






camera. However, such a reactive algorithm is not capable of jointly

optimizing the battery life and the quality of 3D point clouds. Hence,

an adaptive controller is designed and implemented in Glimpse.3D,

which solves an optimization problem to ind optimal values of

linear and angular displacements of the body camera, and adapts

the model parameters at runtime to accommodate new experiences

as the system operates in the real world. The detail of this controller

is described in Section 4 along with other technical contributions

of this paper.

3.3 Processing Inside an Aggregator Device

Each body camera keeps generating and saving an aggregated point

cloud inside it until a viewer sends a pull request. Inside a pull re-

quest, the viewer/aggregator device sends a list of device identiiers

and timestamps to broadcast the last successfully received point

clouds from each body camera it is interacting with. Upon receiving

a pull request, a body camera compares the timestamp tpull from

the pull request to the timestamp tcurr of its most recent aggre-

gated point cloud, and transmits the aggregated point cloud over

UDP, only if tcurr > tpull . Each body camera periodically runs a

garbage collector to remove older point clouds from its memory.

After receiving a new point cloud, the viewer merges it with an

internal point cloud that it maintains throughout a viewing session,

i.e. the time between the starting and stopping of the viewer ap-

plication. In order for a better and denser visualization the sparse

point cloud, we triangulate [3] each point with two neighboring

ones. This is a linear operation and it is done only at an increment.

The amortized rendering time is in the order of 1.5s.

3.4 Technical Challenges

We address three key technical challenges during the design and

implementation of Glimpse.3D.

• Quantifying the Quality of Merged Point Cloud. Glimpse.3D

aims at maximizing the quality of generated 3D point clouds while

ensuring a certain battery life. A basic principle in Glimpse.3D

is not to spend valuable resources in capturing and processing

images unless it is worth doing so. To determinewhether generating

and merging a new point cloud is worth, we need to quantify the

utility of such a merger. Hence, the system needs to quantify the

quality of a point cloud merger, even before it actually capture the

second image-pair. To address this challenge, Glimpse.3D proposes

an algorithm to quantify the expected quality of a point cloud

merger based on structural similarity and modeled by internal

parameters of ICP-based point cloud merging algorithm. The details

of this algorithm are described in Section 4.1.

• Determining an Optimal Trigger Point to Execute Image Process-

ing Modules. Despite an extensive tuning of the parameters of all

image processing modules in Glimpse.3D, they still remain as the

most time and power consuming entities in the system. To increase

eiciency, Glimpse.3D implements a controller that measures linear

and angular displacements of the person wearing the body camera

and triggers the image processing subsystem only when the dis-

placements exceed optimally computed thresholds. The detail of

the optimization problem is described in Section 4.2.

• Adapting the System Model at Runtime. The optimizer that de-

termines the optimal trigger point uses a set of empirical models

pertaining to diferent aspects of the system. For example, one of

these models maps linear displacements to the quality of merged

point clouds. Although the parameters of such a model are esti-

mated at design time with extensive measurements, they are likely

to require run-time adaptations as the system operates in diferent

scenarios, learns about new environments, and is worn by difer-

ent persons. To handle this challenge, Glimpse.3D employs model

adaptation that monitors the performance of the current system

models and updates the parameters at run time, when the current

models seem to be less accurate in predicting the system’s behavior.

The detail of this adaptation process is described in Section 4.3.

4 ALGORITHMS

In this section, we describe the algorithms that handle the chal-

lenges mentioned in Section 3.4. For a quick reference, Table 1 lists

all symbols and parameters used in this section.

Symbol Description Range and Unit

Ω Quality score. 0-1

ξ Bounding volume. m3

η Number of inliers.

δϕ Linear displacement 0 - 2.5m

δω Weighted angular displacement m/degree

β Battery capacity.

ζr em Remaining battery life. 1-10 levels

ζc Energy to process an image pair. Ws

δt Elapsed time sec

γi Parameters for quality scores.

χ Normalizing parameter.

Γi , αi Parameters relating {ξ , η, δϕ, δω }.

Table 1: A list of symbols that are used in this section.

4.1 Quality of a Merged 3D Point Cloud

In order for us to maximize the quality of generated and merged

3D point clouds, we need to quantify the quality of a point cloud.

Unfortunately, there is no established metric for assessing the qual-

ity of a point cloud in the computer vision literature. An evaluation

of a 3D reconstruction algorithm is often limited to reporting the

computation time and algorithmic complexity followed by a series

of test images and their 3D reconstructions.

Wemake an efort to bridge this gap by deining an objective qual-

ity score of a merged 3D point cloud C by comparing its structural

similarity index (SSIM) [64] against a baseline. SSIM is a quality as-

sessment index based on the computation of luminance (l), contrast

(c) and structural (s) terms. These three terms are expressed with

the following equations:

l(x ,y) =
2µx µy +C1

µ2x + µ
2
y +C1

; c(x ,y) =
2σxσy +C2

σ 2
x + σ

2
y +C2

; s(x ,y) =
σxy +C3

σxσy +C3

µx , µy , σx , σy , and σxy are the local means, standard deviations,

and cross-covariance for images x, y. SSIM is the multiplicative

variant of these three components.

SSIM(x ,y) =
[
l(x ,y)

]p1 [c(x ,y)
]p2 [s(x ,y)

]p3 (1)

Here, p1, p2 and p3 are multiplicative exponents. The intuition be-

hind using SSIM is to make sure that point clouds that preserve the
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data, and the major contributors in those principal components

are {number of inliers, bounding volume} and {total points, average

distance}, respectively. This is an interesting result which gives us

a choice between these two sets of variables that are statistically

similar in explaining the variability in data. We pick the irst set of

variables, i.e. bounding volume ξ , and number of inliers η in the

merged point cloud to model the quality metric.

• Fitting a Nonlinear Model. In the inal step, we it a nonlinear

model to express the quality score Ω in terms of two identiied

variables ξ and η. Our process of determining model is iterative, i.e.

we start with simple linear models, and increase complexity until

the goodness of it (expressed in root mean squared error, RMSE) is

below a threshold. After visualizing the data (Figure 7), we realize

that Ω is not a continuous function of ξ . Hence, we condition Ω

based on a threshold on ξ to obtain the following model:

Ω =

{
γ1 − γ2η + γ3ξ + γ4η

2
+ γ5ηξ + γ6η

3
+ Γ7η

2ξ , if ξ ≥ c

γ8 + γ9η + γ10ξ + γ11η
2
+ γ12ηξ , otherwise

(2)
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Figure 7: Fitting a nonlinear model to express quality score Ω in

terms of number of inliers η and bounding volume ξ .

Weempirically determine values of themodel parametersγ1,γ2,γ3,γ4,

γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, and c within 95% conidence intervals

to be 848.4, -0.003918, 3.661E-5, 6.052E-9, - 1.172E-10, - 3.11E-15,

9.368E-17, 29.55, -0.000425, -7.559E-7, 1.651E-9, -1.549E-12, and

1.6E6, respectively.

Note that, the proposed structural similarity index-based metric

(illustrated by Figure 5) is generic and is applicable to any 3D re-

construction algorithm to quantify the quality of point clouds. It

can be directly used in any system where computational resources

are adequate. However, since it is computationally expensive, in

Glimpse.3D, we look for an alternative way to ind an approxima-

tion to the metric that relies only on the byproducts of an ICP-based

3D point cloud estimation algorithm. For a diferent point cloud es-

timation algorithm, although the exact relationship/formula would

be diferent, the steps in Section 4.1 (i.e. identifying variables, PCA,

and model itting) remain generic and can be followed to ind a

relationship similar to Equation 2.

4.2 Determining Optimum Trigger Point

To maximize the battery life of Glimpse.3D, the trigger point for

the image processing subsystem needs to be optimum. For example,

executing image processing tasks when user is stationary only

decreases battery life without contributing new information. On

the other hand, when user is moving, the image capturing and

processing subsystem must be triggered often enough to maintain

a desired quality.

In Section 4.1, we established a model that represents the Quality

Score as a function of Number of Inliers and Bounding Volume.

Since the overlap between two point clouds afects the quality of

their merger, changes in camera views due to user’s movement also

afects the quality score. Hence, there is a relationship between

the parameters representing quality scores (Number of Inliers and

Bounding Volume) and a user’s displacement. In this section, at

irst, we model these relationships and formulate an optimization

problem that inds an optimum displacements (for both linear and

angular movements) which maximizes the quality of the merged

point clouds while satisfying battery life requirement. This process

is performed oline and the steps of the algorithm are as follows.

• Deining the Displacement Parameters. We observe that little

angular shift drastically changes the view. Hence, normalizing the

angular displacement using the average depth of the most recent

point cloud results in a better indicator of angular displacement

when we are interested in its efect on point cloud merging. The

normalized angular distance (δω) is deined by:

δω =
angular displacement

average depth of the most recent point cloud
(3)

The linear displacement (δϕ) does not change the view as much

as the angular displacement. Hence, we directly use the linear

displacement value, described in Section 3.

•Deining the Battery Life Constraint. A major concern in battery-

powered systems like Glimpse.3D is the battery life β . We model

the battery life based on the remaining battery level ζr em and

the expected energy for one execution ζc of the end-to-end image

processing cycle. This relation is represented by Equation 4:

β(δϕ,δω) =
ζr em

ζc
× (

δϕ

∆ϕ
+

δω

∆ω
) (4)

where, ∆ϕ and ∆ω denote the linear and the angular velocity,

respectively. We deine ζr em in 10 levels, where each level cor-

responds to 10 diference battery percentages. To maintain the

uniformity for diferent battery capacity, we normalize Equation 4

on a scale of 0 to 100.

• Relationship Between Quality Parameters (η, ξ ) and Displace-

ments (δω,δϕ). To estimate the quality from displacement values,

we ind relationships between the quality parameters (η and ξ ) of

Equation 2 and two displacement parameters (δω and δϕ) by per-

forming correlation analysis on dataset from Section 4.1. The results

δϕ δω

Inlier points, η +0.55 +0.84

Bounding volume, ξ -0.19 -0.17

Table 3: Correlation analysis.

of correlation analysis and corresponding scatter plots are shown

in Table 3 and Figure 8, respectively. For each of two parameters, η

and ξ , we individually it two linear models having independent

variables δϕ and δω and then take weighted summations to get

the best estimate over our data set. The relationship between η

and displacements( δϕ and δω), shown in Figure 8(a) and (b), is

formulated in Equation 5 and 6.

6



ηϕ = Γ1δϕ + Γ2 (5) ηω = Γ3δω + Γ4 (6)

We empirically determine the coeicients Γ1, Γ2, Γ3 and Γ4 to be

39417, 569365, 14052, and 85439, with 95% conidence.
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Figure 8: Relation of linear displacement δϕ and weighted angular

displacement δω with number of inliers η and bounding volume ξ .

Next, we combine the two estimatesηϕ andηω by takingweighted

average to model η in terms of displacements.

ηϕ,ω (δϕ,δω) = αηηϕ + (1 − αη )ηω

here, αη =





0, if ηϕ = 0

1, ηω = 0

0.40, otherwise

(7)

Here, in absence of linear and angular displacements, αη is 0 and

1 respectively. When both are present, αη is 0.40. Similar to Equa-

tions 5, 6, and 7, we formulate the following three equations that

model the bounding volume ξ in terms of displacements δϕ and

δω:

ξϕ = Γ5δϕ + Γ6 (8) ξω = Γ7δω + Γ8 (9)

We empirically determine the coeicients Γ5, Γ6, Γ7, and Γ8 to be

530.27, 2e+6, -240063, and 1e+6, with 95% conidence. In Equation 10,

in the absence of linear and angular displacements, αξ is 0 and 1,

respectively. When both types of displacements are present, αξ is

0.53.
ξϕ,ω (δϕ,δω) = αξ xiϕ + (1 − αξ )ξω

here, αξ =





0, if ξϕ = 0

1, ξω = 0

0.53, otherwise

(10)

• Formulating Optimization Problem. Finally, we formulate an opti-

mization problem whose objective is to maximize battery life and

quality of merged point cloud. The goal is to determine the values

of δϕ and δω for which the objective is maximized under given

constraints on minimum quality (Ωmin ) and minimum battery life

(βmin ).

maximize
δϕ,δω

Ω(δϕ,δω) + χβ(δϕ,δω)

subject to Ω ≥ Ωmin & β ≥ βmin

(11)

We set Ωmin = 0.12 based on a user study in Section 6.2 which

showed that a quality score below 0.12 is not useful. The value of

βmin depends on the application scenario. χ = 0.01 is a normalizing

factor that balances the two terms with diferent units. For diferent

values of ζr em , we solve this optimization problem and save the

results in a table. At run-time, we look-up the table as the battery

level changes.

In this system, if the value of Ωmin is too high, we will achieve

a higher quality point cloud but it will decrease the battery life β .

If βmin is too high then Ω will decrease. Our goal is to ind the

optimal displacement value to maximize both Ω and β .

4.3 Runtime Model Adaptation

The proposed optimizer outputs certain linear and angular dis-

placements maximizing quality score and battery life. Since the

parameters in optimization problem are empirically determined,

their generalizability is limited to scenarios similar to the ones in

data set. In real-life, especially for mobile systems, the scenarios

are likely to vary in terms of lighting and shading, number, types

and distance of objects in the scene. To make Glimpse.3D robust

to such changes and learn from new scenarios, we monitor and

adapt the system at run-time. Figure 9 provides overview of the

proposed adaptation mechanism, and the steps of the algorithm are

as follows.

Figure 9: Runtime model adaptation in Glimpse.3D.

•Monitoring Stability of Optimum Trigger Point. To ind optimum

trigger point described in Section 4.2, we solve an optimization

problem beforehand using a large empirical dataset. Performance of

the controller is expected to be optimal in most scenarios. However,

to cope with the stochastic nature of real world, we adapt the system

at run-time whenever its performance is diferent than expected.

After each executing image processing subsystem, monitor mod-

ule compares the estimated quality (Ωp ), which is calculated by

the optimizer using δϕ and δω, with the actual quality score (Ω),

calculated directly from the ξ and η. If the diference |Ωp − Ω | is

below a threshold, the system is assumed to be performing as ex-

pected. Otherwise, the models that it displacements to ξ and η are

updated.

• Updating Models. This step updates the parameters of the linear

models that we developed in the previous section through series of

Equations 5, 6, 8, and 9. Since these models are linear, we update

them at run-time using basic geometry. Note that, we have validated

the linearity of the models by using a k-fold cross validation test,

and hence, there is no reason to use a higher order polynomial. A

model update is triggered when at leastm violations are detected

by the monitor module. We it thesem data points to a line, Ldata .

Let, our the existing model Lprev be estimated using n data points.

We ind a new linear model Lnew which is a weighted average of

Ldata and Lprev . We consider two cases.
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of Glimpse.3D’s process chain, but its frame rate requirement (60

fps) is too high for a resource constrained system like Glimpse.3D.

• Why not VIO? The Visual Inertial Odometry (VIO) [38] refers

to the method of estimating traveled distance using visual features

as well as using IMUs and then combining the two results for a

better accuracy. For VIO, it is necessary to continuously capture

and process images, which we want to avoid in Glimpse.3D due to

resource constraints.

• Why Regression over Classiication? Machine learning tasks

(strictly speaking- supervisedMLwhere both inputs and outputs are

known and the goal is to ind an optimal hypothesis/model that its

the data) are broadly categorized into two types: a classiication task

and a regression task. A classiication problem is formulated when

the outputs are discrete-valued and the number of distinct outputs

is small- so that each unique output (or a range) can be labeled

as a class. The problem at hand, i.e. itting a model to continuous-

valued quality scores within the range of [0, 1] is not well-suited to

a classiication formulation, as either (1) we have to discretize the

range of scores into a small number of sub-ranges- thereby losing

the precision of quality scores, or (2) we will have to formulate

a 100-1000 class classiication problem (based on the number of

decimal digits we consider) - which is not practical as that would

require a large number of training examples for each of the 100-

1000 of classes. Hence, we formulate the problem as a regression

analysis task which is a better it to our need. Furthermore, we

iteratively increase the complexity of the model to ind the simplest

model that best its the point cloud quality scores, as simpler curves

or hypotheses are always preferable to complex ones due to their

better generalization ability beyond the empirical data as well as

computational eiciency.

• Why Stereo Vision? Both stereo vision and structure from mo-

tion (SfM) are popular methods for 3D reconstruction. In this paper,

we choose stereo vision because of its lower computational require-

ment than SfM. In SfM, one of the initial steps is to estimate the

pose where the extrinsic parameters (angular and linear transfor-

mation matrices of two images) are calculated. In stereo vision,

since the relative position of the two cameras is ixed, the extrinsic

parameters are estimated once during the calibration step and there

is no need to perform pose estimates for each pair of images at

runtime.

8 RELATED WORK

3D reconstruction is a well studied problem in computer vision. [37]

uses eicient feature extraction and dense pixel methods for real-

time camera tracking and reconstruction. However, it required

multi-core CPUs and powerful GPUs [32, 62]. We process 3D infor-

mation in a resource constrained embedded system.

Modern smartphones are equipped with multi-core processors

and GPU cores. Interactive 3D reconstruction on smartphones has

been attempted in [29, 41, 45]. However, their performance is far

from that of a high-end computer. [57] demonstrated a mobile app

based light-weight 3D reconstruction systemwhich of loads thema-

jor 3D reconstruction tasks to a cloud computer. [58, 59] presented

dense stereo-based system for real-time interactive 3D reconstruc-

tion on a smartphone using the IMU. Few works presented smart-

phone based outdoor and large-scale 3D reconstruction system uti-

lizing the GPU in Google Tango Development Kit [49, 50]. [45, 46]

proposed tracking and reconstruction of objects in mobile phone.

IMU have been used in diverse computer vision applications [35, 67].

We use IMU to measure user motion and use it to guarantee 3D

information quality and battery life of the system.

Some works have explored resource-constrained 3D reconstruc-

tions. [17] proposed a stereo acquisition system developed on DSP

for 3D scanner. This system consists of both camera and a projec-

tor. [19, 21] proposed an embedded architecture for stereoscopic,

plenoptic camera based 3D reconstruction in FPGA based hardware.

In our system, we propose a body-worn camera system and exploit

human motion for triggering the system.

IMU fusioned body camera systems have been introduced in [11,

31]. SLAM [47] and its variants [10, 18, 27, 65] are used in robot-

based 3D reconstruction. For real-time 3D reconstruction and lo-

calization visual inertial odometry is also used [28, 39, 63]. In

Glimpse.3D, we use the IMU data to decrease the number of cap-

tured images by forming a closed-loop control problem.

Raspberry Pis have been used for 3D imaging [44, 56], face recog-

nition [52], drone-based 3D reconstruction [16]. Unlike Glimpse.3D,

these systems use Pis for image capturing only, and 3D reconstruc-

tion happens oline on powerful machines.

Controlling data acquisition through analysis of sensing data has

been applied to few diferent applications previously. [68] proposed

an wrist-pulse retrieval and analysis system using portable wireless

sensor system. [42] presented a vibration signal acquisition system

for monitoring pedestrians by footstep induced vibration. They

proposed a low-cost hardware system with of the shelf vibration

sensors. In our system, we use stereo camera sensor for ensuring

higher battery life and quality of point cloud.

9 CONCLUSION

This paper describes a low-cost body-worn camera system that

captures the 3D experience in real-world, mobile environments. A

new metric for quantifying the quality of merged point cloud has

been proposed. A new algorithm has been developed to guarantee

3D visual information quality and battery life of this resource-

constrained system. The performance of this optimized adaptive

body-cam system has been compared with time-triggered and

motion-triggered systems, and the efectiveness of model adapta-

tion has been evaluated. It has been shown that the system provides

a better guarantee of desired battery life and 3D information quality,

and is robust to new environments.
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