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Synopsis An organism’s environment can vary over spatial and temporal scales. Seasonal variation is an important but

overlooked source of environmental variation that often shapes the ranges of organisms. The seasonal niche is a

description of the spatiotemporal range of an organism resulting from spatial variation in seasonal conditions. In this

study, I describe the seasonal niche of a short-lived annual plant, and variation within the species in seasonal niche

breadth. I construct a seasonal species distribution model (SDM) for the species, and using thermal performance curves

(TPCs), construct mechanistic SDMs (MSDMs) for individual genotypes. I quantify the correlation between the suit-

ability scores generated in the SDM and the predicted dry weight generated by the MSDMs for each genotype, to

estimate variation in seasonal niche breadth among genotypes. Thus, the parameters of TPCs reflect generalist/specialist

strategies. I detected significant relationships between thermal performance breadth and maximum predicted fitness and

significant correlations between optimal growth temperature and thermal performance breadth. There were large positive

correlations between predictions of the SDM and MSDMs based on growth within individual genotypes. The variation in

these correlations suggests variation in the degree of specialization. Genotypes with the broadest TPCs had the largest

correlations between their MSDMs and the SDM, suggesting that they were generalists. The results show that correlative

and MSDMs make similar predictions over the seasonal range, and that ecological specialization can vary dramatically

within species.

Introduction

Environments vary over space and time. How organ-

isms adapt to this variation depends on the scale of

variation relative to the dispersal distance and gen-

eration time of the organism (Bradshaw 1965; Via

and Lande 1985; Tufto 2015). Large scale spatial

variation forces organisms to adapt to local eco-

logical conditions (Hereford 2009). Small scale spa-

tial variation occurs well within the dispersal

distance of an organism, resulting in variation in

performance at scales so small that selection cannot

respond (e.g., Stratton 1995). Like spatial variation,

temporal variation exists over large and small scales.

Large scale temporal variation includes processes

such as inter-annual variation and climate change.

Small scale temporal variation includes diurnal vari-

ation, and seasonality. Seasonality can drive adapta-

tion to specific seasons or select for generalist

strategies conferring adaptation to multiple seasons

(Gilchrist 1995), and the seasonal niche is the real-

ized range of spatiotemporal conditions in which a

species can complete its life-cycle.

The seasonal niche includes the total spatial and

temporal environment where a species is expected to

grow and reproduce. For many organisms, seasonal

variation determines when they reproduce as well as

where they can live. If seasonal periods favorable for

growth and reproduction are too short, the organism

will not be able to sustain a population (Chuine

2010). In this way, the seasonal niche is a compre-

hensive realized niche concept, that not only

describes where an organism can live, but when it

is expected to express specific life stages (Hereford

et al. 2017). Given the importance of seasonal vari-

ation on species distributions, it is surprising that

few studies consider the role of seasonal patterns in
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models of species’ distribution and realized niche

(but see Nielsen et al. 2003; Hereford et al. 2017).

An understanding of the influence of seasonal pat-

terns can reveal not only where a species is expected

to grow, but where and when alternate phenological

stages are expected to occur. The influence of sea-

sonal patterns on species distributions results be-

cause environments may vary such that growth

during the wrong season can be lethal. Thus, sea-

sonal variation exposes organisms to environmental

extremes. Variation in the phenology and distribu-

tion of species reflects their physiological tolerance

and performance (Donohue et al. 2010). Thus, the

realized niche of the species should include not only

where it is found, but when it completes its life cycle.

The seasonal niche is not only a property of the

species. Variation within species in ecological special-

ization and physiological performance suggests vari-

ation in niche breadth within species (Angilletta

2009; Hereford 2009). For example, variation within

species in thermal performance (Angert et al. 2011;

Latimer et al. 2011; Richter-Boix et al. 2015) suggests

that the seasonal niche should vary within species as

a result of variation in temperature. Differences

among genotypes in performance suggest that the

species-level niche may be an emergent property of

variation in seasonal niche among genotypes. For

example, the species-level niche may be large as a

result of many individuals with similarly large ther-

mal performance ranges and thus similar seasonal

niches. Alternatively, the species-level niche may be

large as a result of many specialist individuals with

performance ranges encompassing small subsets of

the total species-level range. In the former example,

the individual-level seasonal niches are similar to the

overall species-level niches, and in the second ex-

ample, the individual niches are narrower and less

similar to the species-level niche.

The degree to which an individual genotype’s

niche matches the species-level niche is a measure

of specialization. Definitions of specialization are

typically based on comparisons between groups,

where specialists are able to utilize relatively fewer

environments or resources than generalists

(Futuyma and Moreno 1988; Forister et al. 2012).

The species-level realized niche can be estimated

using species distribution models (SDMs). These

models relate the distribution of species in space to

environmental factors, to predict the distribution of

the species (Elith and Leathwick 2009). Thus, the

species-level realized niche is based on variation

from a collection of individuals of the same species,

and variation within the species is pooled to estimate

a total species niche. Given the expectation that the

species-level niche is composed of the aggregate

niches of genotypes that make up the species, spe-

cialist and generalist genotypes can be determined by

their similarity to the species-level niche.

The methods employed in SDMs to estimate the

distribution of species cannot be used to estimate the

realized niche of an individual because the individual

is located in a single population. Mechanistic species

distribution modeling (MSDM) can be used to esti-

mate the realized niche of an individual. In an

MSDM, the distribution of the species is predicted

by estimating the relationship between performance

and environmental factors (Kearney and Porter

2009). Both SDMs and MSDMs predict the distribu-

tion of species, and both methods can predict the

seasonal niche. The predictions from SDMs and

MSDM should be correlated (Rougier et al. 2015;

Shabani et al. 2016). The suitability of the environ-

ment is predicted in an SDM and a measure of per-

formance or fitness is predicted in an MSDM. Points

in space and time that are more suitable should be

those that lead to higher fitness. Thus, there is an

expected correlation between suitability and fitness.

The MSDM of an individual with a seasonal niche

that mirrors the species-level niche should make

similar predictions as the SDM of the species as a

whole. The MSDM of an individual with an extreme

phenotype or that has a very limited physiological

performance range should be dissimilar to the

species-level SDM.

Here I estimate the correlations between the

results of a seasonal SDM and seasonal MSDMs of

individuals of a short-lived annual plant species. The

goals of this study are first to test the hypothesis that

genotypes that make up the species are thermal spe-

cialists on specific conditions or generalists that

largely mirror the species-level niche. Quantifying

these relationships will shed light on whether the

species is made up of a collection of specialists

adapted to different conditions or generalists that

mirror the species niche. I estimate the correlation

between the predictions of the species-level SDM and

the predictions of the genotype’s MSDMs. The se-

cond goal is to determine the aspects of thermal

performance that are correlated with a specialist or

generalist genotype. Here I quantify genetic correla-

tions between parameters of thermal performance

curves (TPCs), and I estimate relationships between

TPC parameters and the degree of specialization.

Quantifying the actual realized niche is difficult

and requires multivariate methods to disentangle

the influence of correlated variables. In this study,

I use seasonal range as a proxy for the realized niche

(e.g. Lee-Yaw et al. 2016), where range is the
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distribution in space and time of suitability and fit-

ness. This approach is general not only to short-lived

organisms. Specific life-stages of long-lived organ-

isms, such as migrations of birds or diapause in

insects can be modeled with these methods as well.

Materials and methods

Mollugo verticillata is a short-lived annual, native to

South and Central America (Kearney and Peebles

1964). It is considered naturalized to California

(Baldwin et al. 2012). There is strong evidence that

the species is highly selfing given the small flower

size (1.5–2.5mm diameter) and lack of pollination

in the field (J. Hereford, personal observation). In

California, M. verticillata is found in moist soil along

the shores of lakes and reservoirs. Germination in

these environments does not occur in response to

rainfall, but in response to warm temperatures and

soil desiccation along the shores. In other parts of its

range, germination appears to coincide with warm

weather rains (J. Hereford, personal observation).

In this experiment, I sampled genotypes from six

source populations, spanning the range of climate

and seasonality within California.

The species level seasonal niche within California

can be estimated by understanding where and when

M. verticillata is likely to be growing and reproduc-

ing. I used an SDM to predict the species level niche

and determine the factors that limit the distribution

of M. verticillata. The construction of the seasonal

SDM has been previously published (Hereford et al.

2017). Briefly, an SDM was constructed for M. ver-

ticillata that incorporated variation in seasonal pat-

terns at the locations that specimens were collected.

While conventional SDMs focus on how variation in

average conditions predicts the distribution of a spe-

cies, the seasonal SDM utilizes climate data from the

time and place that each observed collection was

made to predict not only where a species is likely

to be found, but also when the species is predicted to

be growing and reproducing at that location. The

climate data in the seasonal SDM were collected

from the Basin Characterization Model (BCM)

described in Flint et al. (2013). This model produces

270 m gridded maps of California and surrounding

watersheds for each month and year from 1896 to

the present. The seasonal SDM for M. verticillata

showed that mean monthly temperature was respon-

sible for 78.8% of the variance in suitability of habi-

tat and season (Hereford et al. 2017). Thus,

temperature is the major determinant of the pres-

ence of M. verticillata across the landscape and

seasons.

To estimate TPCs, I grew six successive cohorts of

the same maternal families (genotypes) throughout

the spring, summer, and fall. Individuals of these

genotypes were repeatedly planted approximately

every 6weeks from May to November of 2014. I

grew plants from 20 genotypes of each of the six

populations in a screen house. The screen house is

a controlled growth facility that allows ambient tem-

perature and nearly ambient sunlight. I planted two

seeds per pot, and planted three such pots in each of

three randomized blocks for each maternal family

(genotype). The first seed to germinate in a pot

was allowed to grow, and the second seed to germin-

ate was removed. If both seeds germinated on the

same day the smallest was removed. Plantings where

no seeds germinated were not included in any anal-

yses, and differences in sample size among genotypes

result from variation in germination. Plants were

watered daily such that soil never completely dried

out, to simulate the conditions of the lakeshore habi-

tat. The temperature from the time of germination

to senescence was recorded at 5min intervals for all

seeds that germinated. The final dry weight at sen-

escence was used as the measure of fitness, as the

correlation between flower number and final dry

weight is 0.95 (J. Hereford, unpublished data).

Plants begin flowering within 10 days of germin-

ation, and no plant was ever weighed without flower

buds present. Therefore, all plants were reproductive.

The TPC for each genotype was estimated by the

non-linear regression of growth temperature on final

dry-weight (Huey and Stevenson 1979). Members of

each genotype could have germinated during warm

or cool periods, therefore each genotype experienced

a wide range of growth temperatures. This range

allowed individuals of each genotype to be grown

in cool or warm times of the growing season.

I followed the methods in Angilletta (2006) to

construct TPCs for each genotype. The maximum

number of seedlings that could germinate from

each genotype across the entire experiment was 18

(3 in each of 6 experiments). This limited the forms

of TPCs that could be fit to the data. I used two

formulas to estimate four parameters to characterize

the relationship between growth temperature and dry

weight, the Quadratic and the Gaussian. Following

Angilletta (2006), I fit Quadratic and Gaussian mod-

els to the relationship between dry weight and mean

growth temperature for each genotype. I chose the

model with the lower AIC score to estimate the TPC.

The relationships between dry weight and mean

growth temperature can be used to predict the fit-

ness of a plant growing at any temperature. In 41

out of 120 genotypes, no non-linear regression

1012 J. Hereford

Downloaded from https://academic.oup.com/icb/article-abstract/57/5/1010/4034664
by Auraria Library user
on 24 April 2018

Deleted Text: Methods
Deleted Text: -
Deleted Text: . 
Deleted Text: Hereford pers. obs
Deleted Text:  
Deleted Text: six 
Deleted Text: ute
Deleted Text: Hereford 
Deleted Text: . 
Deleted Text: six 


would converge on estimates of curve parameters as

a result of small sample sizes within those genotypes.

These genotypes were not included in any analyses.

The MSDMs were generated using temperature

maps and the TPCs to predict fitness across the

seasons. I used the relationships between dry weight

and average growth temperature from the TPCs, to

predict what the dry weight of an individual plant

would be at any location during any month. Mean

monthly temperature maps were generated from the

BCM maps. I obtained 12maps of average tempera-

ture, one for each month. Mean monthly tempera-

ture was calculated as the mean of the minimum and

maximum temperature of each month. This calcula-

tion of the average was used because only minimum

and maximum temperature monthly rasters are

available. These means were calculated for each

month in the period from 1981 to 2010. Therefore,

the maps present average conditions during each

month in the period from 1981 to 2010. The pre-

dicted fitness of each genotype at each point in the

270 m grid during each month can be estimated

from the TPC and the temperature values from the

monthly temperature maps. This procedure gener-

ates an MSDM for each genotype.

The SDM and the MSDMs are independent esti-

mates of the realized niche. The species-level SDM is

constructed from species collection records using

several climatic variables to predict the suitability

of the environment for M. verticillata (Hereford

et al. 2017). The MSDMs are based on TPCs where

fitness of a genotype is predicted exclusively by vari-

ation in temperature. The SDM is taken from a large

collection of multiple individuals throughout

California. Temperature explains the majority of

the variation in the SDM, and with the exception

of soil depth, the remainder of the variation is

explained by factors that have a functional relation-

ship with temperature. The SDM characterizes the

species-level realized niche in California (Elith and

Leathwick 2009). The MSDMs show the predicted

fitness of individual genotypes, and thus represent

the realized niche of genotypes within the species.

Genotypes with wider niches will encompass more

of the species-level niche than genotypes with nar-

rower niches. One measure of the size of a gen-

otype’s niche is the correlation between its

predicted performance and the species-level suitabil-

ity at that same time and place. Genotypes with

niches that more closely match the species-level

niche will have greater correlations between

species-level suitability and predicted dry weight. It

is possible for genotypes to have large niches that do

not overlap with the species-level niche, resulting in

small or negative correlations between suitability and

predicted dry weight. The major assumption of this

analysis is that genotype-level niches are not larger

than the species-level niche. This assumption is rea-

sonable because it is improbable that genotypes

would have realized niches larger than the species-

level niche. To quantify how well a genotype’s niche

breadth matched the species-level niche, I calculated

the correlation between the predicted dry-weight

(from TPCs) of an individual of that genotype at a

site and the predicted suitability of the site for the

species, this correlation was calculated for all

12months. To calculate the correlation between suit-

ability and predicted dry weight I first chose 1050

random locations from the 270 m grid of California

and surrounding watersheds. I then quantified the

correlation between predicted suitability of the loca-

tions and the predicted dry weight of plants at those

locations and months. Large positive correlations in-

dicate more overlap between the species-level and

genotype-level niches.

A second goal of this study is to determine the

aspects of thermal performance that are most asso-

ciated with variation in the realized niche. Here I

compare the parameters generated from TPCs with

the correlations between the SDM and MSDMs. To

perform this analysis, the TPCs must be of the same

general shape. I chose the Gaussian as the template

shape, as 55 out of the 79 TPCs that could be esti-

mated had lower AIC scores under a Gaussian

model. In addition, the quadratic results in biologic-

ally impossible values of dry weight at low and high

temperatures. Therefore, all comparisons of TPC

parameters are based on the following Gaussian

function from Angilletta (2006).

W ¼ zmaxe
½�0:5ðjT�Toj=TbÞ2�;

where T is the growth temperature, To is the opti-

mum growth temperature, zmax is the maximum dry

weight, and Tb is the thermal performance breadth.

These parameters are the same as T, b, k, and c, in

Angilletta (2006), respectively.

To demonstrate the methods, Fig. 1 illustrates

how the MSDMs and individual correlations be-

tween genotype-level MSDM and the overall SDM

are calculated. The three genotypes with the smallest

correlations between their MSDM and the SDM in

July and the three genotypes with the largest corre-

lations are presented. The nonlinear regressions in

the first column show the TPCs for each of the six

genotypes. The maps show the predicted biomass

resulting from the TPC and the raster of mean tem-

perature. The third column shows the correlations
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Fig. 1 Six examples showing calculation of the mechanistic species distribution models (MSDMs) for the three genotypes with the

smallest and greatest correlations between the SDM and MSDMs. The first column shows the thermal performance curves with each

point showing the biomass (final dry weight) and average growth temperature of each plant (replicate of a genotype). The second

column shows maps of predicted dry weight across the study area in July. The third column shows the relationship between the overall

SDM and the genotype’s MSDM for July. The correlation coefficient is shown on the upper right of each plot.
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between the genotype’s MSDM and the SDM for

July. All analyses were performed in R version 3.3.

Results

Predicted suitability and predicted dry weight

changed monthly, with both measures predicting

peak growth in summer months. For the 1050 ran-

domly chosen points, the seasonal SDM predicted

monthly changes in median suitability, with highest

suitability from April to October. Predicted dry

weight among the 79 genotypes followed the same

pattern (Fig. 2). June was the month with peak pre-

dicted dry weight and suitability. Variation in suit-

ability and predicted dry weight also followed a

seasonal pattern. There was little variation in both

measures from January to March, and variation

increased from April to October. A nonlinear regres-

sion of suitability on temperature for the 1050 points

was performed for July. This regression estimated an

optimum temperature value of 24.26, similar to the

value for the data pooled across all genotypes

(24.21). The estimated variance from that regression

was 5.74, larger than the value of 3.63 for all geno-

types. The plot of the relationship between suitability

and temperature for July is shown in Supplementary

Fig. S1.

The suitabilities generated by the SDM and the

predicted dry weight generated by the MSDM were

correlated, and the magnitude of the correlations

changed with season. The distribution of correlations

was not normal for any month and the distributions

tended to be left skewed. Therefore, median values of

the correlations are presented. Correlations between

SDM and MSDM were greatest in May and June

(Fig. 3). The median correlations in all months

were greater than 0.54, and the first quartile was

greater than 0.23 in all months. Each correlation

was based on the same 1050 spatial points. Thus,

any correlations larger than 0.07 are significant.

There was ample variation among correlations across

genotypes for most months. January was the excep-

tion, where there was little variation among geno-

types in SDM/MSDM correlation (Fig. 3).

The TPCs for each genotype revealed relationships

between thermal performance breadth and max-

imum performance. There was a significant negative

correlation (r¼�0.51, P < 0.0001) between the

thermal performance breadth and maximum per-

formance, where greater thermal performance

breadth was significantly correlated with decreased

Fig. 2 Plots of mean monthly suitability of the 1050 points gen-

erated from the SDM (A), and mean predicted dry weight for the

same points across the 79 genotypes (B). Points indicate means

and bars are standard deviations. The standard deviations for plot

A are based on variation among the 1050 points for each month

(n¼ 1050 points). The standard deviations for plot B are calcu-

lated from the average predicted dry weight of each genotype at

the 1050 points (n¼ 79 genotypes).

Fig. 3 Median correlation coefficients for each month between

the predictions of the SDM and the MSDMs of all genotypes.

Bars represent one standard deviation of 79 genotype-level

correlations.

Thermal performance and seasonality 1015

Downloaded from https://academic.oup.com/icb/article-abstract/57/5/1010/4034664
by Auraria Library user
on 24 April 2018

Deleted Text: through 
Deleted Text: through 
Deleted Text: -


maximum performance (Fig. 4A). There was a sig-

nificant correlation (r¼�0.27, P ¼ 0.015) between

optimum growth temperature and thermal perform-

ance breadth (Fig. 4B), but no significant correlation

(r¼ 0.18, P¼ 0.11) between optimum growth tem-

perature and maximum performance (Fig. 4C).

The relationship between parameters of the TPCs

and the SDM/MSDM correlation was significant in

all months for all parameters. The correlations be-

tween thermal performance breadth and SDM/

MSDM relationship were positive and significant in

all months (Table 1). The correlation between max-

imum performance and SDM/MSDM relationship

was negative in all months, as was the correlation

between optimum growth temperature and SDM/

MSDM relationship (Table 1).

Discussion

Genotypes with larger SDM/MSDM correlations

were those with larger thermal performance breadth,

lower optimum temperature, and lower predicted

maximum performance. Taken together the relation-

ships between TPC parameters and the relationship

between the TPC parameters and the SDM/MSDM

correlations suggest that generalist genotypes reflect

the overall species realized niche, and that being a

generalist comes at a cost to performance at high

temperatures. These patterns did not differ among

months (Table 1). The correlations among parame-

ters of the TPCs suggest that greater niche breadth

comes at a fitness cost, as there was a negative cor-

relation between thermal performance breadth and

maximum performance (Fig. 4A). The correlation

between optimum growth temperature and perform-

ance breadth suggests that increasing optimum

growth temperature results in lower thermal per-

formance breadth (Fig. 4B). Predicted suitabilities

and predicted dry weight showed similar seasonal

patterns, where they were projected to be greatest

in summer and near zero in winter (Fig. 2). This

pattern suggests a mechanism for the observation

that fewer collections of M. verticillata are made in

winter and late fall (Hereford et al. 2017). The cor-

relations between SDM and MSDM were generally

positive and significant (Fig. 3), suggesting that most

genotypes should have high fitness in areas and times

predicted to be suitable for M. verticillata, and that

most genotypes are more generalized. MSDMs with

only temperature as the explanatory variable were

highly correlated in their predictions to an SDM

based on the five most important variables. This is

not surprising, given that mean monthly temperature

Fig. 4 Scatter plots between thermal performance breadth and

maximum dry weight (A), thermal performance breadth and op-

timum growth temperature (B), and maximum dry weight and

optimum growth temperature (C). Individual points show the

parameter estimates of a single genotype.
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is by far the most important variable in seasonal

suitability for M. verticillata (Importance¼ 78.8;

Hereford et al. 2017). The TPCs were based on

mean temperature during growth, which ignores

variation in temperature during the life cycle

(Kingsolver and woods 2016), yet the models make

similar predictions. The variation among genotypes

in SDM/MSDM correlations and the relationship be-

tween TPC parameters and monthly SDM/MSDM

correlations suggest variation among genotypes in

niche breadth.

The relationship between the results of the models

in this study suggests that the seasonal SDM accur-

ately predicts the realized niche of genotypes with

broad niches, but does not predict the niche of

more specialized genotypes. The correlations between

the SDM and the MSDMs largely agree in their pre-

dictions of when and where the environment is most

suitable for M. verticillata. The large positive corre-

lations between the SDM and MSDMs of most gen-

otypes show that areas that are most suitable are

predicted to lead to greatest fitness. The magnitude

of the correlations show that there is strong agree-

ment between the models for all months (Fig. 3).

Few studies have compared the predictions of

SDMs and MSDMs. Two studies found agreement

between the predictions of correlative and mechan-

istic models in terrestrial and aquatic species

(Rougier et al. 2015; Shabani et al. 2016). The mech-

anistic models in those studies were based on more

than a single variable. In this study, temperature has

such a large influence on the seasonal SDM that the

mechanistic model based only on thermal perform-

ance is likely to capture a large portion of the vari-

ation in fitness. Including the influence of other

variables such as soil moisture/evapotranspiration

should improve the accuracy of the predictions of

the mechanistic models and increase the correlations

between SDM and MSDMs for some genotypes.

However, many genotypes showed correlations be-

tween the SDM and MSDM that were greater than

0.80, suggesting that temperature is the major niche

axis in this species (Hereford et al. 2017).

These analyses estimate the spatiotemporal ranges

of genotypes within a species, quantify variation in

specialization within the species, and reveal con-

straints on the evolution of thermal performance.

Formal tests of genetic variation in niche breadth

within and among populations are the focus of a

different study (J. Hereford, manuscript in prepar-

ation), yet the range of variation in the correlations

between SDMs and MSDMs and the correlations be-

tween parameters of the TPCs suggest that there is

genetic variation among genotypes in the degree of

specialization. The relationships between parameters

of TPCs reveal possible constraints on the evolution

of thermal performance. Two processes may con-

strain evolution of thermal performance to warmer

temperatures. First there is a negative correlation be-

tween temperature optimum and performance

breadth, suggesting that warm temperature perform-

ance comes at a cost to performance breadth.

Adaptation to warmer temperatures may result in

limited growth across a wide range of temperatures.

This within species pattern is in agreement with a

species-level pattern, where thermal performance at

high temperatures is associated with a more narrow

range of thermal performance (Dillon et al. 2010;

Dell et al. 2011). An implication of this result is

that increased performance in July will come at a

cost to April performance. The results are not in

agreement with the ‘hotter is better and broader’

conclusion of Kneis et al. (2012). Higher optimum

growth temperature was associated with lower ther-

mal performance breadth (Fig. 4B), and there was no

association with maximum performance (Fig. 4C).

Warmer optimum growth temperatures were associ-

ated with smaller correlations between SDM and

MSDMs, suggesting genotypes with higher optimum

growth temperatures were more specialized.

Related to the pattern of lower thermal perform-

ance range associated with increased optimum

growth temperature is the pattern of lower thermal

performance range associated with increased max-

imum fitness (Fig. 4A). This result suggests that gen-

otypes that have high maximum fitness at a given

Table 1 The correlation coefficients between broadness of the realized niche and the three parameters of the thermal performance

curves

January February March April May June July August September October November December

To �0.34 �0.59 �0.60 �0.62 �0.68 �0.56 �0.57 �0.75 �0.79 �0.64 �0.58 �0.53

Tb 0.88 0.82 0.82 0.81 0.74 0.60 0.44 0.44 0.60 0.85 0.86 0.85

Zmax �0.49 �0.51 �0.45 �0.46 �0.42 �0.48 �0.47 �0.42 �0.41 �0.44 �0.46 �0.43

Notes: All correlations are significant. To indicates the optimum growth temperature, Zmax is the maximum dry weight, and Tb is the thermal

performance breadth.
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temperature have a lower range of high thermal per-

formance. The result also suggests that niche space is

limited, such that it is not possible to maintain high

fitness across a wide range of temperatures. The cor-

relation between maximum dry weight and thermal

performance breadth indicates the specialist–general-

ist dimension of TPCs (Huey and Kingsolver 1989;

Gilchrist 1995; Izem and Kingsolver 2005). This re-

lationship illustrates the limits to thermal evolution

in this species. Genotypes that adapt to high seasonal

temperatures to expand the seasonal niche will be

limited to a smaller range of temperatures over

which they could maintain high fitness. Specialist–

generalist constraints have been detected in other

species (Angert et al. 2011; Latimer et al. 2011,

2015), suggesting that increasing fitness in a specific

season generally comes at a cost to fitness across

seasons.

It is not clear that the variation among genotypes

in the degree of specialization is adaptive. Thermal

performance can respond to selection (Logan et al.

2014), but parameters of TPCs may respond to se-

lection at different rates (Latimer et al. 2014).

Optimum growth temperature does not appear to

evolve in response to overall climate or warmest sea-

sonal temperatures. Thermal performance breadth,

optimal growth temperatures, and maximum per-

formance are not related to seasonality of the geno-

type’s native site or overall summer temperatures (J.

Hereford, unpublished data; Supplementary Table

S1). The parameters that determine thermal per-

formance may evolve in response to genetic drift

and evolutionary history similar to other traits

(Travisano et al. 1995). The genotypes in this study

were collected from populations that occur in man-

made reservoirs that are between 95 and 57 years old.

It is possible that not enough time has occurred to

allow adaptation to those conditions (Phillips 1996).

Alternatively, genotypes with high thermal optima

may be maintained within all populations as a result

of rare extreme thermal events. A period of extreme

temperatures during a growing season can be a

highly effective agent of selection that may override

the effects of selection for optimum growth under

more moderate temperatures (Buckley and Huey

2016). These events may maintain variation within

populations depending on the frequency of extreme

temperatures during the growing season. It is pos-

sible that seasonal patterns of selection may drive the

evolution of thermal performance in ways that are

not clear from simply quantifying the length of the

growing season. Seasonal variation in selection may

result in unpredictable patterns of thermal adapta-

tion in this species given the genetic relationships

between parameters of TPCs and seasonal variation

(Table 1). Despite variation in overall climate, gen-

otypes may vary in their degree of thermal special-

ization as a result of environmental variation within

and between generations (Gilchrist 1995). Future

studies in this system should determine the patterns

of seasonally varying selection, to quantify the role of

seasonal adaptation in the evolution of thermal per-

formance (e.g., Kingsolver et al. 2001; Chevin et al.

2015).

The seasonal context of the organism should be

considered in studies of adaptation. This study

reveals variation within a species in niche breadth

by quantifying variation in across seasons. The sea-

sonal niche of M. verticillata is not a static feature of

the species, but may evolve. This study demonstrates

the robustness of correlative estimates of the seasonal

niche by comparing the correlations between the

SDM and the MSDMs for each genotype in the

study. Considering the seasonal aspects of an organ-

ism’s environment provides a more complete char-

acterization of the environment. Seasonal patterns

can shape responses to selection in ways that are

not obvious when considering only overall differen-

ces between environments. For example, many recip-

rocal transplant studies find evidence of generalists

despite strong environmental differences between na-

tive sites (Hereford 2009). If seasonal variation

within the sites results in greater overlap in condi-

tions, or if there are genetic constraints among the

factors that make up the niche as seen in this study,

the classic pattern of local adaptation where both

populations are specialists on their native sites will

not be detected.
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