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Power Grid State Estimation Following a Joint
Cyber and Physical Attack

Saleh Soltan

Abstract—This paper focuses on joint cyber and physical attacks
on power grids and presents methods to retrieve the grid state in-
formation following such an attack. We consider a model where
an adversary attacks a zone by physically disconnecting some of
its power lines and blocking the information flow from the zone
to the grid’s control center. We use tools from linear algebra
and graph theory and leverage the properties of the linearized
power flow model to develop methods for information recovery.
Using information observed outside the attacked zone, these meth-
ods recover information about the disconnected lines and the phase
angles at the buses. We identify sufficient conditions on the zone
structure and constraints on the attack characteristics such that
these methods can recover the information. We also show that
it is NP-hard to find an approximate solution to the problem of
partitioning the power grid into the minimum number of attack-
resilient zones. However, since power grids can often be represented
by planar graphs, we develop a constant approximation partition-
ing algorithm for these graphs and numerically demonstrate its
performance on real power grids.

Index Terms—Power grids, cyber attacks, physical attacks, state
estimation, line failure detection.

I. INTRODUCTION

YBER and physical attacks on power grids may cause
C large-scale blackouts due to a domino effect on power lines
with major disruption in everyday life [2]-[6]. For example, the
December 2015 cyber attack on Ukraine’s grid left 225,000
people without power for days [2] and the April 2014 physical
attack on a California substation interfered with the power grid
operation [3].

Power grids are comprised of two components: (i) the physi-
cal infrastructure of the power transmission system (power lines,
substations, power stations), and (ii) the Supervisory Control
and Data Acquisition (SCADA) system that monitors and con-
trols the grid (the control network) (Fig. 1). The physical in-
frastructure is the target of physical attacks and SCADA is the
target of cyber attacks.
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Fig. 1. Components of the power grid and potential attacks: physical attacks
target the physical infrastructure (lines, substations, etc.). Cyber attacks target
the SCADA system—an adversary can obstruct the flow of information from
the PMUs within the zone to the control center.

In the case of a physical attack, the system’s stability can
be maintained if SCADA receives precise information about
the location of the attack and takes proper action accordingly. If
however, the flow of information is obstructed by a cyber attack,
the SCADA is prevented from taking necessary and appropriate
actions. This problem, the joint cyber and physical attacks on
power grids, is the focus of our work. We develop methods to
estimate the state of the power grid following a joint cyber and
physical attack, and study the resilience of different topologies
as well as the resilience to different kinds of attacks.

We use the linearized Direct-Current (DC) power flow
model,' a practical relaxation of the Alternating-Current (AC)
model. We also use a modified version of the control network
model [10] that includes Phasor Measurement Units (PMU),
Phasor Data Concentrators (PDC), and a control center (Fig. 1).
We define a zone as a set of buses (nodes), power lines (edges),
PMUs, and an associated PDC. We analyze an attack that dis-
connects lines within a zone (physical attack) and obstructs the
flow of information from the PMUs within the zone to the con-
trol center (cyber attack). For example, an adversary can perform
the cyber attack by disabling the zone’s associated PDC. Alter-
natively, the adversary can attack the communication network
between the PMUs and the PDC, or between the PDC and the
control center. Because our control network model is a generic

! The DC model is commonly used in large-scale contingency analysis of
power grids [7]-[9].
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Fig. 2. G is the power grid graph and H is an induced subgraph of G that
represents the attacked zone. An adversary attacks a zone by disconnecting
some of its power lines (red dashed lines) and disallowing the information from
the PMUs within the zone to reach the control center.

model of SCADA that monitors the status of the grid, most of
the results and methods provided in this paper can be interpreted
and used for more complicated control systems and scenarios.

As a result of an attack, some lines get disconnected, and the
phase angles and the status of the lines within the attacked zone
H = (Vg, Ey) become unavailable (Fig. 2). Our objective is to
recover the phase angles and detect the disconnected lines using
the information available outside of the attacked zone.

Power flows are governed by the laws of physics, where a
line failure results in changes to flows and node phase angles
throughout the power grid [11]. We use this property and show
that it is possible to estimate the state in the attacked zone using
the information available outside of the zone. Specifically, we
develop methods for retrieving information from the attacked
zone by applying matrix analysis and graph theoretical tools to
the matrix representation of the DC equations.

We present necessary and sufficient conditions on the struc-
ture of a zone such that our methods are guaranteed to recover
the state of the grid inside the attacked zone. We prove that if
there is a matching between the nodes inside and outside the
attacked zone that covers the inside nodes (V7 ), then the phase
angles of the nodes in the attacked zone are recoverable by solv-
ing a set of linear equations of size |V} |. We also prove that if H
is acyclic, the disconnected lines in H are detectable by solving
a set of linear equations of size |Ey |. Moreover, we show that
if H is planar, under some constraints, the disconnected lines
are detectable by solving a Linear Programming (LP) problem.

We develop another method for simultaneous recovery of
phase angles and detection of disconnected lines by solving a
single LP problem. We show that this method is guaranteed to
recover the information under certain constraints on the attack
(i.e., on the disconnected lines) if there is a partial matching
between the nodes inside and outside of H, and if H is planar.
Based on these results, we present the Post-Attack Recovery
and Detection (PARD) Algorithm. We propose that our methods
can be generalized to the case where multiple zones are attacked
simultaneously. We show that if the attacked zones are relatively
distant from each other, any of the methods provided in this
paper can be applied to recover the information and detect the
failures in the attacked zones.

We briefly study the problem of information recovery in
the presence of measurement noise. By relaxing some of
the constraints introduced in developing the methods used in

the PARD Algorithm, we provide a method for information
recovery in the noisy scenarios as well. We numerically evalu-
ate the performance of the method and show that if the signal
to noise ratio (SNR) is high enough, it can successfully recover
the information.

We study the problem of partitioning power grids into the
minimum number of attack-resilient zones (i.e., zones in which
the information can be recovered by the methods mentioned
above). We show that this problem is not approximable to within
n!=¢ for all € > 0, unless P = NP. However, since power grids
are often represented by planar graphs, we introduce our Zone
Selection (ZS) Algorithm and demonstrate that it provides a
constant approximation ratio for the partitioning problem in
planar graphs. We present numerical results to demonstrate the
operation of the ZS Algorithm on several power grids. This al-
gorithm can also be used for designing a secure control network
for smart grids.

This paper presents three main contributions. We use matrix
analysis and graph theoretical tools: (i) to develop methods to
recover the phase angles and detect the disconnected lines after
a joint cyber and physical attack; (ii) to find graph classes for
which these methods are guaranteed to recover the information;
and (iii) to develop an algorithm for partitioning the power grid
into attack-resilient zones.

This paper is organized as follows. Section II reviews related
work. Section III describes the models and reviews graph theo-
retical terms. In Section IV, we focus on information recovery
and in Section V, we present the PARD Algorithm. Section VI
provides results for the noisy scenario. In Section VII, we study
the grid partitioning problem. Section VIII provides numerical
results and Section IX provides concluding remarks and direc-
tions for future work. Due to space constraints some of the
proofs are omitted and can be found in [1].

II. RELATED WORK

The vulnerability of general networks to attacks has been
studied extensively (e.g., [12]-[14] and references therein). In
particular, attacks and failures in power grids has been studied
using probabilistic failure propagation models (e.g., [15]-[17],
and references therein), as well as using deterministic DC power
flows [7], [11], [18]-[20]. Malicious data attacks on the power
grid control network have also been studied [21]-[24]. To the
best of our knowledge however, no previous work has focused on
vulnerability of power grids to joint cyber and physical attacks.

In Section IV, we study the problem of recovering the phase
angles and detecting disconnected lines after a joint cyber and
physical attack, a problem related to line outage identification
from changes in phase angles [25]—[27]. These studies however,
were based on complete knowledge of phase angle measure-
ments and in the case of [25], [26] were limited to two line
failures. The problem of line failure identification in an internal
system using the information from an external system was stud-
ied in [9], where a heuristic algorithm was proposed for only
one and two line failures.

In Section VII, we discuss the problem of partitioning the
power grid into the minimum number of attack-resilient zones.
This problem is similar to PMU placement problems [28]-[30].
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Recently, PMU placement problem has attracted much attention
in India after the major blackouts of 2013 [29]. In [30] the prob-
lem of PMU placement for line outage detection was studied.
However, none of these previous works addressed the problem
of PMU placement from the security point of view where both
the PDC/PMUs and the physical network are under attack.

In Section VII, we reduce the attack-resilient zone partition-
ing problem to the problem of partitioning a graph into sub-
graphs where each subgraph is (i) acyclic, and (ii) there is a
matching between nodes inside and outside the subgraph that
covers all the subgraph nodes. This problem is closely related to
the problems of vertex arboricity (which is known to be NP-hard
to be determined [31, p. 193]) and k-matching cover of a graph
(which can be found in O(n?) time [32]). However, to the best
of our knowledge, the joint problem ((i) and (ii) above) was not
studied before.

III. MODEL AND DEFINITIONS
A. DC Power Flow Model

We adopt the linearized (or DC) power flow model, which is
widely used as an approximation for the non-linear AC power
flow model [33]. In particular, we follow [7], [34] and represent
the power grid by a connected undirected graph G = (V, E)
where V ={1,2,...,n} and E = {e;,... e, } are the set
of nodes and edges corresponding to the buses and transmis-
sion lines, respectively. Each edge e; is a set of two nodes
e; = {u,v}. p, is the active power supply (p, > 0) or demand
(py < 0) at node v € V' (for a neutral node p, = 0). We as-
sume pure reactive lines, implying that each edge {u, v} € E'is
characterized by its reactance ry, = Ty,

Given the power supply/demand vector 5 € R!"*! and the
reactance values, a power flow is a solution P € RV ¥Vl and
g c RIVIXL of:

Z Puv = Pu, VueV (1)
veEN (u)
Oy — 0y — TyvPuw =0, V {u,v} S 2

where N (u) is the set of neighbors of node u, p,,, is the power
flow from node u to node v, and 6, is the phase angle of node .
Eq. (1) guarantees (classical) flow conservation and (2) captures
the dependency of the flow on the reactance values and phase
angles. Additionally, (2) implies that p,,, = —p,,,. When the to-
tal supply equals the total demand in each connected component
of G, (1)—(2) has a unique solution [7, Lemma 1.1].> Equations
(1)—(2) are equivalent to the following matrix equation:

Al =p 3)
where A € RIVIXIVIis the admittance matrix of G, defined as
follows:

0 ifu#vand {u,v} ¢ F
—1/7ruy ifu#vand {u,v} € F

o ZwEN(u) Oy fu=n0.

Qyy =

2 The uniqueness is in the p,, values rather than phase angles (shifting all
phase angles by equal amounts does not violate (2)).

3 When 7, = 1 Y{u,v} € E, the admittance matrix A is the Laplacian
matrix of the graph.

Note that in power grids nodes can be connected by multiple
edges, and therefore, if there are k multiple edges between nodes
wand v, G, = — Zle 1/7yv, . Once 0 is computed, the flows,
Puwv» can be obtained from (2).

Notation: Throughout this paper we use bold uppercase char-
acters to denote matrices (e.g., A), italic uppercase characters to
denote sets (e.g., V), and italic lowercase characters and over-
line arrow to denote column vectors (e.g., 5). For a matrix Q,
q;; denotes its (i, 7)™ entry. For a column vector 7/, i/' denote
its transpose, y; denotes its i™ entry, |71 := Y1, |y is its
ly-norm, ||7]]2 := (321, y?)'/? is its l-norm, and supp(¥) :=
{i|ly; # 0} is its support.

B. Control Network

We use a modified version of the model described in [10] to
model the SCADA system to which we refer as the control net-
work. Fig. 1 illustrates the components of the control network.
We assume that there is a Phasor Measurement Unit (PMU) at
each node of GG. The PMU at node i reports the phase angle ¢;,
as well as the status of the lines (either operational or failed)
adjacent to node 7. Phasor Data Concentrators (PDC) gather the
data collected by PMUs. The data gathered by PDCs is sent to
a control center which monitors and controls the entire grid. A
zone is a subgraph induced by a subset of nodes with a single
associated PDC.

C. Attack Model

We study attacks on power grids that affect both the physical
infrastructure and the control network. We assume that an adver-
sary attacks a zone by: (i) disconnecting some edges within the
attacked zone (physical attack), and (ii) obstructing the flow of
information from the PMUs within the zone to the control center
(cyber attack). An adversary can perform the cyber attack by,
for example, disabling the zone’s associated PDC. Alternatively,
the communication network between the PMUs and the PDC
or between the PDC and the control center can be attacked. We
assume that disconnecting edges within a zone does not make
G disconnected.

Fig. 2 shows an example of an attack on the zone represented
by H. Due to the attack, some edges are disconnected (we refer
to these edges as failed lines) and the phase angles and the
status of the lines within the atfacked zone become unavailable.
We denote the set of failed lines in zone H by F' C Ey. Upon
failure, the failed lines are removed from the graph and the flows
are redistributed according to (1)—(2).

Notation: Throughout this paper, we denote an attacked
zone by H = (Vy, Ey). Without loss of generality we as-
sume that the indices are such that Vi = {1,2,...,|Vy|} and
Ey ={ei,es,...,€p,}. We denote the complement of the
zone H by H = G\H.If X, Y are two subgraphs of G, A x|y
and Ay, |y, both denote the submatrix of the admittance matrix
of GG with rows from Vx and columns from V4 . For instance,
A can be written in any of the following forms:

1‘H|H 1xHH:| |:AHG:|
A— 71&— A A [7 7.A— .
I:A| A*" [ G|H G\H}
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TABLE I
SUMMARY OF NOTATION

Notation Description

= (V,E)  Graph representing the power grid

Admittance matrix of G

Vector of the phase angles of the nodes in G
Subgraph of G representing the attacked zone
Set of failed lines due to an attack

Incidence matrix of G

Value of () after an attack

Complement of O)

Dual of O

*

00T =T =tpQ

We use the very same notation for the vectors. For instance, g, "
and 6, ; are the vectors of phase angle of the nodes in H and H,
respectively. We use the prime symbol (') to denote the values
after an attack. For instance, G’, A’, and @' are used to represent
the graph, the admittance matrix of the graph, and the phase
angles of the nodes after an attack. Table I provides a summary
of the notations.

D. Graph Theoretical Terms

In this paper, we use several graph theoretical terms and
theorems mostly borrowed from [35]. We briefly review some
of the important definitions in this subsection.

Subgraphs, Cuts, and Cycles: Let X and Y be subsets of the
nodes of a graph G. G[X] denotes the subgraph of G induced
by X. We denote by E[X,Y] the set of edges of G with one
end in X and the other end in Y. We denote the complement
of a set X by X = V\X. The coboundary of X is the set
E[X, X] and is denoted by d(X). d(v) denotes the coboundary
of X = {v}. G[X, X] denotes the subgraph of i induced by the
edges from F[X, X]. N(X) is the set of neighbors of the nodes
in X excluding X itself, and N.(X) = X UN(X). We say
that Q C E is G-separable, if there are pairwise edge-disjoint
cycles Cy (g € @), such that Vg € Q, ¢ € C, [36].

Planar Graphs: A graph G is planar, if it can be drawn
in the plane so that its edges intersect only at their ends. A
planar graph G partitions the rest of the plane into a number of
edgewise-connected open sets called the faces of G.

Given a planar graph G, its dual graph G* is defined as fol-
lows. Corresponding to each face c of GG there is a node ¢* of
G*, and corresponding to each edge e of G there is an edge e*
of G*. Two nodes cj and ¢ are joined by the edge e* in G*, if
and only if their corresponding faces c¢; and ¢, are separated by
the edge e in G. It is easy to see that the dual G* of a planar
graph G is itself a planar graph [35].

Incidence Matrix: Suppose we assign an arbitrary orientation
to the edges of G. We denote the set of oriented edges by
E={e,e,..., ey} The (node-edge) incidence matrix of G
is denoted by D € {—1,0, 1}/V1*/] and defined as follows,

0 if ¢; is not incident to node ¢
di j = 1
-1

if €; is coming out of node ¢

if ¢; is going into node i.

When we use the incidence matrix, we assume an arbitrary
orientation for the edges unless we mention an specific orien-
tation. Dy € {—1,0,1}V# ¥IFu| is the submatrix of D with
rows from Vy and columns from Ep .

IV. ATTACK ANALYSIS

In this section, we study the effects of an attack and provide
analytical methods for recovering the phase angles and detecting
failed lines in the attacked zone H. We find conditions on the
structural properties of a zone and constraints on the failed
lines for which these methods successfully recover the phase
angles and detect the failed lines. These conditions depend on the
connections between Vi and Vi as well as the inner connections
of the nodes in H. Therefore, we refer to them as external and
internal conditions on H, respectively. Finally, we briefly study
the case in which multiple zones are attacked simultaneously.
Table II summarizes the results regarding the resilience of a zone
based on its internal and external conditions, and the constraints
on the set of failed lines F'.

In this section, when we describe our methods, we assume
that there are no edges {7, j} € Ex for which 0] = 0 (we refer
to these edges as null-edges). Following (2), a null-edge does not
carry any flow. Thus, we cannot detect the status of those edges
since they cannot be distinguished from failed lines. However,
we can detect the null-edges and treat them separately (we con-
sider this in the PARD Algorithm provided in the next section).

A. Recovery of Phase Angles

In this subsection, we introduce a method to recover the phase
angles of the nodes in an attacked zone H . We provide sufficient
conditions on G[Vj, Vy] such that the method recovers the
phase angles of the nodes in Vj; successfully. As we mentioned,
since these conditions depend only on the connections between
Vi and Vi, we refer to them as the external conditions on H.

The following lemma is the first step towards designing the
method for recovering the phase angles and for detecting the
failed lines (see Subsection I'V-B).

Lemma 1: supp(A(6 — 6')) C Vi

Proof: Suppose F' = {e;,,€i,,...,¢€;, } C Ep aretheedges
that are disconnected from the grid after the attack on the zone
H. Define the column vectors 27, 23 - - - 2}, € {—1,0,1}" asso-
ciated with the failed lines as follows. If e;, = {s;,¢;} then
Zj is 1 in its s j”” entry, —1 in its t;-h entry, and O every-
where else. It is easy to see that A’ is related to A as A’ =
A - Zle g1, T fjf Since the graph G does not get discon-
nected after an attack, the flow equations in G’ are A’ g = p.
On the other hand, Al = p, therefore A — A'0" = 0. Thus

k
0=A0— A0 =A0— A0+ a, 7250
j=1

k
= SUPP(A(§* ﬁ)) c U{Sj,tj} C Vy. [ |
i=1

One of the immediate results of Lemma 1 is the following
corollary. This corollary gives a true statement about 6’ (recall
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TABLE II
SUMMARY OF THE RESULTS IN SECTION IV

Case External conditions Internal conditions Attack constraints

Resilience Results

I Matching Acyclic None
I Matching Planar
IIT  Partial matching Acyclic

IV Partial matching Planar No cycle contains

aninner-connected-node

Veycle C, |C' N F| < |C\F| F*is H*-separable Weakly-attack-resilient
Vo e VI, [0(v) N F| < [0(v)\F|
Veycle C, [CNF| < |[C\F|Yv € V}},
[0(v) N F| < |0(v)\F|F* is H*-separable

Attack-resilient Corollary 2/Lemma 3
Corollary 2/Theorem 2
Lemmas 3, 6/Corollary 5

Theorem 3/Corollary 5

Weakly-attack-resilient
Weakly-attack-resilient

that & is partly unknown). It states that ¢ is in the solution space
of the matrix equation (4). - .

Corollary 1: For any U CH, Ay, @)(On, @) —
7 (1)) = 0. In particular, when U = H

Age(@-0)=o. )

For simplicity of the notations and equations, through the
most of this paper we consider the case in which U = H. How-
ever, as we briefly describe in Subsection IV-D, using a smaller
U allows the recovery of the phase angles after an attack on
multiple zones.

We find sufficient conditions such that the solution 5}{ to(4)is
unique (given g and 9_}[ ), and consequently 5’1{ can be recovered
after any attack on H. We first define a well-supported zone.

Definition 1: A zone H is called well-supported, if 5’H can
be recovered after any attack on H.

Using Corollary 1, the following theorem gives sufficient
condition for a zone H to be well-supported.

Theorem 1: A zone H is well-supported, if Ajy has
linearly independent columns.

Proof: From Corollary 1 we know that A 7 ; G-0)=0,
therefore AI:I\HG_;H = Ag‘g(gg - 5}—1) + AH\HgH- The only
unknown in this equation is 5}1 Now since A 5 has linearly
independent columns, this equation has a unique solution 5}1
which can be computed in polynomial time. Thus, 9_71{ can be
recovered in this case and zone H is well-supported. ]

It can be seen that the sufficient condition in Theorem 1 de-
pends on the reactance values. However, the following corollary
relaxes the condition in Theorem 1. It shows that if G[Vir, Vi]
has a matching that covers Vj;, then for almost any reactance
values for the edges in E[Vy, V], H is well-supported. The
idea s that the set of reactance values for the edges in E[Vyr, Vi]
for which A 7|5 does not have linearly independent columns is
a measure zero set in the real space [37].

Corollary 2: 1f there is a matching in G[Vy;, V] that covers
Vi, then H is well-supported almost surely.*

Proof: Suppose M = (U,Vy) is the matching for
G[Vg, Vi) that covers Vi, and suppose U C Vj are the
matched nodes which are in V7. Since M is the matching in
G[Vy, Vi that covers H, thus |U| = |Vy|. Regarding The-
orem 1, to show that H is well-supported almost surely, we
need to show that the columns of the matrix Ay are lin-
early independent almost surely. For this reason, we show that

4 In probability theory, one says that an event happens almost surely, if it
happens with probability one.

? L @ T ?

L 4 L 4 Zone 2
14—

@ @ Zone 4

Fig. 3. Example of a graph and set of zones such that each zone is both
well-supported and acyclic.

det(Ayy, ) # 0 almost surely. det(Ay |y, ) can be considered
as a polynomial of the nonzero entries of the admittance matrix
using Leibniz formula. Now assume U = {u1,ua, ..., uy, |}

are matched to Vi = {v1,v2,...,v)y, |} in order. It can be

\% . . . .
seen that HL:HI‘ Gy,y, 1s a term with nonzero coefficient in

det(Ayy, ). Therefore, det(Ay, ) is not a zero polynomial
in terms of its nonzero entries. Now since the set of reactance
values for the edges in E[Vy, V] such that det(Ay )y, ) =0
is a measure zero set in the real space, thus det(Ayy, ) # 0
almost surely. |

In reality, since the reactance values are derived by the
physical properties of the lines, we expect that these values
are relatively random around a mean value. Thus, following
Corollary 2, the existence of a matching that covers every node
in Vi is enough for a zone to be well-supported (see Fig. 3 for
an example of a graph in which every node in a zone is covered
by a matching). Hence, in the following sections we consider
the existence of a matching as a sufficient external condition on
H to be well-supported.

B. Detecting Failed Lines

In this subsection, we assume that after an attack, the phase
angles are recovered using the method in Subsection IV-A (i.e.,
by solving (4)). We introduce methods to detect the failed lines
using G'. We provide sufficient conditions on H such that these
methods detect the failed lines successfully. As we mentioned,
since these conditions depend only on the connections between
the nodes in H, we refer to them as internal conditions on H.

The following Lemma is the foundation for our approach
to find the failed lines. It limits the set of failed lines to the
solution space of the matrix equation (5). It can be considered
as the complement of Corollary 1.
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Lemma 2: There exists a vector # € RIF#! such that
supp(¥) = {ile; € F'} and

Dy = Ay (0 —0). ©)

Moreover, for any W C G such that N.(H) CW, Dy% =

A (0w — Oy ).

Proof: We use the notation that we used in proof of
Lemma 1. Recall from the proof of Lemma 1 that A(9 g =
- Z?Zl g1, T5T; ' Ttis easy to see that if d , dg, . ,dm are
the columns of the incidence matrix D, then Vj(1 < j < k),
there exists b; € R such that b; d:j = —as,1;Tj fjt@ . Therefore,
A(0—0') =1 bjd;,. Thus, if we define 77 € R"™ such that
Ve;, € F,y;; = b; and 0 elsewhere, then A(é 9_") Dy and
supp(7) C {il,ig, ..., 1) }. However, from the Corollary 1 we
know that AH‘C(H 0) = 0. Moreover, since F' C Ey, §g =
0. Thus, we can restrict the equation only to the components of
the zone H, which means that A 7 (9 7 ) = Dy yy. Now it
is easy to see that since we assumed that no null-edges are in F/,
all the b; s are nonzero and supp(§y ) = {41, %2, . .., i) }. There-
fore, ¥ = ¢y is a solution to (5) and supp(¥) = {ile; € F'}.
Now, since for any ¢ € H and j ¢ N.(H) we have a;; =0,
it is easy to see that for any W C G such that N.(H) C W,
Dy# = Apw (Ow — by ). |

Lemma 2 provides important information regarding the failed
lines. It states that there exists a solution Z to (5) such that
supp(&) reveals the set of failed lines. However, the solution to
(5) may not be unique. Again, for simplicity of the notations and
equations, through the most of this paper we consider the case
in which W = G. However, as we briefly describe in Subsec-
tion IV-D, using a smaller W allows the failed lines detection
after an attack on multiple zones.

The lemma below provides a necessary and sufficient
condition on H such that the solution to (5) is unique.

Lemma 3: The solution to (5) is unique and supp(Z) =
{ile; € F},if and only if H is acyclic.

Proof: Itis easy to see that the solution to (5) is unique if and
only if Dy has linearly independent columns. It is known that
rank(Dy) = |Viz| — ¢ in which ¢ is the number of connected
components of H [38, Theorem 2.3]. Therefore, Dz has linearly
independent columns if and only if each connected component
of Dy is a tree, which means that Dy should be acyclic. W

According to Lemma 3 the set of failed lines for any attack
can be detected, if and only if H is acyclic. Fig. 3 shows an
example of a graph and set of zones such that each zone is both
well-supported and acyclic (case I in Table II).

Although Lemma 3 requires H to be an acyclic graph in order
for the solution of (5) to be unique, by setting some constraints
on the failed lines F', we provide a method to detect the failed
lines in broader class of graphs. The underlying idea is that the
set of failed lines is expected to be relatively sparse compared
to the overall set of edges within a zone. Thus, we are interested
in the solutions of (5) that are relatively sparse. The [j-norm
should be used to capture the sparseness of a vector. However,
since minimizing /y-norm is a combinatorial problem in general
cases, we prefer to use /;-norm which is known to be a good

approximation of the /y-norm. Thus, we consider the following
minimization problem,

Notice that (6) is still linear and can be solved using Linear
Programming. Moreover, when the solution to (6) also appears
to be sparse, which is usually the case in the considered scenario,
there are very fast algorithms to solve it [39].

The Lemma below states that by solving (6), the failed lines
can be detected in more cases than by solving (5). The idea
that we use in proof of Lemma 4 is the core idea in proofs of
Theorems 2 and 3, as well. Namely, the null space of Dy is
in one-to-one correspondence with the cycle space of the graph
H. Therefore, there are graph theoretical interpretations to the
solution space of (5). Hence, by using tools from graph theory
and linear algebra, we find the solution to (5) with the minimum
{1-norm.

Lemma 4: If H is a cycle and |Ey N F| < |Eg\F]|, the
solution to (6) is unique and supp(%) = {ile; € F'}.

Proof: Here without loss of generality, we assume that Dz
is the incidence matrix of H when edges of H has been oriented
clockwise. Since H is connected, it is known that rank(Dy ) =
|[Vir| — 1 [38, Theorem 2.2]. Therefore, dim(Null(Dy)) =
Suppose & € RIZ# | is the all one vector. It is easy to see that
Dyeée = 0. Since dim(Null(Dy)) = 1, €is the basis for the null
space of D. Suppose Z is a solution to (5) such that supp(Z) =
{ile; € F'} (from Lemma 2 we know that such a solution ex-
ists). To prove that  is the unique solution for (6), we only need
to prove that Ve € R\{0}, |||l < ||Z — cé]|;. Without loss of
generality we can assume that x;, 2o, ..., 2 are the nonzero
elements of Z, in which k& = |F|. From the assumption we
know that |[Ey N F| < |Eg \F|, therefore k < |Ey |/2. Hence,
we have

k
|17 = célly = > |z — el + (|En| — k)|c|
i=1
k
=D (ai = e[+ lel) + (1B | = 2k)]e|
i=1

k k
> Sl + (1Ba| - 20l > 3 feal = 1@
i=1 i=1

Thus, the solution to (6) is unique. |

Corollary 3: If all the cycles in H are edge-disjoint and for
any cycle C'in H, |C' N F| < |C\F], then the solution to (6) is
unique and supp(Z) = {ile; € F'}.

The following Theorem extends the idea in the proof of
Lemma 4 and provides sufficient conditions for failed lines
in a planar graph H to be detected by solving (6) (recall from
Subsection III-D that H* is the dual of the planar graph H and
F* is the dual of the set of failed lines). For the proof details
see [1].

Theorem 2: In a planar graph H, the solution to (6) is unique
and supp(Z) = {ile; € F'}, if (i) for any cycle C in H, |C' N
F| < |C\F|, and (ii) F* is H*-separable.
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Fig. 4. Example of a zone H and a set of failed lines (shown by red dashed
lines) that can be detected by solving (6) based on Theorem 2. The diamond
orange nodes are the nodes of the dual graph H *. As can be seen, the dual of the
failed lines can be covered by three edge dlSJOlIlt cycles O7, O3, O3 (shown by
dotted lines) in H*. Thus, as Theorem 2 requires, F'* is H separable.

Fig. 4 shows an example of a zone H for which the set of
failed lines can be detected by solving (6) based on Theorem 2
(case il in Table II).

The Corollary below states that in planar bipartite graphs,
condition (ii) in Theorem 2 immediately holds, if condition (i)
holds. For the proof details see [1].

Corollary 4: In a planar bipartite graph H, the solution to
(6) is unique and supp(Z) = {i|e; € F'}, if for any cycle C in
H,|CNF|<|C\F|.

Theorem 2 and Corollary 4 are important since power grids
are usually considered to be planar. For instance, lattice graphs
are planar bipartite.

C. Simultaneous Phase Angles Recovery and Failed
Lines Detection

In Subsection IV-A we showed that the phase angles of the
zone H are recoverable, if there is a matching in G[Vir, Vy]
that covers V. However, in reality, this condition might be
very difficult and costly to maintain (i.e., it may require to
increase the number of zones). Therefore, in this subsection,
using similar ideas as in Subsection IV-B, we relax the external
conditions on H.

The key idea which is summarized in the following Lemma,
is to combine Corollary 1 and Lemma 2.

Lemma 5: There exist vectors Z € RIZ#| and gg e RVl
such that supp () = {ile; € F}, 6y = 0y — 0}, and

-

Dy = Aypdy + Ay oy @)

Ang(SH + AH\FIg =0

where 57 = 05 — é% and is known.

From Subsection IV-A and IV-B we know that the solution
to (7) is unique, if and only if H is acyclic and Ay has
linearly independent columns. Therefore, to deal with cases for
which Az 5 does not have linearly independent columns, we
consider a similar optimization problem as in (6) but with more
constraints. For this reason, as we mentioned in Subsection I'V-
B, since the set of failed lines is expected to be relatively sparse
compared to the overall set of edges, we consider the following
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optimization problem:

min ||Z]|; s.t. (3)

Dy = Ayydy + H\Hg’

AH|H(§H + Ag‘gg = 0.

The following Lemma states that if there is an independent
set of nodes in H with no neighbors in H, then under some
conditions on F', we can recover F' and 9} by solving (8) even
when A ;7 does not have linearly independent columns (case
III in Table II). First, we define inner-connected nodes.

Definition 2: Anode v € Vy is called H-inner-connected if
N(v) C Vg . Itis called H-outer-connected if N(v) C V. We
denote the set of H-inner-connected and H-outer-connected
nodes by VI‘}‘ and V3", respectively.

Lemma 6: Suppose H-inner-connected nodes form an inde-
pendent set. If H is acyclic, rank(A g ;) = [V | — [V}/], and
Yo € Vi, |8(v) N F| < |d(v)\F|, then the solution Z, § to (8)is
unique. Moreover, supp(Z) = {ile; € F} and by = 0y — 9H

Proof: The idea of the _Proof is very similar to the proof
of Lemma 4. Suppose Z,dp_is the solution to (7) such that
supp(Z) = {ile; € F} and 6y = 0y — 0),. From Lemma 5,
we know that such a solution exists. We show that this solution
is the unique solution to (8) in this setting.

Without loss of generality in addition to assuming Vg =
{1,2,3,...,|Vk|} and Ey = {e1,e2,...,€g, |}, We can as-
sume the labeling of the nodes in G is such that Vj =
{1,2,...,t} is the set of H-inner-connected nodes. Suppose
&1, ds,...,a8, € RVrl are the coordinate vectors, in other
words @; is 1 at its <" entry and O everywhere else. It is
easy to see that Vi € V1 : A a1z = 0. On the other hand,
since rank(A ) = |[Vir| —t and @; s are linearly indepen-
dent, @1, A, . .., @; form a basis for Null(A g5 ).

Assume Dy is the incidence matrix of H when its edges are
oriented such that for each i € V2, the edges are coming out of
1. Now suppose Z'is another solution to (8), it is easy to see that
Dy (7~ %) = Ay gd for a vector @ € Null(A g ). Since
ae Null(AH‘H), there are unique coefficients ¢i,¢s,..., ¢
€ Rsuchthat @ = cja} + caay + - -+ + ¢pag. Thus

DH(Z— f) = AH\HO_Z: AH‘H(CIO_ZI "‘020_22 —+ - +Ct0_2t)

= cAgpd + Agpdy + -+ Ay d.

Suppose dj is the column associated with edge e; in Dy .
Notice that for each i € V}}', 9(i) C Ep. Therefore, Vi € VI
and Ye; € 0(i), d; is a column of Dy . It is easy to see that for
any i € Vin, Z” ed()d
define vector b; € {0, 1}1E# 1 a5 follows,

Ay g d;. If for any i € V}}‘ we

b 1 ife; € 0(3)
Y10 otherwise
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then Dy b; = Ay d@; forany i € VP, Thus

a(eby + -+ eb) = Ay pd + -+ Agrd

= DH(Z?—J?) = DH(Clgl +0252 + - +Ctgf,)-

Now since H is acyclic, Dy has linearly independent columns.
Thus, from the equation above, we can conclude that

—

Z_fzclgl+0252+"'+ctgt

:>2:f+0151+6252+"'+6t5t.

Using equation above, we show that || Z]|; > ||Z]|; unlessc; =
¢y = -+ = ¢; = 0. First, notice that since V}}’ is an independent
set, Vi # j € Vi, 9(i) N 9(j) = @. Suppose Vi € V1 |9(i) N
F| = k;, we have

121l = IZ + exby + caby + -+ iy
=3 (100 =kl + D2 Jay+al)+ Y il
ieVjn JeEFNA(i) i€eF\O(Vm)
=" (06 = 2k eil+ > Yl + sl + ] )+Z|x1\
ievin JEFNA(i) ieF\Q(V,m)
> Y (06)] - 2k0)leil ¥y lal) + >l
eV JEFNI(i) ieF\(Vim)

= Y ((0@)] = 2k)leil) - D |%|+Z|wz

ieVjn i€V jeFna(i) 1€eF\O(V,

= Y [(10G)] = 2k)leal) + 1]

ZGVI‘;‘

Now, since from the assumptions Vi € V', k; < |9()|/2, it is
easy to see that Ziew((a(z’) —2k)|c|) + 1€ > [|Z]]1, un-
less ¢ =co =--- = ¢ = 0. Since Z is a solution to (8), we
should have ¢; = ¢y = --- = ¢, = 0, and 2 = Z. Thus, 7 is the
unique solution to (8) and supp(Z) = {ile; € F'}. From the
proof, it is easy to see that Sy is also unique. |

To generalize Lemma 6, first let us consider cases in which
H contains H -outer-connected nodes. The Lemma below shows
that the value of ¢ for these nodes is unique.

Lemma 7: 1If v is H-outer-connected and 0, 18 a solution to
(7), then ¢, is unique and equal to 6, = 1/d(v) ZUGN@) Ous
where d(v) is the degree of node v.

Proof: First, notice that since v is H-outer-connected,
N(v) C V. Thus, §, = 1/d(v) Zuel\ 0, implies that ¢, is
unique. Now, let us compute the v entry of the vectors on
the both side of the equation Dy 7 = AH|H(§H +AH\H5H'
Since v is H-outer-connected, the vth row of Dy is a zero
vector. Thus, (Dy &), = 0 for any Z. It is also easy to see
that (AH\H(SH)U = (Svd( ) and (AH\H(SH)U = — ZuEN(w) (Su
Since (Dy @), = (AH‘HgH) (AH‘HS'H)l , we can conclude
that §, = 1/d(v) 3, ey () Ou- Thus, the proof is complete. W

In the following theorem, we generalize Lemma 6. This theo-
rem combines Lemma 6 and Theorem 2, and provides a broader
class of graphs in which solving (8) recovers phase angles and

Fig. 5. Example of a zone H and an attack such that the phase angles can be
recovered and the failed lines can be detected by solving (8) based on Theorem 3.
The squared green nodes are the H -inner-connected nodes. The failed lines are
shown by red dashed edges.

detects the failed lines after an attack. For the proof details,
see [1].

Theorem 3: In a planar graph H, the solution Z, 5 to (8)is
unique with supp(Z) = {ile; € F} and 0y = 0y — 0, if the
following conditions hold: Vv € VP, |9(v) N F| < |d(v)\F],
(ii) for any cycle C' in H, |C N F| < |C\F|, Gii) F* is H*-
separable, (iv) in A HI|H> columns associated with nodes that
are neither H-inner-connected nor H-outer-connected are lin-
early independent, (v) no cycle in H contains a H-inner-
connected node, and (vi) H-inner-connected nodes form an
independent set.

Note that when H is well-supported, there are no H-inner-
connected or H-outer-connected nodes. Thus, conditions (i),
@iv), (v), and (vi) immediately hold and Theorem 3 reduces to
Theorem 2.

Fig. 5 shows an example of a zone H and an attack such that
the phase angles can be recovered and the failed lines can be
detected by solving (8) using Theorem 3 (case iv in Table II).
As it can be seen, this theorem covers a broad set of graphs and
attacks for which we can recover the phase angles and detect
the failed lines. Notice that here, with similar argument as in
Corollary 2 we can replace condition (iv) in Theorem 3 with a
simpler matching condition as follows.

Corollary 5: 1f there is a matching in G|V, V] that covers
Vi \(Vir U VZ™), then condition (iv) in Theorem 3 holds almost
surely.

To conclude, we define the attack-resilient and weakly-attack-
resilient notions to summarize the resilience of a zone to joint
cyber and physical attacks.

Definition 3: A zone H is called attack-resilient, if it is both
well-supported and acyclic.

Definition 4: A zone H is called weakly-attack-resilient, if
5’H and F' can be uniquely found after a constrained attack on
the zone H by solving (8).

It is easy to see that an attack-resilient zone is also
weakly-attack-resilient.

D. Recovery and Detection After Attacks on Multiple Zones

In this subsection, we study the case in which multiple zones
are attacked simultaneously. When the attacked zones are close
to each other, it may not always be possible to recover informa-
tion. However, if the attacked zones are relatively distant from
each other, any of the methods provided in the previous sub-
sections (depending on the conditions on the zones and attacks)
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can be applied to recover the information and detect the failures
in the attacked zones.

The idea is to use Corollary 1 and Lemma 2 for sets U and W
much smaller than H and G, respectively. Assume H; and H,
are two attacked zones. Let U; and U, be two sets with the min-
imum size such that U; C Hy, H; € N.(U;), Uy C H,, and
Hy; C N.(Usy). Following Corollary 1, AUI‘N (U1>(0HN(:(U1) —
9/ )—OandAUZ‘N Us) (HN (Us) _QN Uz))ZONOWIf

(U1) NH, = N.(Uy) N Hy = & (i.e., H; and H, are dis-
tant enough), and both Ay, |, and Ay, g, have linearly inde-
pendent columns, then similar to the proof of Theorem 1, the
phase-angles of the nodes in H; and H> can be recovered by
solving a set of linear equations.

To detect the failed lines, let W; and W, be two sets
with the minimum size such that W, , W> C G, N.(H,) C W7,
and N.(H,) C W,. Following Lemma 2, there exist vectors
#1, 25 € Rl such that supp(z7 ) and supp (3 ) give the failed
lines in H; and Hs, and also Dy, 71 = Ap, w, (Gﬂwl — 5{1/,1)
and Dy, = Ag,w, (0w, — Oyy,). Now, if H; and H, are
acyclic and Wy N Hy = Wy N Hy = &, then similar to the
Lemma 3, the solutions to Dy, 21 = Ay, 1w, (Ow, — 5{% ) and
Dy, 25 = A, \w, (Ow, — éﬁ@ are unique and the failed lines
can be detected by supp(7 ) and supp(3).

Notice that the methods in Section IV-C can also be simply
used to recover the phase angles and detect the failed lines in the
attacked zones that are distant enough. The following corollary
summarizes our discussion in this subsection.

Corollary 6: The phase angles and the failed lines can
be recovered/detected after a simultaneous attack on zones
H,, H,,..., Hy, if followings hold: (i) for any 1 < i < k, if
H; was the only attacked zone, then the phase angle of the
nodes and the failed lines could be recovered/detected using the
methods in Subsection IV-A, IV-B, and IV-C, (ii) there exist

Uy,Us,..., U, € Gand Wi, W, --- W, C G such that:
1. For any 1<i<k, U; CH; H;CN./(U;), and
N(,(HL) g WL
2. For any 1<i#j<k, N(U;))NH; =@ and W; N
H; =2.
Proof: Fo_y any 1 <i<Ek, consider equations
Av v ) On. w0y = On, ) =0 and Dy, =

Ay w, (é'W, — 9}) instead of (4) and (5). Then, re-
cover the phase angle of the nodes and detect the failed lines
at each H; separately using any of the methods provided in
Sections IV-A, IV-B, and IV-C. |

V. POST-ATTACK RECOVERY AND DETECTION ALGORITHM

In this section, we present the Post-Attack Recovery and
Detection (PARD) Algorithm for recovering the phase angles
and detecting the failed lines after an attack on a zone H. Based
on the results provided in previous subsections, if a zone H is
weakly-attack-resilient, the PARD Algorithm will recover the
phase angles and detect the failed lines after a constrained attack.

Notice that if there are some failed lines but no data is missing,
then from the data that is gathered by the PDCs from the PMUs,

all the information regarding the status of the lines and phase

Algorithm 1: Post-Attack Recovery & Detection (PARD).
Input: A connected graph G, phase angles before the
attack 0, and partial phase angles after the attack 9’

1: Detect the attacked zone H by checking for missing
data.
2: Compute Z, 8y the solution to (8) by Linear

Programming.

Compute 9H = 9H - (5H

Compute F' = {e;|i € supp(Z)}.

5: Detect the set of null-edges that appear after the attack

as N = {{i,j} € Epl0; =0}}.

6: return N, F, 0.

s »

angles is available and there is no need for the algorithm. Thus,
as the first step, the PARD Algorithm detects the attacked zone
H by checking the missing data (line 1). Then, it solves (8)
by Linear Programming to obtain &, 5 u . If H is weakly-attack-
resilient, from the results in previous subsections, we know
that Z, 5H are unique, 0H = 9H — 5H (line 3), and F' = {¢;]i €
supp(Z)} (line 4). Finally, using ¢ computed in previous line,
the PARD Algorithm detects the set of null-edges N (line 5),
and returns N, F, and 5}1

VI. ATTACK ANALYSIS IN THE PRESENCE OF MEASUREMENT
NOISE AND UNCERTAINTY

In this section, we briefly discuss the problem of information
recovery after an attack in the presence of a measurement noise
and uncertainty. We follow [21] and model the measurement
noise by changing (3) to A(# — &) = p where € € RIV*! is a
Gaussian measurement noise with a diagonal covariance matrix
3. Following [9], € can also account for the perturbations in
P after failures. It is obvious that in the presence of noise, the
optimization problem (8) has no feasible solution. However,
since the [ -norm is relatively robust against noise, one possible
approach to generalize the optimization problem (8) to the noisy
case is to relax the conditions as follows:

min ||Z|; s.t.
||DHff AH\HgH 7AH|I:IS’H||2 <€
”AH\HgH + AH‘H(;HHQ < €. ©

It is easy to see that the optimization problem (9) is a second-
order cone program that can be solved using gradient decent
methods. After solving (9), the line failures can then be detected
as before by F' = {e;|i € supp(Z)}.

Generalizing Theorem 3 to take into account the noisy
case modeled by (9) is part of the future work. However, in
Section VIII, we show via simulation that solving the optimiza-
tion problem (9) can correctly recover the phase angles and
detect the failed lines depending on the level of the Signal to
Noise Ratio (SNR).

5 We define the SNR (in dB) as 20 log; o (||0]]2 /]|€]l2)-
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Algorithm 2: 3-Acyclic Partition of Planar (3APP).
Input: A non-empty planar graph G.
1: Find a node v € V such that deg(v) < 5.
2: ifG\v=0CthensetQ; = Qs = Q3 =2
3: else Find 3-partition of G\v using 3APP Algorithm as
Q1,Q2, Qs.
4: Add v to the partition that | N (v) N Q;| is minimum.
5: return Q1, 2, Q3.

Algorithm 3: Zone Selection (ZS).

Input: A connected graph G.
1: Find an optimal matching cover My, M, .. .,
[32].

2: For each M;, separate the matched nodes into two set
of nodes V4, 1, V&, such that V{v,u} € M, v € V; 4
and u € V5;.

Forany 1 < < 2¢, Q;
for each @; do

if GQ;] is acyclic then continue

if G[Q;] is a planar graph then

Use 3APP Algorithm to partition G[Q;].
else
Use any greedy algorithm to partition G|[Q;]
into acyclic subgraphs.
10: Name the resulted partitions P, . ..
11: return Py, ..., P;.

ML‘ of G

=Vi\ U;_:11 Q-

R AU

P,

VII. ZONE SELECTION ALGORITHM

In this section we use the results from Section IV to pro-
vide an algorithm for partitioning the power grid into the min-
imum number of attack-resilient zones. From Lemma 3 and
Corollary 2, for a zone H to be attack-resilient, it is sufficient
that H is acyclic and there is a matching in G[Vy, Vi] that
covers every node in V. Fig. 3 shows an example of a parti-
tioning such that each zone is attack-resilient. Thus, we define
a matched-forest partition of a graph G as follows.

Deﬁnition 5: A matched-forest partition of a graph G into
Hy,H,,.. H i 1s a partition such that for any 7, H; is acyclic
and G [VH . ] has a matching that covers Vy, .

The problem of finding a matched-forest partition of G is
closely related to two previously known problems of vertex ar-
boricity and k-matching cover of a graph. The vertex arboricity
a(@) of a graph G is the minimum number of subsets into which
the nodes of GG can be partitioned so that each subset induces
an acyclic graph. It is known that determining a(G) is NP-hard
[31, p. 193].

A k-matching cover of a graph G is a union of k£ matchings of
G which covers V. The matching cover number of GG, denoted by
me(G), is the minimum number k such that G has a k-matching
cover. An optimal matching cover of a graph on n nodes can be
found in O(n?) time [32].

Using these results, we study the time complexity of the min-
imum matched-forest partition problem.® The following Lemma

6 To the best of our knowledge, this is the first time that the problem is studied.

shows that it is hard to find the minimum matched-forest
partition of a graph. For the proof details see [1].

Lemma 8: The problem of finding the minimum matched-
forest partition of a graph G is NP-hard.

Moreover, we show that finding the minimum matched-forest
partition is even hard to approximate. We use the well-known
result by Zuckerman [40] that for all € > 0, it is NP-hard to
approximate chromatic number to within n' .

Lemma 9: For all € > 0, it is NP-hard to approximate the
minimum matched-forest partition of a graph G to within n! .

Proof: For a graph G, assume x (&) is its chromatic number.
Since each color gives an independent set of G, induced sub-
graph by the nodes with the same color is acyclic with no edges.
Thus, it is easy to see that a(G) < x(G). Suppose there is an -
approximation algorithm for the minimum matched-forest prob-
lem. Define (3 as in proof of Lemma 8. Assume this algorithm
partitions G into k subsets. From the proof of Lemma 8, it is easy
to see that k& < aa(G). On the other hand, since each acyclic
graph has the chromatic number of at most 2, this algorithm gives
the 2k coloring of graph G. However, 2k < 2aa(G) < 2ax(G).
Thus, this algorithm gives a 2c-approximation of the chromatic
number of G. However, the result by Zuckerman [40] states that
for all € > 0, it is NP-hard to approximate chromatic number
to within n'~¢. Therefore, for all ¢ > 0, it is NP-hard to ap-
proximate the minimum matched-forest problem to within n! ¢
as well. |

Despite these hardness results, we provide the polynomial-
time Zone Selection (ZS) Algorithm to find a matched-forest
partition of a graph. We prove that the ZS Algorithm pro-
vides a constant approximation for the minimum matched-forest
partition of a graph G when G is planar.

Before describing the ZS Algorithm in detail, we first describe
an algorithm that is used in the ZS Algorithm, when G is planar.
It is known that for a planar graph G, a(G) < 3 [41]. Based on
the proof provided in [41], we introduce a recursive 3-Acyclic
Partition of Planar (3APP) Algorithm. The Lemma below shows
the correctness of this Algorithm.

Lemma 10: The 3APP Algorithm partitions the nodes of a
planar graph G into 3 subsets such that each subset induces an
acyclic graph.

Proof: Tt is known that every planar graph has a node of
degree less than or equal to 5 [42]. Therefore, line 1 of the
algorithm can always find v. At line 4, recursively we know that
subgraphs induced by Q1, Q2, Q3 in G\ v are acyclic. Now since
deg(v) < 5, there exists a partition such that [N (v) N Q;] < 1.
Without loss of generality we can assume that [N (v) N Q1| < 1.
Hence, adding v to )1 does not produces any cycles. Thus,
subgraphs induced by Q1 U {v}, Q2, Q3 in G are acyclic. W

We now present the ZS Algorithm. The ZS Algorithm first
finds an optimal matching cover My, My, ..., M; of G us-
ing an O(n3) algorithm introduced in [32] (line 1). Then,
in lines 2 and 3, it uses this matching cover to partition
Vinto Q1,Q2,...,Q. It is easy to see that for each @),
Mii 0 NE[Qi, Q;] is the matching in G[Q;, Q;] that covers
nodes in ;. Then, in order to satisfy the acyclicity condition
on the partitions, it partitions (); s that do not induce an acyclic
graph, into subsets so that each subset induces an acyclic graph.
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Fig. 6. The graph and the zone H that are used in the simulations in

Section VIII-A. All the edges in the graph have admittance value equal 1.
The supply/demand values are chosen randomly.

$e1

€9

)
16

When G[Q);] is a planar graph, it uses 3APP Algorithm to par-
tition G[Q;]. When it is not, it uses any greedy algorithm to
do so. Thus, the resulted partition Py, P, ..., P satisfies the
conditions of a matched-forest partition.

The lemma below states that when G is planar, the ZS
Algorithm provides a constant approximation of the optimal
matched-forest partition. We demonstrate the results obtained
by the algorithm in the following section. For the proof details
see [1].

Lemma 11: 1If G is planar, the ZS Algorithm provides a 6-
approximation of the minimum matched-forest partition of G in
O(n?).

Notice that the planarity of G is a sufficient but not a necessary
condition for the successful execution of the 3APP Algorithm.
Hence, as we show in Section VIII, the ZS algorithm can be
applied to almost any power grid network without checking its
planarity as long as the 3APP algorithm is executed successfully.

VIII. NUMERICAL RESULTS

A. Recovering the Information in the Presence
of a Measurement Noise

In this subsection, we show via simulation that solving the
optimization problem (9) can correctly recover the phase angles
and detect the failed lines in the presence of the measurement
noise depending on the SNR level. To evaluate the results, we
count number of false negatives and false positives. False neg-
atives are the failed lines that are not detected in the solution
of (9). False positives are the edges that are detected as failed
lines in the solution of (9) despite the fact that they were not
failed. We use the Matlab-based solver CVX [43] for solving the
optimization problem (9).

We provide simulation results with the graph and zone H
shown in Fig. 6 (it is easy to see that H is attack-resilient). No-
tice that the graph in Fig. 6 can be part of a much bigger graph,
however following Corollary 1 and Lemma 2, only the local
information is needed to recover the information inside the at-
tacked zone. As we mentioned in Section VI, in the simulations,
we assume that the readings from the PMUs somewhat differ
from the solution of (3) (i.e., to the DC power flow). Hence,
if 6 and @' are the phase angles obtained from the PMUs (be-
fore and after the attack, respectively), then A( —¢&)=pand
A'(f — &) = j for unknown Gaussian noise vectors & and &
with equal covariance matrices.

Figs. 7 and 8 show two attack scenarios with different SNR
values and the information recovered by solving (9). Fig. 9

? r r T Actual Recovered
ay a,

&_ e e, _$ e3 + ey $ 0.1062 0.1030

e Zone H I e 0.0882 0.0872

0.0042 0.0075

s e s 0.0062 0.0036

0.0342 0.0334

‘ L ‘ l 0.0758 0.0752

-0.0971 -0.0937

S _ Od -0.0925 -0.0919

NR - 5 B 0.0442 0.0441

0.0322 0.0321

X -0.0074 -0.0068 0 0 0 -0.0857 0 0 0
supp(¥) 1 1 0 0 0 1 0 0 0

Fig. 7. Example of an attack and recovered information in the presence of
the measurement noise for SNR, = 50 dB. Red dashed lines show the attacked
lines. As can be seen, the attacked lines can be detected successfully in this case.

? r Actual Recovered

O Gy

&_ €1 _é €2 & €3 + €4 0.1071 0.1203

- ley Zone H 0.1428 0.1242

0.1085 0.0997

H ?_?_? 0.1013 0.0884
0.1271 0.1273

‘ L ‘ 1 -0.1409 -0.1381

-0.1623 -0.1496

o -0.1576 -0.1563

SNR = 30dB -0.0429 -0.0299

-0.0329 0.0321

% 0 0 0 0 0 | -0.1938 0 0.1164 0
supp(®) | 0 0 0 0 0 1 0 1 0

Fig. 8. Example of an attack and recovered information in the presence of
the measurement noise for SNR = 30 dB. Red dashed lines show the attacked
lines. As can be seen, 2 out of the 3 attacked lines can be detected in this case.

shows the average number of false negatives and positives in
detecting line failures by solving (9) versus the SNR level for
different numbers of line failures. As can be seen, for any num-
ber of line failures, when the SNR is above a certain level (e.g.,
40 dB) the solution to (9) can detect the line failures with ac-
ceptable accuracy (less than one false negative and zero false
positives on average). Using the CVX solver, the solution to the
optimization problem (9) can be found in 0.07 sec in our system
with Intel Core 17-2600 @3.40 GHz CPU and 16 GB RAM for
the graph depicted in Fig. 6.

B. Evaluating the Performance of the ZS Algorithm

In this subsection, we demonstrate the results obtained by the
ZS Algorithm in several known power grid networks. Table III
lists the considered grids and number of resulting partitions.
For example, Fig. 10 shows the partitions obtained by ZS Algo-
rithm in the IEEE 14-Bus and 30-Bus benchmark systems [44].
As can be seen, in both cases the graphs can be partitioned into
two attack-resilient zones. We also evaluated the ZS Algorithm
on the IEEE 118 and 300-bus systems, the Polish grid (available
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Fig. 9.

Average number of false negatives and positives in detecting line failures by solving (9) in the presence of the measurement noise versus the SNR. Each

data point is the average over 100 trials. (a)—(h) Show this relationship for different number of line failures (| F'|). Figs. 7 and 8 provide the detailed information
for two of the points in (). (a) |F| = 1, (b) |[F| =2, (¢c) |F|=3,() |F| =4, (e) |F| =5, () |F| =6, (g) |F| =7, (h) |F| = 8.

TABLE III
NUMBER OF PARTITIONS INTO WHICH THE ZS ALGORITHM DIVIDES
DIFFERENT NETWORKS
Network Nodes  Edges  Partitions
IEEE 14-Bus 14 20 2
IEEE 30-Bus 30 41 2
IEEE 118-Bus 118 179 5
IEEE 300-Bus 300 409 14
Polish grid 3120 3684 10
Colorado state grid 662 864 6
Western interconnection 13135 16860 9

O Zonel O Zone 1
@ Zone2 @ Zone2

(@ (b)

Fig. 10.  Partitioning of the IEEE 14 and IEEE 30 bus systems into 2 attack
resilient zones (using the ZS Algorithm).

with MATPOWER [45]), the Colorado state grid, and the U.S.
Western Interconnection network.” Recall form Section VII that
when G is planar, the ZS Algorithm is a 6-approximation al-
gorithm for the minimum matched-forest problem. However, as
can be seen from the examples above, in practice, it partitions
the networks into few zones.

7 The data of the Western Interconnection (and of Colorado) was obtained
from the Platts Geographic Information System (GIS) [46].

Fig. 11.  Partitioning of the U.S. Western Interconnection into 9 attack-resilient
zones (using the ZS Algorithm). Nodes with the same color are in the same zone.

We note that the ZS Algorithm does not take the geographi-
cal constraints into account. Thus, when partitioning very large
networks such as the Western Interconnection (see Fig. 11), the
nodes in the same partition may be geographically distant from
each other. This is impractical, since the PMUs from the same
zone should send the data to a single PDC. However, it is easy
to see that if a zone is attack-resilient, any of its subgraphs is
also attack-resilient. Therefore, the partitions obtained by the ZS
Algorithm can be further divided into smaller zones based on
geographical constraints (e.g., into zones within different states
in Fig. 11). This approach does not result in an optimal partition-
ing. Hence, obtaining an efficient partitioning with geographical
constraints is a subject of future work.

IX. CONCLUSION

We studied joint cyber and physical attacks on power grids.
We developed methods to estimate the state of the grid inside the
attacked zone using only the information available outside of the
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attacked zone. We identified graph topologies and constraints
on the attacked edges for which these methods are guaranteed
to recover the state information. We briefly studied the problem
of information recovery in the presence of measurement noise
and showed that by relaxing some of the constraints the same
methods can be used for information recovery in noisy sce-
narios. Moreover, we showed that the problem of partitioning
the grid into the minimum number of attack-resilient zones is
not approximable to within n! = for all € > 0 unless P = NP.
However, for planar graphs, we developed an approximation al-
gorithm for the partitioning problem and numerically illustrated
the operation of the algorithm.

This is one of the first steps towards understanding the vul-
nerabilities of power grids to joint cyber and physical attacks
and developing methods to mitigate their effects. Hence, there
are still many open problems. In particular, we have been eval-
vating the performance of the recovery method presented in
Section VI when the phase angles are obtained using the AC
power flow model. Preliminary results are promising, and there-
fore, future work will focus on its large scale evaluation using
MATPOWER [45]. We also plan to generalize Theorems 2 and
3 to a broader class of graphs, noisy scenarios, and when the
control network is limited (e.g., limited number of PMUs).
Moreover, we will develop algorithms to partition the grid
into weakly-attack-resilient zones while taking into account
geographical constraints and constraints on the number and
positions of the PDCs.
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