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Synopsis An organism’s environment can vary over spatial and temporal scales. Seasonal variation is an important but
overlooked source of environmental variation that often shapes the ranges of organisms. The seasonal niche is a
description of the spatiotemporal range of an organism resulting from spatial variation in seasonal conditions. In this
study, I describe the seasonal niche of a short-lived annual plant, and variation within the species in seasonal niche
breadth. I construct a seasonal species distribution model (SDM) for the species, and using thermal performance curves
(TPCs), construct mechanistic SDMs (MSDMs) for individual genotypes. I quantify the correlation between the suit-
ability scores generated in the SDM and the predicted dry weight generated by the MSDMs for each genotype, to
estimate variation in seasonal niche breadth among genotypes. Thus, the parameters of TPCs reflect generalist/specialist
strategies. I detected significant relationships between thermal performance breadth and maximum predicted fitness and
significant correlations between optimal growth temperature and thermal performance breadth. There were large positive
correlations between predictions of the SDM and MSDMs based on growth within individual genotypes. The variation in
these correlations suggests variation in the degree of specialization. Genotypes with the broadest TPCs had the largest
correlations between their MSDMs and the SDM, suggesting that they were generalists. The results show that correlative
and MSDMs make similar predictions over the seasonal range, and that ecological specialization can vary dramatically

within species.

Introduction

Environments vary over space and time. How organ-
isms adapt to this variation depends on the scale of
variation relative to the dispersal distance and gen-
eration time of the organism (Bradshaw 1965; Via
and Lande 1985; Tufto 2015). Large scale spatial
variation forces organisms to adapt to local eco-
logical conditions (Hereford 2009). Small scale spa-
tial wvariation occurs well within the dispersal
distance of an organism, resulting in variation in
performance at scales so small that selection cannot
respond (e.g., Stratton 1995). Like spatial variation,
temporal variation exists over large and small scales.
Large scale temporal variation includes processes
such as inter-annual variation and climate change.
Small scale temporal variation includes diurnal vari-
ation, and seasonality. Seasonality can drive adapta-
tion to specific seasons or select for generalist
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strategies conferring adaptation to multiple seasons
(Gilchrist 1995), and the seasonal niche is the real-
ized range of spatiotemporal conditions in which a
species can complete its life-cycle.

The seasonal niche includes the total spatial and
temporal environment where a species is expected to
grow and reproduce. For many organisms, seasonal
variation determines when they reproduce as well as
where they can live. If seasonal periods favorable for
growth and reproduction are too short, the organism
will not be able to sustain a population (Chuine
2010). In this way, the seasonal niche is a compre-
hensive realized niche concept, that not only
describes where an organism can live, but when it
is expected to express specific life stages (Hereford
et al. 2017). Given the importance of seasonal vari-
ation on species distributions, it is surprising that
few studies consider the role of seasonal patterns in
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Thermal performance and seasonality

models of species’ distribution and realized niche
(but see Nielsen et al. 2003; Hereford et al. 2017).
An understanding of the influence of seasonal pat-
terns can reveal not only where a species is expected
to grow, but where and when alternate phenological
stages are expected to occur. The influence of sea-
sonal patterns on species distributions results be-
cause environments may vary such that growth
during the wrong season can be lethal. Thus, sea-
sonal variation exposes organisms to environmental
extremes. Variation in the phenology and distribu-
tion of species reflects their physiological tolerance
and performance (Donohue et al. 2010). Thus, the
realized niche of the species should include not only
where it is found, but when it completes its life cycle.

The seasonal niche is not only a property of the
species. Variation within species in ecological special-
ization and physiological performance suggests vari-
ation in niche breadth within species (Angilletta
2009; Hereford 2009). For example, variation within
species in thermal performance (Angert et al. 2011;
Latimer et al. 2011; Richter-Boix et al. 2015) suggests
that the seasonal niche should vary within species as
a result of variation in temperature. Differences
among genotypes in performance suggest that the
species-level niche may be an emergent property of
variation in seasonal niche among genotypes. For
example, the species-level niche may be large as a
result of many individuals with similarly large ther-
mal performance ranges and thus similar seasonal
niches. Alternatively, the species-level niche may be
large as a result of many specialist individuals with
performance ranges encompassing small subsets of
the total species-level range. In the former example,
the individual-level seasonal niches are similar to the
overall species-level niches, and in the second ex-
ample, the individual niches are narrower and less
similar to the species-level niche.

The degree to which an individual genotype’s
niche matches the species-level niche is a measure
of specialization. Definitions of specialization are
typically based on comparisons between groups,
where specialists are able to utilize relatively fewer
environments or resources than  generalists
(Futuyma and Moreno 1988; Forister et al. 2012).
The species-level realized niche can be estimated
using species distribution models (SDMs). These
models relate the distribution of species in space to
environmental factors, to predict the distribution of
the species (Elith and Leathwick 2009). Thus, the
species-level realized niche is based on variation
from a collection of individuals of the same species,
and variation within the species is pooled to estimate
a total species niche. Given the expectation that the
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species-level niche is composed of the aggregate
niches of genotypes that make up the species, spe-
cialist and generalist genotypes can be determined by
their similarity to the species-level niche.

The methods employed in SDMs to estimate the
distribution of species cannot be used to estimate the
realized niche of an individual because the individual
is located in a single population. Mechanistic species
distribution modeling (MSDM) can be used to esti-
mate the realized niche of an individual. In an
MSDM, the distribution of the species is predicted
by estimating the relationship between performance
and environmental factors (Kearney and Porter
2009). Both SDMs and MSDMs predict the distribu-
tion of species, and both methods can predict the
seasonal niche. The predictions from SDMs and
MSDM should be correlated (Rougier et al. 2015;
Shabani et al. 2016). The suitability of the environ-
ment is predicted in an SDM and a measure of per-
formance or fitness is predicted in an MSDM. Points
in space and time that are more suitable should be
those that lead to higher fitness. Thus, there is an
expected correlation between suitability and fitness.
The MSDM of an individual with a seasonal niche
that mirrors the species-level niche should make
similar predictions as the SDM of the species as a
whole. The MSDM of an individual with an extreme
phenotype or that has a very limited physiological
performance range should be dissimilar to the
species-level SDM.

Here I estimate the correlations between the
results of a seasonal SDM and seasonal MSDMs of
individuals of a short-lived annual plant species. The
goals of this study are first to test the hypothesis that
genotypes that make up the species are thermal spe-
cialists on specific conditions or generalists that
largely mirror the species-level niche. Quantifying
these relationships will shed light on whether the
species is made up of a collection of specialists
adapted to different conditions or generalists that
mirror the species niche. I estimate the correlation
between the predictions of the species-level SDM and
the predictions of the genotype’s MSDMs. The se-
cond goal is to determine the aspects of thermal
performance that are correlated with a specialist or
generalist genotype. Here I quantify genetic correla-
tions between parameters of thermal performance
curves (TPCs), and I estimate relationships between
TPC parameters and the degree of specialization.
Quantifying the actual realized niche is difficult
and requires multivariate methods to disentangle
the influence of correlated variables. In this study,
I use seasonal range as a proxy for the realized niche
(e.g. Lee-Yaw et al. 2016), where range is the
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distribution in space and time of suitability and fit-
ness. This approach is general not only to short-lived
organisms. Specific life-stages of long-lived organ-
isms, such as migrations of birds or diapause in
insects can be modeled with these methods as well.

Materials and methods

Mollugo verticillata is a short-lived annual, native to
South and Central America (Kearney and Peebles
1964). It is considered naturalized to California
(Baldwin et al. 2012). There is strong evidence that
the species is highly selfing given the small flower
size (1.5-2.5mm diameter) and lack of pollination
in the field (J. Hereford, personal observation). In
California, M. verticillata is found in moist soil along
the shores of lakes and reservoirs. Germination in
these environments does not occur in response to
rainfall, but in response to warm temperatures and
soil desiccation along the shores. In other parts of its
range, germination appears to coincide with warm
weather rains (J. Hereford, personal observation).
In this experiment, I sampled genotypes from six
source populations, spanning the range of climate
and seasonality within California.

The species level seasonal niche within California
can be estimated by understanding where and when
M. verticillata is likely to be growing and reproduc-
ing. I used an SDM to predict the species level niche
and determine the factors that limit the distribution
of M. verticillata. The construction of the seasonal
SDM has been previously published (Hereford et al.
2017). Briefly, an SDM was constructed for M. ver-
ticillata that incorporated variation in seasonal pat-
terns at the locations that specimens were collected.
While conventional SDMs focus on how variation in
average conditions predicts the distribution of a spe-
cies, the seasonal SDM utilizes climate data from the
time and place that each observed collection was
made to predict not only where a species is likely
to be found, but also when the species is predicted to
be growing and reproducing at that location. The
climate data in the seasonal SDM were collected
from the Basin Characterization Model (BCM)
described in Flint et al. (2013). This model produces
270 m gridded maps of California and surrounding
watersheds for each month and year from 1896 to
the present. The seasonal SDM for M. verticillata
showed that mean monthly temperature was respon-
sible for 78.8% of the variance in suitability of habi-
tat and season (Hereford et al. 2017). Thus,
temperature is the major determinant of the pres-
ence of M. verticillata across the landscape and
seasons.
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To estimate TPCs, I grew six successive cohorts of
the same maternal families (genotypes) throughout
the spring, summer, and fall. Individuals of these
genotypes were repeatedly planted approximately
every 6weeks from May to November of 2014. I
grew plants from 20 genotypes of each of the six
populations in a screen house. The screen house is
a controlled growth facility that allows ambient tem-
perature and nearly ambient sunlight. I planted two
seeds per pot, and planted three such pots in each of
three randomized blocks for each maternal family
(genotype). The first seed to germinate in a pot
was allowed to grow, and the second seed to germin-
ate was removed. If both seeds germinated on the
same day the smallest was removed. Plantings where
no seeds germinated were not included in any anal-
yses, and differences in sample size among genotypes
result from variation in germination. Plants were
watered daily such that soil never completely dried
out, to simulate the conditions of the lakeshore habi-
tat. The temperature from the time of germination
to senescence was recorded at 5min intervals for all
seeds that germinated. The final dry weight at sen-
escence was used as the measure of fitness, as the
correlation between flower number and final dry
weight is 0.95 (J. Hereford, unpublished data).
Plants begin flowering within 10 days of germin-
ation, and no plant was ever weighed without flower
buds present. Therefore, all plants were reproductive.
The TPC for each genotype was estimated by the
non-linear regression of growth temperature on final
dry-weight (Huey and Stevenson 1979). Members of
each genotype could have germinated during warm
or cool periods, therefore each genotype experienced
a wide range of growth temperatures. This range
allowed individuals of each genotype to be grown
in cool or warm times of the growing season.

I followed the methods in Angilletta (2006) to
construct TPCs for each genotype. The maximum
number of seedlings that could germinate from
each genotype across the entire experiment was 18
(3 in each of 6 experiments). This limited the forms
of TPCs that could be fit to the data. I used two
formulas to estimate four parameters to characterize
the relationship between growth temperature and dry
weight, the Quadratic and the Gaussian. Following
Angilletta (2006), I fit Quadratic and Gaussian mod-
els to the relationship between dry weight and mean
growth temperature for each genotype. I chose the
model with the lower AIC score to estimate the TPC.
The relationships between dry weight and mean
growth temperature can be used to predict the fit-
ness of a plant growing at any temperature. In 41
out of 120 genotypes, no non-linear regression
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would converge on estimates of curve parameters as
a result of small sample sizes within those genotypes.
These genotypes were not included in any analyses.

The MSDMs were generated using temperature
maps and the TPCs to predict fitness across the
seasons. I used the relationships between dry weight
and average growth temperature from the TPCs, to
predict what the dry weight of an individual plant
would be at any location during any month. Mean
monthly temperature maps were generated from the
BCM maps. I obtained 12 maps of average tempera-
ture, one for each month. Mean monthly tempera-
ture was calculated as the mean of the minimum and
maximum temperature of each month. This calcula-
tion of the average was used because only minimum
and maximum temperature monthly rasters are
available. These means were calculated for each
month in the period from 1981 to 2010. Therefore,
the maps present average conditions during each
month in the period from 1981 to 2010. The pre-
dicted fitness of each genotype at each point in the
270 m grid during each month can be estimated
from the TPC and the temperature values from the
monthly temperature maps. This procedure gener-
ates an MSDM for each genotype.

The SDM and the MSDMs are independent esti-
mates of the realized niche. The species-level SDM is
constructed from species collection records using
several climatic variables to predict the suitability
of the environment for M. wverticillata (Hereford
et al. 2017). The MSDMs are based on TPCs where
fitness of a genotype is predicted exclusively by vari-
ation in temperature. The SDM is taken from a large
collection of multiple individuals throughout
California. Temperature explains the majority of
the variation in the SDM, and with the exception
of soil depth, the remainder of the variation is
explained by factors that have a functional relation-
ship with temperature. The SDM characterizes the
species-level realized niche in California (Elith and
Leathwick 2009). The MSDMs show the predicted
fitness of individual genotypes, and thus represent
the realized niche of genotypes within the species.
Genotypes with wider niches will encompass more
of the species-level niche than genotypes with nar-
rower niches. One measure of the size of a gen-
otype’s niche is the correlation between its
predicted performance and the species-level suitabil-
ity at that same time and place. Genotypes with
niches that more closely match the species-level
niche will have greater correlations between
species-level suitability and predicted dry weight. It
is possible for genotypes to have large niches that do
not overlap with the species-level niche, resulting in
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small or negative correlations between suitability and
predicted dry weight. The major assumption of this
analysis is that genotype-level niches are not larger
than the species-level niche. This assumption is rea-
sonable because it is improbable that genotypes
would have realized niches larger than the species-
level niche. To quantify how well a genotype’s niche
breadth matched the species-level niche, I calculated
the correlation between the predicted dry-weight
(from TPCs) of an individual of that genotype at a
site and the predicted suitability of the site for the
species, this correlation was calculated for all
12 months. To calculate the correlation between suit-
ability and predicted dry weight I first chose 1050
random locations from the 270 m grid of California
and surrounding watersheds. I then quantified the
correlation between predicted suitability of the loca-
tions and the predicted dry weight of plants at those
locations and months. Large positive correlations in-
dicate more overlap between the species-level and
genotype-level niches.

A second goal of this study is to determine the
aspects of thermal performance that are most asso-
ciated with variation in the realized niche. Here I
compare the parameters generated from TPCs with
the correlations between the SDM and MSDMs. To
perform this analysis, the TPCs must be of the same
general shape. I chose the Gaussian as the template
shape, as 55 out of the 79 TPCs that could be esti-
mated had lower AIC scores under a Gaussian
model. In addition, the quadratic results in biologic-
ally impossible values of dry weight at low and high
temperatures. Therefore, all comparisons of TPC
parameters are based on the following Gaussian
function from Angilletta (2006).

W = z,,el0507- Tol/Tb)z]’
where T is the growth temperature, T, is the opti-
mum growth temperature, z,, is the maximum dry
weight, and T, is the thermal performance breadth.
These parameters are the same as T, b, k, and ¢, in
Angilletta (2006), respectively.

To demonstrate the methods, Fig. 1 illustrates
how the MSDMs and individual correlations be-
tween genotype-level MSDM and the overall SDM
are calculated. The three genotypes with the smallest
correlations between their MSDM and the SDM in
July and the three genotypes with the largest corre-
lations are presented. The nonlinear regressions in
the first column show the TPCs for each of the six
genotypes. The maps show the predicted biomass
resulting from the TPC and the raster of mean tem-
perature. The third column shows the correlations
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Fig. 1 Six examples showing calculation of the mechanistic species distribution models (MSDMs) for the three genotypes with the
smallest and greatest correlations between the SDM and MSDMs. The first column shows the thermal performance curves with each
point showing the biomass (final dry weight) and average growth temperature of each plant (replicate of a genotype). The second
column shows maps of predicted dry weight across the study area in July. The third column shows the relationship between the overall
SDM and the genotype’s MSDM for July. The correlation coefficient is shown on the upper right of each plot.
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Fig. 2 Plots of mean monthly suitability of the 1050 points gen-
erated from the SDM (A), and mean predicted dry weight for the
same points across the 79 genotypes (B). Points indicate means
and bars are standard deviations. The standard deviations for plot
A are based on variation among the 1050 points for each month
(n=1050 points). The standard deviations for plot B are calcu-
lated from the average predicted dry weight of each genotype at
the 1050 points (n=79 genotypes).

between the genotype’s MSDM and the SDM for
July. All analyses were performed in R version 3.3.

Results

Predicted suitability and predicted dry weight
changed monthly, with both measures predicting
peak growth in summer months. For the 1050 ran-
domly chosen points, the seasonal SDM predicted
monthly changes in median suitability, with highest
suitability from April to October. Predicted dry
weight among the 79 genotypes followed the same
pattern (Fig. 2). June was the month with peak pre-
dicted dry weight and suitability. Variation in suit-
ability and predicted dry weight also followed a
seasonal pattern. There was little variation in both
measures from January to March, and variation
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Fig. 3 Median correlation coefficients for each month between
the predictions of the SDM and the MSDMs of all genotypes.
Bars represent one standard deviation of 79 genotype-level
correlations.

increased from April to October. A nonlinear regres-
sion of suitability on temperature for the 1050 points
was performed for July. This regression estimated an
optimum temperature value of 24.26, similar to the
value for the data pooled across all genotypes
(24.21). The estimated variance from that regression
was 5.74, larger than the value of 3.63 for all geno-
types. The plot of the relationship between suitability
and temperature for July is shown in Supplementary
Fig. S1.

The suitabilities generated by the SDM and the
predicted dry weight generated by the MSDM were
correlated, and the magnitude of the correlations
changed with season. The distribution of correlations
was not normal for any month and the distributions
tended to be left skewed. Therefore, median values of
the correlations are presented. Correlations between
SDM and MSDM were greatest in May and June
(Fig. 3). The median correlations in all months
were greater than 0.54, and the first quartile was
greater than 0.23 in all months. Each correlation
was based on the same 1050 spatial points. Thus,
any correlations larger than 0.07 are significant.
There was ample variation among correlations across
genotypes for most months. January was the excep-
tion, where there was little variation among geno-
types in SDM/MSDM correlation (Fig. 3).

The TPCs for each genotype revealed relationships
between thermal performance breadth and max-
imum performance. There was a significant negative
correlation (r=—0.51, P < 0.0001) between the
thermal performance breadth and maximum per-
formance, where greater thermal performance
breadth was significantly correlated with decreased
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maximum performance (Fig. 4A). There was a sig-
nificant correlation (r=—0.27, P = 0.015) between
optimum growth temperature and thermal perform-
ance breadth (Fig. 4B), but no significant correlation
(r=0.18, P=0.11) between optimum growth tem-
perature and maximum performance (Fig. 4C).

The relationship between parameters of the TPCs
and the SDM/MSDM correlation was significant in
all months for all parameters. The correlations be-
tween thermal performance breadth and SDM/
MSDM relationship were positive and significant in
all months (Table 1). The correlation between max-
imum performance and SDM/MSDM relationship
was negative in all months, as was the correlation
between optimum growth temperature and SDM/
MSDM relationship (Table 1).

Discussion

Genotypes with larger SDM/MSDM correlations
were those with larger thermal performance breadth,
lower optimum temperature, and lower predicted
maximum performance. Taken together the relation-
ships between TPC parameters and the relationship
between the TPC parameters and the SDM/MSDM
correlations suggest that generalist genotypes reflect
the overall species realized niche, and that being a
generalist comes at a cost to performance at high
temperatures. These patterns did not differ among
months (Table 1). The correlations among parame-
ters of the TPCs suggest that greater niche breadth
comes at a fitness cost, as there was a negative cor-
relation between thermal performance breadth and
maximum performance (Fig. 4A). The correlation
between optimum growth temperature and perform-
ance breadth suggests that increasing optimum
growth temperature results in lower thermal per-
formance breadth (Fig. 4B). Predicted suitabilities
and predicted dry weight showed similar seasonal
patterns, where they were projected to be greatest
in summer and near zero in winter (Fig. 2). This
pattern suggests a mechanism for the observation
that fewer collections of M. verticillata are made in
winter and late fall (Hereford et al. 2017). The cor-
relations between SDM and MSDM were generally
positive and significant (Fig. 3), suggesting that most
genotypes should have high fitness in areas and times
predicted to be suitable for M. verticillata, and that
most genotypes are more generalized. MSDMs with
only temperature as the explanatory variable were
highly correlated in their predictions to an SDM
based on the five most important variables. This is
not surprising, given that mean monthly temperature
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Fig. 4 Scatter plots between thermal performance breadth and
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optimum growth temperature (C). Individual points show the
parameter estimates of a single genotype.
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Table 1 The correlation coefficients between broadness of the realized niche and the three parameters of the thermal performance

curves

January  February March  April May June  July August  September  October  November December
T —0.34 —0.59 —-0.60 —0.62 —-068 —-0.56 —-0.57 —-0.75 —0.79 —0.64 —0.58 —0.53
To 0.88 0.82 0.82 0.81 0.74 0.60 0.44 0.44 0.60 0.85 0.86 0.85
Zoax ~ —0.49 —0.51 —-045 —-046 —-042 -048 -—-047 042 —0.41 —0.44 —0.46 —0.43

Notes: All correlations are significant. T, indicates the optimum growth temperature, Z,.x is the maximum dry weight, and Ty, is the thermal

performance breadth.

is by far the most important variable in seasonal
suitability for M. verticillata (Importance =78.8;
Hereford et al. 2017). The TPCs were based on
mean temperature during growth, which ignores
variation in temperature during the life cycle
(Kingsolver and woods 2016), yet the models make
similar predictions. The variation among genotypes
in SDM/MSDM correlations and the relationship be-
tween TPC parameters and monthly SDM/MSDM
correlations suggest variation among genotypes in
niche breadth.

The relationship between the results of the models
in this study suggests that the seasonal SDM accur-
ately predicts the realized niche of genotypes with
broad niches, but does not predict the niche of
more specialized genotypes. The correlations between
the SDM and the MSDMs largely agree in their pre-
dictions of when and where the environment is most
suitable for M. verticillata. The large positive corre-
lations between the SDM and MSDMs of most gen-
otypes show that areas that are most suitable are
predicted to lead to greatest fitness. The magnitude
of the correlations show that there is strong agree-
ment between the models for all months (Fig. 3).
Few studies have compared the predictions of
SDMs and MSDMs. Two studies found agreement
between the predictions of correlative and mechan-
istic models in terrestrial and aquatic species
(Rougier et al. 2015; Shabani et al. 2016). The mech-
anistic models in those studies were based on more
than a single variable. In this study, temperature has
such a large influence on the seasonal SDM that the
mechanistic model based only on thermal perform-
ance is likely to capture a large portion of the vari-
ation in fitness. Including the influence of other
variables such as soil moisture/evapotranspiration
should improve the accuracy of the predictions of
the mechanistic models and increase the correlations
between SDM and MSDMs for some genotypes.
However, many genotypes showed correlations be-
tween the SDM and MSDM that were greater than
0.80, suggesting that temperature is the major niche
axis in this species (Hereford et al. 2017).
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These analyses estimate the spatiotemporal ranges
of genotypes within a species, quantify variation in
specialization within the species, and reveal con-
straints on the evolution of thermal performance.
Formal tests of genetic variation in niche breadth
within and among populations are the focus of a
different study (J. Hereford, manuscript in prepar-
ation), yet the range of variation in the correlations
between SDMs and MSDMs and the correlations be-
tween parameters of the TPCs suggest that there is
genetic variation among genotypes in the degree of
specialization. The relationships between parameters
of TPCs reveal possible constraints on the evolution
of thermal performance. Two processes may con-
strain evolution of thermal performance to warmer
temperatures. First there is a negative correlation be-
tween temperature optimum and performance
breadth, suggesting that warm temperature perform-
ance comes at a cost to performance breadth.
Adaptation to warmer temperatures may result in
limited growth across a wide range of temperatures.
This within species pattern is in agreement with a
species-level pattern, where thermal performance at
high temperatures is associated with a more narrow
range of thermal performance (Dillon et al. 2010;
Dell et al. 2011). An implication of this result is
that increased performance in July will come at a
cost to April performance. The results are not in
agreement with the ‘hotter is better and broader’
conclusion of Kneis et al. (2012). Higher optimum
growth temperature was associated with lower ther-
mal performance breadth (Fig. 4B), and there was no
association with maximum performance (Fig. 4C).
Warmer optimum growth temperatures were associ-
ated with smaller correlations between SDM and
MSDMs, suggesting genotypes with higher optimum
growth temperatures were more specialized.

Related to the pattern of lower thermal perform-
ance range associated with increased optimum
growth temperature is the pattern of lower thermal
performance range associated with increased max-
imum fitness (Fig. 4A). This result suggests that gen-
otypes that have high maximum fitness at a given
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temperature have a lower range of high thermal per-
formance. The result also suggests that niche space is
limited, such that it is not possible to maintain high
fitness across a wide range of temperatures. The cor-
relation between maximum dry weight and thermal
performance breadth indicates the specialist—general-
ist dimension of TPCs (Huey and Kingsolver 1989;
Gilchrist 1995; Izem and Kingsolver 2005). This re-
lationship illustrates the limits to thermal evolution
in this species. Genotypes that adapt to high seasonal
temperatures to expand the seasonal niche will be
limited to a smaller range of temperatures over
which they could maintain high fitness. Specialist—
generalist constraints have been detected in other
species (Angert et al. 2011; Latimer et al. 2011,
2015), suggesting that increasing fitness in a specific
season generally comes at a cost to fitness across
seasons.

It is not clear that the variation among genotypes
in the degree of specialization is adaptive. Thermal
performance can respond to selection (Logan et al.
2014), but parameters of TPCs may respond to se-
lection at different rates (Latimer et al. 2014).
Optimum growth temperature does not appear to
evolve in response to overall climate or warmest sea-
sonal temperatures. Thermal performance breadth,
optimal growth temperatures, and maximum per-
formance are not related to seasonality of the geno-
type’s native site or overall summer temperatures (J.
Hereford, unpublished data; Supplementary Table
S1). The parameters that determine thermal per-
formance may evolve in response to genetic drift
and evolutionary history similar to other traits
(Travisano et al. 1995). The genotypes in this study
were collected from populations that occur in man-
made reservoirs that are between 95 and 57 years old.
It is possible that not enough time has occurred to
allow adaptation to those conditions (Phillips 1996).
Alternatively, genotypes with high thermal optima
may be maintained within all populations as a result
of rare extreme thermal events. A period of extreme
temperatures during a growing season can be a
highly effective agent of selection that may override
the effects of selection for optimum growth under
more moderate temperatures (Buckley and Huey
2016). These events may maintain variation within
populations depending on the frequency of extreme
temperatures during the growing season. It is pos-
sible that seasonal patterns of selection may drive the
evolution of thermal performance in ways that are
not clear from simply quantifying the length of the
growing season. Seasonal variation in selection may
result in unpredictable patterns of thermal adapta-
tion in this species given the genetic relationships
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between parameters of TPCs and seasonal variation
(Table 1). Despite variation in overall climate, gen-
otypes may vary in their degree of thermal special-
ization as a result of environmental variation within
and between generations (Gilchrist 1995). Future
studies in this system should determine the patterns
of seasonally varying selection, to quantify the role of
seasonal adaptation in the evolution of thermal per-
formance (e.g., Kingsolver et al. 2001; Chevin et al.
2015).

The seasonal context of the organism should be
considered in studies of adaptation. This study
reveals variation within a species in niche breadth
by quantifying variation in across seasons. The sea-
sonal niche of M. verticillata is not a static feature of
the species, but may evolve. This study demonstrates
the robustness of correlative estimates of the seasonal
niche by comparing the correlations between the
SDM and the MSDMs for each genotype in the
study. Considering the seasonal aspects of an organ-
ism’s environment provides a more complete char-
acterization of the environment. Seasonal patterns
can shape responses to selection in ways that are
not obvious when considering only overall differen-
ces between environments. For example, many recip-
rocal transplant studies find evidence of generalists
despite strong environmental differences between na-
tive sites (Hereford 2009). If seasonal variation
within the sites results in greater overlap in condi-
tions, or if there are genetic constraints among the
factors that make up the niche as seen in this study,
the classic pattern of local adaptation where both
populations are specialists on their native sites will
not be detected.
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