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Abstract—In computer vision, tracking humans across camera views
remains challenging, especially for complex scenarios with frequent
occlusions, significant lighting changes and other difficulties. Under
such conditions, most existing appearance and geometric cues are
not reliable enough to distinguish humans across camera views. To
address these challenges, this paper presents a stochastic attribute
grammar model for leveraging complementary and discriminative hu-
man attributes for enhancing cross-view tracking. The key idea of our
method is to introduce a hierarchical representation, parse graph, to
describe a subject and its movement trajectory in both space and time
domains. This results in a hierarchical compositional representation,
comprising trajectory entities of varying level, including human boxes,
3D human boxes, tracklets and trajectories. We use a set of grammar
rules to decompose a graph node (e.g. tracklet) into a set of children
nodes (e.g. 3D human boxes), and augment each node with a set
of attributes, including geometry (e.g., moving speed, direction), ac-
cessories (e.g., bags), and/or activities (e.g., walking, running). These
attributes serve as valuable cues, in addition to appearance features
(e.g., colors), in determining the associations of human detection boxes
across cameras. In particular, the attributes of a parent node are in-
herited by its children nodes, resulting in consistency constraints over
the feasible parse graph. Thus, we cast cross-view human tracking as
finding the most discriminative parse graph for each subject in videos.
We develop a learning method to train this attribute grammar model from
weakly supervised training data. To infer the optimal parse graph and its
attributes, we develop an alternative parsing method that employs both
top-down and bottom-up computations to search the optimal solution.
We also explicitly reason the occlusion status of each entity in order
to deal with significant changes of camera viewpoints. We evaluate the
proposed method over public video benchmarks and demonstrate with
extensive experiments that our method clearly outperforms state-of-the-
art tracking methods.

1 INTRODUCTION

1.1 Background and Motivations

Tracking humans across multiple cameras while observing them

moving in the scene has been playing a critical role in most

high-level video understanding tasks, e.g., activity recognition,
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Fig. 1. Human tracking across camera views. (a)-(d): four camera views.
The subject in orange has significantly different appearance while being
observed in different camera views, and is occluded by other subjects
in the view (d). This subject can be readily tracked if we can identify its
attributes, e.g., activities, accessories, moving direction etc.

and thus has attracted many attentions in the past decade [51].

Most existing methods employ appearance cues [21] to train dis-

criminative [54] or generative models [45] with shallow [8], [20]

or deep [45] representations. The recent technical breakthroughs

in deep learning techniques [18], [39] achieved remarkable im-

provements in multiple recognition problems, e.g., face, audio,

etc. These techniques, however, have two limitations which restrict

their applications in surveillance systems. (I) Deep learning based

methods are mostly driven by the availability of large-scale labeled

data and the effective end-to-end training on powerful computing

devices, which are difficult to collect for human tracking tasks. (II)

Appearances of the same person might be significantly different

while observing he/she moving in the scene because of the varying

imaging conditions (illuminations, occlusions, etc.). To address

these limitations, in this work, we will develop a unified multi-

view human tracking framework to leverage the advantages of

deep representations with minimal efforts of data preparation.

The proposed tracking solution is motivated with the fact that

a human observer can robustly identify persons who appear in

multiple surveillance areas of complex scenarios. Such a cor-
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respondence problem is the core of cross-view human tracking

task. While the intrinsic working schema of human brain remains

unclear, it is well accepted that we human being can immediately

perceive object’s attributes and use them to guide the matching

process [16]. A few typical examples are shown in Figure 1 which

includes four camera views of the same scene at a certain time. The

three persons in subfigure (a) are performing different activities,

i.e. playing baseball, walking, and standing, respectively. The re-

identification of these three persons in other three camera views

becomes relatively straightforward if we can recognize the activity

labels of the detected human boxes. The other possible cues for

boosting cross-view identification task include (I) accessories, e.g.,

wearing hats or t-shirt, holding baseball bat; and (II) geometry

information, i.e., facing into or walking toward a landmark (e.g.

the building). These attributes directly confine the search space of

cross-view human re-identification as well as cross-view human

tracking. Moreover, in the past decade most such recognitions have

reached a level of accuracy, even under the various challenges(e.g.,

illumination changes, occlusions) [13].

There is thus a demand of leveraging various human attributes,

either semantic or geometric, static or dynamic, for robust multi-

view human tracking in videos. Though promising, a critical prob-

lem of this methodology is how to deal with the potential errors
made in the recognitions of human attributes. In this work, we will

introduce a stochastic grammar model to exploit human attributes

as extra cues, and develop an unified energy minimization formula

to avoid pre-mature decisions during inference. In comparisons

to previous efforts, our method will contribute in hierarchical

representation of human trajectories, bottom-up and top-down

inference, and effective learning (see the next subsection). Figure 1

shows a person in subfigure (a) and the tracked boxes of the same

subject in other three camera views.

1.2 Overview

The objective of this work is aimed at developing a robust solution

to cross-view human tracking in complex scenarios, which might

include various challenges, e.g., low resolution, frequent occlu-

sions, significant illumination changes, etc. Under such conditions,

appearance information are not reliable enough to identify the

same subject across camera views and thus lead to errors (e.g. ID

switches) in human tracking.

We propose an attribute grammar model for robust human

tracking. Our model embraces two principles. (I) Composition.

We describe the tracking of a human as a composition process,

which decomposes a human trajectory into tracklets, 3D human

boxes, and detection boxes, resulting in a hierarchical graphical

structure, called parse graph. Our grammar model comprises of

a few grammar rules, each of which is used to generate graph

nodes of parse graphs. These grammar rules explicitly define the

composition process, e.g., associating multiple boxes in different

camera views to be a 3D human box, grouping multiple sequent

3D boxes as a tracklet, etc. (II) Attribution. In parse graph,

we augment each graph node with a set of attributes, including

appearance (e.g., color, texture, gradients), motion (e.g., speed,

direction), accessories (e.g., glasses, bags, purses), and activities

(e.g., walking, running, turning). Attributes of a node will be

inherited by its children nodes, resulting in consistency constraints

between sibling nodes. Thus, given a video sequence, our goal is

to retrieve the most probable parse graph subjecting to various

attribute constraints.

We formulate the construction of parse graph from videos as

an energy minimization problem [35]. The energy function of a

candidate parse graph is a linear combination of energy terms

over individual graph nodes, of which describe the dissimilarities

between sibling nodes regarding their various attributes. The

weights of these terms are discriminatively learned from weakly

supervised training samples. Thus, the energy function is used

to measure how plausible a parse graph is as a valid trajectory

representation.

We develop a bottom-up and top-down inference algorithm to

retrieve the most probable parse graph for each subject in videos.

With an initial parse graph, our algorithm follows the Metropolis-

Hasting principle [35] to reconfigure the current parse graph using

a set of dynamics so as to simulate a Marko Chain in the joint

solution space. Those dynamics will select a subtree of graph

nodes in either top-down or bottom-up fashions and assign new

subject ID to the nodes of the selected subtree. We introduce a

binary indicator variable for terminal nodes, i.e. human boxes in

individual camera views, and explicitly infer its status. We will

also propagate attributes through the tree-structure from parent

nodes to children nodes, i.e. in a top-down fashion. In comparisons

to previous sampling methods [20], the designs of our method will

be able to make distant proposals, i.e. proposals those are far from

the current solution but still have high probabilities to be accepted.

1.3 Relationships to previous works

This work is closely related to the following research streams in

computer vision.

Multi-view object tracking is often formulated as a data

association task. A key research question is: how to find cross-

view correspondence at either pixel level [33] or region-level [14],

[2] or object-level [44]. Typical data association methods are

developed based on integer programming [12], network flow [43],

[5], marked point process [36], multi-commodity network [31],

and multi-view SVM [54]. Among these approaches, sampling

techniques bear the advantages of solving intractable optimization

and have been extensively studied in the past literature. For

example, Khan et al. [14] integrated Markov Chain Monte Carlo

method with particle filer tracking framework. Yu et al. [52]

utilized single site sampler for associating foreground blobs to

trajectories. Liu et al. [20] introduced a spatial-temporal graph to

jointly solve region labeling and object tracking by Swendsen-

Wang Cut method [4]. While promising, all these algorithms use

shallow representations which are sensitive to various challenges

(e.g., illuminations changes). In this work, we propose to integrate

sampling techniques with deep representation of human trajecto-

ries and design a set of reversible dynamics that can efficiently

search the joint solution space.

Tracking under wild conditions Tracking subjects of inter-

ests across multiple camera views with wide-baselines is essen-

tially an identification problem and the most popular features are

extracted based on appearance information (e.g., color, gradient).

However, in these scenes with significant illumination changes or

frequent occlusions, appearance information are not reliable, as

shown in Figure 1. In a particular camera view, a subject might

be occluded by other objects or is not visible. To address these

fundamental challenges, a natural solution is to integrate high-

level recognition outcomes with human tracking [6]. Moreover,

Yang et al. [48] explicitly addressed occlusions in a probabilistic

framework for multi-target tracking. Zhang et al. [53], Henriques
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et al. [10] and Pirsiavash et al. [27] introduced global optimization

frameworks to track objects over long-range, which are helpful to

recovering trajectories from occlusions. Milan et al.[23] addressed

multiple object tracking by defining bi-level exclusions. Wang

et al. [38] proposed to infer tracklets, i.e. short trajectories, and

further solved data association problem. Possegger et al. [29]

relied on geometric information to efficiently overcome detection

failures when objects are significantly occluded. These algorithms

achieved promising results but are restricted to shallow data

representations and lacks of formal modeling of human attributes.

In this work, we develop an attribute grammar to fill in this gap and

demonstrate its superiorities over alternative tracking methods.

Joint video parsing with multiple objectives has been

approved to be an effective way for boosting the performance

of individual objectives. For example, Wei et al. [40] introduced a

probabilistic framework for joint event, recognition, and object

localization. Shu et al. [32] proposed to jointly infer groups,

events, and human roles in aerial videos. Nie et al. [25] employed

human poses to improve action recognition. Park and Zhu intro-

duced an stochastic grammar to jointly estimate human attributes,

parts and poses [26]. Weng and Fu [41] utilized trajectories and

key pose recognitions to improve human action recognition. Yao

et al. [50] investigated how to use pose estimation to enhance

human action recognition. Kuo and Nevatia [17] studied how

person identity recognition can help multi-person tracking. Xu

et al. [46] developed a spatial-temporal reasoning framework for

jointly exploiting appearance, gestures, and actions of humans for

robust tracking. In this work, we follow the same methodology

and present a stochastic attribute grammar, as a formal language,

for joint video parsing. Our parsing framework can leverage

various semantic human attributes, including orientations, poses,

and actions, to narrow the search space in cross-view tracking task,

and significantly improve tracking robustness and accuracies.

1.4 Contributions and Organizations

The three contributions of this work include (i) a stochastic

attribute grammar model capable of integrating a diverse set of

human attributes for robust cross-view human tracking in complex

scenarios; (ii) an effective computational framework that can learn

grammar model from weakly supervised training data and infer

the most probable parse graph for each subject in videos; and

(iii) state-of-the-art performance on both public video datasets and

newly collected videos.

The rest of this paper is organized as follows. In section 2, we

introduce the proposed stochastic grammar for human tracking

problem. In section 3, we present how to efficiently learn the

grammar model from training data and perform effective inference

in videos. In section 4, we report evaluation results of the proposed

models and alternative methods on public video datasets. In

section 5, we conclude this work and remark the future research

directions.

2 STOCHASTIC ATTRIBUTE GRAMMAR FOR
CROSS-VIEW HUMAN TRACKING

This section presents a stochastic attribute grammar model for

cross-view human tracking.

K, R

Tracklets

Tracklet

3D boxes

2D Boxes

Subject

occlusion status

K intrinsic camera parameters

R extrinsic camera parameters

semantic properties

geometric properties

Fig. 2. Parse graph for a human trajectory. A video might include more
than one trajectories and thus multiple parse graphs.

2.1 Compositional Human Representation
We develop a compositional representation to describe the moving

trajectory of a human in videos. Figure 2 illustrates the proposed

graph representations, which embodies two principles.

(I) Composition. As illustrated, a human trajectory (top row)

can decompose into multiple tracklets, a tracklet comprises of

multiple 3D human boxes, and a 3D box corresponds to multiple

2D human boxes in individual cameras. This hierarchical decom-

position results in a tree-like structure, i.e. Parse Graph, which

includes both terminal nodes (i.e. human boxes) and intermediate

nodes (tracklets). For each node, there are often more than one

ways of compositions, and thus the compositional process must

determine the most probable structure in the compositional space.

(II) Attribution. Every graph node in the hierarchy represents

a trajectory, a tracklet, a 3D human box, or a 2D human box,

and is associated with a set of geometric and semantic properties.

For example, geometric attributes include moving directions, lo-

cations, poses, occlusion statuses, and moving speed. Semantic at-

tributes include accessories (e.g. bags, clothes) and activities (e.g.,

walking, running). We cluster these attributes into three groups,

and summarize them in Table 1. These attributes are used as

complementary discriminative information for identifying humans

across camera views that have significant viewpoint changes or il-

lumination variances. In such scenes, the conventional appearance-

or motion- based measures are not reliable and usually result in

failures of tracking. In contrast, object attributes (e.g., gender,

activities), once recognized, are intrinsically invariant against

illuminations or viewpoint changes and are thus fairly reliable in

complex scenarios.

The proposed attributed parse graph serves as a redundant and

informative deep representation for human trajectories in videos.

In comparisons to the previous shallow representation [51], [20],

attributed parse graph has the following two advantages. First, our

method allows different trajectory entities of the same subject to be

grouped based on different cues. For example, our method might

group tracklets A and B together since they have similar moving

speed, and group tracklets B and C together since they both wear

a red hat. Second, our representation model can adaptively exploit
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both low-level attributes (e.g., speed) and high-level attributes

(e.g., activities), which is critical to the success of human tracking

in complex scenario. Third, as a redundant representation, for a

given video sequence the optimal parse graph for a subject is not

unique which means that even local minimal solution can still

convey plausible parse graph for tracking purpose.

2.2 Stochastic Grammar
We introduce a stochastic grammar model to guide the construc-

tion of attributed parse graphs.

Definition 1 The movement trajectory of a subject in videos
is described using a stochastic grammar, specified by a five-tuple
G = (T ,N , P, S,R).

In the representation model G, T denotes terminal nodes, N
denotes non-terminal nodes, i.e. tracklets, P the probabilistic mod-

els, S the root node standing for a subject, and R = {r1, r2, ...}
a set of grammar rules. Note that a parse graph G is used to

describe a single subject, and a video sequence might include

multiple subjects.

Our grammar model comprises of a set of grammar rules r :
A→(A1, A2, ..., ) , each of which defines a type of generation

relationships between a parent node A ∈ N and its children nodes

Ai ∈ N ∪T . A children node can further decompose into a set of

children nodes. These production rules will be applied recursively

to generate a parse graph, representing a subject’s trajectory in

videos. In this work, we define four grammar rules.

• r1 : S→(A1, A2, ..., ), where the parent node S repre-

sents a trajectory and the children nodes are tracklets.

• r2 : A→(A1, A2, ..., ) where the parent node A denotes

a tracklet and the children nodes are either tracklets or 3D

human boxes. This grammar rule is used to recursively

decompose a tracklet into finer-level tracklets.

• r3 : A→(A1, A2, ..., ) where A and Ai denote 3D human

boxes and 2D human boxes, respectively.

• r4 : A→a which instantiates a non-terminal node A to be

a terminal node a. Herein, A represents a 2D human box,

and a represents the visual observation of A in images.

Among the above grammar rules, the rule r2 can be recursively

applied, and the rest rules will appear multiple times at certain

levels of a parse graph. In contrast to the recursive grammar

model, e.g., Liu et al. [22], our grammar model is non-recursive

and generates much less plausible parse graphs.

Definition 2 A parsing graph G is a tree structure expanded
from a root node by a sequence of grammar rules while respecting
the various attribute constraints.

We can expand a nonterminal node to a collection of non-

terminal or terminal nodes by applying grammar rules sequen-

tially. Each expansion generates a subtree. A terminal node repre-

sents a human box detected in videos. A nonterminal node A ∈ N
represents a sequence of human boxes over a certain period of time

(i.e. tracklets), or a cluster of 2D human boxes across multiple

camera views at the same time-point.

2.3 Attributes and Constraints
We augment every graph node with a set of attributes to describe

subject’s states in space-time domain. The attributes of a non-

terminal node A ∈ N are defined as follows:

X(A) = (v, l, t) (1)

TABLE 1
List of Nine Human Attributes.

Category Property Exemplar Values

Geometry
Direction vector
Speed scalar

Accessories

Glasses ‘Yes’, ‘No’
Bags ‘Yes’, ‘No’
Clothes ‘T-shirt’, ‘Coat’, ‘Suit’
Hats ‘Yes’, ‘No’

Semantics
Activities ‘walking’, ‘running’, ‘riding bike ’
Gesture ’standing’, ‘sitting’, ’bending’
Gender ‘male’, ‘female’

where v are a set of attribute values,l the center location of node

A in the scene, and t the time-stamp. Location coordinates are

defined on a reference camera view which can be projected into

other camera views or a world reference coordinate [19]. Similarly,

the attributes of a terminal node a ∈ T are defined as follows

X(a) = (o, l, t) (2)

where the binary variable o ∈ 1, 0 indicates the visibility of the

terminal node a. We have o = 1 if a subject is visible in the

current camera view; otherwise, o = 0.

In a parse graph, the attributes X(A) of a parent node A
will be inherited by its offspring nodes, which imposes a set

of constraint equations. For a graph node A → (A1, A2), the

associated equations are defined over the attributes of A and

A1, A2:

gi[X(A)] = fi[X(A1), X(A2)], i = 1, 2, 3, ... (3)

where gi(), fi() are projection functions of the attribute vec-

tors. For instance, let X(A) = (X1, X2) and X(B) =
(X1, X2, X3), B ∈ A.Child. Table 1 summarizes three groups

of attributes used in this work. Then an equation could be simply

an equivalence constraint (or assignment) for passing the informa-

tion between nodes A and A1 in either directions,

A.X1 = B.X1 (4)

The above equation is also used to define two parsing procedures.

(I) bottom-up message parsing, which passes the attributes of a

child node (i.e. B.X1) to its parent node A.X1. (II) top-down
message parsing, which passes the attributes of a parent node

(i.e. A.X1) to its children nodes (i.e. B.X1). We will develop

an inference algorithm that alternates these two procedures for

effective computing.

Proposition 1 Human detections of the identical person are
terminal nodes of the same parse graph.

The above proposition holds by the definition of parse graph.

Thus, the cross-view human tracking problem can be cast as

finding the most probable parse graph from videos. Specifically,

given human boxes detected in videos, we will apply the grammar

rules to group these 2D detections across camera views to form

3D human boxes, associate 3D human boxes to get tracklets

and cluster tracklets to obtain human trajectories. Among the

composition process, the attributes of levels of nodes should be

consistently assigned so as to ensure all attribute constraints are

satisfied. It is noteworthy that we will create multiple parse graphs

from the input videos, each corresponding to one of the subjects

in the scene.
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2.4 Energy Function
We formulate the construction of parse graphs as an energy

minimization problem (or maximizing a posterior probability).

We define the energy of a parse graph G to be the sum of the

energies of non-terminal graph nodes in G plus the energy of

placing terminal nodes in video frames.

E(G) =
∑
A∈N

Eattr(A) + Eterm(T ) (5)

For each non-terminal node A, its energy is defined over the

attributes,

Eattr(A) =
∑

B∈A.Child

∑
k

1(fk(A) �= gk(B)) (6)

where k is the index of all valid attribute constraints between non-

terminal nodes A and B.

We define the energy term Eterm(T ) to be the sum of

appearance in-consistency energies between visible terminal nodes

plus the constant penalties of placing nodes as invisible.

Eterm(T ) =
∑

ai �=aj

oi · oj · Eterm(ai, aj) +
∑
ai∈T

β · 1(oi = 0) (7)

where oi ∈ {1, 0} indicates the visibility of a node ai, and

β is a constant penalty. We define the appearance models for

terminal nodes by associating a filter H. Then Eterm(a1, a2) =
H · (φ(a1) − φ(a2)) is the dot product between the filter co-

efficients and the feature vectors extracted from the two human

detections. We will introduce the extraction of feature vectors φ()
in Section 4.

The energy function of Eq. (5) directly encodes attribute

constraints over non-terminal nodes, appearance consistencies

between terminal nodes, and visibilities of individual graph nodes.

The model parameters will be automatically learned from weakly

supervised data as introduced in the next section.

3 INFERENCE AND LEARNING

In this section we introduce the developed inference and learning

algorithms for cross-view human tracking.

3.1 Inference for cross-view human tracking
The goals of our inference algorithm are two-fold: (i)model
selection, to determine the number of subjects in videos; (ii) state
estimation, to construct the optimal parse graph for every subject,

i.e., model estimation.

We solve the above two goals jointly in a Bayesian framework

by maximizing a posterior probability P (G|I) where G pool all

the parse graphs desired in the input videos I. According to Bayes

rules, we have:

P (G|I) ∝
∏
m

P (I|Gm)P (G) (8)

We define the likelihood model using the energy functions (5),

i.e. P (I|Gm) = exp{−E(Gm)/K} where K is a constant. We

define the prior model to encourage small number of parse graph

P (G) = exp{−|G|} where |G| is the number of subjects.

We develop an efficient cluster sampling algorithm following

the data-driven Markov Chain Monte Carlo (MCMC) schema [35].

Traditional sampling techniques, e.g. Gibbs sampler [15], often

suffer from efficiency issues. In contrast, clustering sampling

methods [28], [3] will group variables into clusters and re-label

a cluster of nodes together. In our method, with an initial parse

graph G, we use a set of dynamics to reconfigure G and accept

the the new state G′ with a probability. The acceptance probability

is defined following the Metropolis-Hasting strategy [35]:

min

[
1,

P (G′|I)Q(G → G′)

P (G|I)Q(G′ → G)

]
(9)

where Q(G′ → G)) is the proposal probability.

Algorithm 1 summarizes the proposed inference algorithm. We

use five dynamics that specify either jump or diffusion moves

between solution states. Jump dynamics are paired with each other

to preserve detail-balancing in random walk. In the rest of this

subsection, we first introduce the initializations of G and then

introduce the designs of five dynamics.

Initializations Our inference algorithm comprises of the fol-

lowing three types of pre-processing.

• Cross-view camera calibration. To obtain the projection

matrix between two camera views, we follow the conven-

tional structure-from-motion pipeline [34]. It comprises

of detection of interests point, finding corresponding us-

ing RANSAC method, and performing bundle adjustment

method to obtain the camera motions.

• Human detections. We employ the popular Faster Region-

based Convolution Neural Network method [30] to detect

humans in videos. We fine-tune the pre-trained network

models over our training videos.

• Recognitions of human attributes. Given a terminal node

or non-terminal nodes (e.g. tracklets), we can directly

estimate its speed and moving direction from visual inputs.

The recognitions of other attributes, e.g., accessories, ac-

tivities, gestures and genders, will need off-line training of

machine learning models. We will introduce the training

of human recognition modules in Section 4.

Dynamic I and II: addition/deletion of parse graphs. This

pair of dynamics are used to add a new parse graph (or a subject)

or remove one of the parse graphs in G at each iteration. As To

add a new parse graph, we first collect all detected human boxes

not assigned to any IDs, extract their appearance features (see

Section 4), and run K-means method to get clusters of nodes.

Each cluster is considered to be candidate parse graph. For each

candidate, we use their average pair-wise similarities to define

proposal probability Q(). We greedily apply the Dynamic III over

the selected cluster of nodes to create a parse graph. For the

dynamic II, we will randomly select one of the parse graphs in

G and assign its terminal nodes to be background. The proposal

probability is set to be a constant.

Dynamic III and IV: addition/deletion of non-terminal nodes

in a parse graph. This pair of dynamics are used to reconfigure a

parse graph through adding new graph nodes or deleting existing

graph nodes. To add a new graph node (Dynamic III), we will

randomly select one of the existing parse graphs in G, and create

a list of candidate nodes, which have not been assigned to any ID.

The proposal probability of selecting a candidate node is defined to

be proportional to its average similarities with the terminal nodes

in the selected parse graph. To delete a nonterminal node, we

create a list of candidates involving all nonterminal nodes, and

specify a proposal probability for each candidate according to its

energy (i.e. (5)). Once selected a node, we will delete it and its

offspring nodes together.



6

Algorithm 1 Inference.

1: Input: multiple-view video sequences

2: Initializations of cross-view calibrations, human detections

and attribute recognitions.

3: Construct initial graphs G;

4: Iterate until convergence,

- Randomly select one of five dynamics

- Make proposals accordingly to change solution state

- Accept the change with a probability

Dynamic V: switching nodes between parse graphs. This

dynamic is used to split a trajectory entity (e.g., tracklet, 3D

human boxes) from one parse graph and add it to another parse

graph. To do so, we use the same strategy used for Dynamic IV to

generate candidate nodes in a randomly selected parse graph. The

selected node along its offspring are added to the corresponding

layers (i.e., tracklets, 3D human boxes, or 2D human boxes of

another parse graph selected.

Dynamic VI: changing attributes of graph nodes. The at-

tributes of a graph nodes are mostly provided with confidences,

and there is thus a demand to exploit the alternative recognition

results. To do so, we will randomly select a node in the hierarchy

and change one of its attributes to be alternative values with a

probability. The proposal probability of a designed value is defined

to be proportional to its recognition confidence. Once changed, we

will propagate this new attribute to its offspring nodes.

Among the above dynamics, the Dynamics I through V result

in jump moves in the solution space through bottom-up compu-

tations, and the dynamic VI results in diffusion changes through

top-down propagation. It is noteworthy that the proposed model

is computational efficient due to the structured solution spaces,

defined by the hierarchical parse graph. In particular, our method

can adaptively determine the best scale to optimize, from low-

level graph elements, e.g., tracklets, to high-level graph elements,

e.g, long trajectories. In this way, the sampling method is able to

switch the labels (trajectory IDs) of a big chuck of elements, and

thus accelerate the mixing process.

3.2 Learning of Grammar Model

We utilize an empirical study over training samples to estimate the

optimal parameters of the energy function E(G), including filter

parameters H, kernel widths used for the exponential functions

and other hyper-parameters. We use weakly supervised training

data, each of which is only provided with human trajectories,

without parse graphs. Our goal is to select the optimal value for

each parameter, i.e., the optimal parameter configuration. To do so,

for each of these parameters we empirically quantize its possible

values, e.g. 0.1, 0.3, ..., 1 for a constant. With each possible

parameter configuration, we need to simulate a parse graph for

every image from the trajectory annotations.

In parameter learning, we revise Algorithm 1 as follows: i) skip

the step of initializations, e.g., detection, tracklets generations,

since we have access to the annotated human trajectories; ii)

only use the dynamics III and IV (birth/death of non-terminal

nodes) during MCMC sampling. This revised inference usually

converges within a hundred of iterations (with dozens of graph

nodes). After convergence, we calculate the energy E(G). Thus,

we select the parameter configuration that achieves the minimal

energy. Similar simulation based learning method has been used

in previous works [35] [22].

4 EXPERIMENTS

We apply the proposed grammar model over multi-view videos to

track humans in the scene and compare to other popular tracking

methods on the same video dataset.

Datasets To evaluate the proposed method, we compare with

other state-of-the-arts using four datasets:

(1) DARPA dataset. This is a video dataset collected for the

DARPA MSEE program and was used by Liu et al. for multi-

view human tracking [19]. The videos were captured in three

scenes: parking lot, garden, and office areas. There are 8, 6, and

10 cameras mounted on top of building or wall, respectively. For

each scene, there are two groups of cameras and each group has

overlapping camera views. For each camera view, there is one

video sequence of 8-10 minutes long.

(2) PPL-DA dataset. We collect a new dataset aiming to cover

people’s daily activities. This dataset consists of 3 public facilities:

foot court, office reception, and plaza. The scenes are recorded

with 4 GoPro cameras, mounted on around 1.5 meters high tripods.

The produced videos are also around 4 minutes long and in 1080P

high quality. We further annotate the trajectories of every person

inside the scene with cross-view consistent ID. This dataset was

used in our previous work [46].

(3) EPFL dataset . This dataset is collected by Berclaz et

al. [5], including five scenes. For each scene, there are 3-5 cameras

and each video is about 3-5 minutes long.

For each of the above three datasets, we incorporate 10% of

the videos as augmented training set and the rest as testing set.

The training data are used to learn model parameters and train

classifiers for recognizing human attributes (as introduced later).

The learning process is only done once and applied to all datasets.

All parameters are fixed in the experiment.

We also annotate object attributes for all the videos of the

DARPA dataset, and used the ground-truth annotations for ablation

experiments. We only annotated the high-level attributes, i.e.,

accessories and activities. We use the labeling tool VATIC [37]

to reduce the labeling efforts. In particular, we manually provide

attribute labels for each object at a video frame and use VATIC to

propagate these object attributes to the following video frames.

Implementation of the proposed method We implement the

Algorithm 1 as follows. To obtain feature vectors of terminal

nodes, i.e. φ(), we will employ the powerful deep convolution

neural network [11]. In particular, we fine-tune the CaffeNet

using people image samples with identity labels. The network

consists of 5 convolutional layers, 2 max-pooling layers, 3 fully-

connected layers and a 1000-dimensional layer connected by the

classification loss. Similar to bag-of-words (BoW), such a network

plays the role of a codebook, which describes a person image with

common people appearance templates. For each image, we run

the forward pass through the trained network to get the 1000-

dimensional output layer as its feature vector.

In order to quantize the contributions of various human at-

tributes (summarized in Table 1, we implemented five variants of

the proposed method. (a) Ours-I, that does not utilize any human

attributes; (b) Ours-II, that only utilizes the geometry attributes,

i.w. direction and speed, as shown in Table 1; (c) Ours-III: that

only uses the attributes of Accessories; (d) Ours-IV: that only uses

the attributes of Semantics (i.e., activities, gesture and gender); (d)
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Fig. 3. Sampled qualitative results of our proposed method on DARPA
(Row 1) and PPL-DA datasets (Rows 2 and 3), and EPFL (Row 4). Each
row shows two camera views at the same time, and the tracked subjects
are identified with colors.

Ours-V, that uses all the human attributes. We apply these variants

over the same testing videos for ablation analysis.

We extract human attributes (as listed in Table 1) as follows.

First, we compute average speed of each tracklet, and project its

movement direction in images to the reference camera view. Two

moving directions are considered to be same if their relative angle

is less than 15 degrees. Second, we train a neural network to

recognize accessories, including glasses, bags, clothes, and hats

and genders. For each attribute, e.g., hats, we annotate attribute

label (Yes or No) for each subject in training videos. Each of these

attributes labels are related to two output units and share the same

CNN network. These deep models were trained once, and are fixed

through the experiments over various datasets. Third, to recognize

gestures or activities of an individual, we train a deep neural

network to categorize the classical human pose/action variations.

We use the PASCAL VOC 2012 action dataset, augmented by

our own collected images. We use four activities: ‘walking’,

‘running’, ‘riding bike’, ‘skate boarding’, and three gestures:

‘sitting’, ‘standing’ ,‘bending’, which cover people’s common

types of gestures/activities. With about 5000 training images, we

fine-tune a 7 layer CaffeNet, with 5 convolutional layers, 2 max-

pooling layers, 3 fully-connected layers. We consider each gesture

or activity as a binary class and thus the final output of the CaffNet

has 14 output units.

We employ the Faster Region-based Convolution Neural Net-

work method [30] to detect human boxes in videos. We use the

pre-trained model and fine-tune it over the training videos. In

testing, the pruning threshold is set to be 0.3. We apply Sequential

Shortest Path (SSP) [27] to initialize tracklets. The sampling is set

TABLE 2
Results of attribute recognitions on the testing subset of the DARPA

dataset.

Category Attribute Classes Precision Recall Rate F1

Accessories

Glasses
Positive 73.5 77.3 75.3
Negative 83.2 85.6 84.3

Bags
Positive 91.2 93.5 93.3
Negative 89.4 82.3 85.7

Clothes
T-shirt 88.1 79.3 83.4
Coat 85.0 88.4 86.6
Suit 81.2 79.3 80.2

Hats
Positive 90.2 89.5 89.8
Negative 91.3 93.7 92.4

Semantics

Gender
Male 95.1 96.3 95.6

female 96.3 94.7 95.5

Gestures
standing 87.3 85.5 86.4
sitting 75.3 74.6 74.9

bending 85.2 83.1 84.1

Activities

walking 78.5 81.3 79.8
running 88.3 79.1 83.4
biking 93.9 90.2 92.0
skating 84.1 8.1 86.5

Average 86.5 85.7 86.1

to finish after 1000 iterations, which achieves decent results. In

initializations, we assign two boxes in different camera views to

the same subject if their projection boxes overlap with each other.

To handle streaming videos, we run Algorithm 1 over a

window of 200 frames and slide it forward at the step of 20
frames. For each window, we utilize the results from the previous

window as initial solution. Algorithm 1 usually converges within

1000 iterations. On an DELL workstation (with 64GB memory,

i7 CPU @2.80GHz, and NVIDIA Tesla K40 GPU), our algorithm

can process on average 10 frames per second.

Metrics We evaluate the various tracking methods using the

following metrics [47], including:

• TA, Multiple Object Tracking Accuracy, number of cor-

rectly matched detections over total number of ground-

truth detections;

• TP, Multi Object Tracking Precision, the average ratio of

the spatial intersection divided by the union of an esti-

mated object bounding box and the ground-truth bounding

box.

• FRG↓, number of trajectory fragments;

• MT, mostly tracked, percentage of ground truth trajecto-

ries which are covered by tracker output for more than

80% in length;

• ML↓, mostly lost, percentage of ground-truth trajectories

which are covered by tracker output for less than 20% in

length;

• IDSW↓, ID Switch, the number of times that an object

trajectory changes its matched id.

Herein, ↓ indicates that a metric is better if smaller.

Qualitative Results
Fig. 3 shows exemplar results of the proposed method on

three datasets, including DARPA (the first row), PPL-DA (the

second and third rows), and EPFL (the fourth row). For each

scene, we show two camera views which are overlaid with the

tracked subjects. Every subject is identified with a unique color.

These videos pose great challenges to cross-view tracking in many

aspects, including severe occlusions (rows 3 and 4), significant

lighting changes (Rows 1 and 2), and large pose changes (rows 3

and 4), etc. Under such complex conditions, the proposed method
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ID
S

F1
0.90.800.70 1.00.600.50

TA

F1
0.90.800.70 1.00.600.50

F1
0.90.800.70 1.00.600.50

TP

Fig. 4. Tracking Performance v.s. accuracies of human attribute recog-
nitions. horizontal-axis: average F1 scores; vertical-axis: TP (top), TA
(middle) and IDS (bottom). The triangle in red indicates the accuracy of
the attribute recognition method used in this work..

TABLE 3
Quantitative tracking results on the DARPA dataset. There are five
implementations of the proposed methods: Ours-I, that does not
explore human attributes; Ours-II, that explores only geometry

attributes; Ours-III, that explores only the attributes of accessories;
Ours-IV, that explores only the semantic attributes; Ours-V, that

explores all human attributes.

Metrics TA(%) TP(%) MT(%) ML(%)↓ FRG↓ IDS↓
MDNet [24] 86.7 88.9 92.3 8.6 65 14

Ours-V 85.2 87.1 84.5 9.5 68 19
Ours-IV 81.3 86.1 84.5 10.1 75 25
Ours-III 78.3 83.2 83.3 11.7 81 27
Ours-II 75.9 80.8 82.6 12.0 89 31
Ours-I 74.5 78.9 80.7 12.5 97 43

SSP [27] 72.3 74.5 75.0 14.6 102 59

mvSVM [54] 68.5 71.8 72.7 15.9 124 82
KSP [5] 71.6 73.4 74.3 14.1 244 59

DCT [1] 52.4 54.3 69.4 18.8 243 85
AVT [49] 63.5 64.1 78.8 17.2 198 71
LSHT [9] 62.1 60.7 70.6 15.3 173 79

Geodesic[29] 64.2 66.1 74.2 14.5 340 73

can still achieve robust tracking with the informative attribute

grammar.

Ablation Experiments on the DARPA dataset
We apply the proposed method over the DARPA dataset

and perform ablation experiments to analyze the contributions

of human attributes. Table 2 reports the precision rate and recall

rate of the human attribute recognition method used in this work.

The average recall rate is %86.5and the average precision is

%85.7 While these results are moderately acceptable, there are

still considerate amount of errors or false alarms made by the

recognition algorithms. Therefore, it is critical to evaluate how the

proposed method performs while human attributes are incorrectly

recognized.

To do so, we progressively add errors to the ground-truth

attribute annotations as follows: randomly select a human instance

and set one of its attributes (e.g., ‘gender’) to be a wrong label

(e.g., ‘female’). We repeat the above process to add more errors.

With these flawed human attributes, we apply Ours-V to get

cross-view object trajectories, and calculate the various tracking

metrics. Figure 4 reports the accuracies of Ours-V while using

various qualities of human attribute recognitions. In particular, the

x-direction represents the accuracies of attribute recognition in

terms of Average F1 Score (i.e., 2 ∗ Precision∗Recall
Precision+Recall ), and the

y-direction represents the tracking performance in terms of IDS,

TA, or TP, respectively. These comparisons are used to analyze the

impacts of erroneous attribute recognitions, which is inevitable

even in state-of-the-art recognition methods, over the proposed

tracking system. From the figures, we can observe that our method

is relatively robust and consistent even while the attributes are

not properly recognized. Note that the last column of each sub-

figure represents the method using ground-truth attributes (F1:

1.0) and the red triangle represents the outcome of by the attribute

recognition method used in this work.

TABLE 4
Quantitative tracking results on the EPFL [5]. There are five

implementations of the proposed methods: Ours-I, that does not
explore human attributes; Ours-II, that explores only geometry

attributes; Ours-III, that explores only the attributes of accessories;
Ours-IV, that explores only the semantic attributes; Ours-V, that

explores all human attributes.

Metrics TA(%) TP(%) MT(%) ML(%)↓ FRG↓ IDS↓
MDNet 88.9 91.2 91.9 7.1 12 18

Ours-V 85.7 88.9 89.6 7.6 14 16
Ours-IV 83.9 87.3 86.3 9.1 21 28

Ours-III 81.5 85.9 83.7 10.9 34 47

Ours-II 80.2 85.2 80.6 11.0 47 54

Ours-I 80.1 84.5 79.5 11.3 53 63

SSP [27] 78.1 76.7 74.3 18.9 89 67

mvSVM [54] 79.5 75.3 76.3 12.9 112 34
KSP [5] 78.6 76.1 75.3 14.3 189 25

DCT [1] 62.4 69.6 68.1 16.2 214 61
AVT [49] 73.3 72.8 70.4 14.1 145 53
LSHT [9] 69.4 67.2 68.3 15.4 214 48

Geodesic[29] 73.2 72.1 69.2 15.2 114 41

Results on the DARPA and EPFL datasets
We further apply the proposed method over the DARPA and

EPFL dataset, and compare it to the other popular trackers. We

use two recent multi-view trackers: (i) the K-shortest Path (KSP)

method by Fleuret et al. [5]; (ii) the multi-view SVM method

(mvSVM) by Zhang et al. [54]. We also implemented several

single-view based human trackers for comparisons, including:

(iii) The local sensitive histogram based tracker (LSH) [9]; (iv)

The discrete-continuous tracking (DCT) method proposed by

Andriyenko et al. [1]; (v) The occlusion geodesic (Geodesic)

based tracker [29]. We use the default parameter configuration

in their source codes. We also include the tracking results of

SSP method [27], which are used to initialize the proposed

methods. In addition to the above methods, we employed a

recent neural network based method, MDNet [24], that employs a

Multi-Domain Convolutional Neural Network for visual tracking,

where each object of interest(or domain) is represented as a

separate CNN network. MDNet achieved state-of-the-art tracking

performance in multiple visual tracking benchmarks [24]. As

most other deep learning trackers, MDnet employs extra training

images and ground-truth trajectories to train the networks as a
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TABLE 5
Quantitative results and comparisons on PPL-DA dataset. There are five implementations of the proposed methods: Ours-I, that does not explore
human attributes; Ours-II, that explores only geometry attributes; Ours-III, that explores only the attributes of accessories; Ours-IV, that explores

only the semantic attributes; Ours-V, that explores all human attributes.

Seq-Court TA(%) TP(%) MT(%) ML(%) ↓ IDSW ↓ FRG ↓
MDNet [24] 53.1 82.1 32.2 21.3 53 42
Our-V 34.5 72.4 18.5 25.9 79 55
Our-IV 30.1 71.9 17.2 28.6 92 69
Our-III 28.3 71.6 15.2 31.7 108 75
Our-II 26.9 70.3 12.1 32.9 113 82
Our-I 26.8 70.2 11.1 33.3 114 90
HTC [45] 29.5 71.9 14.8 25.9 91 77
KSP [5] 24.7 64.4 0.00 44.4 318 291
POM [7] 22.3 65.4 0.00 51.9 296 269
Seq-Office TA(%) TP(%) MT(%) ML(%) ↓ IDSW ↓ FRG ↓
MDNet [24] 60.3 87.1 54.1 0.00 33 28
Out-V 47.4 73.7 42.9 0.00 45 31
Out-IV 44.5 69.5 33.5 0.00 57 44
Out-III 43.5 57.1 29.1 0.00 68 59
Out-II 41.2 56.3 28.1 0.00 69 62
Out-I 39.8 9.0 28.6 0.00 72 64
HTC [45] 41.2 70.7 28.6 0.00 66 59
KSP [5] 39.6 58.0 28.6 0.00 83 76
POM [7] 36.9 58.8 28.6 0.00 89 82
Seq-Plaza TA(%) TP(%) MT(%) ML(%) ↓ IDSW ↓ FRG ↓
MDNet [24] 27.4 68.9 18.5 12.7 112 98
Our-V 25.2 67.1 16.3 11.6 165 133
Our-IV 24.2 66.3 15.0 12.2 177 154
Our-III 22.4 65.1 14.2 14.2 195 172
Our-II 21.4 65.1 14.2 18.6 210 180
Our-I 20.6 65.1 11.6 18.6 244 199
HTC [45] 23.1 66.2 11.6 18.6 202 178
KSP [5] 17.3 57.5 7.0 27.9 356 311
POM [7] 16.7 57.9 4.6 32.6 339 295

deep representation of the objects of interest. We pre-trained the

MDnet on the OTB dataset [42], as discussed in the original paper,

and fine-tuned it using the training videos of the DARPA and

EPFL datasets. We use the recommended parameters (e.g. layers,

activation functions) in the original work [24]. It is noteworthy

that MDNet is developed for single-view tracking and we apply

MDNet over individual video sequences.

Tables 3 and 4 report quantitative results of various methods

on the DARPA dataset and the EPFL dataset, respectively. Among

these baselines, the mvSVM [54], KSP [5] and the proposed

methods are multi-view trackers,whereas the other methods work

on individual video sequences. Note that mvSVM and KSP are

two widely used methods for multi-view tracking, and the MDNet

is the most recent state-of-the-art tracker. From the results, we

have the following observations. (I) The proposed method Ours-

V outperforms the baseline methods mvSVM and KSP, as well

as the single-view tracking methods, DCT, AVT, LSHT, and

Geodesic. In particular, our method generated much less false

alarms than other methods. For example, on the DARPA dataset,

our method achieves IDS of 19, while the best score among the

baselines is 59 (KSP). These methods, however, are inferior to

the learning based method MDNet which was trained using extra

training samples with annotations. It is also noteworthy that the

comparisons between our methods and MDNet are not fair since

the later can only track objects in individual camera views. (II)

The method Ours-V clearly outperforms its variants Ours-I that

does not explore any human attributes and Ours-II that uses only

low-level attributes of geometry. The comparisons between Ours-

I, Ours-II, Ours-III and Ours-IV show that system accuracies can

be further improved through additionally using the attributes of

accessories (Ours-III) and Semantic attributes (Ours-IV). These

ablation analysis clearly demonstrate the advantages of leveraging

human attributes for visual tracking task.

Quantitative Results on PPL-DA dataset

We further apply the proposed methods on the PPL-DA

dataset [46] and compare to two state-of-the-arts methods: Prob-

abilistic Occupancy Map (POM) [7], K-Shortest Path (KSP) [5].

We use the publicly available softwares of POM and KSP. We also

use the MDNet [24] as a baseline. We pre-trained the MDnet on

the OTB dataset [42], and fine-tuned it using the training videos

of PPL-DA dataset. In addition, we include our recent work,

Hierarchical Trajectory Composition (HTC) [45] for comparisons.

Table 5 reports the quantitative results of various methods, in-

cluding the five variants of the proposed methods, on the PPL-DA

dataset. From the table, we can obtain similar observations as those

on the DARPA and EPFL datasets. In particular, the proposed

method Our-V clearly outperforms the three popular baselines on

all three scenarios while using all Six metrics.Notably, our method

can significantly reduce the number of ID switches (IDSW) on all

scenarios, which is a critical indicator of the superiority of our

method. Our-V also outperforms the other four variants on all

testing settings, which directly justifies the key idea of this work,

i.e. that integrating human attributes is capable of boosting system

robustness while identifying subjects across camera views in

complex scenarios. MDNet achieved the best performances on all

video sequences mostly because it is directly trained for individual

camera views. Like other single-view trackers, MDnet, however,

is not be able to discover the cross-view correspondences, which

is the main focus of this work.
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5 CONCLUSIONS

This work presents a stochastic grammar model for leveraging

various human attributes in cross-view human tracking. Our model

can robustly track multiple persons while observing them moving

in the scene through camera views, even in complex scenarios.

To do so, we proposed a deep compositional representation, i.e.

parse graph, and introduced an attribute grammar to guide the

construction of parse graph from videos. We formulated such a

challenging task in the Bayesian framework, and developed an

alternative sampling algorithm to solve model selection and state

estimation simultaneously. Exhaustive experiments over multiple

video datasets clearly demonstrated the advantages of the pro-

posed grammar model, as an effective way to leveraging various

human attributes.

6 ACKNOWLEDGMENT

Xiaobai Liu is supported by the NSF Program (No.1657600)

and Onr. Yadong Mu is supported by the NSF China program

(No.61772037).

REFERENCES

[1] A. Andriyenko and K. Schindler. Multi-target tracking by continuous
energy minimization. In IEEE Conference on Computer Vision and
Pattern Recognition, 2011.

[2] M. Ayazoglu, B. Li, C. Dicle, M. Sznaier, and O. Camps. Dynamic
subspace-based coordinated multicamera tracking. In IEEE International
Conference on Computer Vision, 2011.

[3] A. Barbu and S. Zhu. Generalizing swendsen-wang to sampling arbitrary
posterior probabilities. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 27(8):1239–1253, 2005.

[4] A. Barbu and S. Zhu. Generalizing swendsen-wang to sampling arbitrary
posterior probabilities. TPAMI, 2007.

[5] J. Berclaz, F. Fleuret, E. Turetken, and P. Fual. Multiple object track-
ing using k-shortest paths optimization. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 33(9):1806–1819, 2011.

[6] J. Fan, X.Shen, and Y. Wu. What are we tracking: A unified approach of
tracking and recognition. TIP, 22(2):549–560, 2013.

[7] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-camera people
tracking with a probabilistic occupancy map. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 30(2):267–282, 2008.

[8] R. Girshick, P. Felzenszwalb, and D. McAllester. Object detection
with grammar models. In Advances in Neural Information Processing
Systems, 2011.

[9] S. He, Q. Yang, R. Lau, J. Wang, and M. Yang. Visual tracking via
locality sensitive histograms. In CVPR, pages 2427–2434, 2013.

[10] J. Henriques, R. Caseiro, and J. Batista. Globally optimal solution to
multi-object tracking with merged measurements. In CVPR, 2011.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 675–678. ACM, 2014.

[12] H. Jiang, S. Fels, and J. Little. A linear programming approach for
multiple object tracking. In IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

[13] J. Joo, S. Wang, and S.-C. Zhu. Human attribute recognition by
rich appearance dictionary. In Proceedings of the IEEE International
Conference on Computer Vision, pages 721–728, 2013.

[14] S. Khan and M. Shah. A multiview approach to tracking people in
crowded scenes using a planar homography constraint. In European
Conference on Computer Vision, 2006.

[15] C.-J. Kim, C. R. Nelson, et al. State-space models with regime switching:
classical and gibbs-sampling approaches with applications. MIT Press
Books, 1, 1999.

[16] D. Kimura. Dual functional asymmetry of the brain in visual perception.
Neuropsychologia, 4(3):275–285, 1966.

[17] C.-H. Kuo and R. Nevatia. How does person identity recognition help
multi-person tracking. In IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

[18] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[19] X. Liu. Multi-view 3d human tracking in crowded scenes. In AAAI
Conference on Artificial Intelligence, 2016.

[20] X. Liu, L. Lin, and H. Jin. Contextualized trajectory parsing via spatio-
temporal graph. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 2013.

[21] X. Liu, L. Lin, S. Yan, and H. Jin. Adaptive tracking via learning hybrid
template online. IEEE Transactions on Circuits and Systems for Video
Technology, 21(11):1588–1599, 2011.

[22] X. Liu, Y. Zhao, and S.-C. Zhu. Single-view 3d scene parsing by
attributed grammar. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 684–691, 2014.

[23] A. Milan, K. Schindler, and S. Roth. Detection- and trajectory-level
exclusion in multiple object tracking. In CVPR, 2013.

[24] H. Nam and B. Han. Learning multi-domain convolutional neural
networks for visual tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4293–4302, 2016.

[25] B. X. Nie, C. Xiong, and S. Zhu. Joint action recognition and pose
estimation from video. In IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

[26] S. Park and S. Zhu. Attributed grammars for joint estimation of
human attributes, parts and poses. In IEEE International Conference
on Computer Vision, 2015.

[27] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-optimal greedy
algorithms for tracking a variable number of objects. In IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

[28] J. Porway and S. Zhu. C4 : Computing multiple solutions in graphical
models by cluster sampling. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 33(9):1713–1727, 2011.

[29] H. Possegger, T. Mauthner, P. Roth, and H. Bischof. Occlusion geodesics
for online multi-object tracking. In Proc. CVPR, 2014.

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[31] H. Shitrit, J. Berclaz, F. Fleuret, and P. Fua. Multi-commodity network
flow for tracking multiple people. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 36(8):1614–1627, 2013.

[32] T. Shu, D. Xie, B. Rothrock, S. Todorovic, and S. Zhu. Joint inference
of groups, events and human roles in aerial videos. In IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[33] J. Sun, N. Zheng, and H. Shum. Stereo matching using belief propaga-
tion. IEEE Transaction on Pattern Analysis and Machine Intelligence,
25(7):787–800, 2003.

[34] P. H. Torr and A. Zisserman. Feature based methods for structure and
motion estimation. In International workshop on vision algorithms, pages
278–294. Springer, 1999.

[35] Z. Tu and S. Zhu. Image segmentation by data-driven markov chain
monte carlo. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 24(5):657–673, 2002.

[36] A. Utasi and C. Benedek. A 3-d marked point process model for multi-
view people detection. In IEEE Conference on Computer Vision and
Pattern Recognition, 2011.

[37] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up
crowdsourced video annotation. International Journal of Computer
Vision, 101(1):184–204, 2013.

[38] B. Wang, G. Wang, K. Chan, and L. Wang. Tracklet association with
online target-specific metric learning. In CVPR, 2014.

[39] N. Wang and D.-Y. Yeung. Learning a deep compact image representa-
tion for visual tracking. In Advances in neural information processing
systems, pages 809–817, 2013.

[40] P. Wei, Y. Zhao, N. Zheng, and S. Zhu. Modeling 4d human-object inter-
actions for joint event segmentation, recognition, and object localization.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016.

[41] E.-J. Weng and L.-C. Fu. On-line human action recognition by combining
joint tracking and key pose recognition. In IEEE/RSJ Conference on
Intelligent Robots and Systems, 2011.

[42] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2411–2418, 2013.

[43] Z. Wu, N. Hristov, T. Hedrick, T. Kunz, and M. Betke. Tracking a
large number of objects from multiple views. In IEEE International
Conference on Computer Vision, 2009.

[44] Y. Xu, L. Lin, W.-S. Zheng, and X. Liu. Human re-identification
by matching compositional template with cluster sampling. In IEEE
International Conference on Computer Vision, 2013.

[45] Y. Xu, X. Liu, Y. Liu, and S.-C. Zhu. Multi-view people tracking via
hierarchical trajectory composition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[46] Y. Xu, X. Liu, L. Qin, and S.-C. Zhu. Cross-view people tracking by
scene-centered spatio-temporal parsing. In AAAI Conference on Artificial
Intelligence, 2017.

[47] B. Yang and R. Nevatia. An online learned crf model for multi-
target tracking. In IEEE Conference on Computer Vision and Pattern



11

Recognition, 2012.
[48] M. Yang, Y. Liu, L. Wen, Z. You, and S. Li. A probabilistic framework

for multitarget tracking with mutual occlusions. In CVPR, 2014.
[49] M. Yang, J. Yuan, and Y. Wu. Spatial selection for attentional visual-

tracking. In CVPR, volume 1, pages 1–8, 2007.
[50] A. Yao, J. Gall, G. Fanelli, and L. Gool. Does human action recognition

benefit from pose estimation? In British Machine Vision Conference,
2011.

[51] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13, 2006.

[52] Q. Yu, G. Medioni, and I. Cohen. Multiple target tracking using spatio-
temporal markov chain monte carlo data association. In CVPR, pages
1–8, 2007.

[53] L. Zhang, Y. Li, and R. Nevatia. Global data association for multiobject
tracking using network flows. In CVPR, 2008.

[54] S. Zhang, X. Yu, Y. Sui, S. Zhao, and L. Zhang. object tracking with
multi-view support vector machines. IEEE Transaction on Multimedia,
17(3):265–278, 2015.

Xiaobai Liu is an Assistant Professor of Com-
puter Science at San Diego State University
(SDSU), San Diego, U.S.A. He received his
PhD from the Huazhong University of Science
and Technology (HUST), China. His research
interests focus on the development of theories,
algorithms, and models for the core computer
vision problems. He has published 38 peer-
reviewed articles in top-tier conferences (e.g.
ICCV, CVPR, etc.) and leading journals (e.g.
TPAMI, TIP etc.). He received a number of

awards for his academic contributions, including the 2013 outstanding
thesis award by CCF (China Computer Federation).

Yuanlu Xu is a Ph.D. candidate at University
of California at Los Angeles, Los Angeles, CA,
USA. His current advisor is Prof. Song-Chun
Zhu, and they have cooperated on publishing
a couple of papers on computer vision. Be-
fore that, he received the masters degree from
the School of Information Science and Technol-
ogy, Sun Yat-sen University, Guangzhou, China.
He received the B.E. (Hons.) degree from the
School of Software, Sun Yat-sen University. His
research interests are in video surveillance, sta-

tistical modeling and sptio-temporal inference.

Lei Zhu is a professor with the School of In-
formation Science and Engineering, Shandong
Normal University. He received his B.S. degree
(2009) from Wuhan University of Technology,
and the Ph.D. degree (2015) from Huazhong
University of Science and Technology. He was a
Postdoctoral Research Fellow at Data & Knowl-
edge Engineering research group in The Uni-
versity of Queensland (2016 to 2017), and Sin-
gapore Management University (2015 to 2016).
His research interests are in areas of multimedia

analysis and search.

Yadong Mu received the Ph.D. degree from
Peking University in 2009. He is now an assis-
tant professor at Peking University and leading
the machine intelligence lab at Institute of Com-
puter Science and Technology. Before joining
Peking University, he has ever worked at Na-
tional University of Singapore, Columbia Univer-
sity, Huawei Noahs Ark Lab and AT&T Labs.
His research interest is in large-scale machine
learning, video analysis and computer vision.


