Glimpse.3D: A Motion-Triggered Stereo Body Camera for 3D
Experience Capture and Preview

Bashima Islam
UNC at Chapel Hill
bashima@cs.unc.edu

Md Tamzeed Islam
UNC at Chapel Hill
tamzeed@cs.unc.edu

Shahriar Nirjon
UNC at Chapel Hill
nirjon@cs.unc.edu

Figure 1: Glimpse.3D in action: (a) A mobile user is wearing Glimpse.3D which is taking stereo images of a scene containing parked cars in
front of a building. (b) The bodycam captures and processes stereo images to generate disparity maps, and a 3D point cloud is created inside
the camera unit. (c) A smartphone pulls the point cloud and renders it on the screen. We have not applied any post processing step such as
meshing or texture mapping on this point cloud-which will improve the rendered image further, but at an additional cost.

ABSTRACT

The Glimpse.3D is a body-worn camera that captures, processes,
stores, and transmits 3D visual information of a real-world en-
vironment using a low cost camera-based sensor system that is
constrained by its limited processing capability, storage, and bat-
tery life. The 3D content is viewed on a mobile device such as a
smartphone or a virtual reality headset. This system can be used
in applications such as capturing and sharing 3D content in the
social media, training people in different professions, and post-facto
analysis of an event. Glimpse.3D uses off-the-shelf hardware and
standard computer vision algorithms. Its novelty lies in the ability
to optimally control camera data acquisition and processing stages to
guarantee the desired quality of captured information and battery life.
The design of the controller is based on extensive measurements
and modeling of the relationships between the linear and angular
motion of a body-worn camera and the quality of generated 3D
point clouds as well as the battery life of the system. To achieve
this, we 1) devise a new metric to quantify the quality of generated
3D point clouds, 2) formulate an optimization problem to find an
optimal trigger point for the camera system that prolongs its bat-
tery life while maximizing the quality of captured 3D environment,
and 3) make the model adaptive so that the system evolves and its
performance improves over time.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting; - Computer systems organization — Embedded sys-
tems; - Hardware — Power and energy;

KEYWORDS

3D-Reconstruction, Body Camera

1 INTRODUCTION

We are entering an era when 3D experience is going to be an integral
part of our digital lives. Capturing real-world experiences in 3D
brings us one step closer to bringing the digital world to life. We
have already begun to see an increased use of 3D technology in
medical imaging, training, crime scene documentation, robotics,
city planning, cultural heritage preservation, and industrial quality
control and measurements [48]. In coming days, the rich, realistic,
and immersive experience offered by 3D technology will enable
many applications. Of particular interest to us are the scenarios in
which a person wants to captures his experience in 3D, while he is
mobile and possibly outdoors, and then share the 3D contents with
his friends in the social media.

For example, a person visiting a place like the Washington Mon-
ument or the great Grand Canyon may want to capture his/her
experience in 3D and share it with others. An archaeologist may
want to share his/her expedition experience so that others can feel
the thrill when they watch the 3D content on their mobile devices.
A home buyer may want to capture the interior of his/her soon-to-
be home in 3D and share it with social media friends for comments
before signing the deal. In all cases, besides capturing, the user
naturally would want to preview the 3D content prior to sharing—
just like we preview images before sharing them on platforms like
Facebook or Instagram.

To realize a system like the above, we aim at developing a low-
cost and energy-efficient wearable body camera system that gen-
erates 3D point clouds in near real-time—which are previewed on
a player application running on a mobile phone. As a design deci-
sion, we choose to use a wearable platform over a smartphone-only
solution since it provides a user with hands free experience. Fur-
thermore, not all smartphones come with a built-in stereo camera
that could be leveraged to perform a 3D reconstruction. Developing

a wearable system like this, however, is extremely challenging. Be-
fore we introduce our solution, let us visit some of these challenges
in brief:

e A naive way to capture 3D experiences would be to store
and/or stream images taken with stereo cameras or a Kinect-like
RGBD camera, and then process the images offline to reconstruct
the 3D scene. This is, in fact, how 3D capturing is mostly done
today. However, the process is inefficient, unintelligent, power-
hungry, costly, and in some cases, ineffective (e.g., Kinect only
works indoors). We argue that neither storing nor streaming images
is efficient in terms of storage and battery life as images from camera
sensors contain up to 8X more redundant information than what is
required to create a 3D model of a scene. For example, an ideal point
cloud generation and merge process requires about 50% overlap
between two images [60]. A greater or less overlap results in a
drop in the generated 3D point cloud’s quality. Therefore, a key to
efficient 3D reconstruction is to be able to predict the right images
to capture, which would help us generate the best quality 3D point
clouds using the minimum number of captured images.

e Even if we can accurately predict the images to be taken for
a high quality 3D reconstruction, the task of reconstruction on
an embedded device still remains a significant challenge. Today, a
high-quality 3D reconstruction requires several minutes (for low
density point clouds) [37] to several days (for high density point
clouds) [40] in high-end computing devices. Therefore, a dense 3D
reconstruction on a battery-powered embedded device is out of
the question. Hence, in order to make 3D point cloud generation
possible on a resource-constrained device within a reasonable time,
we must fine tune the parameters of the standard 3D reconstruction
pipeline, so that the system operates at an optimal point which
balances the quality of generated point clouds, the battery life, and
the time to generate the cloud.

In this paper, we address these challenges and propose Glimpse.3D,
which is a body-worn camera that captures, processes, stores, and
transmits 3D visual information of a real-world environment in
the form of a sparse 3D point cloud. These point clouds are then
pulled by a mobile device such as a smartphone or a virtual real-
ity headset to render a dense 3D point cloud of the whole scene
for visualization. The end-to-end process, i.e. from the capturing
to previewing, happens in near real-time. Glimpse.3D employs
off-the-shelf hardware components and standard computer vision
algorithms to capture stereo images and generate 3D point clouds.
The novelty of Glimpse.3D, therefore, lies not in the computer vi-
sion aspect of it, but in the way it controls the execution of these
algorithms.

At the heart of Glimpse.3D is a controller that optimizes the
trigger-point of the image capture and processing tasks which
guarantees a minimum quality of captured 3D point clouds and
battery life of the embedded system. To achieve this, we devise
three algorithms that we highlight as the three main contributions
of the paper:

e We define a quality metric for 3D point clouds using their
structural similarity index (SSIM) [64]. Since this metric is compu-
tationally expensive, we model it as a function of variables, whose
values are obtained as a byproduct of a step in the 3D reconstruction
pipeline. This makes it possible to quantify the quality of a point
cloud in constant time.

e We formulate an optimization problem that finds an optimal
trigger-point for the body camera to prolong its battery life while
maximizing the quality of captured 3D environment. The outcome
of this optimization is a pair of displacement values (linear and
angular) that determines when to trigger the image capture and
processing tasks to satisfy the minimum lifetime and quality con-
straints.

o We devise a self-adaptation mechanism for the camera con-
troller so that it learns and evolves over time as it experiences new
scenes and generates more point clouds. The goal of this module
is to monitor the performance of the controller, update the model
parameters, and readjust the optimal displacement values so that
the system becomes precise in terms of maintaining the quality of
3D information and the desired battery life.

Glimpse.3D is different than existing techniques such as simulta-
neous localization and mapping (SLAM) [47], visual inertial odome-
tery (VIO) [38], and IMU enhanced bundle adjustment [1]. Since
we are only interested in the 3D reconstruction/mapping, and not
strictly in positioning the user in a topology, SLAM is not going to
be as efficient as Glimpse.3D for the task. Additionally, the frame
rate required to run SLAM is much higher than what our embedded
platform could handle. Although we use an IMU, our usage is dif-
ferent from both VIO and IMU-enhanced bundle adjustment. VIO
uses IMU to correct its vision-based odometery (distance). Similarly,
IMU-enhanced bundle adjustment helps improve the quality 3D
reconstruction. However, in both cases, the use of IMU is after the
reconstruction, whereas we use IMU to decide when to take pic-
tures, and thus save a great amount of unnecessary image captures
and processing.

2 BACKGROUND

2.1 Stereo 3D Reconstruction Pipeline

Stereo 3D reconstruction is the process of extracting 3D information
from two digital images. The basic idea of stereo 3D reconstruction
is to find corresponding points in the two input images and to esti-
mate the depth of those points from their relative positions in each
image. The 3D reconstruction pipeline is shown in Figure 2. First,

Image

Cay Loftimagg Rectify Loft S t | S g it |Match St

pture ecti - egmen egment |Match Stereo

Image ;;j Image Images Images
ight

I Calibration Depth

Stereo mage Parameter Value
e : . Garmea
Camera Point Cloud Disparity Map

Calibration Pattern

Figure 2: Stereo 3D reconstruction pipeline.

two input images are rectified to reduce distortions [2, 53] using
camera calibration [15, 20, 23, 55, 69]. Then they are segmented
into groups of similar pixels and corresponding points are obtained
with stereo matching algorithms [24, 30] to create a disparity map.
This map represents the offset of two corresponding points calcu-
lated by the triangulation method [13]. Finally, a 3D point cloud is
generated from the disparity map.

A 3D point cloud is a set of data points in a 3D coordinate
system defined by their x, y, and z coordinates and RGB color
components. Based on the number of points per unit volume, a
point cloud is either dense or sparse. A sufficiently dense 3D point
cloud represents the external surface of objects. Point clouds often
undergo through a triangulation phase to create meshes.

2.2 Merging Point Clouds

A pair of stereo images results in a single 3D point cloud. In order
to capture a complete scene and objects within it , multiple point
clouds (from different position and orientation of the camera) are
merged together. This process is called mapping. For an effective
merging, two point clouds need to overlap partially with each other.
To merge two point clouds, we use iterative closest point (ICP) [34].
It solves the surface registration problem, transforming the second
point cloud to the coordinate system of the reference (first) point
cloud using the point to point correspondences between point
clouds. Finally, the world scene is created from registered point

clouds.
Moving

Fixed

Rotation Matri ransform

ranslation Matrix| Moving Point

Cloud

Compute Rigid
Transformation

Transformed Moving

Point Cloud
Fixed

Point Cloud

Point Clouds
Merged Point Cloud

Figure 3: Steps of point cloud merging operation.

Figure 3 shows the steps of merging two point clouds using the
ICP algorithm. Down-sampling removes noise from data and in-
creases the accuracy of the algorithm. Rigid transformation matches
points between the two point clouds using a kd-tree or the k-nearest
neighbor algorithm. Incorrect matches are removed using an out-
lier detection process and the rotation and translation matrices are
calculated from the inlier points. A transformation is applied on
the moving (second) point cloud. Finally, the down-sampled fixed
(first) point cloud and the transformed moving (second) point cloud
are combined to form a large aggregated point cloud.

3 OVERVIEW AND CHALLENGES

This section provides an overview of Glimpse.3D and introduces
three technical challenges that this paper addresses.

3.1 Overview of Glimpse.3D

Glimpse.3D is a body-worn camera that captures, processes, stores,
and transmits 3D visual information of a real-world environment
in the form of a sparse 3D point cloud. These point clouds are then
pulled by a mobile device such as a smartphone or a virtual reality
headset to render a dense 3D point cloud of the whole scene for
visualization.

The purpose of Glimpse.3D is to enable 3D experience capture
in real-world mobile situations using low-cost camera-based sensor
systems that are constrained by the limited processing capability,
storage, and battery life. The system is suitable for applications
where a user wants to capture a scene in 3D and there is a need for
a quick preview of the 3D content. The current implementation of
Glimpse.3D assumes a static target scene, but the user wearing the
system can be either stationary or moving on feet. The body camera
captures and processes stereo images to generate a 3D point cloud
inside the camera unit. As the person moves, new points are added
to the point cloud and it grows incrementally. The point cloud is
pulled by a smartphone and is rendered on the screen.

3.2 Processing Inside a Body Camera Unit

Each body camera unit contains a pair of low cost cameras for
capturing stereo images, an inertial measurement unit (IMU) for

estimating linear and angular displacements, a micro-controller for
data processing and control, a wireless module for communication
with a smartphone, and a battery.

Y

)\ Calculate Calculate Controller

z x—> | ReadIMU > Linear —» Angular
MU Distance Distance

Trigger
Cycle Start

Generate 3D

Capture Calculate Merge Point Transmit | |
& Stereo Image [| Disparity Map [| Point Cloud |__: Clouds Point Cloud > ®)

Aggregated Point Cloud
Figure 4: Each body camera unit consists of a pair of cameras, an
IMU, a MCU, and a radio.

Figure 4 shows the components inside a single Glimpse.3D cam-
era unit. There are three major subsystems: 1) image processing
subsystem, 2) IMU data processing subsystem, and 3) a controller.
The first two subsystems implement standard algorithms for image
and IMU data processing, which are tuned to fit the constraints of
the proposed system. The last component, the controller, which is
one of the main contributions of this paper, is introduced in this
section and elaborated in the next section.

o Image Processing Subsystem. The image processing subsystem
is triggered by the controller to perform a sequence of image pro-
cessing tasks. At first, the stereo camera takes a pair of images. The
stereo camera consists of two identical cameras that are calibrated
using Tsai’s [61] method. These images go through a standard lens
distortion [53] removal step. This is further processed to obtain a
disparity map [13] using a Sobel filter [54] and semi-global block
matching. As disparity is inversely proportional to the depth of
an image pixel [60], it gives us the z-coordinates of image pixels.
These z-values are used to reconstruct the 3D world coordinates of
the points corresponding to each pixel in the disparity map.

Each body camera keeps a timestamped, aggregated point cloud
which is updated by merging a newly generated point cloud to
it. For merging, we use iterative point cloud (ICP) [34] algorithm.
In order to speed up and de-noise the data, we down-sample the
data using a box grid filter. To bound the execution time, we limit
the iteration count to 20, which is reached only for the degenerate
cases.

Upon receiving a pull request from a receiving device, the latest
aggregated point cloud is transmitted wirelessly.

o IMU Data Processing Subsystem. This step measures the linear
and angular displacements from the IMU data, sampled at 100Hz.
For linear displacements, we count the number of steps and multiply
it with average walking stride length of a human (0.762 meter) to
get the distance [25, 66]. First, we remove the effect of gravity using
magnitude and variance of acceleration. Then, we detect the swing
and stance phase of a user by applying thresholds. A step is detected
when a swing phase ends and a stance phase starts. For angular
displacements, we use absolute orientation in the Euler vector form.

o The Controller Subsystem. At the heart of Glimpse.3D is a con-
troller that optimally triggers the image processing subsystem,
based on the motion of a person wearing the body camera. A naive
design of this controller could be to trigger an execution whenever
there is a significant change in position or orientation of the body

camera. However, such a reactive algorithm is not capable of jointly
optimizing the battery life and the quality of 3D point clouds. Hence,
an adaptive controller is designed and implemented in Glimpse.3D,
which solves an optimization problem to find optimal values of
linear and angular displacements of the body camera, and adapts
the model parameters at runtime to accommodate new experiences
as the system operates in the real world. The detail of this controller
is described in Section 4 along with other technical contributions
of this paper.

3.3 Processing Inside an Aggregator Device

Each body camera keeps generating and saving an aggregated point
cloud inside it until a viewer sends a pull request. Inside a pull re-
quest, the viewer/aggregator device sends a list of device identifiers
and timestamps to broadcast the last successfully received point
clouds from each body camera it is interacting with. Upon receiving
a pull request, a body camera compares the timestamp t,,,,;; from
the pull request to the timestamp tcy,r of its most recent aggre-
gated point cloud, and transmits the aggregated point cloud over
UDP, only if teurr > tpy11- Each body camera periodically runs a
garbage collector to remove older point clouds from its memory.
After receiving a new point cloud, the viewer merges it with an
internal point cloud that it maintains throughout a viewing session,
i.e. the time between the starting and stopping of the viewer ap-
plication. In order for a better and denser visualization the sparse
point cloud, we triangulate [3] each point with two neighboring
ones. This is a linear operation and it is done only at an increment.
The amortized rendering time is in the order of 1.5s.

3.4 Technical Challenges

We address three key technical challenges during the design and
implementation of Glimpse.3D.

o Quantifying the Quality of Merged Point Cloud. Glimpse.3D
aims at maximizing the quality of generated 3D point clouds while
ensuring a certain battery life. A basic principle in Glimpse.3D
is not to spend valuable resources in capturing and processing
images unless it is worth doing so. To determine whether generating
and merging a new point cloud is worth, we need to quantify the
utility of such a merger. Hence, the system needs to quantify the
quality of a point cloud merger, even before it actually capture the
second image-pair. To address this challenge, Glimpse.3D proposes
an algorithm to quantify the expected quality of a point cloud
merger based on structural similarity and modeled by internal
parameters of ICP-based point cloud merging algorithm. The details
of this algorithm are described in Section 4.1.

o Determining an Optimal Trigger Point to Execute Image Process-
ing Modules. Despite an extensive tuning of the parameters of all
image processing modules in Glimpse.3D, they still remain as the
most time and power consuming entities in the system. To increase
efficiency, Glimpse.3D implements a controller that measures linear
and angular displacements of the person wearing the body camera
and triggers the image processing subsystem only when the dis-
placements exceed optimally computed thresholds. The detail of
the optimization problem is described in Section 4.2.

o Adapting the System Model at Runtime. The optimizer that de-
termines the optimal trigger point uses a set of empirical models
pertaining to different aspects of the system. For example, one of

these models maps linear displacements to the quality of merged
point clouds. Although the parameters of such a model are esti-
mated at design time with extensive measurements, they are likely
to require run-time adaptations as the system operates in different
scenarios, learns about new environments, and is worn by differ-
ent persons. To handle this challenge, Glimpse.3D employs model
adaptation that monitors the performance of the current system
models and updates the parameters at run time, when the current
models seem to be less accurate in predicting the system’s behavior.
The detail of this adaptation process is described in Section 4.3.

4 ALGORITHMS

In this section, we describe the algorithms that handle the chal-
lenges mentioned in Section 3.4. For a quick reference, Table 1 lists
all symbols and parameters used in this section.

Symbol Description Range and Unit
Q Quality score. 0-1
¢ Bounding volume. m®

n Number of inliers.

8¢ Linear displacement 0-2.5m
Sw Weighted angular displacement m/degree
[Battery capacity.
{rem Remaining battery life. 1-10 levels
{c Energy to process an image pair. Ws
6t Elapsed time sec

yi Parameters for quality scores.
x Normalizing parameter.
I;, @i Parameters relating {&, 17, 8¢, Sw}.

Table 1: A list of symbols that are used in this section.

4.1 Quality of a Merged 3D Point Cloud

In order for us to maximize the quality of generated and merged
3D point clouds, we need to quantify the quality of a point cloud.
Unfortunately, there is no established metric for assessing the qual-
ity of a point cloud in the computer vision literature. An evaluation
of a 3D reconstruction algorithm is often limited to reporting the
computation time and algorithmic complexity followed by a series
of test images and their 3D reconstructions.

We make an effort to bridge this gap by defining an objective qual-
ity score of a merged 3D point cloud C by comparing its structural
similarity index (SSIM) [64] against a baseline. SSIM is a quality as-
sessment index based on the computation of luminance (1), contrast
(c) and structural (s) terms. These three terms are expressed with
the following equations:

I(x.y) 2y + Cq x.0) 20x0y + Cy x.9) Oxy + Cs
Y= ——F—— Yy = 5—5—— sy = ———
v pE + il + C v o2+ 05 +Cy Y oxoy +C3

x> Hys Ox Oy, and Oxy are the local means, standard deviations,
and cross-covariance for images x, y. SSIM is the multiplicative
variant of these three components.

SSIM(x, y) = [10x,)] 7" [ex,)| P* [sCx.)| P2 (1)

Here, p1, p2 and p3 are multiplicative exponents. The intuition be-
hind using SSIM is to make sure that point clouds that preserve the

shapes and the shades of objects in it gets higher scores than those
that do not. To obtain the baseline shapes and shades in the scene,
we exploit the two pairs of 2D images that were originally used
to generate the point clouds, which have been merged to generate
the C. We stich [14] these four images to obtain a panaromic 2D
image P. Now, if the merged 3D point cloud C is of sufficiently high
quality, one of its 2D projections on a plane Proj(C) should have
a strong structural similarity with P. Figure 5 shows the steps of
this process using an example. Not that, although an image from
each pair of images would suffice, since no two cameras are identi-
cal, we take all four images in our calculation for robustness. This
maybe redundant and could be optimized further; but since this is
an offline step, we lean toward robustness.

Panoramic
Image
Stitching

Different 2D plane

projections of
generated merged 3D
point cloud

Quality
Score

Structural
Similarity Index | 0-407

Figure 5: Quality score calculation process.

The proposed scoring method depends on the density of a 3D
point cloud. A dense point cloud preserves the structures better.
The density of a point cloud, however, depends on the box grid
size parameter used during downsampling in the 3D reconstruction
pipeline. It divides the point cloud space into cubes and points
within each cube are combined into a single output point by averag-
ing their coordinates. In other words, a smaller grid size results in
a better 3D point cloud but at the cost of an increased computation
time. The trade-off between the quality score and the computation
time of 3D point cloud generation is shown in Figure 6. We observe
that there is not much of an improvement of quality if we spend
more than 2.4s in generating a point cloud. Hence, in our imple-
mentation, we set the grid size to 10cm to maintain a runtime of
less than 3s for point cloud mergers.

04 0.33 0.34 036 036
3 0.3

2

s 0.2 0.12

A

> 0.1 0 0 I

= 0

@

é 0.03 108 124 24 2056 232 404

Execution Time (s)
Figure 6: Point Cloud Merging Time VS Quality Score

The proposed method for assessing the quality of a point cloud
merger proved to be very effective in Glimpse.3D and Section 6.2
shows that the objective score closely resembles human perception

as well. However, directly calculating the score is computationally
expensive. Therefore, we model it as a function of a set of variables,
whose values are obtained as a byproduct of the ICP step in the 3D
reconstruction pipeline. This makes it possible for Glimpse.3D to
quantify the quality of a point cloud in constant time at runtime.
The steps of this modeling algorithm are as follows:

o Identifying Correlated Variables. We identify the parameters of
a point cloud merge algorithm, i.e. ICP [34], that are sensitive to
the quality score of a merged point cloud. We use over 112 different
scenes each representing a merged point cloud where the merger
has been done between two point clouds generated inside two
body cameras that are § cm apart and are at w deg angle, where
0 <d <250and 0 < w < 60. In this way, we obtain a large data set
of point clouds whose quality scores are computed offline using the
direct method as depicted in Figure 6. During the creation of the
data set, we track and log the values of over a dozen of variables of
the ICP algorithm. As these parameters are already calculated while
performing the ICP, there is no extra computational cost for it. For
each variable in our log, we perform a correlation analysis [22]
to determine their relevance to the quality score. We eliminate
variables that show negligible or no correlations, which leaves
us seven variables that are shown in Table 2. For each variable,
we show their correlation and corresponding p-value to show the
significance of the correlation analysis.

Parameter Correlation p-value
Root mean squared error -0.5026 0.0000
Number of inlier points +0.3478 0.0002
Total points -0.4557 0.0000
Average distance -0.4397 0.0000
Bounding volume +0.3950 0.0000
Iteration count -0.2139 0.0001
Volume of merged point clouds ~ -0.2255 0.0168

Table 2: Correlation between different parameters of ICP-based
point cloud merge algorithm and the quality scores. Corresponding
p-values show significance of correlation.

From Table 2 we observe that root mean squared error of ICP,
number of inlier points (i.e. a pair of matched points whose Euclidean
distance falls within a percentage of matching distances), total
number of points after merge (total points), average distance of two
point clouds, and bounding volume of overlapped region are at least
30% correlated and their p-values are also close to zero, i.e., the
correlation is significant. The next two variables i.e. total number
of iterations in ICP algorithm (iteration count) and volume of the
merged point clouds are even less correlated.

This step implies two things. First, not all variables are relevant
(as expected), and second, because no single variable stands out and
shows a very high correlation, we cannot infer quality from a single
variable. We need to consider a subset of these weakly correlated
variables.

o Principal Component Analysis. In this step, we take the variables
from Table 2, and perform principal component analysis (PCA) [26]
to identify a linear combination of the variables that accounts for
high amounts of variability in the data. It turns out that the first
two principal components account for up to 83% variability in

data, and the major contributors in those principal components
are {number of inliers, bounding volume} and {total points, average
distance}, respectively. This is an interesting result which gives us
a choice between these two sets of variables that are statistically
similar in explaining the variability in data. We pick the first set of
variables, i.e. bounding volume &, and number of inliers 5 in the
merged point cloud to model the quality metric.

o Fitting a Nonlinear Model. In the final step, we fit a nonlinear
model to express the quality score Q in terms of two identified
variables & and 5. Our process of determining model is iterative, i.e.
we start with simple linear models, and increase complexity until
the goodness of fit (expressed in root mean squared error, RMSE) is
below a threshold. After visualizing the data (Figure 7), we realize
that Q is not a continuous function of £. Hence, we condition Q
based on a threshold on ¢ to obtain the following model:

Y1 = Vo +y3& + yan® + ysné + yen® + TP, if € > ¢

Q= 2 i @
Y8 + yon + yio€ + y11n° + y12né, otherwise

05

o
~
1

Quality Score
o
@

2
2 4 1.5
x10° 8 8 1 6
0.5 %10

Number of Inlier Bounding Area

Figure 7: Fitting a nonlinear model to express quality score Q in
terms of number of inliers 7 and bounding volume £.

We empirically determine values of the model parameters y1, y2, 3, 4,

Y55 Y6, Y7, ¥8, Y9, Y10, Y11, Y12, and ¢ within 95% confidence intervals
to be 848.4, -0.003918, 3.661E-5, 6.052E-9, - 1.172E-10, - 3.11E-15,
9.368E-17, 29.55, -0.000425, -7.559E-7, 1.651E-9, -1.549E-12, and
1.6E6, respectively.

Note that, the proposed structural similarity index-based metric
(illustrated by Figure 5) is generic and is applicable to any 3D re-
construction algorithm to quantify the quality of point clouds. It
can be directly used in any system where computational resources
are adequate. However, since it is computationally expensive, in
Glimpse.3D, we look for an alternative way to find an approxima-
tion to the metric that relies only on the byproducts of an ICP-based
3D point cloud estimation algorithm. For a different point cloud es-
timation algorithm, although the exact relationship/formula would
be different, the steps in Section 4.1 (i.e. identifying variables, PCA,
and model fitting) remain generic and can be followed to find a
relationship similar to Equation 2.

4.2 Determining Optimum Trigger Point

To maximize the battery life of Glimpse.3D, the trigger point for
the image processing subsystem needs to be optimum. For example,
executing image processing tasks when user is stationary only
decreases battery life without contributing new information. On
the other hand, when user is moving, the image capturing and

processing subsystem must be triggered often enough to maintain
a desired quality.

In Section 4.1, we established a model that represents the Quality
Score as a function of Number of Inliers and Bounding Volume.
Since the overlap between two point clouds affects the quality of
their merger, changes in camera views due to user’s movement also
affects the quality score. Hence, there is a relationship between
the parameters representing quality scores (Number of Inliers and
Bounding Volume) and a user’s displacement. In this section, at
first, we model these relationships and formulate an optimization
problem that finds an optimum displacements (for both linear and
angular movements) which maximizes the quality of the merged
point clouds while satisfying battery life requirement. This process
is performed offline and the steps of the algorithm are as follows.

e Defining the Displacement Parameters. We observe that little
angular shift drastically changes the view. Hence, normalizing the
angular displacement using the average depth of the most recent
point cloud results in a better indicator of angular displacement
when we are interested in its effect on point cloud merging. The
normalized angular distance (w) is defined by:

o = angular displacement)

average depth of the most recent point cloud

The linear displacement (§¢) does not change the view as much
as the angular displacement. Hence, we directly use the linear
displacement value, described in Section 3.

o Defining the Battery Life Constraint. A major concern in battery-
powered systems like Glimpse.3D is the battery life . We model
the battery life based on the remaining battery level {yem and
the expected energy for one execution { of the end-to-end image
processing cycle. This relation is represented by Equation 4:

Crem 5¢ o

p(6¢,6w) = A x (A_qﬁ * ()

where, A¢ and Aw denote the linear and the angular velocity,

respectively. We define (¢, in 10 levels, where each level cor-

responds to 10 difference battery percentages. To maintain the

uniformity for different battery capacity, we normalize Equation 4
on a scale of 0 to 100.

o Relationship Between Quality Parameters (1, &) and Displace-
ments (§w, 5¢). To estimate the quality from displacement values,
we find relationships between the quality parameters (n and &) of
Equation 2 and two displacement parameters (5w and §¢) by per-
forming correlation analysis on dataset from Section 4.1. The results

8¢ Sw
Inlier points, 7 +0.55 +0.84
Bounding volume, & -0.19 -0.17

Table 3: Correlation analysis.

of correlation analysis and corresponding scatter plots are shown
in Table 3 and Figure 8, respectively. For each of two parameters, 7
and &, we individually fit two linear models having independent
variables ¢ and dw and then take weighted summations to get
the best estimate over our data set. The relationship between n
and displacements(¢ and dw), shown in Figure 8(a) and (b), is
formulated in Equation 5 and 6.

ng =Tiép+I (5 Mo =36w+Ty (6)

We empirically determine the coefficients I'1, I, I3 and Iy to be
39417, 569365, 14052, and 85439, with 95% confidence.

°

S

>
o
@

Millions.

°
~

o

4

Milions

e o o

0 oo
Lo At o i A
.o

Number of Inliers (n)
Number of Inliers (n)

0 0.25 05 075 1 125 15 0 0.25 0.5 0.75 1 1.25 15

Linear Displacement (3¢) Weighted Angular Displacement (dw)

(a) (b)

Millions

2475 00.2.9.0.0.92.0.90.§8.0.0.3.9
E . . .
.

Bounding Volume (§
Bounding Volume (£)

0 0.25 05 0.75 1 1.25 15 0 0.25 05 0.75 1 1.25 15

Linear Displacement (5¢) Weighted Angular Displacement (3w)
(© (d)
Figure 8: Relation of linear displacement §¢ and weighted angular
displacement § v with number of inliers 7 and bounding volume &.

Next, we combine the two estimates 4 and), by taking weighted
average to model 7 in terms of displacements.
’7¢,w(5¢’ dw) = anlg + (1- ar])'?w
0, ifng =0
i)
Nw =0
0.40, otherwise

here, ay = {1,

Here, in absence of linear and angular displacements, ay is 0 and
1 respectively. When both are present, ay is 0.40. Similar to Equa-
tions 5, 6, and 7, we formulate the following three equations that
model the bounding volume ¢ in terms of displacements §¢ and
dw:

Ep =T8¢+ (8) (o =T +Tz (9)
We empirically determine the coefficients T, Iy, I, and I to be
530.27, 2e+6, -240063, and 1e+6, with 95% confidence. In Equation 10,
in the absence of linear and angular displacements, ay is 0 and 1,
respectively. When both types of displacements are present, ay is
0.53.
£p,0(04,00) = agxig + (1 - ag)ée
0, if §¢ =0
$w =0
0.53, otherwise

(10)

here, ar =11,

o Formulating Optimization Problem. Finally, we formulate an opti-
mization problem whose objective is to maximize battery life and
quality of merged point cloud. The goal is to determine the values
of ¢ and dw for which the objective is maximized under given
constraints on minimum quality (Q i) and minimum battery life

(ﬁmin)~

maxiranize Q(6¢, dw) + xP(5¢, Sw)

64,00 (11)
subjectto Q= Quin & B = Pmin

We set Qpin = 0.12 based on a user study in Section 6.2 which
showed that a quality score below 0.12 is not useful. The value of
Bmin depends on the application scenario. y = 0.01 is a normalizing
factor that balances the two terms with different units. For different
values of {y¢m, we solve this optimization problem and save the
results in a table. At run-time, we look-up the table as the battery
level changes.

In this system, if the value of Q,,;p is too high, we will achieve
a higher quality point cloud but it will decrease the battery life f.
If Bmin is too high then Q will decrease. Our goal is to find the
optimal displacement value to maximize both Q and f.

4.3 Runtime Model Adaptation

The proposed optimizer outputs certain linear and angular dis-
placements maximizing quality score and battery life. Since the
parameters in optimization problem are empirically determined,
their generalizability is limited to scenarios similar to the ones in
data set. In real-life, especially for mobile systems, the scenarios
are likely to vary in terms of lighting and shading, number, types
and distance of objects in the scene. To make Glimpse.3D robust
to such changes and learn from new scenarios, we monitor and
adapt the system at run-time. Figure 9 provides overview of the
proposed adaptation mechanism, and the steps of the algorithm are
as followe

Displacement
(59, dw)

Model Adapter

Optimizer

Estimated Quality Score (Qp)

Monitor Quality Score (Q)

(1Qp.Ql>0)

Image Processor

Figure 9: Runtime model adaptation in Glimpse.3D.

o Monitoring Stability of Optimum Trigger Point. To find optimum
trigger point described in Section 4.2, we solve an optimization
problem beforehand using a large empirical dataset. Performance of
the controller is expected to be optimal in most scenarios. However,
to cope with the stochastic nature of real world, we adapt the system
at run-time whenever its performance is different than expected.

After each executing image processing subsystem, monitor mod-
ule compares the estimated quality (Qp), which is calculated by
the optimizer using 8¢ and dw, with the actual quality score (Q),
calculated directly from the £ and 7. If the difference [Q) — Q] is
below a threshold, the system is assumed to be performing as ex-
pected. Otherwise, the models that fit displacements to ¢ and n are
updated.

o Updating Models. This step updates the parameters of the linear
models that we developed in the previous section through series of
Equations 5, 6, 8, and 9. Since these models are linear, we update
them at run-time using basic geometry. Note that, we have validated
the linearity of the models by using a k-fold cross validation test,
and hence, there is no reason to use a higher order polynomial. A
model update is triggered when at least m violations are detected
by the monitor module. We fit these m data points to a line, Lj,;4-
Let, our the existing model Lyy¢o be estimated using n data points.
We find a new linear model L, ¢, which is a weighted average of
Lgatq and Lprer. We consider two cases.

In the first case, Lprev and Lyg,, are parallel. The new model
mxd

Lyew would be a line parallel to the other two, and is at x =

unit away from Lpre, toward the Lg,s,, Where d is the disr’lc;me
between Lg,;4 and Lyrew. In the second case, Lyrev and Lygsq
intersects at point O. So, Ly¢4 Will passes through O while dividing
the angle 6 between the lines L4, and Lyreo into n : m ratio. If,
Lpew makes angle 1 with Lyye, & P is a point on Lyey, letl; and I
be distances of Lyrev and L4, from P. We find 01 from following
relationships:

Given, [=psinfy; Iy = psin(6 — 01); h =
Iy n
i (12)
We get, 0y = tan~! My
n + mcos6

® Running Optimizer. Each time the system adapts, the optimizer
uses the updated models to find solutions to Equation 11. To keep
the adaptation process fast and real-time, instead of solving the
optimization problem on-the-fly, we use a lookup table. The table is
populated offline by solving the optimization problem for combina-
tions of {rem, x and 6;. We run the optimizer for different angular
(0 < 61 < 360) and linear (x;in < X < Xmax) displacements. Since
populating the table for all possible values of § and x are not feasi-
ble, we select discrete values of § and x in their ranges. The total
number of combinations depends on the available storage. xmin
and x4y are empirically determined and if a new x is out of the
range, the table needs to be recomputed again (offline).

5 IMPLEMENTATION NOTES

We develop Glimpse.3D using off-the-shelf hardware and open-
source software. Figure 10 shows two views of the hardware. Dataset
and software is accessible from here [5].

Raspberry
Pi3

(a) close up

(b) teared-down

Figure 10: A closer look at Glimpse.3D camera unit.

e Computational Unit. We use Raspberry Pi 3 [8] for on board
computation that has 1.2GHz 64-bit quad-core ARMv8 CPU and
1GB RAM. Presence of many GPIO pins & on-board WiFi module
make it a perfect choice for our prototype.

o Camera Unit. We use 5MP Pi Cameras [7] having a fixed fo-
cus (1m to infinity), 3.60mm focal length, 53.50° horizontal FOV,
41.41° vertical FOV, and 30fps max frame rate. Two camera modules
connect to the Pi via an adapter [9].

o Inertial Measurement Unit. We use a 100Hz 9-DOF BNOO055
absolute orientation sensor [6]. A fusion algorithm that blends IMU

data into stable three-axis orientation output is implemented in the
Sensor.

e Power. We use a 2600mAh rechargeable battery. We profile the
energy consumption of each process offline using a USB multimeter.
At runtime, we estimate the remaining battery by tracking the
execution time and process id.

e Vision Library. We use OpenCV [12] and OpenGL ES [4] for
for image processing and displaying point clouds.

6 EVALUATION
6.1 Microbenchmarks

Table 4 shows execution time, energy consumption, memory and
CPU usage of each step of Glimpse.3D.

Process Thread Runtime Energy Per ~ Memory CPU
No. (s) Execution (J) (%) (%)
IMU Process 1 0.15 0.12 1.7 85.7
Stereo Capture 2 0.20 0.39 3.2 94.6
Disparity Map 2 0.80 0.95 3.2 94.6
Point Cloud Generate 2 0.09 0.11 3.2 94.6
Point Cloud Merge 3 244 2.8 5.2 117
Point Cloud Transmit 4 0.01 0.01 0.0 0.6
Controller Adaption 5 0.07 0.08 0.3 2

Table 4: Microbenchmarking Glimpse.3D.

Five threads run in Glimpse.3D. Thread 1 performs IMU data
processing, which takes 0.15s and uses 0.12] energy, 85.7% CPU and
1.7% memory. Thread 2 calculates the disparity map, captures stereo
images, and generated the 3D point in 1.2s, consuming 0.95], 0.39],
and 0.11] ,respectively and uses similar memory (3.2%) and CPU
(94.6%). The costliest step is the point cloud merging (thread 3) that
takes 2.44s. It consumes 2.80] energy, 5.2% memory and 117% CPU.
These later two threads run only when the image processing is
triggered. The fourth and fifth threads are for point cloud transmis-
sion and controller adaptation, respectively. The overhead of these
threads are negligible. Considering the total energy consumption of
an image processing cycle, for a 2600mAh battery, the total number
of 3D point clouds Glimpse.3D processes is 10,515.

6.2 Evaluation of Quality Scoring

In this section, we compare our proposed SSIM-based quality scores
with its estimated version using Equation 2 as well as with human-
given scores obtained in a user study. To obtain human-contributed
scores, we present the 3D point clouds to the users and let them
score the clouds as they like. Since many of the users did not have
any prior idea of the quality of 3D point clouds, during a briefing
session (prior to the study), each user was shown two reference
point clouds with scores- a high-quality and a low-quality cloud to
give them a sense of the range. The results are shown in Figure 11.

We use a dataset of 29 point clouds. Five of which are shown
in Figure 13 as examples. We take the average of scores from 21
users for each image. The users were of different ages, sexes (11
females), and professions (e.g. students, businessmen, physicians,
and engineers). In Figure 11a, we observe that the estimated score
has 79% percent correlation with user-defined score. Hence, the
estimated score reflects user perception. Moreover, estimated score
is also close to the proposed SSIM-based calculated score with

o
>

f
f
:
;

Quality Score
Q)
o

135 7 9111315171921 23252729
-s—Calculated User Defined Estimated

(a) Calculated, user defined, and estimated quality scores.

= 0.2

£ 801 AAAAYD

8, (WA
-g%-oa

8 1 35 7 911131517192123252729

—Estimated Score Calculated Score

(b) Deviation of estimated & calculated scores from user
scores.

Figure 11: Performance of quality scoring.

82% correlation. Figure 11b shows that the estimated score and
the calculated score both are close to user-defined score with an
average deviation of 0.051 and 0.058, respectively. Besides, they
show similar trend proving that our estimation of the calculated
score is correct.

6.3 Evaluation of Optimum Triggering

We compare our proposed optimized solution with two other non-
optimized solutions in terms of the quality of captured 3D informa-
tion and the battery life.

6.3.1 Defining Baselines. We compare Glimpse.3D with a time-
triggered system and a simple motion triggered system. The time-
triggered system triggers the image processing subsystem at a
regular interval. To choose a suitable period for the time-triggered
baseline, we conduct an experiment to obtain the relationship be-
tween the time interval and the battery life of the system as shown
in Figure 12. As the process of generating point clouds takes around
2s, we pick a time interval of 2s, for which, the system lasts for
at least 6 hours. We estimate the battery life from the energy con-

e
(%))

o

Battery
Life (hour)
w5

0 2.5 7.5 10

5
Period (s)

Figure 12: Effect of period on battery life.

sumption of the system at different states and the fraction of time
the system remains in those states. Each state is characterized by
the number of threads it runs. Finally, we estimate battery life by
dividing the battery capacity by the estimated total energy using
the following Equation 13:
Total Battery

(wo * po) + (w1 # p1) + -+ - + (Wn * pn)
where, p; are energy consumptions due to zero or more threads
and w; are corresponding weights.

Battery Life = (13)

For the simple motion triggered baseline, we trigger image pro-
cessing whenever the user takes a step or the angular displacement
is above 5 degrees.

6.3.2 Defining User Motions. We define three scenarios based
on the activity level of a body camera user. An activity means that
a user is wearing the system and walking at a somewhat constant
speed. A high activity level means a user is moving continuously
and vigorously, a low activity means a user is not moving at all, and
a medium activity means the user is active only half of the time.
We estimate the battery life from the power consumption during
each run.

6.3.3 Comparison of Battery Life. Figure 14 shows the battery
life of Glimpse.3D and the two baselines at different user activity
levels. For low activity level, both simple motion-triggered system
and Glimpse.3D show the longest battery life of over 14 hours
since no image is processed and the battery consumption is due to
the idle state of the system only. But the time-triggered system is
periodically executing, which decreases the battery life to 6 hours.

For the medium activity level, the simple motion-triggered sys-
tem shows the lowest battery life as it is not optimized and executes
more image processing tasks than Glimpse.3D. We observe a similar
phenomenon in the high activity level where the battery life of the
simple motion-triggered system is reduced to 3hr, while Glimpse.3D
lasts for about 6hr due to its motion optimized execution triggering.
The time-triggered system has no effect on the motion, and hence,
its lifetime is always fixed at 6 hours. Although time-triggered
seems to be the winner for high activity levels, this is unlikely that
a user will be active for 100% of the time. Besides, we also need
to consider the quality of the captured 3D information, which we
compare next.

6.3.4 Comparison of Captured 3D Information Quality. We com-
pare the quality of the merged point clouds generated by different
systems for different battery life at the medium human activity
level. Figure 15 shows the results. The quality achieved by the
time-triggered system and Glimpse.3D increases with decreased
battery life, as these systems capture more images and generates
denser point clouds. The quality achieved by the simple motion-
triggered system remains the same as the displacement between
two sets of point clouds remains static. We also note that the simple
motion-triggered system does not last 8 hours as it exhausts the
battery sometime after the 6-hour mark. For a 6+ hours of bat-
tery life, Glimpse.3D yields better quality 3D point clouds than the
time-triggered system. The time-triggered system performs slightly
better than Glimpse.3D when the lifetime requirement is less than
2 hours. This slight gap in quality is due to the modeling inaccuracy
in Glimpse.3D, which can be eliminated by adapting the system
parameters at run-time. We evaluate the effectiveness of adapting
model parameters in the next section.

6.4 Adaptive Model Update Evaluation

In this section, we evaluate the effectiveness of adaptive model
update algorithm. We take the system to a completely new outdoor
environment and run it with and without the adaptation step. For
the non-adaptive version of Glimpse.3D, we expect to see that the
estimated quality scores (scores prior to processing an image pair)

(a) Q = 0.35;1.04s (b) Q = 0.34; 2.35

(c) Q =0.33; 2.4s

PRt i
R IR A \,,-'g%

o “wik‘w

(d) Q =0.25;3.1s (&) Q =0.23;2.2s

Figure 13: Examples of point clouds along with their quality scores and end-to-end execution times.

= lg 14.34 14.34
o 8.36 6.78
5 9 6’ 678 42 3.34 5.91
>
53 N il ks
g low (0% Activity) medium (50% high (100%
Activity) Activity)
Human Activity Level
=Time Triggered = Simple Motion Triggered = Glipmse.3D

Figure 14: Comparison of battery lifetime.

0.5 0.45 0.45 0.45
) .39
= 0.34 2 34
S ops 028 028 0% 3 3
w025
=y
= 0
C 8 hour 6 hour 2 hour 30 min
Battery Life
uTime Triggered = Simple Motion Triggered = Glipmse.3D

Figure 15: Comparison of captured 3D information quality

0.5
0.3375

.22,
:]]
No Adaptation With Adaptation
m Estimated Quality Score m Actual Quality Score

0.28125 0.225

Quality Score

Figure 16: Difference between estimated and actual quality scores
for adaptive and non-adaptive strategies.

and the actual scores (scores after processing image-pairs) will have
a larger difference. This is evident in Figure 16, where the adaptive
version of Glimpse.3D becomes more accurate in predicting the
quality scores after it has observed new scene and adjusted its model
parameters based on the outcomes from the new scenes. This is a
significant result as being able to accurately predict the quality of
point clouds at run-time is crucial to make sure that the optimal
displacement thresholds calculated by the optimizer are able to
guarantee the quality and lifetime requirements of the system in a
new environment.

As the optimization process is performed offline, the adaptation
process becomes a constant time operation. The adaptation process
consumes only 0.08] energy per execution as mentioned in Table 4.
Therefore, its effect on battery is negligible. Besides, the number of
adaptations needed for a scenario is completely dependant on both
the initial dataset (used in Section 4) and the new scenario. If the

dataset is large and diverse, the number of needed adaptation will
be minimal.

7 DISCUSSION

e Why not a Depth Sensor? Although depth cameras provide us the
depth of each pixel directly, they have significant limitations [43].
High-resolution RGBD cameras like Bumblebee are very expensive
($3,500) [51], require powerful host machine, and parameter tuning
for each new environment. PMD units provide gray-scale images,
work only indoors [33]. They are also expensive, and CPU consum-
ing. Kinect is affordable, but they are ineffective in daylight and
scenes with large gradients in distances [36], and multiple Kinects
in the same environment interfere with each other.

e Why Point Cloud instead of Image or Key Frames? We design
Glimpse.3D as a closed-loop control system where it makes an
educated guess of when to take images. The system corrects itself
only after it has computed the quality of the most recent point cloud.
If we designed it as an open-loop system, i.e. capturing and sending
images or key frames, the system would not perform optimally in
different settings. It would capture and transmit either too many
images, which will require more bandwidth and energy, or too
little images that have enough overlaps and features to generate a
decent point cloud. Besides, computing the key frames itself is an
expensive task, which we want to avoid.

e Why On-Board Computing? There are two reasons for perform-
ing the computation on-board. First, the optimization algorithm
executes as a subroutine in the overall closed-loop process that is
depicted by Figure 9. We lose this feedback loop when only images
are streamed based on precomputed optimal displacement param-
eters. The system would not be able to adapt and optimize itself
beyond the training scenarios unless the quality of 3D point clouds
are taken into account to tune its parameters. Second, to generate a
reasonably good quality point cloud, at least 50% overlap between
the input images are expected. Therefore, computing a point cloud
on-board is cheaper in terms of required space/bandwidth as the
system does not have to store/stream the redundant/common in-
formation in its constituent images.

e Why not SLAM? The goal of Simultaneous Localization And
Mapping (SLAM) [47] is to jointly estimate the pose and map the
environment when navigating in an unknown environment. SLAM
maps is expressed in many different ways such as landmarks, posi-
tions, occupancy grids, and also point clouds. SLAM could be a part

of Glimpse.3D’s process chain, but its frame rate requirement (60
fps) is too high for a resource constrained system like Glimpse.3D.

e Why not VIO? The Visual Inertial Odometry (VIO) [38] refers
to the method of estimating traveled distance using visual features
as well as using IMUs and then combining the two results for a
better accuracy. For VIO, it is necessary to continuously capture
and process images, which we want to avoid in Glimpse.3D due to
resource constraints.

e Why Regression over Classification? Machine learning tasks
(strictly speaking- supervised ML where both inputs and outputs are
known and the goal is to find an optimal hypothesis/model that fits
the data) are broadly categorized into two types: a classification task
and a regression task. A classification problem is formulated when
the outputs are discrete-valued and the number of distinct outputs
is small- so that each unique output (or a range) can be labeled
as a class. The problem at hand, i.e. fitting a model to continuous-
valued quality scores within the range of [0, 1] is not well-suited to
a classification formulation, as either (1) we have to discretize the
range of scores into a small number of sub-ranges- thereby losing
the precision of quality scores, or (2) we will have to formulate
a 100-1000 class classification problem (based on the number of
decimal digits we consider) - which is not practical as that would
require a large number of training examples for each of the 100-
1000 of classes. Hence, we formulate the problem as a regression
analysis task which is a better fit to our need. Furthermore, we
iteratively increase the complexity of the model to find the simplest
model that best fits the point cloud quality scores, as simpler curves
or hypotheses are always preferable to complex ones due to their
better generalization ability beyond the empirical data as well as
computational efficiency.

e Why Stereo Vision? Both stereo vision and structure from mo-
tion (SfM) are popular methods for 3D reconstruction. In this paper,
we choose stereo vision because of its lower computational require-
ment than SfM. In SfM, one of the initial steps is to estimate the
pose where the extrinsic parameters (angular and linear transfor-
mation matrices of two images) are calculated. In stereo vision,
since the relative position of the two cameras is fixed, the extrinsic
parameters are estimated once during the calibration step and there
is no need to perform pose estimates for each pair of images at
runtime.

8 RELATED WORK

3D reconstruction is a well studied problem in computer vision. [37]
uses efficient feature extraction and dense pixel methods for real-
time camera tracking and reconstruction. However, it required
multi-core CPUs and powerful GPUs [32, 62]. We process 3D infor-
mation in a resource constrained embedded system.

Modern smartphones are equipped with multi-core processors
and GPU cores. Interactive 3D reconstruction on smartphones has
been attempted in [29, 41, 45]. However, their performance is far
from that of a high-end computer. [57] demonstrated a mobile app
based light-weight 3D reconstruction system which off loads the ma-
jor 3D reconstruction tasks to a cloud computer. [58, 59] presented

dense stereo-based system for real-time interactive 3D reconstruc-
tion on a smartphone using the IMU. Few works presented smart-
phone based outdoor and large-scale 3D reconstruction system uti-
lizing the GPU in Google Tango Development Kit [49, 50]. [45, 46]
proposed tracking and reconstruction of objects in mobile phone.
IMU have been used in diverse computer vision applications [35, 67].
We use IMU to measure user motion and use it to guarantee 3D
information quality and battery life of the system.

Some works have explored resource-constrained 3D reconstruc-
tions. [17] proposed a stereo acquisition system developed on DSP
for 3D scanner. This system consists of both camera and a projec-
tor. [19, 21] proposed an embedded architecture for stereoscopic,
plenoptic camera based 3D reconstruction in FPGA based hardware.
In our system, we propose a body-worn camera system and exploit
human motion for triggering the system.

IMU fusioned body camera systems have been introduced in [11,
31]. SLAM [47] and its variants [10, 18, 27, 65] are used in robot-
based 3D reconstruction. For real-time 3D reconstruction and lo-
calization visual inertial odometry is also used [28, 39, 63]. In
Glimpse.3D, we use the IMU data to decrease the number of cap-
tured images by forming a closed-loop control problem.

Raspberry Pis have been used for 3D imaging [44, 56], face recog-
nition [52], drone-based 3D reconstruction [16]. Unlike Glimpse.3D,
these systems use Pis for image capturing only, and 3D reconstruc-
tion happens offline on powerful machines.

Controlling data acquisition through analysis of sensing data has
been applied to few different applications previously. [68] proposed
an wrist-pulse retrieval and analysis system using portable wireless
sensor system. [42] presented a vibration signal acquisition system
for monitoring pedestrians by footstep induced vibration. They
proposed a low-cost hardware system with off the shelf vibration
sensors. In our system, we use stereo camera sensor for ensuring
higher battery life and quality of point cloud.

9 CONCLUSION

This paper describes a low-cost body-worn camera system that
captures the 3D experience in real-world, mobile environments. A
new metric for quantifying the quality of merged point cloud has
been proposed. A new algorithm has been developed to guarantee
3D visual information quality and battery life of this resource-
constrained system. The performance of this optimized adaptive
body-cam system has been compared with time-triggered and
motion-triggered systems, and the effectiveness of model adapta-
tion has been evaluated. It has been shown that the system provides
a better guarantee of desired battery life and 3D information quality,
and is robust to new environments.

ACKNOWLEDGEMENT

This paper was supported, in part, by NSF grants CNS-1704469.
We thank our shepherd, Hae Young Noh, for guidance and the
anonymous IPSN reviewers for their comments.

REFERENCES

[1] https://en.wikipedia.org/wiki/Bundle_adjustment.

[2] https://en.wikipedia.org/wiki/Distortion_(optics).

[3] https://en.wikipedia.org/wiki/Triangulation_(geometry).

[4] https://developer.android.com/guide/topics/graphics/opengl.html.
[5] https://github.com/Glimpse3D/Glimpse.3D.git.

[16]

[17

(18]

[19

[20

[21]

[22]
[23]

[29

[30

[31]

[32

[33]

[34]

[35]
[36]

[37]

@
&

[39]

[40

https://learn.adafruit.com/adafruit-bno055- absolute- orientation-sensor.
https://www.raspberrypi.org/products/camera-module/.
https://www.raspberrypi.org/products/raspberry- pi- 3-model-b/.
http://www.arducam.com/multi-camera-adapter-module-raspberry-pi/.
BonNiIN-FonT, F., Cosic, A., AND NEGRE, P. L. E. A. Stereo slam for robust dense
3d reconstruction of underwater environments. In OCEANS (2015), IEEE.
Bouma, H., BAAN, J., AND TER HAAR, F. B. E. A. Video content analysis on
body-worn cameras for retrospective investigation. In Proc. SPIE (2015).
BRADSKI, G., ET AL. The opencv library. Doctor Dobbs Journal (2000).

BrADSKI, G., AND KAEHLER, A. Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008.

BrOwN, M., AND Lowe, D. G. Automatic panoramic image stitching using
invariant features. International journal of computer vision (2007).

CHEN, S., Zuo, W., AND ZHENG, L. Camera calibration via stereo vision using
tsai’s method. In Education Technology and Computer Science (2009), IEEE.
GEIPEL, J., LINK, J., AND CLAUPEIN, W. Combined spectral and spatial modeling
of corn yield based on aerial images and crop surface models acquired with an
unmanned aircraft system. Remote Sensing (2014).

GIRYES, R., BRONSTEIN, A. M., MOSHE, Y., AND BRONSTEIN, M. M. Embedded
system for 3d shape reconstruction. In Proc. of the 3rd European DSP Education
and Research Symposium (EDERS 2008) (2008), pp. 265-272.

GRISETTI, G., KUMMERLE, R., STACHNISS, C., AND BURGARD, W. A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems Magazine 2, 4 (2010).
HAbpjITHEOPHANOUS, S., TTOFIS, C., GEORGHIADES, A. S., AND THEOCHARIDES, T.
Towards hardware stereoscopic 3d reconstruction: a real-time fpga computation
of the disparity map. In Proceedings of the Conference on Design, Automation and
Test in Europe (2010), European Design and Automation Association.

HamzaH, R. A, RaHIM, R. A., AND NoH, Z. M. Sum of absolute differences
algorithm in stereo correspondence problem for stereo matching in computer
vision application. In ICCSIT (2010), IEEE.

HANSEL, M., ROSENBERGER, M., AND NOTNI, G. Fpga implementation of a multi-
view stereo approach for depth estimation and image reconstruction for plenoptic
cameras. In Engineering for a Changing World: Proceedings; 59th IWK, Ilmenau
Scientific Colloquium, Technische Universitdt Ilmenau, September 11-15, 2017 (2017).
HazewINKEL, M. Correlation in statistics. encyclopedia of mathematics, 2001.
HEIKKILA, J., AND SILVEN, O. A four-step camera calibration procedure with
implicit image correction. In CVPR (1997), IEEE.

HIRsCHMULLER, H. Accurate and efficient stereo processing by semi-global
matching and mutual information. In CVPR (2005), vol. 2, IEEE.

JIMENEZ, A. R, SECO, F., PRIETO, C., AND GUEVARA, J. A comparison of pedestrian
dead-reckoning algorithms using a low-cost mems imu. In WISP (2009), IEEE.
JOLLIFFE, I Principal component analysis. Wiley Online Library, 2002.

KAESss, M., RANGANATHAN, A., AND DELLAERT, F. isam: Fast incremental smooth-
ing and mapping with efficient data association. In Robotics and Automation,
2007 IEEE International Conference on (2007), IEEE.

KLINGENSMITH, M., DRYANOVSKI, ., SRINIVASA, S., AND X140, J. Chisel: Real time
large scale 3d reconstruction onboard a mobile device using spatially hashed
signed distance fields. In Robotics: Science and Systems (2015), vol. 4.

KotrEv, K., TANSKANEN, P., SPECIALE, P., AND POLLEFEYS, M. Turning mobile
phones into 3d scanners. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on (2014), IEEE, pp. 3946-3953.

KonNoLIGe, K. Small vision systems: Hardware and implementation. In Robotics
research. Springer, 1998.

Kouroat, M., AND KURATA, T. A method of personal positioning based on sensor
data fusion of wearable camera and self-contained sensors. In Multisensor Fusion
and Integration for Intelligent Systems (2003), IEEE.

LADIKOS, A., BENHIMANE, S., AND NAvAB, N. Efficient visual hull computation
for real-time 3d reconstruction using cuda. In Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW (2008), IEEE.

LANGMANN, B., HARTMANN, K., AND LoFFELD, O. Depth camera technology
comparison and performance evaluation.

LARA, C., ROMERO, L., AND CALDERON, F. A robust iterative closest point algo-
rithm with augmented features. In Mexican International Conference on Artificial
Intelligence (2008), Springer.

LoBo, J., AND Dias, J. Vision and inertial sensor cooperation using gravity as a
vertical reference. TPAMI (2003).

MaNKOFF, K. D., AND Russo, T. A. The kinect: A low-cost, high-resolution,
short-range 3d camera. Earth Surface Processes and Landforms 38, 9 (2013).
NEWCOMBE, R. A., LOVEGROVE, S. J., AND DAVISON, A. J. Dtam: Dense tracking
and mapping in real-time. In IEEE ICCV (2011).

NISTER, D., NARODITSKY, O., AND BERGEN,]. Visual odometry. In IEEE, Computer
Vision and Pattern Recognition. (2004).

OMARI, S., BLoEscH, M., GoHL, P., AND SIEGWART, R. Dense visual-inertial
navigation system for mobile robots. In ICRA (2015), IEEE.

PAGANI, A., Gava, C. C., anD Cur, Y. E. A. Dense 3d point cloud generation from
multiple high-resolution spherical images. In VAST (2011).

[41]

[42]

[43

=
Nt

[45

[46

=
)

(48

[49

[50

[52

[53

[54

[55

[56]

S
2

[69

PAN, Q., ARTH, C., REITMAYR, G., ROSTEN, E., AND DRuMMOND, T. Rapid scene re-

construction on mobile phones from panoramic images. In Mixed and Augmented
Reality (ISMAR), 2011 10th IEEE International Symposium on (2011), IEEE.

PaN, S., Xu, S., MIRSHEKARI, M., ZHANG, P., AND Non, H. Y. Collaboratively
adaptive vibration sensing system for high-fidelity monitoring of structural
responses induced by pedestrians. Frontiers in Built Environment 3 (2017), 28.
PEcE, F., KauTz, J., AND WEYRICH, T. Three depth-camera technologies compared.
PEYER, K. E., MORRIS, M., AND SELLERS, W. I Subject-specific body segment
parameter estimation using 3d photogrammetry with multiple cameras. Peer}
(2015).

PRISACARIU, V. A, KAHLER, O., MURRAY, D. W., AND REID, L. D. Simultaneous 3d
tracking and reconstruction on a mobile phone. In Mixed and Augmented Reality
(ISMAR) (2013), IEEE.

Prisacariu, V. A., KAHLER, O., MURRAY, D. W., AND REID, I. D. Real-time 3d
tracking and reconstruction on mobile phones. IEEE transactions on visualization
and computer graphics 21, 5 (2015), 557-570.

RIISGAARD, S., AND Bras, M. R. Slam for dummies. A Tutorial Approach to
Simultaneous Localization and Mapping 22, 1-127 (2003).

SaNsoNTI, G., TREBEsCHI, M., AND DoccHIo, F. State-of-the-art and applications
of 3d imaging sensors in industry, cultural heritage, medicine, and criminal
investigation. Sensors 9, 1 (2009).

ScHOPs, T., SATTLER, T., HANE, C., AND POLLEFEYS, M. 3d modeling on the go:
Interactive 3d reconstruction of large-scale scenes on mobile devices. In 3D Vision
(3DV), 2015 International Conference on (2015), IEEE, pp. 291-299.

ScHOPS, T., SATTLER, T., HANE, C., AND POLLEFEYS, M. Large-scale outdoor 3d
reconstruction on a mobile device. Computer Vision and Image Understanding
157 (2017), 151-166.

Seatovi¢, D., MEISER, V., BRAND, M., SCHERLY, D., ET AL. Analysis of off-the-
shelf stereo camera system bumble-bee xb3 for the fruit volume and leaf area
estimation.

SENTHILKUMAR, G., GOPALAKRISHNAN, K., AND KUMAR, V. S. Embedded image
capturing system using raspberry pi system. International Journal of Emerging
Trends & Technology in Computer Science (2014).

Spama, C. C., THEURER, C., AND HENRIKSEN, S. W. Manual of photogrammetry.
American Society of photogrammetry, 1980.

SoBEL, I. History and definition of the sobel operator. Retrieved from the World
Wide Web (2014).

STEELE, J., DEBRUNNER, C., VINCENT, T., AND WHITEHORN, M. Developing stere-
ovision and 3d modelling for lhd automation. In 6th International Symposium on
Mine Mechanization and Automation (2001).

STRAUB, J., AND KERLIN, S. A very low-cost 3d scanning system for whole-body
imaging. In SPIE Sensing Technology+ Applications (2015), International Society
for Optics and Photonics.

SUNG, Y.-H., MUCHTAR, K., Lar, H.-E., YEH, C.-H., AND CHEN, C.-Y. Automated
reconstruction of 3d object on embedded system for mobile apps. In Consumer
Electronics (GCCE), 2014 IEEE 3rd Global Conference on (2014), IEEE, pp. 65-66.
TANSKANEN, P., KoLEV, K., MEIER, L., CAMPOSECO, F., SAURER, O., AND POLLEFEYS,
M. Live metric 3d reconstruction on mobile phones. In The IEEE International
Conference on Computer Vision (ICCV) (2013).

TANSKANEN, P., KoLEv, K., MEIER, L., CAMPOSECO, F., SAURER, O., AND POLLEFEYS,
M. Live metric 3d reconstruction on mobile phones. In Proceedings of the IEEE
International Conference on Computer Vision (2013).

Trucco, E., AND VERRL A. Introductory techniques for 3-D computer vision, vol. 201.
Prentice Hall Englewood Cliffs, 1998.

Tsar R. Y. An efficient and accurate camera calibration technique for 3d machine
vision. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1986 (1986).
TzeVANIDIS, K., ZAaBULIS, X., SARMIS, T., KOUTLEMANTS, P., KYRriazis, N., AND
ARGYROS, A. From multiple views to textured 3d meshes: a gpu-powered approach.
In European Conference on Computer Vision (2010), Springer.

USENKO, V., ENGEL, J., STUCKLER, J., AND CREMERS, D. Direct visual-inertial
odometry with stereo cameras. In Robotics and Automation (ICRA), IEEE (2016).
WANG, Z., Bovik, A. C., SHEIKH, H. R., AND SIMONCELLL E. P. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing (2004).

WEINGARTEN, J., AND SIEGWART, R. Ekf-based 3d slam for structured environment
reconstruction. In Intelligent Robots and Systems, 2005.(IROS 2005). (2005), IEEE.
WRITER, L. G. The average walking stride length, Jan 2014.

You, S., NEUMANN, U., AND AzUMA, R. Hybrid inertial and vision tracking for
augmented reality registration. In Virtual Reality, Proceedings., IEEE (1999), IEEE.
ZHANG, J., WANG, R, Lu, S., Gong, J., ZHAO, Z., CHEN, H., Cur, L., WANG, N.,
AND YU, Y. Easicprs: design and implementation of a portable chinese pulse-
wave retrieval system. In Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems (2011), ACM, pp. 149-161.

ZHANG, Z. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence 22, 11 (2000).

	Abstract
	1 Introduction
	2 Background
	2.1 Stereo 3D Reconstruction Pipeline
	2.2 Merging Point Clouds

	3 Overview and Challenges
	3.1 Overview of Glimpse.3D
	3.2 Processing Inside a Body Camera Unit
	3.3 Processing Inside an Aggregator Device
	3.4 Technical Challenges

	4 Algorithms
	4.1 Quality of a Merged 3D Point Cloud
	4.2 Determining Optimum Trigger Point
	4.3 Runtime Model Adaptation

	5 Implementation Notes
	6 Evaluation
	6.1 Microbenchmarks
	6.2 Evaluation of Quality Scoring
	6.3 Evaluation of Optimum Triggering
	6.4 Adaptive Model Update Evaluation

	7 Discussion
	8 Related Work
	9 Conclusion
	References

