € £ an edge at the posi-
tion (z;,,) with the orientation d;. Let v; denote the image
coordinate of the vanishing point v;. If an edge 1; points to
v;, we have (z;y;)+ )\;ncscij =v;. Thus, we define
EY I, X(A)|R5) as
min [|o; — (25,9,) = \PG 2 ©)

E'(LX(A)|R) = Y min
1,c804) Y

where i = 1,2. The least squares energy term is minimized
while all edges in the mesh region exactly point to one of
the two VPs, i.e., vi or vs.

3.2.5 Grammar Rule R5: Instance

An instance rule R5 : A — a instantiates a terminal node to
its image representation, including both texture appearan-
ces and edge segments. Fig. 5 illustrates how the grammar
rule R; links a non-terminal node to two image representa-
tions: texture map that is represented as histogram of ori-
ented gradient (HoG), and straight edge map.

The potential E*(I, X(A)|R;) is defined over two aspects:
i) the region A should be perceptually homogeneous in
appearance; ii) the directions of local straight edges should
be consistent with the Manhattan frame assigned or inher-
ited from the parent nodes of A. Let I; and I, denote two
neighboring pixels in region A, we have

E'(LX(A)Rs) =Y g(L, 1) + A™ >~ minD(1,v)
ik le€(A)

Vv eMMe X(A),

(10)

where ¢(I;, I;;) returns the negative confidences of two pixels
being homogeneous, A™ is a weight constant. The model
g(I;,1;;) is directly estimated by the superpixel partition
method [40] with both HoG features and edge features. The
second term is used to encourage that all edges in A should
be parallel to one of the Manhattan axes in X (A).

Fig. 2 shows an exemplar parse graph generated by the
proposed grammar. Each grammar rule describes a kind of
spatial relationships, e.g., R; for supporting, R, for being
co-block, R3 and R, for being co-planar. These simple rules
are capable of producing a large number of tree structured
representations. It is worth noting that the tree structures
are augmented to be parse graphs by linking spatially con-
nected nodes of the same layer. This graph representation
encodes both 2D appearance and 3D geometric properties
of the hierarchical scene entities (as introduced in Section 2).

4 INFERENCE

Our inference algorithm aims to construct an optimal parse
graph by sequentially applying five grammar rules to maxi-
mize a posterior P(W|I). This task is challenging because: a)
the optimal parse graph does not have a pre-defined struc-
ture; b) the attribute constraints over attribute hierarchy are
of high-order.

We develop a stage-wise method to solve the optimal
parse graph, which includes three major stages. First, we
introduce a heuristic search method to calculate camera
parameters, i.e., the geometric attributes of the root node S,
and fix the parameters A during inference. Note that the
semantic attributes of S (i.e., possible category labels) are
manually set for all outdoor scenes. Second, we solve region
labeling to optimization by minimizing the energy function
of Eq. (8) w.r.t. superpixel labels ¢,. Eq. (8) is a typical Mar-
kov Random Field (MRF) type energy function that consists
of a unary term and a regularization term of Potts/Ising
prior. It can be efficiently solved by the loopy belief propaga-
tion (LBP) method [9]. We use the results of region labeling
to initialize the desired parse graph. Finally, we introduce a
data-driven Markov Chain Monte Carlo (DDMCMC)
method to sample the posterior probability P(I|WW).

Algorithm 1 summarizes the proposed inference algo-
rithm. It includes two bottom-up computation steps and an
iterative sampling step. The first two steps are used to nar-
row the search space and thus speed up the sampling proce-
dure. We introduce these steps in the rest of this section.

Algorithm 1. Building Parse Graph via Attribute
Grammar

1: Input: Single Image I;
2: Pre-processing: partition I into superpixels; detect vanishing
points [28];

: Bottom-up: calibration by heuristic search (Section 4.1);

4: Bottom-up: region labeling by belief propagation method
(Section 4.2);

5: Initialize the parse graph G;

6: Iterate until convergence,
-Randomly select one of the five MCMC dynamics
-Make a proposal accordingly to reconfigure the current

parse graph;

-Accept the change with probability;

W

4.1 Bottom-Up Computation: Calibration by
Heuristic Search

We develop a stochastic heuristic search procedure to solve
the optimal camera focal length and Manhattan frames. We

first utilize the Hough Transform based voting method by
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Li et al. [28] to detect families of parallel lines and their asso-
ciated vanishing points (VPs). Next, we apply Eq. (1) over
every pair of parallel families to estimate the camera focal
length, by assuming they are orthogonal to each other. Let S
denote the number of pairs of parallel families. We associate
a binary variable to every pair of parallel families, denoted
as d; € [0,1]. Let d; = 1 if the ith pair of families is orthogo-
nal otherwise d; = 0. Thus, we can solve the camera focal
length f by minimizing the following objective

1 X
min <Y ||difi = f, (1n
i=1

FAdy S

where f; is the estimation of the camera focal length from
the ith pair of parallel families. To estimate f;, we assume
the ith pair of parallel families to be orthogonal and apply
Eq. (1). To optimize Eq. (11), we introduce a heuristic search
procedure. It starts with initializing at random {d;} fol-
lowed by two iterative steps. Step 1: estimate focal length f;
from the ith pair if d; = 1 and average over all estimations
to get f; Step-2: assign d; to be 1 with the probability of
1/{1 +exp(|f; — f])}. We iterate these two steps until
convergence.

4.2 Bottom-Up Computation: Belief Propagation for
Region labeling

The goal of this step is to assign every superpixel of the

input image to one of five semantic labels, including ‘sky’,

‘building’, ‘ground’, ‘trees” and ‘other’. This is equal to esti-

mating the optimal superpixel label assignment so as to

minimize the energy function of Eq. (8) w.r.t. c,.

We estimate the unary term in Eq. (8) as follows. Each
superpixel is described using 20 different features, includ-
ing shape, location, texture, color and appearance [46]. We
first extract these features for training images. Next, we
associate a semantic label with a training superpixel if
50 percent or more of the superpixel overlap with the
ground truth segment mask of that label. Last, we compute
class likelihood ratio for each superpixel in the test image,
using the nearest neighbor estimator [46].

We use the efficient loopy belief propagation algorithm
by Felzenszwalb et al. [9] to finalize the labeling. We use
the min-sum algorithm that works by passing messages
around the graph defined by the connected grid of super-
pixels. Each message is a vector of dimension given by
the number of possible labels, 5 in this work. Since the
smoothing term ¢_,, . is semi-metric, the propagation
algorithm can converge in O(|C|NT) time where |C| is the
number of labels, N is the number of superpixels, and 7'
is the number of iterations. Each iteration is very fast
since we only have |C| =5 candidate labels. We fix the
maximal iteration number to be 10.

4.3 Iterative MCMC Sampling

Following the computations of camera calibration and
region labeling, we design a data-driven Markov Chain
Monte Carlo sampling algorithm (DDMCMC) [47] to search
for the optimal parse graph. It starts with an initial parse
graph that includes one root node and a set of terminal
nodes, as illustrated in Fig. 7 (a). Next, we merge neighbor

(c)

Fig. 7. Diffusion and jump dynamics. (a) An initial parse graph that
includes a root node and terminal nodes; (b) jump dynamic: birth (from
left-hand to right-hand) or death (from right-hand to left-hand) of non-ter-
minal nodes; (c) diffusion dynamic: re-grouping superpixels.

terminal nodes or superpixels that have the same semantic
label to obtain non-terminal nodes using the grammar rule
Rs. This step is greedily conducted and the resulting parse
graph will be refined by the later iterative steps.

In the following, we reconfigure the graph using a set of
Markov Chain Monte Carlo (MCMC) dynamics. These
dynamics are either jump moves, e.g., creating new graph
nodes or deleting graph nodes, or diffusion moves, e.g.,
changing node attributes. Diffusion dynamics move the
solution in a subspace of a fixed dimension whereas jump
dynamics walk between subspaces of varying dimensions.
These dynamics are paired with each other to make the
solution change reversible [47], e.g., creating nodes paired
with deleting nodes, changing attributes paired with itself.
These stochastic dynamics are able to guarantee conver-
gence to the target distribution p(W/I).

Formally, a dynamic is proposed to drive the solution
state from W to W’, and the new solution W’ is accepted
with a probability, following the Metropolis-Hastings strat-
egy [47]. The acceptance probability is defined as,

a(W — W) = min(l,P(WlI)Q<W - Wl)), 12)

PWDHQW' — W)

where Q(W' — W) is the proposal probability.

We introduce five types of MCMC dynamics. The
dynamics 1-2 are jump moves and the other dynamics are
diffusion moves.

Dynamics 1-2: birth/death of nonterminal nodes are used
to create or delete a nonterminal node and thus transition
the current parse graph into a new graph as illustrated in
Fig. 7.

The proposal for creating a nonterminal node was made
by first selecting at random one of the four grammars,
Ry,...,or Ry. Next, for the selected grammar rule, we
obtain a list of candidates that are plausible according to the
predefined constraints. Taking R, as example, two children
nodes should i) have different normal orientations; ii) be
spatially connected; and iii) be assigned to the same seman-
tic label. Each candidate in this list is represented by its
energy. Let BY denote the ith candidate for the grammar
rule Ry, E'(1, X(BY)|R;) the related energy, and |B!| the
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number of graph nodes in the sub-tree rooted at the node
B. The list has the following form

L' = {Bf E'1, X(BY)|Ry),i =1,2,...}. (13)
The proposal probability for selecting BY is calculated as,

E'L X(BY)|Ri) /| B
> E'(LX(BY)| Ry /| B}

QW —W)=1- (14)

Similarly, we obtain another set of candidate nodes to
delete based on their energies,
L = {Df E'(I, X(D})|Ry),i = 1,2,...}. (15)

The proposal probabilities for deleting the node DY is calcu-
lated as follows:

ENL X(D))|Ri) /| D
— !/ — (3 2 .
W s axwhroy

Dynamics 3-4: Merging/splitting regions are used to re-
label superpixels around boundaries between adjacent
semantic regions. These jumps are used together to polish
the results of image labeling obtained by the bottom-up
computation in Section 4.2. Fig. 7c illustrates a typical
example.

We obtain a list of candidate proposals for the merge/
split dynamics as follows. First, we take superpixels located
on boundaries of neighbor regions as graph nodes. These
superpixels are usually with big ambiguities and the dis-
criminative methods [9] do not necessarily work well.
Second, we link all adjacent graph nodes to form an adja-
cent graph, and measure the links between adjacent nodes
with appearance similarities. Third, we sample edge status
of ‘on’ or ‘off’ based on edge similarities to obtain connected
components (CCPs). We select one of the CCPs and change
its semantic label to get a new solution state 1W'. This proce-
dure is similar to that used by Barbu et al. [2] for the graph
labeling task. Let CCPF denote the ith CCP, h(CCPF W)
denote its label confidence in the solution ¥, the list of pro-
posals is denoted as follows,

L™ = {CCP! h(CCPHW),h(CCPHIW'),i =1,2,...,}. (17)

The proposal probability for selecting the ith candidate is
defined as follows:

k / k
QU — W) = h(CCP; W)/ h(CCP;|W)

- : . (18)
>, h(CCP|W") /h(CCPEW)

Dynamic 5: Switching Geometric Attributes is used as dif-
fusion dynamics to sample the geometric attributes of graph
nodes. As aforementioned, the geometric attributes of the
root node, including camera focal length and Manhattan
frames, are calculated and fixed during inference. The geo-
metric attributes of nonterminal nodes mainly include their
respect normal orientationand contact splines.

Switching Normal 0. In a local Manhattan world, every
normal direction corresponds to a Manhattan axis or a fam-
ily of parallel lines. To determine the normal of a surface
region, we cluster straight edges within this region to form

families of parallel lines, each corresponding with a Vanish-
ing Point (VP) [28], and find two orthogonal VPs that are
mostly supported by straight edges. These two VPs can
be used to determine the surface normal. Fig. 3 illustrates
the geometric relations between surface normal and local
edge statistic. Since edge directions include many noises,
we use the estimated surface normal orientations to initial-
ize geometric attributes of graph nodes at the beginning
and refine them in the iterative sampling step. In particular,
during inference we select at random one of the planar sur-
faces and change its normal randomly. We set the proposal
probability to be constant so the acceptance probability is
simply based on the posterior probability ratio.

Estimating Contact Spline I. This dynamic is used to greed-
ily estimate contact splines of composite surfaces. We take
the grammar rule R;: A — (Ao, Ay, As, ..., A,) for instance
to introduce our method for estimating contact spline. As
aforementioned, a contact spline consists of multiple control
points and straight lines between them, representing the
boundary between the children surface A; and the support-
ing surface Aj. Our method is motivated by the following
observation: a contact line of A is likely to go through one of
the vanishing points associated with A.

Let V denote the set of vanishing points (VPs) detected
in the input image, E' the set of edges with two end
points: < I),I. >€ E’ in the children surface A,. Let B’
denote the set of boundary points and b € B’ the point
coordinate. Our goal is to infer n + 1 control points {c'},
and search for the associated VPs to which the contact
lines point to, denoted as v'. We have the the following
objective function

min » " Dist(c"", ¢’,v') + A" Dist(c" ', ', b7)
(e}
ist(I,, 1, v/ (19)
+ )‘edDISt(lwlt,Vz)
st. VeV bl eB, <1 Il >cE,

where the function Dist(c’~!, ¢/, v?) returns the minimal dis-
tance between the point v and the contact line < ¢!, ¢’ >.
A and A\ are two constants. Eq. (19) minimizes the follow-
ing three types of distances.

1) Dist(c’ !, ¢, v) , the distance between the desired
contact line < ¢!, ¢’ > and the VP it points to ;

2) Dist(c" 1, ¢, b"7), the distance between the desired
contact line and each of the boundary points, or fit-
ting errors of the desired contact line;

3) Dist(l},1},v!), the distance between an edge segment
in A’ and the desired VP v'.

In general, Eq. (19) is a NP-hard optimization problem.
Fortunately, the feasible space is not huge and thus even an
exhaustive search method is computationally acceptable. In
order to deal with outliers and noises, we use the RANSAC
technique to search for the approximate solution. We greed-
ily solve the optimal contact spline, in order to reduce the
computational complexity of inference.

Fig. 6 shows four exemplar results of our approach. It is
worth noting the ground boundaries could be partially
occluded or even fully occluded by objects (e.g., vehicles) or
stuff (e.g., tree). The proposed method can predict the cor-
rect contact lines since edge statistics from the regions are
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used for reasoning, whereas the alternate methods[22] [21]
usually fail.

5 EXPERIMENTS

In this section, we apply the proposed method to recover 3D
scene model from a single image, and evaluate it in both
qualitative and quantitative ways.

5.1 Evaluation Protocols

Datasets. We use four datasets for evaluations. The first one
is the CMU dataset collected by Hoiem et al. [22], which
provides annotations of occlusion boundaries and surface
normal orientations for each image. We use a subset of 100
images provided by Gupta et al. [13]. The surfaces are
labeled with three main classes: ‘ground’, ‘sky’ and
‘vertical’, and the “vertical’ class is further divided into five
subclasses: ‘left’, ‘center’, ‘right’, ‘porous’, and ‘solid’. There
are only three possible orientations for vertical surfaces.
Note that our method associates normal orientations with
Manhattan frames and a scene might have more than three
Manhattan frames. To utilize these datasets, we arrange the
discovered surface normal orientations from left-hand to
centroid to right-hand and link them with the labels of ‘left’,
‘center’ or ‘right’. We used 50 images for training and the
rest for testing as [13].

We further collect three sets of images that do not follow
the Manhattan assumption, e.g., having more than 3 vanish-
ing points or including planar regions that are not orthogo-
nal nor parallel to each other. For every image, we manually
annotated vanishing points (VPs), region labels and surface
normal orientations. The first dataset LMW-A consists of 50
images from the collections in [22], and there are 4.6 VPs
per image on average. The second dataset LMW-B consists
of 50 images from the dataset of EurasianCities in [7] with
4.2 VPs per image on average. The third one LMW-C con-
sists of 950 images selected from the PASCAL VOC [8] and
Labelme projects [41]. There are 3.5 VPs per image on aver-
age. These three datasets are used for testing only since our
model is learned on the training subset of the CMU dataset.

Model Training. We utilize an empirical study of log-
probability over training samples to estimate the optimal
parameters in the model p(W|I), including s, Bs and kernel
widths used for the exponential functions. For each of these
parameters we empirically quantize its possible values, e.g.,
0.1,0.3,...,1 for B,. Our goal is to select the optimal value
for each parameter, i.e., determine the optimal parameter
configuration. With each possible parameter configuration,
we need to simulate a parse graph for every image from the
annotations. To do so, we revise Algorithm 1 as follows: i)
skip the step 4 for region labeling, since we have access to
the annotated region label map and normal map; ii) only
use the dynamics 1-2 (birth/death of non-terminal nodes)
during MCMC sampling. This revised Algorithm 1 usually
converges within a hundred of iterations (with dozens of
graph nodes). After convergence, we calculate the log-prob-
ability log p(W|I). Thus, we select the parameter configura-
tion that achieves the maximum log-probability. Similar
simulation based estimation method has been used in previ-
ous works [47] [56].
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Fig. 8. Focal length estimation. (a) Input image overlaid with parallel fam-
ilies of edges (colored), each of which corresponds to a vanishing point
on the image plane; (b) focal length estimated by orthogonal pairs of
vanishing points; (c) focal length estimated by non-orthogonal pairs of
vanishing points. The true focal length is 500 (red dotted lines).

Implementation of Algorithm 1. We resize each image so its
maximal dimension is 500 pixels. We use the method by
Ren et al. [40] to partition an image into 200-300 superpixels.
We set the maximal iteration numbers to be 2000. It costs 5-6
minutes for Algorithm 1 to converge on a Dell Workstation
(i7-4770 CPU@3.4 GHZ with 16 GB memory).

Baselines. We compare our method to two previous meth-
ods: i) the geometric parsing method by Hoiem et al. [22], ii)
the method by Gupta et al. in [13]. Both methods can recover
the three main geometric classes and the five vertical sub-
classes. We use the default parameters in their source codes.

We further implement three variants of the proposed
method to verify the effects of individual grammar rules. i)
Ours-I, that uses the grammar rules R1 (Iayout), R2 (siding),
R4 (mesh), and R5 (instance) ; ii) Ours-1I, that uses the gram-
mar rules R1 (layout), R3 (affinity) and R5 (instance); and
iii) Ours-1II, that uses all five grammar rules. All these
implementations include the grammar rules R1 and R5 and
use all the five dynamics in inference. Note that the rule R3
encodes geometric information as well since it requires chil-
dren nodes to have the same normal orientation. In addi-
tion, we include the region labeling results of the Belief
Propagation algorithm for comparisons, denoted as BP.

5.2 Results

Camera Calibration. We first demonstrate how the orthogo-
nality conditions of parallel families can be used to estimate
camera focal length, as introduced in Section 4.1. We use
the image shown in Fig. 8a, where one vertical VP and four
horizontal VPs are detected. For each pair of VPs, we solve
the Eq. (1) to estimate the camera focal length. Fig. 8b plots
the estimated focal length (vertical direction) from four
orthogonal pairs of VPs, i.e., the vertical VP and each of the
four horizontal VPs. Fig. 8c plots the focal length estimated
from non-orthogonal pairs VPs. The true focal length for
this image is 500, plotted as red dotted lines in both figures.
We can observe that i) in Fig. 8b, the estimations of focal
length are roughly same with each other (low variance) and
the average focal length 510 is quite close to the true value
(high accuracy); ii) in Fig. 8c, in contrast, the estimations are
with large variance, and most of them are not close to the
true value. Therefore, we need to jointly estimate focal
length and orthogonality conditions between parallel fami-
lies. To do so, we use the heuristic search method (see Sec-
tion 4.1) to minimize Eq. (11).

Qualitative Evaluations. Fig. 9 visualizes the results of nor-
mal map estimation over iterations of Algorithm 1. There
are three main stages, stage-1: camera calibration, stage-2:
region labeling and stage-3: iterative MCMC sampling. In
the first row of Fig. 9, from left to right we plot the input
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Fig. 9. Results of normal map estimation over iterations in Algorithm 1.
Row-1: input image (left), surface normal map (middle) obtained during
the stage-2, and that during the stage 3 (right). Row-2: three normal
maps obtained during the stage 3 after 300, 500 and 1,000 iterations,
respectively. Each color indicates a unique normal orientation.

image, surface normal map obtained during the stage-2 and
surface normal map during the stage-3 (after 100 iterations).
In the second row we plot three surface normal maps esti-
mated during the stage-3 after 300, 500 and 1,000 iterations,
respectively. The figures are overlaid with contact splines
when applicable. We can observe that the surface normal
map is continuously refined over iterations. Fig. 10a plots
the convergence curve of Algorithm 1 on this input image.
The curve shows how the energy E(I, G, A) changes w.r.t.
iterations. We also plot the convergence curve of our previ-
ous inference algorithm [31] for side-by-side comparisons.
Note that we scale the two curves so that they start from the
same energy. We can observe that Algorithm 1 converges
after 1,000 iterations which is a lot faster than [31]. In addi-
tion, Fig. 10b visualizes the changes of average energy on all
the 50 images from the LMW-A dataset. We plot the average
optimal energy calculated from groundtruth annotations for
comparisons. These two sub-figures clearly demonstrate the
advantages of the proposed inference algorithm over [31].
The reasons are two-fold: i) the bottom-up computation
step for region labeling in Algorithm 1 provides good initi-
alizations to the MCMC sampling process; and ii) the newly
introduced five dynamics are more effective than the
dynamics used in [31].

Fig. 11 shows exemplar results of Ours-III on the CMU
dataset [22]. In each cell, we plot (a) the input image

......... Liuetal. [31]
—— Optimal energy
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......... Liuetal. [31]
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ours-lil

Average Energy
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Fig. 10. Convergence of Algorithm 1. (a) Convergence curve calculated
for the image in Fig. 9, i.e., the energy at each iteration. The solid red
line indicates the optimal energy calculated from the ground-truth anno-
tation. (b) Convergence curve calculated on 50 images from the dataset
LMW-A, which plots the average energy at each iteration. We plot the
average optimal energy (red line) of these images for comparisons.

Fig. 11. Exemplar results on CMU dataset. (a) Input image overlaid with
families of parallel lines; (b) surface normal map; (c) estimated depth
map; (d-e) newly synthesized views;(f) depth map by Hoiem et al. [22];
(g) estimated parse graph where the colored rectangles correspond with
the semantic region in subfigures (b).

overlaid with families of parallel lines, where each color
indicates a parallel family; (b) the layout partition where
each color indicates one planar surface; (c) the estimated
depth map where darker pixels indicate being closer to the
camera and vice versa; (d-e) three synthesized images from
novel viewpoints; (f) the depth map estimated by [22]; and
(g) the parse graphs created during inference. In Fig. 11g we
only show the top levels of the parse graph where each col-
ored rectangle corresponds to one planar surface in subfig-
ure (b) with the same color. Our results are very promising
considering that only a single viewpoint of the scene is
available and no groundtruth 3D scene models are used for
training. Taking the first example for instance, since the far-
right building region in purple is occluded by vehicles and
trees, none of the previous methods can tell where the con-
tact line between the facade and ground is. Our approach,
however, is able to infer the contact line from edge statistics
extracted from this region.

Figs. 12 and 13 show results of our method on the data-
sets LMW-A and LMW-B, respectively. We also include the
results by Hoiem et al. [22] for comparisons. In each cell, we
show (a) input image overlaid with parallel families; (b)
superpixel partition overlaid with VPs; (c) surface normal
map by our method; (d) depth map by our method; (e-g):
three novel viewpoints synthesized; and (h) depth map
by [22]. From the comparisons between (d) and (h), we can
observe that our method is capable of creating better 3D
models than [22]. Fig. 14 visualizes exemplar results of our
method on the dataset LMW-C. While the recovered 3D
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Fig. 12. Exemplar results on LMW-A dataset. For each cell, we show (a) an input image overlaid with families of parallel edges; (b) the superpixel par-
tition overlaid with vanishing points; (c) the obtained surface normal map; (d) the depth map by the proposed method Ours-lll; (e-g) three newly syn-

thesized views; (h) the depth map estimated by Hoiem et al. [22].

scene models are considerably accurate, these results dem-
onstrate a few drawbacks of the proposed method. First,
our current model does not deal with foreground objects,
e.g., vehicle in the first image and the pedestrian in the sec-
ond image. Second, our method cannot work well for iso-
lated structure-less regions, e.g., tree or plants in the third
and fourth images, which do not include rich geometric reg-
ularizations. Third, our method assumes surface regions to
be planar which might not be true, e.g., the image in the sec-
ond row. In addition, for the fifth image, our approach does
not group the two building regions to be a single block
because of the large occlusions by a chunk of plants; for the
sixth image, our method fails to identify the normal orienta-
tions of the facades on the left-hand side building because
all straight edges are grouped into two parallel families.
These two failure examples call for a more principled way

for dealing occlusions and failures of pre-processing steps
(e.g., vanishing point detections), which will be discussed in
Section 6.

We further apply the proposed method Ours-III over
indoor images to demonstrate its generalization capability.
We use the dataset collected by Zhao and Zhu [56] that com-
prises of 220 indoor images for training. Note that the data-
set includes foreground objects (e.g., sofas, tables), and we
only focus on the reconstruction of room layout. We con-
sider three indoor categories: floor, ceiling, and wall. The
implementation details remain the same as Ours-III. Fig. 15
plots several exemplar results, including input images, lay-
out segmentation and newly synthesized images. From
these results, we can observe that the recovered surface nor-
mal maps are very accurate even when there are clutters in
front of the scene entities, e.g., walls are occluded by sofas

(b)

(e) ® () (h)

Fig. 13. Results on the LMW-B dataset. For each cell, we show (a) an input image overlaid with families of parallel edges; (b) the superpixel partition
overlaid with vanishing points; (c) the obtained surface normal map; (d) the depth map by the proposed method Ours-Ill; (e-g) three newly synthe-

sized views; (h) the depth map estimated by Hoiem et al. [22].
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Fig. 14. Results on the LMW-C dataset by the proposed Ours-Ill.
Column-1: input image; Column-2: surface normal map; Column-3:
newly synthesized view. In Rows 1-4, we plot four images for which
Ours-lIl can successfully estimate the 3D scene models. In Rows 5-6,
we visualize two failure examples. For the image in the 5th row, our
method fails to group the two building regions to be a single block
because of the chunk of occlusions by plants; for the image in the 6th
row, our method fails to identify the normal orientations of the facades
on the left-hand side building.

(first image) or tables (third image). The obtained 3D mod-
els, however, can be further improved by reconstructing
foreground objects, e.g., persons, tables, pillars etc.

Quantitative Results. We report the numerical compari-
sons of the various methods in terms of normal orientation
estimation and region labeling.

For normal orientation estimation, we use the metric of
accuracy, i.e., percentage of pixels that have the correct nor-
mal orientation label, and average accuracies over test
images for every dataset. On the estimation of main geomet-
ric classes, i.e., ‘ground’, ‘vertical’, and ’‘sky’, both our
method and baseline methods can achieve high-quality

TABLE 2
Numerical Comparisons on Normal Orientation Estimation
CMU LMW-A LMW-B LMW-C
dataset [22]
Guptaetal. [13] 73.72% 6221% 59.21%  58.39
Hoiem etal. [22]  68.80 % 56.30 % 52.70%  53.28
Liu et al. [31] 76.34 % 6790 % 6430% 62.34
Ours-I 74.24 % 6735% 63.18% 60.41
Ours-1I 75.87 % 6839% 6429% 62.78
Ours-III 79.53 % 71.40%  68.51%  65.92

Fig. 15. Results on indoor images by the proposed Ours-lll. Each row
shows an exemplar result. Column-1: input images; Column-2: surface
normal maps; Column-3: newly synthesized views.

results with accuracy 0.98 or more. Therefore, we focus on
the vertical subclasses, like [13], and discard the superpixels
belonging to ground and sky while calculating the accura-
cies for all methods.

Table 2 reports the numerical comparisons on four data-
sets. From the results, we can observe the following. First,
the proposed Ours-III clearly outperforms the other baseline
methods on all the four datasets. Taking the CMU dataset
for instance, the method by Gupta et al. [13] has an average
accuracy of 73.72 percent, whereas ours performs at
79.53 percent. On the other three datasets that have accurate
normal orientation annotations, the improvements by our
method are even more. As stated by Gupta et al. [13], it is
hard to improve vertical subclass performance. Our
method, however, can improve these two baselines with
large margins. Second, Ours-III clearly outperforms the
other two variants, i.e., Ours-I and Ours-II, that use less
types of grammar rules. These comparisons justify the effec-
tiveness of the proposed grammar model. Third, Ours-III
has good margins over our previous method [31], which fol-
lows the same methodology. As summarized in Section 1.2,
we improve [31] with a sophisticated representation model
and an advanced inference algorithms, which are justified
to be effective.

Table 3 reports the region labeling performance on the
four datasets. We use the best spatial support metric as [13],

TABLE 3
Numerical Comparisons on Region Labeling
CMU LMW-A LMW-B LMW-C
dataset [22]
BP 65.23% 55.23%  58.72%  56.34
Guptaetal. [13]  68.85% 59.21%  60.28%  60.19
Hoiem etal. [22]  65.32 % 58.37%  57.70%  59.25
Liu et al. [31] 72.71% 66.45%  65.14% 63.17
Ours-1 69.34% 68.09% 63.75% 62.32
Ours-II 75.69% 7015% 6591 % 6547
Ours-1II 78.32% 71.23% 7024 %  68.79
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which first estimates the best overlap score of each ground
truth labeling and then averages it over all ground-truth
labeling. We discard the superpixels belonging to ground
and sky while calculating the accuracies of all methods. Our
method outperforms the method [13] with the margins of
9.47, 12.02, 9.96, 8.60 percentages on the four datasets,
respectively. It is worth noting that all the three variants of
our methods outperform the baseline BP that provides initi-
alizations of region labeling. These comparisons show that
jointly solving recognition and reconstruction can bring
considerable improvements over recognition accuracies.

6 CONCLUSIONS

This paper presents an attribute grammar for 3D scene
reconstruction from a single view. We introduce a unified
grammar model that includes five grammar rules to gener-
ate a hierarchical image representation for both 2D recogni-
tion and 3D reconstruction purposes. The developed
inference method can efficiently search the constrained
space by optimizing both the 2D surface layout and geomet-
ric attributes required for estimating 3D scene model. Exten-
sive evaluations on challenging image collections show that
our method outperforms the other popular methods for sin-
gle-view 3D scene reconstruction.

This work contributes a generic probabilistic framework
for jointly solving 2D recognition problems, e.g., classifica-
tion, detection, tracking, etc., and 3D reconstruction prob-
lems, e.g., camera calibration, depth estimation, geo-
localization, etc. There are two particular directions to
exploit in the future: i) developing new solution for existing
joint tasks, e.g., calibration from tracking [12]; ii) motivating
novel vision tasks, e.g., jointly solving tracking and geo-
localization. Taking the failure examples in Fig. 14 for exam-
ple, we might jointly solve vanishing point detection and 3D
reconstruction to avoid pre-mature decisions in pre-proc-
essing steps.

Our method is currently limited to the reconstruction of
background scene entities, e.g., building, ground, tree, etc.
The developed representation and algorithms, however,
can be easily extended to parse foreground objects as well,
e.g., car, human, etc. This is actually equal to jointly solving
object detection, region labeling and 3D scene reconstruc-
tion. The 3D position or pose of an object shall be regular-
ized by the global geometric attributes, e,g., camera focal
length. Another limitation of our approach is that it aims at
reconstructing major surfaces, e.g., building, road, etc,
rather than fine-grained scene entities, e.g., edges, corners,
rectangles, which leads to a coarse 3D scene model. A
research direction in the future is to jointly reconstruct these
scene entities to obtain a fine-grained scene model.

In addition, a critical problem in the line of this research
is how to accelerate the inference algorithm which is slow
because of its stochastic nature. Since the goal is to create a
hierarchical parse graph, a promising way is to utilize the
composition principle of the hierarchy with a more efficient
inference algorithm, e.g., dynamic programming,.
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