Provably-Secure Logic Locking: From Theory To Practice

Muhammad Yasin

Abhrajit Sengupta

Mohammed Thari Nabeel

New York University, New York, USA New York University, New York, USA New York University Abu Dhabi, UAE

yasin@nyu.edu

Mohammed Ashraf
New York University Abu Dhabi, UAE
mal99@nyu.edu

as9397@nyu.edu

Jeyavijayan (JV) Rajendran
The University of Texas at Dallas/
Texas A&M University, Texas, USA

mtn2@nyu.edu

Ozgur Sinanoglu
New York University Abu Dhabi, UAE
0s22@nyu.edu

jv.ee@utdallas.edu

ABSTRACT

Logic locking has been conceived as a promising proactive defense
strategy against intellectual property (IP) piracy, counterfeiting,
hardware Trojans, reverse engineering, and overbuilding attacks.
Yet, various attacks that use a working chip as an oracle have been
launched on logic locking to successfully retrieve its secret key,
undermining the defense of all existing locking techniques. In
this paper, we propose stripped-functionality logic locking (SFLL),
which strips some of the functionality of the design and hides it in
the form of a secret key(s), thereby rendering on-chip implementa-
tion functionally different from the original one. When loaded onto
an on-chip memory, the secret keys restore the original functional-
ity of the design. Through security-aware synthesis that creates a
controllable mismatch between the reverse-engineered netlist and
original design, SFLL provides a quantifiable and provable resilience
trade-off between all known and anticipated attacks. We demon-
strate the application of SFLL to large designs (>100K gates) using
a computer-aided design (CAD) framework that ensures attaining
the desired security level at minimal implementation cost, 8%, 5%,
and 0.5% for area, power, and delay, respectively. In addition to
theoretical proofs and simulation confirmation of SFLL’s security,
we also report results from the silicon implementation of SFLL on
an ARM Cortex-M0 microprocessor in 65nm technology.

CCS CONCEPTS

«Security and privacy —Security in hardware; Hardware at-
tacks and countermeasures; Hardware reverse engineering;
Hardware security implementation; sHardware —Logic synthe-
sis; Electronic design automation;

KEYWORDS

Design-for-trust, IP piracy, hardware Trojan, reverse engineering,
logic locking, Boolean satisfiability (SAT)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30—Nov. 3, 2017, Dallas, TX, USA.

© 2017 ACM. ISBN 978-1-4503-4946-8/17/10...$15.00

DOI: http://dx.doi.org/10:1145/3133956:3133985

Tamper-proof

i Key inputs

Circuit to be
protected

Inputs —»| > Outputs

Figure 1: An abstract representation of alogic-locked design.
Only on applying the secret key, the design produces correct
outputs; otherwise, incorrect outputs are produced.

1 INTRODUCTION

1.1 IP piracy and reverse engineering

The increasing cost of IC manufacturing has forced many com-
panies to go fabless over the years. With the outsourcing of IC
fabrication in a globalized/distributed design flow including multi-
ple (potentially untrusted) entities, the semiconductor industry is
facing a number of challenging security threats. This fragility in
the face of poor state-of-the-art IP protection has resulted in hard-
ware security vulnerabilities such as IP piracy, overbuilding, reverse
engineering, and hardware Trojans [9, 13, 19, 20, 37, 39, 45, 47-49].

To address these issues most effectively at the hardware level [32],
a number of hardware design-for-trust (Df Tr) techniques such as
IC metering [1, 22, 23], watermarking [17, 18, 21, 31], IC camouflag-
ing 3, 4, 27, 28, 35, 46, 51, 56, 62], split manufacturing [14, 16], and
logic locking [34, 36, 38, 40, 41, 52, 53, 55, 61, 63] have been pro-
posed. Logic locking, in particular, has received significant interest
from the research community, as it can protect against a potential
attacker located anywhere in the IC supply chain, whereas other
DfTr techniques such as camouflaging or split manufacturing can
protect only against a limited set of malicious entities as shown
in Table 1. Mentor Graphics, a major CAD tool provider, has an-
nounced the launch of TrustChain, a framework to support logic
locking and camouflaging [26, 42].

1.2 Logic locking: defenses and attacks

Logic locking inserts additional logic into a circuit, locking the
original design with a secret key. In addition to the original in-
puts, a locked circuit has key inputs that are driven by an on-chip
tamper-proof memory [15, 50], as illustrated in Fig. 1. The addi-
tional logic may consist of XOR gates [34, 36, 38] or look-up tables
(LUTs) [5]. Fig. 2 presents the IC design flow incorporating logic
locking. The locked netlist passes through the untrusted design
phases. Without the secret key (i) the design details cannot be
recovered (for reverse-engineering), and (ii) the IC is not functional,

Logic
synthesis

Physical
synthesis

_— Test/ d _—
Fabncatuonl—»{ EeETE @ ActlvatlonW m

Figure 2: Locking and activation of an IC in IC design flow. The red regions denote untrusted entities; the green regions

represent trusted entities.

Table 1: Protection offered by Df Tr techniques against un-
trusted entities in the IC supply chain.

‘ Techniques ‘ Foundry ‘ SoC Integrator ‘ Test ‘ User ‘
IC metering [1, 22, 23] X v v v
Watermarking [17, 18, 21, 31] X X X v
IC camouflaging [3, 4, 27, 28, 35, 46, 51] X v v v
Split manufacturing [14, 16] v X X X
Logic locking [34, 36, 38, 52, 55] v v v v

i.e., it produces incorrect outputs (for over-production). A locked
IC needs to be activated by loading the secret key onto the chip’s
memory.

Traditional logic locking techniques choose key gate loca-
tions based on various gate selection algorithms, such as ran-
dom (RLL) [38], fault analysis-based (FLL) [5, 36], and strong-
interference-based logic locking (SLL) [34, 59]. Over the years,
many key-recovery attacks have been mounted that exploit the
vulnerabilities of logic locking techniques [33, 34, 44, 54, 60]. A
summary of these attacks is presented in Table 2.

A powerful attack that broke all the logic locking techniques
existing then is Boolean satisfiability (SAT)-based key-pruning attack,
referred to as SAT attack. The attack is based on the notion of incor-
rect key elimination using distinguishing input patterns (DIPs) [44].
DIPs are computed using a miter circuit constructed using two
copies of the locked netlist; the two circuits share the primary
inputs but have different key inputs. A DIP is found when the
two copies of the locked netlist differ in their outputs. A func-
tional IC with the secret key loaded in its memory is used as an
oracle to identify the incorrect keys in an iterative fashion. The
computational complexity of the attack is expressed in terms of
the number of DIPs generated by the SAT attack [44]. The latest
research works on logic locking have focused on defending against
the SAT attack [52, 55, 57].

1.3 SAT attack resilient logic locking

Two SAT attack resilient logic locking techniques—SARLock [55]
and Anti-SAT [52] (see Fig. 3)—have been recently proposed. They
both use one-point functions to obtain resilience against SAT at-
tacks. SARLock corrupts/inverts the output of the circuit for all the
incorrect keys at exactly one input pattern that is different for each
incorrect key. The correct key values are hardcoded in logic gates
to mask the output inversion for the correct key [55]. Anti-SAT
employs two complementary logic blocks that converge at an AND
gate. The output of the AND gate is always 0 only for the correct

Table 2: Attack resiliency of logic locking techniques
against the existing attacks. X denotes susceptibility to the
attack and v denotes resilience.

Attack RLL FLL SLL AntiSAT SARLock TTLock Proposed
[38] [5.36] [34] [52] [55] [61] SFLL
Sensitization [34] X X v v v v v
SAT [44] X X X v v v v
AppSAT [40] X X X X X X 4
Removal/SPS [57] v v v X X v v

IN Original circuit D out
|

Original
circuit
Flip’

= 1
Tamper-proof Tamper-proof ._rG(x'K“)
memory | K memory G(X,Ki)
Kiy
(a) (b)

Figure 3: (a) SARLock [55]. (b) Anti-SAT [52]. In both tech-
niques, an incorrect key may assert the flip signal, produc-
ing incorrect outputs. Source: [61].

key; otherwise, it may be 1. Its output corrupts an internal node
in the original design for an incorrect key, to produce incorrect
outputs.

SARLock can be intertwined with one of the gate selection-
based logic locking techniques, such as RLL, FLL or SLL, providing
multiple layers of defense [55]. A variant of SAT attack, referred to
as AppSAT [40], was recently proposed to show that a multi-layered
defense comprising a point function and a SAT attack vulnerable
logic locking technique can be reduced to a single-layer defense
comprising the point function alone (e.g., from SARLock+FLL to
SARLock). The Double-DIP attack achieves the same objective
using more powerful 2-DIPs, i.e., DIPs that can eliminate at least
two incorrect keys in a single iteration [41]. The work in [40, 41]
elucidates that simple integration of multiple techniques together
fails to combine the resilience offered by individual techniques.
Limitations of existing work: Protection unit that can be iso-
lated and removed. Despite their SAT attack resilience, both
SARLock [55] and Anti-SAT [52] exhibit security vulnerabilities,
as they leave the original circuit implementation, the IP-to-be-
protected, as is. SARLock is vulnerable to removal attack: Given
a protected/locked netlist, an attacker can identify the compara-
tor/mask blocks and the flip signal that directly feeds the output
by tracing the transitive-fanout of key-inputs, and remove these
blocks, retrieving the original circuit (proprietary IP). Anti-SAT
is vulnerable to signal probability skew (SPS) attack [57]: Given a
protected netlist, an attacker can identify the flip signal: it is at
the output of the gate whose inputs exhibit the maximum bias
towards opposite values. The attacker can then retrieve the origi-
nal design by re-synthesizing the locked netlist with a constraint
value 0 (1) on the flip signal. Even upon additional obfuscation
using additional XOR/XNOR and multiplexer key gates [52], the
Anti-SAT block can be isolated using the AppSAT guided removal
(AGR) attack [58]. In addition, both SARLock and Anti-SAT are
also vulnerable to the Bypass attack [53]. The Bypass attack finds
a DIP that causes an incorrect output for a wrong key and bypass
circuitry is added around the Anti-SAT/SARLock block to fix the
output for this DIP. This fix recovers the original design as for both
SARLock and Anti-SAT the incorrect key-driven design fails for
only one input pattern.

SARLock is re-architected into TTLock in [61] to gain resilience
against removal attacks. TTLock makes changes to the original

design to corrupt the output in the absence of the secret key. As
SARLock is based on a one-point function, its re-architected version
TTLock ends up protecting one input pattern, that is, the modified
netlist and the original netlist differ in their outputs for one input
pattern only. The work in [61] describes this SAT and removal
attack resilient architecture but provides neither a CAD framework
to effect the design changes nor a formal analysis proving resilience
against various attacks. Furthermore, protection of a single input
pattern leads to a rigid scheme where the designer lacks the control
to hide an arbitrary amount of IP-critical logic in arbitrary parts
of his/her design. Protection of a single input pattern, and thus,
low (and uncontrollable) corruptibility also leads to the recovery of
an approximate netlist through attacks, such as AppSAT [40] and
Double-DIP [41], which SARLock is vulnerable to as well.

1.4 Motivation, proposed approach, and
challenges

Motivation. Our ultimate goal is to develop a logic locking tech-
nique that can withstand all known and anticipated attacks. Re-
silience to oracle-guided attacks, such as SAT attack, should be
delivered while at the same time hardware implementation of the
design should not reveal all the details of the design IP to reverse-
engineers (i.e., removal attacks). A logic locking framework should
enable the designer to hide the security-critical parts of the design
IP, and thereby, to customize logic locking to the security needs of
the application.

While hiding any part of the design IP from its hardware imple-
mentation may be sufficient to render general applications resilient
to reverse engineers (removal attacks), there are applications where
a designer may want to specify the parts to hide. Examples in-
clude processors with to-be-protected address spaces, for which
access is granted only to restricted entities [8]; network-on-chip
(NoC) routers where certain IP address ranges may carry particular
semantics [12]; intrusion detection systems that rely on pattern
matching [24]; and digital signal processing applications, such as
comb filters [10], which accentuate/attenuate frequencies at regular
intervals.

Approach. Building on the architecture abstracted in [61], the
proposed technique strips part of the design functionality from
its hardware implementation. The design implemented in hard-
ware is therefore no longer the same as the original design, as
the former will be missing the stripped functionality. We refer to
the proposed technique that can arbitrarily specify this stripped
functionality as Stripped-Functionality Logic Locking (SFLL). The
hardware implementation can be conceived to have an intentionally
and controllable built-in error. This error is canceled by a restore
unit only upon the application of the secret key of logic locking.

The stripped functionality can be captured efficiently in terms
of input cubes! for which the hardware-implemented design and
the original one produce different outputs. We refer to these input
cubes as protected cubes. They can be stored in bits rather than
hardcoded in logic gates. SARLock [55] and Anti-SAT [52] protect
zero cubes, as they implement the design IP as is in hardware.
nput cubes refer to partially-specified input patterns; some input bits are set to
logic-0’s or logic-1’s, while other input bits are don‘t cares (x’s). An n-bit input cube
with k specified (care) bits contains 2"~ input patterns.

Protected cubes can also be conceived as conditions to manifest the
built-in error; a reverse-engineer applying the removal attack will
obtain a netlist with this error with respect to the original design.

For general applications that require hiding any part of the func-
tionality, it may be sufficient to protect an arbitrary set of cubes. For
applications that are specific about the part of the functionality to
hide, the proposed SFLL framework should enable the designer to
strip functionality based on IP-critical cubes that he/she can specify
and provide as input to the framework.

Challenges. The proposed approach necessitates that we dis-
cover and explore the connection between resilience to oracle-
guided attacks and removal attacks. This translates to another
challenge—quantifying the resilience of logic locking to attacks in
terms of properties (e.g., the number and size) of cubes protected by
them. Only then, we can implement a logic locking framework that
can enable the designer to make an informed decision on how to
trade resilience to one attack for resilience to another, and identify
the sweet spot to protect against all attacks.

1.5 Contributions

e We discover, quantify, and explore the trade-off between re-
silience of logic locking to different attacks.

e We develop a provably and quantifiably secure and scalable logic
locking technique SFLL that thwarts all known and anticipated
attacks. We present two versions of SFLL.

(1) The first version SFLL-HD", a generalized version of TT-
Lock [61], is suitable for general application where stripping
an arbitrary part of the functionality is sufficient for pro-
tection. This implementation is simple and scalable but is
capable of protecting a restricted set of input cubes, all dic-
tated by one secret key. SFLL-HD" protects (Ihc) input cubes
that are of Hamming Distance (HD) h from the k-bit secret
key. We provide a security analysis and show that k and h
dictate the trade-off between oracle-guided attack resilience
and removal attack resilience.

(2) The second version SFLL-ﬂexCXk allows the user to specify ¢
IP-critical input cubes to be protected, each with k specified
bits.

— We quantify the security level and trade-off in terms
of the number and the size of these cubes.

— We develop a two-stage optimization framework that i)
compresses the input cubes, and ii) performs security-
aware logic synthesis to strip functionality based on
compressed cubes while lowering the cost of imple-
mentation and adhering to security requirements.

o This is a complete approach from theory to practice. We develop
security definitions and metrics; develop a CAD framework for
SFLL; and validate SFLL’s security, cost-effectiveness, and scala-
bility through both computer simulations on large-sized bench-
marKk circuits (one with >100K gates) and silicon implementation
of ARM Cortex-M0 microprocessor in 65nm LPe technology. We
fabricate both the baseline and the SFLL-locked microprocessors to
perform an accurate comparative analysis.

2 PRELIMINARIES

Before delving into further details, we first define the terminologies
that are used in the remainder of the paper.
Notation. We define a set as S and its elements are denoted as

s € S. We write s & S to denote s has been sampled uniformly
randomly from the set S. We use cktjyck, cktacto and cktrec to
denote a logic-locked, an activated, and a reconstructed circuit,
respectively. For a circuit ckt the set of all possible inputs and
outputs are denoted as I and O respectively. We write A to denote
a probabilistic polynomial time (PPT) adversary A following an
attack strategy S.

Definition 2.1. A combinational circuit ckt is a netlist that im-
plements a Boolean function F : I — O, where I = {0,1}" and
O = {0,1}" with n inputs and m outputs. A logic locking tech-
nique £ can be viewed as a triplet of algorithms, (Gen, Lock,
Activate), where:

(1) Gen is a randomized key generation algorithm, z &
Gen(1%), where k denotes the key-size,

(2) Lock is the algorithm to lock a circuit’s functionality,
cktjoer < Lockz(ckt), and

(3) Activate is a deterministic algorithm that activates the
locked circuit, cktgery < Activatez(ckty,cr) such that
Vi € I, cktgero (i) = F(i).

Threat model. Consistent with the previous works, here we as-
sume the attacker has access to an oracle, denoted, ckt(-), which
is a copy of a working chip with the secret key loaded onto its
memory. The attacker queries the oracle with a set of input pat-
terns and observes the corresponding outputs. Apart from this, the
attacker also has the reverse-engineered netlist ckt;,.x, which is
locked using a logic locking technique £. In this work, we assume
the attacker also knows the corresponding elements between the
original and the locked netlist; that is, he can identify the location
of the protection unit. The attack success for an adversary A°
implies recovering a circuit such that:

Vi € I cktrec(i) = F(i), A° : cktjper — cktrec (1)

SAT attack resilience. SAT attack, a representative and effective
oracle-guided attack that iteratively prunes the key space, queries
the oracle cktj, . (-) with an input pattern d, called a distinguishing
input pattern, to eliminate a set of incorrect keys in each iteration.
The attack terminates after querying the oracle with a set of DIPs,
and outputting a single key z’. The attacker ASAT reconstructs
a circuit cktyec where cktrec «— Activate, (cktyocr) such that Eq.
(1) is satisfied.

Definition 2.2. A logic locking technique £ is called A-secure
against a PPT adversary ASAT, making a polynomial number of
queries g(A) to the oracle, if he/she cannot reconstruct ckt,¢. with

q(})

probability greater than vt

A logic locking technique resilient to the SAT attack is also
expected to thwart other variant key-space pruning attacks.
Sensitization attack resilience. Sensitization attack, which is
another oracle-guided attack, determines individual key bits by

generating and applying patterns that sensitize them to the out-
puts. In [34], two key bits are considered pairwise-secure iff the
sensitization of one key bit cannot be done without controlling the
other key bit and vice versa. The same paper presents SLL that
maximizes key bits that are all pairwise-secure. For example, key
bits converging at a dominating gate are all pairwise-secure, if there
is no input assignment to block any one of them before they reach
the dominating gate.

Definition 2.3. A logic locking technique £ is A-secure against a
sensitization attack iff A key bits are all pairwise secure.

Removal attack resilience. Removal attack operates on a locked
netlist and tries to isolate and remove the protection logic. The
attack is a transformation T : cktj ., — cktrec | Vi € I, cktrec(i) =
F(i), irrespective of the key value. Note that for a removal attack
cktrec(p) # F(p),Vp € P, where P denotes the set of protected
patterns.

Definition 2.4. A logic locking technique £ is A-resilient against
a removal attack, where A denotes the cardinality of the set of
protected input patterns P.

3 SFLL-HD

We first present SFLL-HD” for general applications that will benefit
from stripping an arbitrary part of the design functionality. We
also show that SFLL-HD" is a logic locking platform that provides
controllable resilience against all known attacks. In SFLL-HD", all
the protected input cubes are of the same Hamming Distance h from
the secret key; though the set of protected cubes are thus restricted,
a large number of cubes can be protected through a simple, scalable,
and cost-effective hardware.

3.1 SFLL-HD’

We first explain SFLL-HD" for the special case of h = 0; there is
only one protected input cube, and it is the same as the secret key.
In other words, SFLL-HD? is functionally the same as TTLock [61].
SFLL-HD? modifies a design to invert its output for one selected
(protected) input pattern; this inversion is the manifestation of the
built-in error. The functionality stripping can be effected via logic
gate insertions/replacements; the security-aware synthesis module
in SFLL-flex in Section 4.2 can also be used to strip functionality
based on a set of protected input cubes. SFLL-HD inverts the
erroneous output only upon the application of the correct key
to the restore unit, thereby, cancelling out the built-in error and
recovering the correct output. Moreover, SFLL-HD? introduces one
additional error into the design along with the inverted output for
each incorrect key. Here, the secret key consists of the protected
input cube selected by the designer.
SFLL-HD? has the following properties:

e It protects exactly one input cube.

e Each input pattern can eliminate one and only one incorrect key,
thereby ensuring the SAT attack requires number of DIPs that is
exponential in terms of the key-size.

e Removal attacks, when launched against SFLL-HD?, only re-
cover the (minimally) modified design that exhibits incorrect
(but approximate) functionality.

NjoloaswN = |oZ
U %I]RIRIRIRIR|%|B
AN SASA A SR A Y-8
U %RIRIR %RIRIB
IR %/RIRIRB
< %I][%|]IRIRISIE
%%]RIRISISIRE
IRIRIRIRIRIRIR B
% %2|]I]IRIRIRIRF

Tamper-proof
memory [K

< %] |][gI]|R[FE

Figure 4: Proposed SFLL-HD? architecture for n = k = 3. The
functionality-stripped circuit (FSC) is minimally different
from the original function: they produce a different re-
sponse for one protected input pattern (IN = 6). The restore
unit cancels this error for the correct key k6 and introduces
a second error for all incorrect keys. Errors are denoted by
X’s. Note that although SFLL-HD? is functionally the same
as TTLock, the two are different in hardware architecture;
TTLock uses a comparator whereas SFLL uses a Hamming
Distance checker. Source: [61].

Figure 5: a) Original circuit, b) FSC. Gate G1 is replaced
with G1’ in the FSC, inverting the output Yg for IN=6.
Source: [61].

3.1.1 Construction of SFLL-HD®. The architecture of SFLL-HD"
consists of a restore unit and an XOR gate. The restore unit com-
putes the Hamming distance between the key inputs and the pri-
mary inputs. In the special case of SFLL-HD?, the Hamming dis-
tance between the primary inputs and the key is zero, implying
that the restore signal is asserted only when the key inputs and
the primary inputs match. Note that for h = 0, this restore unit
can be reduced to a simple k-bit comparator rendering SFLL-HD®
functionally equivalent to TTLock, as shown in Fig. 4.

We reuse the example circuit from [61] to illustrate the architec-
ture of SFLL-HD? depicted in Fig. 5a. The circuit is protected by a
three-bit key, n=k=3; the protected cube is an input pattern, asn = k
in this example. The original circuit is shown in Fig. 5a whereas the
functionality-stripped circuit (FSC) is shown in Fig. 5b. The original
and the functionality-stripped circuits produce a different output
for only input pattern 6. Yy column in Fig. 4 shows the inversion
(error) for this protected input pattern. This error is cancelled out
by applying the correct key k¢ which asserts the restore signal for
input pattern 6, and thus, recovering the desired output, as depicted
in the table in Fig. 4. The table also illustrates that each incorrect
key induces one extra error in the design, leading to two inversions
in each column of the table except the one for the correct key.

3.1.2 Security analysis of SFLL-HD". We prove the following
theorems which establish the security of SFLL-HD? against all
known and anticipated attacks. We assume n inputs and k key bits,
where k < n. SFLL-HD? delivers the same security properties as
TTLock [61]. To establish the security properties of SFLL-HD?, we
develop a formal approach which was missing in [61].

SAT attack resilience. SFLL-HD? resilience against SAT attack
is achieved by ensuring that the attack encounters its worst-case
scenario. In each iteration, a DIP eliminates exactly one incorrect
key, necessitating a number of iterations that is exponential in
the key-size. In the example shown in Fig. 4, the attack requires
7=23-1 iterations in the worst-case. However, if the attacker is
fortuitous he/she may hit the protected input cube and eliminate
all incorrect keys at once. In the same example, the protected
input pattern IN=6 helps the attacker to eliminate all the incorrect
keys immediately. However, as an attacker does not have any
information about the protected cube, the probability of such a
fortuitous hit is exponentially small in the number of key bits.

THEOREM 3.1. SFLL-HD is k-secure against SAT attack.

Proor. First, we classify all the input cubes into two sets, the
set of protected cubes P and set of unprotected cubes P. Now, as
SFLL-HD? only contains one protected input cube, P is a singleton
set. Thus, |P| =1 and |§| =2k _1,

Now, an attacker can recover the secret key, and thus, the original
functionality of the design if she can find a protected input cube in
P. However, for a PPT attacker making only a polynomial number
of queries g(k) to the oracle, the probability of finding this cube is

P, i 1P ®
2k 2k —1 2k —g(k)

1 1 1

Co2k C2k—1 2k —g(k)

L 9k

¥ R

Note, without loss of generality, we consider the sampling as with-
out replacement as the SAT attack does not repeat any DIP. So,
from Definition 2.2, SFLL-HD? is k-secure against SAT attack. O

Sensitization attack resilience.
THEOREM 3.2. SFLL-HD is k-secure against a sensitization attack.

ProoF. In SFLL-HDY, all the k bits of the key converge within
the comparator inside the restore unit to produce the restore signal.
Therefore, sensitizing any key bit through the restore signal to the
output requires controlling all the other key bits. All k bits are there-
fore pairwise-secure. SFLL-HD? is k-secure against sensitization
attack. O

Removal attack resilience. Since the restore signal is highly
skewed towards zero, it can be easily identified by a signal probabil-
ity skew (SPS) attack. However, any removal attack would recover
only the FSC, without leaking any information about the original
design. As the FSC produces an erroneous response for the pro-
tected input cube, the design is resilient against removal attack.

TuEOREM 3.3. SFLL-HD? is 2"~k -resilient against removal attack.

ProoOF. Suppose the attacker recovers a circuit cktye. by iden-
tifying and removing the restoration logic. Now, ckt,¢c produces

an incorrect output for the set of protected input cubes, denoted as
P. However, we know that each cube contains 2"k input patterns.
Thus, if T denotes the set of all input patterns contained in P,

cktrec(i) # F(i), VieT
It = |P|x2"k 3)
= 1x2nk
— 2n—k

So, from Definition 2.4, SFLL-HD? is 2"k _resilient against a re-
moval attack.)

3.2 SFLL-HD"

In this section, we generalize for h; SFLL-HD" can protect all input
cubes that are of Hamming distance of h from the secret key. The
number of protected input cubes is (Z)

3.2.1 Construction of SFLL-HD". With a HD of h, an input-size
of n, and key-size of k, SFLL-HD" inverts the FSC output Yps for

(Ihc) input cubes, which contains ank . (’;l) patterns. The restore
unit, which comprises of k XOR gates and an adder to compute
the Hamming distance, rectifies all these errors for the correct
key, while it introduces a different but possibly overlapping set of
errors for any incorrect key. Fig. 6 depicts the architecture of the
proposed SFLL-HD" along with an example where n = k = 3 and
h = 1. As can be seen from the architecture, the implementation
overhead of the restore unit is independent of h, which is a hard-
coded (non-secret) constant that feeds the comparator inside the
restore unit.

3.22 Security analysis of SFLL-HD". We assume n inputs and k
key bits, k < n. Proofs of theorems are provided in Appendix B.1.
SAT attack resilience.

THEOREM 3.4. SFLL-HD" is (k - [log, (ﬁ)])-secure against SAT
attack.

Sensitization attack resilience.

THEOREM 3.5. SFLL-HD" is k-secure against sensitization attack.

z

EIRSAANAAE IS

Restore unit

?
Tamper-proof HD(IN,K) = h
Memor

Figure 6: SFLL-HD" architecture for n=k=3 and h=1. Y¢ in-
cludes (l}i) errors, denoted by X’s. Restore unit rectifies all
errors for the correct key k6. For the incorrect keys, restore

%S %] %[]R[RFE
Noog|hlwiN =~ O

%I (%% % %] %X
% % (<% %% %]
USRI % R[] (%R E
P AT
IRIR[IRR %% (]| F
RIRIRIRIRIRIRIF
% %% % % xR T

unit introduces (ﬁ) additional errors (at (lﬁ) input patterns),
which may possibly coincide and cancel errors in Yg.

Removal attack resilience.

THEOREM 3.6. SFLL-HD" is 2"~k . (ﬁ)—resilient against removal
attack.

As these theorems show, h can be adjusted to trade resilience
to one attack for resilience to another. Values of h closer to either
0 or k deliver higher resilience to SAT and other key-pruning at-
tacks, whereas resilience to the removal attack can be maximized
by setting h=k/2.

4 SFLL-FLEX

In contrast to SFLL-HD", SFLL-flex®*¥ allows the user to specify,
and thus, protect the IP-critical input patterns; the restore unit
stores the protected input patterns in a compact form, i.e., in the
form of ¢ input cubes, each with k specified bits. In this context, the
input cubes can be conceived as the secret keys to be loaded onto
the chip for the restore unit to recover the stripped functionality.
We will use the terms “protected input cubes” and “secret keys”
interchangeably for SFLL-flex®*k. The SFLL-flex®*¥ framework
is shown in Fig. 7; in this section, we elaborate on the individual
processes in this framework.

In a design with multiple outputs, not every output needs pro-
tection; only the IP-critical part of the design has to be protected to
control the cost of logic locking, which is at the discretion of the
designer. SFLL-flex“*¥ enables the outputs to be selectively flipped
(and restored) for the protected input cubes; a flip vector associated
with each protected input cube holds information regarding which
outputs are to be flipped for the protected input cube.

Example. Fig. 8 presents an overview of SFLL-flex®*¥_ The FSC
differs from the original circuit for two protected input cubes x01x1
and x10x1, collectively representing 8 input patterns. The restore
unit stores the two input cubes and the corresponding flip vectors.
In this example, only three out of five outputs are protected.

4.1 Architecture

The restore unit of SFLL-flex®*¥ consists of a tamper-proof [50]
look-up table (LUT) and XOR gates. The LUT stores ¢ k-bit input
cubes along with the corresponding f-bit flip vectors (for protecting
f out of m outputs) that dictate the functionality stripped from
the circuit.?2 When the input matches an entry in the LUT, the
associated flip vector is retrieved from the table and XORed with
the outputs to restore the original functionality.

Cost. The cost of SFLL-flex®*¥ is proportional to the size of
the LUT, in addition to f XOR gates inserted at the outputs of
the FSC. The cost of the LUT is denoted as ¢ X (k + f), where f
is a designer-defined parameter. Cost minimization requires the
minimization of ¢ and k. Additionally, functionality stripping can
be used as an opportunity to reduce implementation cost as will be
discussed in Section 4.3. Thus, the net cost of SFLL-flex“*k is this
saving subtracted from the LUT cost.
20ne extreme case of SFLL-flex“*¥ s to strip the entire functionality of the design;

such an approach would incur a prohibitive overhead, as the entire truth table, whose
size is exponential in the number of inputs, needs to be stored on-chip.

Cube compaction

Initial
cubes Cube
- compression
Security
level

Security-aware logic synthesis Tocked @
Cube bit Slmulated Logic cone netlist_/1~
selectlon anneallng optimization - @

Flip
>\ vectors

Figure 7: Proposed SFLL-flex™¥ logic locking. The user-specified input cubes are compressed to reduce the on-chip storage
requirements. Security-aware logic synthesis is then used to strip functionality from the circuit based on compressed cubes.

10 ——— —_‘)j >— 00
11 4) > 01
Functionality-stripped — —
12 circuit _}D— 02
13 03
14 04
O\
Input cube | Flip vector]
011 011
3 101 101 3

Figure 8: SFLL-flex?** for a circuit with five inputs and five
outputs. k=3 in the example as only three bits of the pro-
tected input cubes are specified by the designer. f=3 as three
outputs are protected. The circuit is re-synthesized to strip
the functionality from the original design based on the in-
put cubes; these cubes are used along with the flip vectors to
restore the original functionality.

4.2 Challenges

As already pointed out, the applicability of SFLL-flex depends on

addressing the following research problems:

e How can a minimal set of protected input cubes be produced
from those provided by the designer to reduce the storage cost
while ensuring the desired security level?

o Can the functionality strip be used as an opportunity to reduce
the implementation cost?

We address these problems in the following section.

4.3 Optimization framework for SFLL-flex®**

Given a desired security level s and a set of input cubes (or input
patterns) Cinj; to be protected, both provided by the designer for a
netlist N, the proposed stripped-functionality logic locking should
be implemented at minimal cost: we should minimize Costss + ¢ X
k, where Cost;y is the implementation cost of the functionality-
stripped netlist Ni¢, and ¢ X k is the implementation cost of the
LUT. This is an optimization problem that can be formulated as:

minimize Costsp + ¢ Xk suchthat k—logac > s

where k — logc is the security level attained against SAT attacks,
as proved later in this section.

We break this optimization problem down to two smaller pro-
cesses. In the first process, we compress the input cubes (or input
patterns) to minimize the LUT cost = ¢ X k, producing the resulting
keys in the process, while honoring the security constraint. In the
second process, we re-synthesize the logic of the protected outputs

based on the keys obtained from the first process with the goal of
minimizing Costf. Such a sequential approach where the output
of the first process is fed into the second process may fail to deliver
the overall optimum solution, which rather necessitates a holistic
and intertwined approach. In this work, however, we choose to
follow a computationally-tractable approach for simplicity at the
expense of sub-optimality.

4.3.1 Process 1: Cube compression. In this process, our objective
is to reduce the LUT cost ¢ X k, the major component of overall
implementation cost, thus, reducing our optimization objective to:

minimize c¢Xk suchthat k—logsc>s

There are a couple of strategies that can be followed to solve this
optimization problem. In one strategy, we can create the keys that
will flip at least one output for every pattern in every cube in Cjpj.
The problem then is finding minimum cubes that collectively cover
each cube in Cjp;;; this is the classical problem of minimum-cube
cover in 2-level logic optimization [30], and any synthesis tool can
be utilized to solve this problem.

In another strategy, we can create the keys that will flip at least
one output for at least one input pattern in every cube in Cjpj;. In
this case, the problem is to find minimum cubes that, this time,
collectively intersect each cube in Cjp;;. To solve this problem,
we provide a heuristic approach, as described in Algorithm 1. The
first step of the algorithm is cube compression wherein compatible
cubes are merged to reduce c. To achieve the required security level
s = k — log, ¢, we may not need to consider all the k bits in a cube,
reducing k. The second step of the algorithm is to eliminate (or
turn into x’s) the bits that are conflicting among the cubes, while
adhering to security level s. This second step may further reduce c,
as certain cubes become compatible for merging.

Example. Consider c17 ISCAS benchmark circuit shown in
Fig. 9, a set of four 5-bit initial cubes, and security level s = 3, as
specified by the designer. The two initial cubes 0x100 and x1x00
can be merged into one cube 01100, reducing c to three. Next, we
can reduce k to four by eliminating the rightmost bit in all the cubes.
Elimination of bits in conflict also leads to further reduction in ¢ to
two, as more cubes can now be merged; the achieved security level
s = 3. Thus, compared to initial 4 X 5 = 20 bits, only 2 X 4 = 8 bits
need to be stored on-chip.

4.3.2 Process 2: Security-aware synthesis. If the designer explic-
itly specifies which output is flipped for each cube, then the flip
vectors are already determined. Such a rigid scheme does not offer
any opportunity for optimization; the selected output functions
are flipped for the corresponding input patterns included in the
protected input cubes. Any logic synthesis tool can be used for this
purpose. On the other hand, if the designer chooses not to specify

Initial cubes Compressed cubes

Final cubes

01100 [o110

3 0x100 }_>
@ x1x00 01101__| [_o111

01101
0111x

0111x

@ o1
14— @' @ 02
s)o>

(a) (b)

114
12 G G

1 13
12 @ @ o1 1

))GD— o

G2

G

@ : :

14 — 02 4| Cube| FlipVector
@ @ 0110 00

15 0111 10

() (d)

Figure 9: Application of SFLL-flex to c17 ISCAS circuit. a) Original circuit. b) Cube compression. c¢) FSC. d) Locked circuit.

Algorithm 1: Cube compression algorithm

Input :Initial cubes Cjpnj, Security level s
Output:Final cubes C

1 C « merge_compatible_cubes(Cipnit)

2 Spew — k —log, ¢

3 while syev > s do

4 C « eliminate_conflicting_bit(C)

5 C « merge_compatible_cubes(C)
6 Snew < update_security_level(c, k)
7 end

Algorithm 2: Security-aware synthesis algorithm

Input :Original netlist N, Final cubes C
Output: Functionality-stripped netlist N, Flip vector V
1 V « init flip_vector(N)
2 Ng¢ «rand_soln(N, C)
3 costsp < cost(Nsr)
4 T =1.0, Tynin = 0.00001,a = 0.9
5 while T > T, do

6 for i = 1 t0 200 do

7 Npew «—neighbor(Ngr, C)

8 costpew < cost(Npew)

9 if Rand(0,1) < exp(%) then
10 st — Npew

11 costsf «— COStpew

12 V'« update._flip_vector(N s, po)
13 end

14 end

15 T=TXa

16 end

the flip vectors, a security-aware synthesis process can leverage
this flexibility to minimize implementation cost of the functionality-
stripped design Ny without compromising security. The process
also produces the flip vectors, denoted by V, as described in Algo-
rithm 2.

Algorithm 2 starts with the original netlist N and a set of cubes
C. Initially, a random solution Ny with the associated cost costs¢
is generated by initializing the flip vector V with a random value.
From this random solution, simulated annealing starts optimization
by selecting a neighboring solution at each iteration. A new solution
Npew is generated by changing a random bit in the flip vector V,
which leads to inclusion/exclusion of the corresponding cube for

a particular output. The solution Nye,, is accepted if it yields cost

savings, i.e. costnew < costsy. Aninferior solution may be accepted
COStopt—COSlpew
T

with a probability of exp(). This is a key feature of
simulated annealing for exploring a larger search space without
getting stuck at a local optimum.

Example. Let us consider the application of security-aware
synthesis to the c17 circuit in Fig. 9. Algorithm 2 operates on the
original c17 netlist and the final cubes produced by Algorithm 1,
and produces the FSC; AND gate G3 is removed from the logic cone
O1. The flip vector 10 will restore the stripped functionality for
logic cone O1 by flipping its output for the cube 0110x.

4.4 Security analysis for SFLL-flex®**

In this section, we discuss the resilience of SFLL-flex¢xk against the
state-of-the-art attacks. The proofs of theorems below are provided
in Appendix B.2.

SAT attack resilience. An attacker, following a SAT-based or a
random guess attack model, must identify all input patterns of the
protected input cubes in SFLL-flex®*¥ to be able to recover the
correct functionality of the original design from the on-chip imple-
mentation; in contrast to SFLL-HD”, the protected input cubes can
be arbitrary in SFLL-flex¢<k , and one cube does not infer another.
This requires the retrieval of the content of the entire LUT that
represents the stripped functionality. Nevertheless, we assess the
security strength of SFLL conservatively; attack success is defined
by the attacker’s ability to retrieve any input pattern that belongs to
one of the protected input cubes. The following theorem establishes
the resilience of SFLL-flex¢*k against SAT attack.

THEOREM 4.1. SFLL—ﬂex”Xk is (k — [log, c1)-secure against SAT
attack.

Sensitization attack resilience.

THEOREM 4.2. SFLL-flex*** is k-secure against sensitization at-
tack.

Removal attack resilience.

THEOREM 4.3. SFLL-flex<** is ¢ - 2"~ _resilient against removal
attack.

As these theorems show, the number and the size of the protected
input cubes, denoted by ¢ and k respectively, dictate the trade-off
between resilience to oracle-guided and removal attacks.

99 s35932 *—k 538417 @@ s38584 +—+ bld XA bl5 KX bl7 O G bl8 & & b20 & b2l %=X b22

15 h=0 14 h=1 " h=2
212 []
DU.’ 213 212 210 i 1
e 11 210 28 L 1
o f 1
2° 28 24
16 1.6 &4 , , 1.6 &4 : :
L
o 12 12| 3 12| g
E 0.8 0.8 | = 0.8 | .
8 0.4 0.4 . 0.4 |
x
W o0.0 0.0 ' . -
11 12 13 14 11 12 13 14 11 12 13 14
Key size (k) Key size (k) Key size (k)

Figure 10: Results for SFLL-HD! for h={0,1,2}, and k={11,12,13,14}; the number of DIPs required for the SAT attack [44], and

the corresponding execution time in seconds.

5 SIMULATION RESULTS

5.1 Experimental setup

In this section, we present the experimental results to validate the
security expectations and demonstrate the effectiveness of the pro-
posed SFLL techniques. The experiments are executed on a 28-core
Intel Xeon processors running at 2GHz with 128 GB of RAM. We
lock the combinational part of the sequential benchmark circuits
from the ISCAS’89 [7] and ITC99 [11] suites in our experiments.
Table 3 shows the statistics for the circuits; the largest circuit b18
has >100K gates. The area, power, and delay (APD) overhead for
SFLL-HD and SFLL-flex versions are obtained using Synopsys De-
sign Compiler along with Global Foundries 65nm LPe library. We
present the results of security analysis wherein different variants
of the SAT attack are launched on various versions of SFLL-HD
and SFLL-flex. In particular, we launch the SAT attack [44] and the
AppSAT [40] against the proposed techniques. Each attack experi-
ment is repeated ten times to improve the statistical significance;
average results of the ten runs are reported.

52 SFLL-HD"

5.2.1 Security analysis. The resilience of SFLL-HD" is dictated
by the key-size k and h, which together dictate the number of
protected input cubes (ﬁ) In SFLL-HD experiments, we protect
the largest logic cone in each circuit. The number of DIPs re-
quired for the SAT attack to succeed on SFLL-HD" circuits, and

Table 3: Statistics for the largest ITC’99 [11] and IS-
CAS’89 [7] benchmarks. LLC denotes the largest logic cone.

‘ ‘ Benchmark ‘ Functionality ‘ Inputs ‘ Outputs ‘ Gate count ‘ LLC inputs ‘

535932 N/A 1763 2048 12,204 195
= | s38417 N/A 1664 1742 8709 929
g | s38584 N/A 1464 1731 11448 147
“ | bl4 Viper processor 277 299 9,767 218
b15 80386 processor 485 519 8,367 306
b17 3x b15 1452 1512 30,777 308
&% b18 2X bl14 + 2x b17 3357 3343 111,241 271
5 | b20 2x modified b14 522 512 19,682 282
= [b21 2Xx b14 522 512 20,027 282
b22 3x modified b14 767 757 29,162 283

the corresponding execution time are presented in Fig. 10 for
k={11,12,13, 14} and h={0, 1, 2}. Although the actual security lev-
els required in a practical setting are much larger (e.g., 64-bit or
128-bit), we cannot empirically assess the security of SFLL for such
high values due to computational limitations. For the sake of un-
derstanding the trends, we experiment with these small key-sizes.

Impact of key size k. Fig. 10 demonstrates that the number of
DIPs required for the SAT attack to succeed grows exponentially
in k, confirming our theoretical expectation. For instance, the
expected number of DIPs required to break SFLL-HD? is 2¥~1. The
same trend holds for SFLL-HD! and SFLL-HD? as well, except for
a few cases, where an attacker may be fortuitous and the attack
terminates earlier, reducing the average number of DIPs.

The execution time of the SAT attack is proportional to the num-
ber of DIPs, although there is a slight variation of 3X to 4X across
the benchmark circuits; the execution time grows exponentially in
k.

Impact of Hamming distance h. SFLL-HD" is (k- [log, (ﬁ)])-
secure. Thus, an increase in h leads to a significant change in the
security level and the expected number of DIPs required for the
SAT attack. For example, the average number of DIPs for the circuit
$38584 for h={0, 1, 2} and k=14 is 15K, 10K, and 5K, respectively, as
shown in Fig. 10.

5.2.2 APD overhead. The APD overhead is obtained using Syn-
opsys DC Compiler using Global Foundries 65nm LPe library [43]
and is shown in Fig. 11 for k=128. The overhead for SFLL-HD can
be attributed to two sources: the restore unit and the functionality-
stripped circuit. SFLL-HD” restore unit comprises a single k-bit
comparator along with an adder unit, where the overhead is antici-
pated to increase linearly in k but to remain constant for h, which
is a hard-coded constant (as it need not be a secret). The 128-bit
comparator and adder blocks incur a significant area, power, and
delay overhead on small-sized circuits; for the smallest five bench-
marks (10K gates), area, power, and delay overhead are 28%, 50%,
-2%, respectively. For larger-sized circuits, however, the overhead
of the restore unit is amortized; for the largest five benchmarks, the

Area (%)

100 F 1

Power (%)

Delay (%)

! ! ! ! ! !

35935 hestt ot 01° w1 18 0 g G2

Figure 11: Area, power, and delay overhead for SFLL-HD!
for k=128 and h={0,4,8,12}. The APD overhead for the larger
five benchmarks are 10%, 6%, and -5%, respectively; for the
smaller five benchmarks, they are 28%, 50%, and -2%, respec-
tively.

Exec.time (s)

0'0 % ,
2597 aeett oM 01® M 1® 20 b g2

Figure 12: Execution time of SFLL-HD" for k=128.

average area, power and delay overhead are only 10%, 6%, and -5%,
respectively, boding well for even larger-sized industrial circuits.

5.2.3 Scalability. SFLL-HD" algorithm operates on the RT-level
circuit. Fig. 12 shows that the execution time of the SFLL-HD
algorithm is only a few minutes, irrespective of h. For b18 circuit
with more than 100K gates, the execution time is only about 15
minutes, confirming the scalability of the proposed SFLL-HD".

5.3 SFLL-flex*k

5.3.1 Security analysis. To validate the security of SFLL-flex,
we launch the SAT attack [44] and AppSAT [40] attack on circuits
locked using SFLL-flex for ¢ = {1,2,3} and k = {11,12,13,14}.
The results shown in Fig. 13 demonstrate that the number of DIPs
for SFLL-flex is exponential in k. With increasing ¢, we observe
a logarithmic decrease in the number of DIPs, in line with our
theoretical expectation. The trends for the execution time is similar
to that for DIPs, except that the increase in execution time is more
prominent. While the DIPs double for each increment in k, the
execution time may increase by 3-5x. The AppSAT [40] attack on
SFLL-flex again fails in 100% of the cases.

5.3.2 Cube compression. The savings for the cube compression
technique are presented in Table 4. In our experiments, we gener-
ate test cubes for randomly selected c;n;; stuck-at faults by using
Atalanta test pattern generation tool [25], and treat these test cubes

Table 4: Cube compression ratio R for SFLL-flex™¥k,

Bench s=64 =128

c=32|c=64|c=32|c=64
$35932 867.9 | 17359 | 437.3 | 874.7
$38417 403.4 | 806.8 | 136.5 | 409.6
$38584 354.9 | 14415 | 180.2 | 3604

b14 26.5 52.9 6.7 14.9
b15 238.8 115.8 | 120.3 79.6
b17 352.0 | 469.3 59.1 70.4
b18 813.8 | 3305.4 | 832.7 | 2343
b20 126.5 61.4 31.9 42.5
b21 49.9 99.7 31.9 36.4
b22 91.6 183.2 62.9 74.9

Average | 3325 | 827.2 190.0 | 219.8

as the designer-provided input cubes Cjp;;. The compression ratio
R is computed as the ratio of the initial number of key bits to be
stored cini¢ X kinit to that of compressed key bits cfina X kfinais
kinir equals the number of inputs n. The results are presented for
two different security levels s = 64 and 128 and for two different
numbers of initial cubes ¢ = 32 and 64. On average, a compression
level of 400X is achieved, while still maintaining the desired secu-
rity level. These compression levels directly translate to a reduction
in implementation cost for the restore unit. It can be noted that a
lower security level (s = 64) enables a higher compression level.

5.3.3 Security-aware synthesis. We report the area, power, and
delay (APD) overhead separately for 1) the “optimal-cost” FSC (with-
out the restore unit) and 2) the overall circuit (with the restore unit
comprising the LUT and the surrounding combinational logic). The
APD overhead is shown in Fig. 14a and Fig. 14b for target security
levels s = 64 bits and 128, respectively. The simulated-annealing
based optimization is accomplished using area as the primary cost
metric. The ABC [6] synthesis tool is used to convert a design to
And-Invert-Graph and the gate count is taken as the cost metric. It
can be inferred that security-aware synthesis incurs only a minimal
overall overhead of 5%, 4% and 2% for area, power, and delay for a
security level s = 64, and 11%, 8% and -1% for a security level s =
128. In these figures, negative values denote a reduction in APD
when compared to the original circuit due to the functionality-strip
operation; e.g., this can be seen for the circuit s35932 in its area
footprint. However, due to the overhead of the restore unit compris-
ing mostly sequential elements, the overall overhead is positive. In
majority of the cases, the delay overhead is almost negligible ("0%).
This is due to the fact that adding the restore unit does not actually
affect the delay of the critical path, thus, incurring no significant
performance penalty.

The combined execution time for cube compression and security-
aware synthesis is presented in Fig. 15. The execution time for cube
compression is in the order of a few seconds. The execution time for
security-aware synthesis is directly determined by the simulated
annealing parameters (the temperature T and the gradient) and
the size (number of gates) of a circuit. As can be seen from the figure,
even for large circuits such as b18 with >100K gates, the synthesis
is completed in about two hours. Our empirical results indicate
that the execution time remains independent of the security level s

99 s35932 KK 538417 @@ s38584 +—+ bld XA bl5 M- bl7 O G Dbl8 && b20 & b2l X=X b22
c=

215 c=1 215 c=2 214 3
" 213 [] 213 | | 212 []
g I]
a ol |] o1 | | 210 []
#* 50 - | 29 Lo | 28 [|

27 27 L] 26

le3 le3
—_ T T 16 T T
w12 1.2
p 12 F
é; 0.8 0.8 osl .
g 0.4 0.4 0.4l .
x
W o900 0.0 0.0 L
11 12 K 13 14 11 12 c 13 14 11 12 K 13 14

Figure 13: Results for SFLL-flex®*¥ for c={1,2,3} and k={11,12,13,14}; the number of DIPs required for the SAT attack [44] and

the corresponding execution time (seconds).

20 T T T T
10

fs(c=32) B2 overall(c=32)]
fs(c=64m overall(c=64) |
m 7|

Area (%)

5359%3%\’13%5% o g1 V1 3% (20 (2 (22

/28N

10

78 fs(C=32) B0 ovérall(c=32) |
A fs(c=64) EEH ovell(c=64)

ol e el e s B

3593 lagsdt o1t o VT ® g0 b g2
(b)

Figure 14: Area, power, and delay overhead for SFLL-flex®
for number of initial cubes c=32 and c=64 and for security
level (a) s=64 and (b) s=128. The overhead of the functional-
ity stripped circuit, denoted as fs, is shown with dark shade
and overhead of the overall circuit including restore unit is
shown with light shade. The average overhead for the largest
five benchmarks are 6%, 4%, and -1.5% for area, power, and de-
lay, respectively; for the smallest five benchmarks, the num-
bers are 10%, 8%, and 1.5%, respectively.

le3

8 T T T T T T T T T

6 k=64,c=32 k=128,c=32
EHEH k=64,c=64 EEH k=128,c=64

4

2

Exec.time (s)

O W oo e B 08 o v B
020 Y 22

Figure 15: Combined execution time of cube compression
and security-aware synthesis for SFLL-flex™K,

and the number of protected cubes k, confirming the scalability of
the proposed SFLL-flex®*k .

5.4 Double-DIP/AppSAT attack results

While the SAT attack terminates only upon retrieving the correct
key, the AppSAT [40] and Double-DIP [41] attacks may (counter-
intuitively) terminate earlier returning an incorrect key value, which
results in an approximate netlist [40]. The termination criteria
for AppsAT is dictated by an error rate specified by the attacker,
whereas, Double-DIP terminates when it can no longer find DIPs
that eliminate at least two incorrect keys.

Double-DIP. Each of the 2-DIPs employed by the Double-DIP
attack can eliminate at least two incorrect keys. Since no such 2-
DIPs exist for SELL-HD? and SFLL-flex!<¥ , the attack will terminate
immediately, recovering an approximate netlist. For larger h and ¢
values, each input pattern is a 2-DIP, leading to scalability issues
for the Double-DIP attack. As illustrated in Fig. 16, the attack then
behaves similarly to the SAT attack, except that the execution time
of the two attacks may vary depending on the DIPs employed by
the two attacks.

AppSAT. In our first set of AppSAT experiments, we used the
default AppSAT parameters as reported in [40], i.e., 50 random
queries to the oracle were employed at every 12th iteration of
the attack. We observed that estimating the error rate using such
a small number of patterns can be misleading and result in pre-
mature termination of the AppSAT attack, even for circuit with

Table 5: AppSAT [40] attack results (with default AppSAT setting) against SFLL-HD" and SFLL-flex®¥, Only 50 random queries
are applied as per the default AppSAT settings [40]. The attack fails to retrieve the correct key, and thus, we report it as failure.

Benchmark $35932 | s38584 | s38417 | b14 b17 b18 b20 b21 b22
Success/failure | Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail
» 53215 I . + . 128,
- F s Lf-E == 2| =B BT elee
@ o6 | > —] s c A 3 -
% 2 / s i %%21354 r_S~ 'l ‘64§
E 77 [Tmeoutforallatiacks / OO SAT N] w35 ;:ﬁ:’_'_—'?fs’_ﬂ 28
B - o—e AppSAT N, 3 -~ - —
9 2" F . / *=# Double-DIP — 0 32 64 26 128
BT el /] @"
20 b o — e —9— —a | | | | L 23215
0 1 2 3 4 5 6 7 8 DT T L L
h =—= bl7 D20 e—e Db22 ©
2 ful *—+x bl8 »—x b2l 196 3
Figure 16: Execution time of the SAT, AppSAT, and Double- o g 51384 d 64 g
DIP attack on (k=) 32-bit s38417 circuit plotted as a function - 1323
of h. 1000 random queries are applied after every 12 AppSAT w33 o
0 32 64 96 128

iterations. In the shaded region, all the three attacks time
out. Double-DIP is not applicable for h=0.

high corruptibility. Table 5 reports that the “default” AppSAT attack
terminates erroneously for all of the SFLL circuits, failing to retrieve
the correct netlist.

For more realistic corruptibility estimates, we repeated the ex-
periments on s38417 SFLL-HD circuit with 32 key bits. 1000 random
queries were applied after every 12 iterations. Fig. 16 shows that
for h < 3, the attack terminated quickly, recovering an approximate
netlist. However, for the same h values, the SAT attack failed to
complete within the time limit of 48 hours. Moreover, for the larger
values of h, representing higher corruptibility, AppSAT behaves ex-
actly like the SAT attack, failing to retrieve an approximate netlist.
For example, for h = 4 (implying security level of 32—[log, (342)]=15
bits), both AppSAT and the SAT attack fail to succeed within the
time limit of 48 hours. Note that due to the inclusion of the random
queries (and additional clauses in the SAT formula), the execution
time of AppSAT may be occasionally higher than that of the SAT
attack. See Section 7.3 for further discussion.

5.5 Trade-off: resilience to different attacks

Fig. 17 illustrates the wide spectrum of solutions offered by the
proposed SFLL-HD and SFLL-flex techniques; it shows the trade-off
between the removal attack resilience (in terms of the number of
protected input patterns) and the security level s against oracle-
guide (e.g., SAT) attacks for the largest five benchmark circuits. We
observe that for SFLL-HD”, the security-level s attained against
SAT attacks varies polynomially with k (h € [0, k]); the larger the
number of protected patterns, the lower the security level. The
security level depends only on k and h, irrespective of the circuit.
For the maximum number of protected patterns, i.e., h=n/2, the
security level s is minimal. The security level is at its maximum at
h=0orh=k.

For SFLL-flex®*k, however, s decreases only logarithmically with
¢ (s = k — [log, c). As an example, for ¢ = 128 cubes, the security
level s attained is 121, irrespective of the circuit. The number of
protected patterns increases linearly with c. For example, for the

® "
Figure 17: SAT attack resilience vs. removal attack re-
silience; k=128. (a) SFLL-HD" and (b) SFLL-flex®<k,
circuit b2, the number of protected patterns increases from 2384
for c=1 to 23! for c=128.

Both variants of SFLL enable the protection of a large number of
input patterns. While SFLL-HD allows the designer to choose only
the secret key value and the Hamming distance h, SFLL-flex allows
him/her to specify the complete set of input cubes to be protected.

6 CASE STUDY: SILICON IMPLEMENTATION
OF SFLL-HD? ON ARM CORTEX-M0
PROCESSOR

With the objective of deploying SFLL for IoT applications, we
present the details of silicon implementation of SFLL on an in-house
designed microcontroller using ARM Cortex-M0 microprocessor [2].
For accurate comparisons, we fabricated both the baseline and the
SFLL-locked microcontroller. Cortex-M0 belongs to the family of
Cortex-M 32-bit RISC processor series from ARM, suitable for a
variety of low-cost microcontrollers. The microcontroller includes
ARM AHB-Lite as its BUS, UART interface, and 64 KB of SRAM.

6.1 Logic locking on ARM Cortex-M0

The baseline ARM Cortex-MO0 is locked using 128-bit SFLL-HD
along with 128-bit FLL [36]. FLL is a technique to achieve high
output corruptibility, while SFLL ensures security against any SAT-
based attack. Due to tight scheduling constraints, we were able to
tape-out only one version with SFLL-HD?. In our implementation,
we chose to lock the program counter (PC) to safeguard against
unauthorized execution. This ensures that an attacker with an
incorrect key would end up with an incorrect execution due to the
corrupted PC. Ideally, the secret key is stored in a tamper-proof
memory, such as one-time programmable fuse ROM. However, in
our implementation, the 256-bit key for the locked processor is
stored in a write-only configuration register. The locked processor

Figure 18: Top-view of the fabricated silicon chips for ARM
Cortex-MO. (a) Baseline version and (b) Locked version.

Figure 19: Test set-up for the baseline as well as the locked
processor. The program is loaded onto the processor via
UART interface.

is activated by loading the secret key onto the configuration register
through UART.

Chip design/fabrication flow. We used Synopsys VCS for
simulation, Synopsys Design Compiler for RTL synthesis, Synopsis
IC Compiler for back-end implementation, Synopsys Prime Time for
static timing analysis, Synopsys Formality for logical equivalence
checking, PrimeRail for IR drop analysis, and Cadence PVS for
physical verification. The baseline and the locked versions with the
maximum frequency of 100 MHz have been fabricated using Global
Foundries 65nm LPe process. A microscopic view of the bare dies
for the baseline and the locked versions are shown in Fig. 18a and
Fig. 18b, respectively. Fig. 19 illustrates the test setup for the chip.

6.2 Implementation overhead

The APD overhead along with other parameters for the baseline
and locked processors are shown in Table 6. The proposed 128-bit
FLL+128-bit SFLL-HD? incurs a minimal overhead of 2.16%, 5.62%,
and 5.38% for area, power and delay, respectively, when compared
to the baseline design.

A brief look at other implementation parameters, such as RAM
size, combinational/sequential area or wirelength demonstrates
that the two versions of the processor are quite similar. The most
significant difference is in the combinational area, which is about
15.2%. This increase in area for the locked processor can be at-
tributed to the key gates introduced by FLL, and the restore unit
introduced by SFLL. The additional routing resources required for
the additional logic translate into a wirelength overhead of 7.6%

Table 6: Baseline ARM Cortex-MO vs. locked ARM Cortex-
MO (128-bit FLL + 128-bit SFLL-HD).

l l Baseline l Locked l Overhead (%) ‘

Gate count 46800 51397 9.82
RAM area (um?) 349240 | 349240 0

Combinational area (um?) | 61404 70765 15.24
Sequential area (um?) 36876 37169 0.79
10 pads (um?) 150000 | 150000 0

Wirelength (um) 985233 | 1060502 7.64
Overall area (um?) 597521 | 607175 1.62
Power (uW) 6.66 7.03 5.62
Delay (ns) 8.00 8.43 5.38

Name

LA LU UL L LT
*04 | * | *008 |*000a) *00c) *00e }*0010) *01Z | * | 0016} *018 | * | * J2000 0042

i - EXP:CM0_PC

+oa[31:0] *00 | 0000 000F
4o b[31:0] b X 0000 0001
a2 sum[31:0] 0000 0000 00000010
New Group
IMo., ..., 150000p000, 1000090000 1500000000 2000000000 2500000000 ;30
(a)
Name 0 68
= Group1
o-HCLK O e [[S [S Sy)
“ | fif7dffe [fffffffe | fff7dffe [fffffife (| fff7dffe |
+-0a[31:0] 0000 0000
+-2b[31:0] fiiidiiid
4o sum[31:0] 0000 0000
New Group

Figure 20: Execution of the SFLL-locked ARM Cortex-M0
with the (a) correct key and (b) incorrect key. The content
of the program counter EXP:CMO0_PC is highlighted to show
the difference in execution.

6.3 Security analysis

The locked processor protects against all oracle-guided attacks. The
sensitization attack [34] terminates in a few minutes but without
returning the correct key. When the SAT attack [44] is launched
on the locked processor, the attack does not terminate within the
specified time limit of 48 hours. Since we implement compound
logic locking (SFLL+FLL) on the processor, the AppSAT attack [40]
would be able to reduce the compound logic locking problem to
SFLL alone; indeed the AppSAT attack on the locked processor
terminates after 46 hours, but fails to identify the SFLL key.

6.4 Operation of the locked processor

We use the simple example code below that performs one addition
operation to explain the impact of logic locking (i.e., hardware-
level protection) on processor operations (i.e., software execution).

int a,b;
GPCFG->SPARE0=0x0000000F ;
GPCFG->SPARE1=0x00000001 ;
a=GPCFG->SPAREQ;
b=GPCFG->SPARE1;
GPCFG->GPTACFG=a+b;

This C code is compiled for the ARM Cortex-M0 using ARM
IAR Embedded Workbench and the corresponding binary images
are loaded onto the SRAM via the UART interface. The activated
processor (that has the secret key loaded on the chip) executes

the code correctly as shown in Fig. 20a; the addition of 0x01 and
0xOF produces 0x10 as expected. On the other hand, the locked
processor (with an incorrect key loaded) cannot execute the code
correctly, as shown in Fig. 20b, as the program counter is corrupted.
An exception handler is then called, resetting the PC to the default
value of 0xFFF7_FFFE, causing the execution to go into an infinite
loop.

7 DISCUSSION

7.1 Comparative security analysis

Table 7 presents a comparison of SFLL-HD and SFLL-flex with other
logic locking techniques. Existing SAT attack resilient techniques
such as SARLock and Anti-SAT are vulnerable to removal attacks.
The proposed SFLL thwarts all known attacks on logic locking.
Further, it allows a designer to cost-effectively explore the trade-off
between resilience to SAT and removal attacks.

7.2 Choosing between SFLL-HD and SFLL-flex

While SFLL-HD is suitable for generic applications where the main
requirement is to protect a large number of input patterns with min-
imal overhead, SFLL-flex allows a designer to protect specific input
cubes. The capability to specify IP-critical cubes to protect, even
a small number of them, may be very beneficial for applications
such as microprocessors with IP-critical controllers, digital signal
processing applications with IP-critical coefficients, etc. The flexi-
bility required in SFLL-flex necessitates a slightly more expensive
restore unit mainly due to the LUT, compared to SFLL-HD, which
has a generic, simple, and scalable restore unit. In either case, the
security-aware synthesis framework enables the designer to attain
the desired security level.

7.3 Resilience against the derivative attacks

In this section, we discuss the security of SFLL against the attacks
that have been derived from the SAT attack, namely AppSAT [40],
Double-DIP [41], and Bypass [53]. These attacks mainly target
compound (multi-layered) logic locking techniques. AppSAT and
Double-DIP are approximate attacks as they only reduce a com-
pound logic locking technique (e.g. SARLock+SLL) to a SAT attack
resilient technique (e.g. SARLock). The Bypass attack, however, is
an exact attack; the attack, if successful, returns a netlist function-
ally equivalent to the oracle (functional IC).

These attacks rely on the classification of compound logic locking
key bits into two classes: key bits for RLL/SLL etc. that introduce
high corruptibility and key bits for SARLock/Anti-SAT etc. that
induce low corruptibility at the outputs. These attacks can quickly
determine the correct values for the high corruptibility key bits. The
AppSAT and Double-DIP attacks then assign a random value for the
low corruptibility key bits, whereas, the Bypass attack introduces
additional logic to fix the occasional corruption at the outputs.
These attacks will not be effective against SFLL as all the key bits in
SFLL incur uniform corruptibility and it is not feasible to partition
the key search space into low/high corruptibility regions.

AppSAT. There are two main differences between AppSAT and
the SAT attack. First, AppSAT is constructed by augmenting the
SAT attack with random queries to the oracle at regular intervals.
As reported in [40], AppSAT involves 50 random queries every 12

iterations of the attack. Second, AppSAT can terminate much earlier
than the SAT attack, i.e., when the error rate (or Hamming distance
at the outputs) is below a certain threshold (e.g., Zlk) While the
AppSAT attack can quickly recover an approximate netlist for low-
corruptibility SFLL circuits (with low & or ¢), it behaves similarly to
the SAT attack for high-corruptibility SFLL circuits since the early
termination condition is not satisfied. Thus, SFLL resilience against
AppSAT is similar to that against the SAT attack.

The 50 queries as per the default AppSAT settings are sufficient
to separate the key bits into two classes in case of compound lock-
ing techniques. However, no such classes of key bits exist in SFLL
where the corruptibility is uniform for all the key values. As re-
ported in Section 5.2.1, when the attack is launched on SFLL circuits
with varying corruptibility values (represented using h), the attack
terminated erroneously even for high corruptibility circuits. The
error is better estimated with 1000 random queries. The attack then
quickly extracts the approximate netlist for the smaller values of h.
For the larger h values, the attack performance is similar to that of
the SAT attack.

Double-DIP. Compared to the SAT attack, the Double-DIP at-
tack uses a larger miter circuit comprising four copies of the locked
netlist [41]. The 2-DIPs computed by the attack eliminate at least
two incorrect keys per DIP. The attack terminates when no more
2-DIPs can be found, implying that only DIPs that can eliminate
at most one incorrect key remain in the search space. The attack
returns an approximate netlist. While the attack can break com-
pound logic locking techniques, it is not scalable, especially if the
locked circuit has multiple correct keys.

Except for SFLL-HD? or SFLL-Flex'** (whrere there are no 2-
DIPs), the Double-DIP attack, when launched on SFLL circuits, will
run into scalability issues as it will compute an exponential number
of DIPs before it terminates. Rarely, when the attack is fortuitous
and selects one of the protected patterns as a DIP (the protected
pattern may be a 2-DIP), it can eliminate most of the incorrect keys
in a single iteration of the attack. In such cases, the attack returns
returns the exact netlist, similar to the basic SAT attack, but this is
highly unlikely for large enough key sizes.

Bypass. The Bypass attack selects two random key values as
constraints for the two locked netlists in the miter circuit [53]. The
attack then computes all the DIPs that result in differing outputs for
the two key values. For the traditional low corruptibility locking
techniques such as SARLock, only a few DIPs will be extracted. The
attacker then determines the correct key values for those DIPs from
the output of functional IC. One of the two key values is designated
as the secret key and an additional bypass circuit is added around
the locked netlist to fix the output for the selected DIPs.

In SFLL, a protected input pattern produces the same incorrect
output for most of the incorrect key values. Occasionally, the
output may be correctly restored even for incorrect key values, as
illustrated earlier in Figure 4. When applied to SFLL, the Bypass
attack fails to compute the complete set of DIPs that lead to incorrect
outputs for the two key values. Most of the DIPs yield exactly the
same incorrect output for both incorrect keys, and as such, cannot
be extracted using the miter construction employed by the Bypass
attack. The bypass circuitry, when constructed using an incomplete
set of DIPs, will be erroneous.

Table 7: Comparative security analysis of logic locking techniques against existing attacks. SFLL is secure against all attacks.
Various versions of SFLL offer a trade-off between SAT attack resilience and removal attack resilience.

[Attack/Defense | Anti-SAT [52] | SARLock [55] | TTLock [61] |

SFLL-HD” [SFLLAflex™*]

SAT k-secure k-secure k-secure k — [log, (2) 1-secure | (k — [log, c1)-secure
Sensitization k-secure k-secure k-secure k-secure k-secure
Removal 0-resilient 0O-resilient 21K resilient (ﬁ} - 27~k _resilient ¢ - 2" ¥ _resilient

7.4 Limitations and future work

While SFLL offers resilience against all known and anticipated
attacks in addition to offering trade-offs between attack resilience,
it might be occasionally broken if the attacker is fortuitous enough
to find one of the protected patterns. Currently, a linear increase in
the number of protected patterns leads to a logarithmic decrease
in SAT attack resilience. As part of our future work, we will refine
SFLL algorithm so that the decrease in SAT attack resilience is
sub-logarithmic with increasing number of protected patterns.

Our current SFLL implementation relies on the existing security-
agnostic tools such as Synopsys DC Compiler and ABC [6] for
synthesis. Netlists synthesized using these tools may leave behind
traces for an attacker to exploit. In future, we plan to modify the
ABC tool and offer security guarantees against synthesis-driven
attacks [29].

Currently, SFLL relies on a designer to specify which parts of a
design are security-critical. In future, we plan to automate this pro-
cess by developing metrics that quantify the criticality of different
circuit components. Another related research question is to identify
the patterns-to-be-protected that incur the least implementation
overhead, or can even yield area, power, or delay savings.

8 CONCLUSION

We propose stripped-functionality logic locking: a low-cost, se-
cure, and scalable logic locking technique that provably thwarts
all known and anticipated attacks. We quantify the resilience of
any logic locking technique against a given attack in terms of the
number and the size of the protected input cubes. Based on this
finding, we develop a CAD framework that allows the designer to
strip functionality from the hardware implementation of the design
based on a set of input cubes to be protected; we also propose a
security-aware synthesis process that can strip functionality with
the objective of minimizing the cost of implementation. By adjust-
ing the number and the size of the protected cubes, the designer
can explore the trade-off between resilience to different attacks.
The stripped functionality is hidden from untrusted entities, such
as the foundry and the end-user (potential reverse-engineer). Only
the secret key, i.e., the protected cubes, can successfully recover
the stripped functionality through an on-chip restore operation.
Another flexibility that the proposed framework offers is that
for general applications, it enables the designer to protect any
number of a restricted set of cubes, leading to a simple and scalable
architecture. It also supports specialized applications that require
IP-critical input cubes to be protected. The designer can thus choose
the solution that best fits the security needs of his/her application.
Upon implementing the proposed logic locking technique on
large-sized benchmarks (> 100K gates) and launching all known

attacks on them, we confirm that the proposed technique is se-
cure and cost-efficient. For further validation, we also apply the
proposed logic locking technique on an industry-strength micropro-
cessor design that we then implement in silicon; the data obtained
from the fabricated chips also confirm the practicality, security,
and scalability of our technique. The proposed technique can be
seamlessly integrated into the IC design flow to thwart IP piracy,
reverse engineering, and overbuilding attacks.

ACKNOWLEDGEMENT

This work was supported in part by the National Science Foun-
dation Computing and Communication Foundations (NSF/CCF)
under Grant 1319841, the National Science Foundation, Division Of
Computer and Network Systems (NSF/CNS), under Grant number
1652842; and the New York University/New York University Abu
Dhabi (NYU/ NYUAD) Center for Cyber Security (CCS). A part
of the research was carried out using Core Technology Platform
resources at NYUAD. The authors would also like to thank James
Weston and Nikolaos Giakoumidis for their support throughtout
the project.

A OPTICAL/SEM IMAGING OF THE CHIPS

A microscopic view of the bare dies of the baseline and locked
versions are shown in Fig. 18a and Fig. 18b, respectively, using
an optical microscope. The I/O openings for the chips are clearly
visible in the figure. We observe identical structures for both the
baseline and the locked versions, yet there are minute differences
between the two versions though not visible in the figure.

Also, a scanning electron microscope (SEM) image of the locked
version is presented in Fig. 21 where a particular area of the chip is
milled out to spot part of the protection unit (shown in the inset)
used to lock the processor. The chip was sectioned using an FEI
Scios focused ion beam (FIB) system. The first milling stage involved
removing 5 microns of the top layer over a 100 by 100 micron area
using the Galium beam at 30 kV/15 nA. Afterward, 250 nm, or
thinner, slices were removed at a lower current 7 nA. Imaging
was performed using the electron beam using both secondary and
back-scattered electrons (ETD and T1) detectors. This mill-and-
image process is our attempt in mimicking the reverse engineering
capabilities of an attacker to obtain the netlist of the device. In fact,
an attacker would rather use etching to delayer individual metal
layers until he/she reaches the substrate layer. In our experiments,
we use FIB-SEM to mill until the substrate layer is exposed and the
gates used for logic locking are visible.

B PROOFS OF THEOREMS

We assume n inputs and k key bits, where k < n.

k]

o 4
) o
| e—] L —

mag O |det HFW spot
0 kv | 7.0 mm 10000x ETD 41.4pm 4.0

Figure 21: Scanning electron microscope (SEM) image of the
milled chip showing the area where part of the protection
unit was inserted.

B.1 SFLL-HD"

THEOREM 3.4. SFLL-HD" is (k - [log, (ﬁ)])-secure against SAT
attack.

Proor. Similar to Theorem 3.1, for SFLL—HDh, |P| = (ﬁ) and

|13| =2k _ (Z) Thus, for a PPT attacker oblivious to the protected
input cubes, making only only polynomial number of queries g(k),
the success probability is given by Eq. 2,

Pl AP 1P
2k 2k —1 2k —g(k)
I B U (1
2k 2k —1 2k —q(k)
g ()
Tt
q(k)

ok=Tlog, ()1

So, from definition 2.2, we get SFLL-HD" is (k — [log, (Z)T)-secure
against the SAT attack. O

THEOREM 3.5. SFLL-HD" is k-secure against sensitization attack.

Proor. Similar to SFLL-HD?, all the k bits of SFLL-HD" con-
verge within the comparator inside the restore unit to produce the
restore signal. Therefore, sensitizing any key bit through the restore
signal to the output requires controlling all the other key bits. All
k bits are therefore pairwise-secure. SFLL-HD" is k-secure against
sensitization attack.]

TuEOREM 3.6. SFLL-HD" is 2"~k . (ﬁ)-resilient against removal
attack.

PROOF. As the restore signal is skewed towards 0, it can be iden-
tified by a signal probability skew (SPS) attack. The attacker is
then able to recover the FSC, denoted as ckt, which produces

erroneous output for the set of protect input patterns I'. Similar to
Theorem 3.3, from Eq. 3 we get,

| = |p|x2"k
k
— % Zn—k
H
So, from Definition 2.4, SFLL-HD" is 2"~k . (ﬁ)-resﬂient against a
removal attack. m]

B.2 SFLL-flex®*k

THEOREM 4.1. SFLL-ﬂexCXk is (k — [log, c1)-secure against SAT
attack.

ProOF. For SFLL-flex®*K | the cardinality of the set of protected
cubes P is |P| = c. Thus, from Eq.2, the success probability of a PPT
adversary making a polynomial number of queries g(k) is given by

P, PP
2k 2k —1 2k —g(k)
c c c
2k —q(k)

q(k)
zk— [log, ¢

So, from definition 2.2 we get SFLL-HD®*¥ is (k — [log, c])-secure
against the SAT attack. O

<

THEOREM 4.2. SFLL-flex*** is k-secure against sensitization at-
tack.

Proor. All the k bits of SFLL-flex®*¥ converge within the com-
parator inside the LUT to produce the signal that asserts the XOR
vector operation between the flip vector and the outputs. There-
fore, sensitizing any key bit through the LUT to any of the outputs
requires controlling all the other key bits. All k bits are there-
fore pairwise-secure. SFLL-flex®* is k-secure against sensitization
attack. O

THEOREM 4.3. SFLL-flex**¥ is ¢ - 2"~K _resilient against removal
attack.

Proor. Even if the LUT along with its surrounding logic can be
identified by a reverse-engineer, he/she can only recover the FSC
denoted as cktyec. However, cktye produces incorrect output for
the protected input patterns I'. Thus, similar to Theorem 3.3,

cktrec(i) # F(i), VieT

I = |pIx2n*
= ¢- zn—k
So, from Definition 2.4, SFLL-HD*¥ is ¢ - 2"~k _resilient against a
removal attack.]

REFERENCES

[10]
[11]
[12]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

Y. Alkabani and F. Koushanfar. 2007. Active Hardware Metering for Intellectual
Property Protection and Security. In USENIX Security. 291-306.

ARM. 2013. Cortex-M0 Processor. (2013). https://www.arm.com/products/
processors/cortex-m/cortex-mo0.php

J.P. Baukus, LW. Chow, R.P. Cocchi, P.O., and B.J. Wang. 2012. Building Block
for a Secure CMOS Logic Cell Library. (2012). US Patent no. 8111089.

J.P. Baukus, LW. Chow, R.P. Cocchi, and B.J. Wang. 2012. Method and Apparatus
for Camouflaging a Standard Cell based Integrated Circuit with Micro Circuits
and Post Processing. (2012). US Patent no. 20120139582.

A. Baumgarten, A. Tyagi, and J. Zambreno. 2010. Preventing IC Piracy Using
Reconfigurable Logic Barriers. IEEE Des. Test. Comput. 27, 1 (2010), 66-75.

R. Brayton and A. Mishchenko. 2010. ABC: An Academic Industrial-strength
Verification Tool. In International Conference on Computer Aided Verification.
Springer, 24-40.

F. Brglez, D. Bryan, and K. Kozminski. 1989. Combinational Profiles of Sequential
Benchmark Circuits. In IEEE International Symposium on Circuits and Systems.
1929-1934.

Q. Chen, A. M. Azab, G. Ganesh, and P. Ning. 2017. PrivWatcher: Non-bypassable
Monitoring and Protection of Process Credentials from Memory Corruption
Attacks. In ACM Asia Conference on Computer and Communications Security.
167-178.

Chipworks. 2012. Intel’s 22-nm Tri-gate Transistors Exposed.
http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-
nm-tri-gate-transistors-exposed,/. (2012).

S. Chu and C Burrus. 1984. Multirate filter designs using comb filters. IEEE
Transactions on Circuits and Systems 31, 11 (1984), 913-924.

S. Davidson. 1999. Notes on ITC’99 Benchmarks. http://www.cerc.utexas.edu/
itc99-benchmarks/bendoc1.html. (1999).

J. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin. 2007. NOC-centric security
of reconfigurable SoC. In IEEE First International Symposium on Networks-on-Chip.
223-232.

C. Helfmeier, D. Nedospasov, C. Tarnovsky, J.S. Krissler, C. Boit, and J.P. Seifert.
2013. Breaking and Entering through the Silicon. In ACM SIGSAC Conference on
Computer and Communications Security. 733-744.

F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara. 2013. Securing Computer
Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing
for Obfuscation. In USENIX Conference on Security. 495-510.

Maxim Integrated. 2010. DeepCover Security Manager for Low-Voltage
Operation with 1KB Secure Memory and Programmable Tamper Hier-
archy. https://www.maximintegrated.com/en/products/power/supervisors-
voltage-monitors-sequencers/DS3660.html/tb_tab0. (2010).

RW. Jarvis and M.G. McIntyre. 2007. Split Manufacturing Method for Advanced
Semiconductor Circuits. (2007). US Patent 7,195,931.

A.B.Kahng, J. Lach, W. H Mangione-Smith, S. Mantik, 1.L. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe. 1998. Watermarking Techniques for Intellectual
Property Protection. In IEEE/ACM Design Automation Conference. 776-781.
AB. Kahng, S. Mantik, LL. Markov, M. Potkonjak, P. Tucker, Huijuan Wang,
and G. Wolfe. 1998. Robust IP watermarking methodologies for physical design.
Design Automation Conference (1998), 782-787.

M. Kammerstetter, M. Muellner, D. Burian, D. Platzer, and W. Kastner. 2014.
Breaking Integrated Circuit Device Security Through Test Mode Silicon Reverse
Engineering. In ACM SIGSAC Conference on Computer and Communications
Security. 549-557.

R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. 2010. Trustworthy
Hardware: Identifying and Classifying Hardware Trojans. Computer 43, 10
(2010), 39-46

D. Kirovski and M. Potkonjak. 2003. Local watermarks: methodology and appli-
cation to behavioral synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 22, 9 (2003), 1277-1283.

F. Koushanfar. 2012. Provably Secure Active IC Metering Techniques for Piracy
Avoidance and Digital Rights Management. IEEE Trans. Inf. Forensics Security 7,
1(2012), 51-63

F. Koushanfar and G. Qu. 2001. Hardware Metering. In IEEE/ACM Design Au-
tomation Conference. 490-493.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. 2006. Algorithms
to accelerate multiple regular expressions matching for deep packet inspection.
In ACM SIGCOMM Computer Communication Review, Vol. 36. 339-350.

HK. Lee and D.S. Ha. 1993. Atalanta: an Efficient ATPG for Combinational
Circuits. In Technical Report.

S. Leef. 2017. In Pursuit of Secure Silicon. http://textlab.io/doc/22959027/mr .-
serge-leef--vp-new-ventures--mentor-graphics. (2017).

M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D.Z. Pan. 2016. Provably
Secure Camouflaging Strategy for IC Protection. In IEEE/ACM International
Conference on Computer-Aided Design. 28:1-28:8.

M.E. Massad, S. Garg, and M.V. Tripunitara. 2015. Integrated Circuit (IC) Decam-
ouflaging: Reverse Engineering Camouflaged ICs within Minutes. In Network

[30

(31]

(32]

[37]
(38]

[39

[41]

[42]

[43

[51

[52]

(53]

[55]

and Distributed System Security Symposium.

M.E. Massad, J. Zhang, S. Garg, and M.V. Tripunitara. 2017. Logic Locking for
Secure Outsourced Chip Fabrication: A New Attack and Provably Secure Defense
Mechanism. CoRR abs/1703.10187 (2017). http://arxiv.org/abs/1703.10187

E.J. McCluskey. 1956. Minimization of Boolean functions. Bell System Technical
Journal 35, 6 (1956), 1417-1444.

AL. Oliveira. 1999. Robust Techniques for Watermarking Sequential Circuit
Designs. In IEEE/ACM Design Automation Conference. 837-842.

T. S. Perry. 2017. Why Hardware Engineers Have to Think Like Cybercriminals,
and Why Engineers Are Easy to Fool. (2017). http://spectrum.ieee.org/view-
from-the-valley/computing/embedded- systems/why-hardware-engineers-
have-to-think-like-cybercriminals- and- why- engineers-are- easy-to-fool

S.M. Plaza and LL. Markov. 2015. Solving the Third-Shift Problem in IC Piracy
With Test-Aware Logic Locking. IEEE Transactions on CAD of Integrated Circuits
and Systems 34, 6 (2015), 961-971.

J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. 2012. Security Analysis of Logic
Obfuscation. In IEEE/ACM Design Automation Conference. 83-89.

J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. 2013. Security Analysis of
Integrated Circuit Camouflaging. In ACM/SIGSAC Conference on Computer &
Communications Security. 709-720.

J. Rajendran, Huan Zhang, Chi Zhang, G.S. Rose, Youngok Pino, O. Sinanoglu,
and R. Karri. 2015. Fault Analysis-Based Logic Encryption. IEEE Transactions on
Computer 64, 2 (2015), 410-424.

M. Rostami, F. Koushanfar, and R. Karri. 2014. A Primer on Hardware Security:
Models, Methods, and Metrics. IEEE 102, 8 (2014), 1283-1295.

J.A. Roy, F. Koushanfar, and Igor L Markov. 2010. Ending Piracy of Integrated
Circuits. IEEE Computer 43, 10 (2010), 30-38.

SEMLI. 2008. Innovation is at Risk Losses of up to $4 Billion Annually due to IP
Infringement. (2008). www.semi.org/en/Issues/IntellectualProperty/ssLINK/
P043785 [June 10, 2015].

K. Shamsi, M. Li, T. Meade, Z. Zhao, D.P. Z., and Y. Jin. 2017. AppSAT: Approx-
imately Deobfuscating Integrated Circuits. In to appear in IEEE International
Symposium on Hardware Oriented Security and Trust.

Y. Shen and H. Zhou. 2017. Double DIP: Re-Evaluating Security of Logic
Encryption Algorithms. Cryptology ePrint Archive, Report 2017/290. (2017).
http://eprint.iacr.org/2017/290.

J. P. Skudlarek, T. Katsioulas, and M. Chen. 2016. A Platform Solution for Secure
Supply-Chain and Chip Life-Cycle Management. Computer 49, 8 (2016), 28-34.
J.E. Stine, L. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P. D Franzon, M.
Bucher, S. Basavarajaiah, J. Oh, et al. 2007. FreePDK: An Open-Source Variation-
Aware Design Kit. In IEEE International Conference on Microelectronic Systems
Education. 173-174.

P. Subramanyan, S. Ray, and S. Malik. 2015. Evaluating the Security of Logic
Encryption Algorithms. In IEEE International Symposium on Hardware Oriented
Security and Trust. 137-143.

P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and S. Malik.
2013. Reverse Engineering Digital Circuits Using Functional Analysis. [EEE/ACM
Design Automation and Test in Europe (2013).

SypherMedia. 2017. SypherMedia Library Circuit Camouflage Technology. http://
www.smi.tv/syphermedia_library_circuit_camouflage_technology.html. (2017).
TechInsights. 2017. Samsung Galaxy S8 (SM-G950W) Teardown.
http://www.techinsights.com/about-techinsights/overview/blog/samsung-
galaxy-s8-teardown. (2017).

M. M. Tehranipoor, U. Guin, and S. Bhunia. 2017. Invasion of the Hardware
Snatchers. IEEE Spectrum 54, 5 (2017), 36—41.

R. Torrance and D. James. 2011. The State-of-the-Art in Semiconductor Reverse
Engineering. In IEEE/ACM Design Automation Conference. 333-338.

P. Tuyls, G. Schrijen, B. Skorié¢, J. van Geloven, N. Verhaegh, and R. Wolters.
2006. Read-Proof Hardware from Protective Coatings. In International Conference
on Cryptographic Hardware and Embedded Systems, Louis Goubin and Mitsuru
Matsui (Eds.). 369-383.

A. Vijayakumar, V.C. Patil, D.E. Holcomb, C. Paar, and S. Kundu. 2017. Physical
Design Obfuscation of Hardware: A Comprehensive Investigation of Device and
Logic-Level Techniques. IEEE Transactions on Information Forensics and Security
12,1 (2017), 64-77.

Y. Xie and A. Srivastava. 2016. Mitigating SAT Attack on Logic Locking. In
International Conference on Cryptographic Hardware and Embedded Systems. 127-
146.

X. Xu, B. Shakya, M.M. Tehranipoor, and D. Forte. 2017. Novel Bypass Attack
and BDD-based Tradeoff Analysis Against all Known Logic Locking Attacks.
Cryptology ePrint Archive, Report 2017/621. (2017). http://eprint.iacr.org/2017/
621.

M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu. 2015. Security Analysis of
Logic Encryption against the Most Effective Side-Channel Attack: DPA. In IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems. 97-102.

M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu. 2016. SARLock: SAT
Attack Resistant Logic Locking. In IEEE International Symposium on Hardware

https://www.arm.com/products/processors/cortex-m/cortex-m0.php
https://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-nm-tri-gate-transistors-exposed/
http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-nm-tri-gate-transistors-exposed/
http://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html
http://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html
https://www.maximintegrated.com/en/products/power/supervisors-voltage-monitors-sequencers/DS3660.html/tb_tab0
https://www.maximintegrated.com/en/products/power/supervisors-voltage-monitors-sequencers/DS3660.html/tb_tab0
http://textlab.io/doc/22959027/mr.-serge-leef--vp-new-ventures--mentor-graphics
http://textlab.io/doc/22959027/mr.-serge-leef--vp-new-ventures--mentor-graphics
http://arxiv.org/abs/1703.10187
http://spectrum.ieee.org/view-from-the-valley/computing/embedded-systems/why-hardware-engineers-have-to-think-like-cybercriminals-and-why-engineers-are-easy-to-fool
http://spectrum.ieee.org/view-from-the-valley/computing/embedded-systems/why-hardware-engineers-have-to-think-like-cybercriminals-and-why-engineers-are-easy-to-fool
http://spectrum.ieee.org/view-from-the-valley/computing/embedded-systems/why-hardware-engineers-have-to-think-like-cybercriminals-and-why-engineers-are-easy-to-fool
www.semi.org/en/Issues/IntellectualProperty/ssLINK/P043785
www.semi.org/en/Issues/IntellectualProperty/ssLINK/P043785
http://eprint.iacr.org/2017/290
http://www.smi.tv/syphermedia_library_circuit_camouflage_technology.html
http://www.smi.tv/syphermedia_library_circuit_camouflage_technology.html
http://eprint.iacr.org/2017/621
http://eprint.iacr.org/2017/621

[56]

[57]

[58]

[59]

Oriented Security and Trust. 236-241.

M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran. 2016. CamoPerturb:
Secure IC Camouflaging for Minterm Protection. IEEE/ACM International Con-
ference on Computer-Aided Design, 29:1-29:8.

M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran. 2016. Security Analysis
of Anti-SAT. IEEE Asia and South Pacific Design Automation Conference (2016),
342-347.

M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran. 2017. Removal Attacks
on Logic Locking and Camouflaging Techniques. IEEE Transactions on Emerging
Topics in Computing 99, 0 (2017), PP.

M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri. 2016. On Improving the
Security of Logic Locking. IEEE Transactions on CAD of Integrated Circuits and
Systems 35, 9 (2016), 1411-1424.

[62]

[63]

M. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu. 2016. Activation of Logic
Encrypted Chips: Pre-test or Post-Test?. In Design, Automation Test in Europe.
139-144.

M. Yasin, A. Sengupta, B.C. Schafer, Y. Makris, O. Sinanoglu, and J. Rajendran.
2017. What to Lock?: Functional and Parametric Locking. In Great Lakes Sympo-
sium on VLSI. 351-356.

M. Yasin, O. Sinanoglu, and J. Rajendran. 2017. Testing the Trustworthiness of
IC Testing: An Oracle-Less Attack on IC Camouflaging. IEEE Transactions on
Information Forensics and Security 12, 11 (2017), 2668-2682.

M. Yasin, T. Tekeste, H. Saleh, B. Mohammad, O. Sinanoglu, and M. Ismail. 2017.
Ultra-Low Power, Secure IoT Platform for Predicting Cardiovascular Diseases.
IEEE Transactions on Circuits and Systems I: Regular Papers PP, 99 (2017), 1-14.

	Abstract
	1 Introduction
	1.1 IP piracy and reverse engineering
	1.2 Logic locking: defenses and attacks
	1.3 SAT attack resilient logic locking
	1.4 Motivation, proposed approach, and challenges
	1.5 Contributions

	2 Preliminaries
	3 SFLL-HD
	3.1 SFLL-HD
	3.2 SFLL-HDh

	4 SFLL-flex
	4.1 Architecture
	4.2 Challenges
	4.3 Optimization framework for SFLL-flexc k
	4.4 Security analysis for SFLL-flexc k

	5 Simulation Results
	5.1 Experimental setup
	5.2 SFLL-HDh
	5.3 SFLL-flexc k
	5.4 Double-DIP/AppSAT attack results
	5.5 Trade-off: resilience to different attacks

	6 Case Study: Silicon Implementation of SFLL-HD0 on ARM Cortex-M0 Processor
	6.1 Logic locking on ARM Cortex-M0
	6.2 Implementation overhead
	6.3 Security analysis
	6.4 Operation of the locked processor

	7 Discussion
	7.1 Comparative security analysis
	7.2 Choosing between SFLL-HD and SFLL-flex
	7.3 Resilience against the derivative attacks
	7.4 Limitations and future work

	8 Conclusion
	A Optical/SEM imaging of the chips
	B Proofs of Theorems
	B.1 SFLL-HDh
	B.2 SFLL-flexck

	References

