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Abstract—This paper focuses on joint cyber and physical attacks
on power grids and presents methods to retrieve the grid state in-
formation following such an attack. We consider a model where
an adversary attacks a zone by physically disconnecting some of
its power lines and blocking the information flow from the zone
to the grid’s control center. We use tools from linear algebra
and graph theory and leverage the properties of the linearized
power flow model to develop methods for information recovery.
Using information observed outside the attacked zone, these meth-
ods recover information about the disconnected lines and the phase
angles at the buses. We identify sufficient conditions on the zone
structure and constraints on the attack characteristics such that
these methods can recover the information. We also show that
it is NP-hard to find an approximate solution to the problem of
partitioning the power grid into the minimum number of attack-
resilient zones. However, since power grids can often be represented
by planar graphs, we develop a constant approximation partition-
ing algorithm for these graphs and numerically demonstrate its
performance on real power grids.

Index Terms—Power grids, cyber attacks, physical attacks, state
estimation, line failure detection.

I. INTRODUCTION

C
YBER and physical attacks on power grids may cause

large-scale blackouts due to a domino effect on power lines

with major disruption in everyday life [2]–[6]. For example, the

December 2015 cyber attack on Ukraine’s grid left 225,000

people without power for days [2] and the April 2014 physical

attack on a California substation interfered with the power grid

operation [3].

Power grids are comprised of two components: (i) the physi-

cal infrastructure of the power transmission system (power lines,

substations, power stations), and (ii) the Supervisory Control

and Data Acquisition (SCADA) system that monitors and con-

trols the grid (the control network) (Fig. 1). The physical in-

frastructure is the target of physical attacks and SCADA is the

target of cyber attacks.
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Fig. 1. Components of the power grid and potential attacks: physical attacks
target the physical infrastructure (lines, substations, etc.). Cyber attacks target
the SCADA system—an adversary can obstruct the flow of information from
the PMUs within the zone to the control center.

In the case of a physical attack, the system’s stability can

be maintained if SCADA receives precise information about

the location of the attack and takes proper action accordingly. If

however, the flow of information is obstructed by a cyber attack,

the SCADA is prevented from taking necessary and appropriate

actions. This problem, the joint cyber and physical attacks on

power grids, is the focus of our work. We develop methods to

estimate the state of the power grid following a joint cyber and

physical attack, and study the resilience of different topologies

as well as the resilience to different kinds of attacks.

We use the linearized Direct-Current (DC) power flow

model,1 a practical relaxation of the Alternating-Current (AC)

model. We also use a modified version of the control network

model [10] that includes Phasor Measurement Units (PMU),

Phasor Data Concentrators (PDC), and a control center (Fig. 1).

We define a zone as a set of buses (nodes), power lines (edges),

PMUs, and an associated PDC. We analyze an attack that dis-

connects lines within a zone (physical attack) and obstructs the

flow of information from the PMUs within the zone to the con-

trol center (cyber attack). For example, an adversary can perform

the cyber attack by disabling the zone’s associated PDC. Alter-

natively, the adversary can attack the communication network

between the PMUs and the PDC, or between the PDC and the

control center. Because our control network model is a generic

1 The DC model is commonly used in large-scale contingency analysis of
power grids [7]–[9].
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Fig. 2. G is the power grid graph and H is an induced subgraph of G that
represents the attacked zone. An adversary attacks a zone by disconnecting
some of its power lines (red dashed lines) and disallowing the information from
the PMUs within the zone to reach the control center.

model of SCADA that monitors the status of the grid, most of

the results and methods provided in this paper can be interpreted

and used for more complicated control systems and scenarios.

As a result of an attack, some lines get disconnected, and the

phase angles and the status of the lines within the attacked zone

H = (VH , EH ) become unavailable (Fig. 2). Our objective is to

recover the phase angles and detect the disconnected lines using

the information available outside of the attacked zone.

Power flows are governed by the laws of physics, where a

line failure results in changes to flows and node phase angles

throughout the power grid [11]. We use this property and show

that it is possible to estimate the state in the attacked zone using

the information available outside of the zone. Specifically, we

develop methods for retrieving information from the attacked

zone by applying matrix analysis and graph theoretical tools to

the matrix representation of the DC equations.

We present necessary and sufficient conditions on the struc-

ture of a zone such that our methods are guaranteed to recover

the state of the grid inside the attacked zone. We prove that if

there is a matching between the nodes inside and outside the

attacked zone that covers the inside nodes (VH ), then the phase

angles of the nodes in the attacked zone are recoverable by solv-

ing a set of linear equations of size |VH |. We also prove that if H
is acyclic, the disconnected lines in H are detectable by solving

a set of linear equations of size |EH |. Moreover, we show that

if H is planar, under some constraints, the disconnected lines

are detectable by solving a Linear Programming (LP) problem.

We develop another method for simultaneous recovery of

phase angles and detection of disconnected lines by solving a

single LP problem. We show that this method is guaranteed to

recover the information under certain constraints on the attack

(i.e., on the disconnected lines) if there is a partial matching

between the nodes inside and outside of H , and if H is planar.

Based on these results, we present the Post-Attack Recovery

and Detection (PARD) Algorithm. We propose that our methods

can be generalized to the case where multiple zones are attacked

simultaneously. We show that if the attacked zones are relatively

distant from each other, any of the methods provided in this

paper can be applied to recover the information and detect the

failures in the attacked zones.

We briefly study the problem of information recovery in

the presence of measurement noise. By relaxing some of

the constraints introduced in developing the methods used in

the PARD Algorithm, we provide a method for information

recovery in the noisy scenarios as well. We numerically evalu-

ate the performance of the method and show that if the signal

to noise ratio (SNR) is high enough, it can successfully recover

the information.

We study the problem of partitioning power grids into the

minimum number of attack-resilient zones (i.e., zones in which

the information can be recovered by the methods mentioned

above). We show that this problem is not approximable to within

n1−ε for all ε > 0, unless P = NP. However, since power grids

are often represented by planar graphs, we introduce our Zone

Selection (ZS) Algorithm and demonstrate that it provides a

constant approximation ratio for the partitioning problem in

planar graphs. We present numerical results to demonstrate the

operation of the ZS Algorithm on several power grids. This al-

gorithm can also be used for designing a secure control network

for smart grids.

This paper presents three main contributions. We use matrix

analysis and graph theoretical tools: (i) to develop methods to

recover the phase angles and detect the disconnected lines after

a joint cyber and physical attack; (ii) to find graph classes for

which these methods are guaranteed to recover the information;

and (iii) to develop an algorithm for partitioning the power grid

into attack-resilient zones.

This paper is organized as follows. Section II reviews related

work. Section III describes the models and reviews graph theo-

retical terms. In Section IV, we focus on information recovery

and in Section V, we present the PARD Algorithm. Section VI

provides results for the noisy scenario. In Section VII, we study

the grid partitioning problem. Section VIII provides numerical

results and Section IX provides concluding remarks and direc-

tions for future work. Due to space constraints some of the

proofs are omitted and can be found in [1].

II. RELATED WORK

The vulnerability of general networks to attacks has been

studied extensively (e.g., [12]–[14] and references therein). In

particular, attacks and failures in power grids has been studied

using probabilistic failure propagation models (e.g., [15]–[17],

and references therein), as well as using deterministic DC power

flows [7], [11], [18]–[20]. Malicious data attacks on the power

grid control network have also been studied [21]–[24]. To the

best of our knowledge however, no previous work has focused on

vulnerability of power grids to joint cyber and physical attacks.

In Section IV, we study the problem of recovering the phase

angles and detecting disconnected lines after a joint cyber and

physical attack, a problem related to line outage identification

from changes in phase angles [25]–[27]. These studies however,

were based on complete knowledge of phase angle measure-

ments and in the case of [25], [26] were limited to two line

failures. The problem of line failure identification in an internal

system using the information from an external system was stud-

ied in [9], where a heuristic algorithm was proposed for only

one and two line failures.

In Section VII, we discuss the problem of partitioning the

power grid into the minimum number of attack-resilient zones.

This problem is similar to PMU placement problems [28]–[30].
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Recently, PMU placement problem has attracted much attention

in India after the major blackouts of 2013 [29]. In [30] the prob-

lem of PMU placement for line outage detection was studied.

However, none of these previous works addressed the problem

of PMU placement from the security point of view where both

the PDC/PMUs and the physical network are under attack.

In Section VII, we reduce the attack-resilient zone partition-

ing problem to the problem of partitioning a graph into sub-

graphs where each subgraph is (i) acyclic, and (ii) there is a

matching between nodes inside and outside the subgraph that

covers all the subgraph nodes. This problem is closely related to

the problems of vertex arboricity (which is known to be NP-hard

to be determined [31, p. 193]) and k-matching cover of a graph

(which can be found in O(n3) time [32]). However, to the best

of our knowledge, the joint problem ((i) and (ii) above) was not

studied before.

III. MODEL AND DEFINITIONS

A. DC Power Flow Model

We adopt the linearized (or DC) power flow model, which is

widely used as an approximation for the non-linear AC power

flow model [33]. In particular, we follow [7], [34] and represent

the power grid by a connected undirected graph G = (V,E)
where V = {1, 2, . . . , n} and E = {e1 , . . . , em} are the set

of nodes and edges corresponding to the buses and transmis-

sion lines, respectively. Each edge ei is a set of two nodes

ei = {u, v}. pv is the active power supply (pv > 0) or demand

(pv < 0) at node v ∈ V (for a neutral node pv = 0). We as-

sume pure reactive lines, implying that each edge {u, v} ∈ E is

characterized by its reactance ruv = rvu .

Given the power supply/demand vector �p ∈ R
|V |×1 and the

reactance values, a power flow is a solution P ∈ R
|V |×|V | and

�θ ∈ R
|V |×1 of:

∑

v∈N (u)

puv = pu , ∀ u ∈ V (1)

θu − θv − ruvpuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, puv is the power

flow from node u to node v, and θu is the phase angle of node u.

Eq. (1) guarantees (classical) flow conservation and (2) captures

the dependency of the flow on the reactance values and phase

angles. Additionally, (2) implies that puv = −pvu . When the to-

tal supply equals the total demand in each connected component

of G, (1)–(2) has a unique solution [7, Lemma 1.1].2 Equations

(1)–(2) are equivalent to the following matrix equation:

A�θ = �p (3)

where A ∈ R
|V |×|V | is the admittance matrix of G,3 defined as

follows:

auv =

⎧

⎪

⎨

⎪

⎩

0 if u �= v and {u, v} /∈ E

−1/ruv if u �= v and {u, v} ∈ E

−
∑

w∈N (u) auw if u = v.

2 The uniqueness is in the pu v values rather than phase angles (shifting all
phase angles by equal amounts does not violate (2)).

3 When ru v = 1 ∀{u, v} ∈ E , the admittance matrix A is the Laplacian

matrix of the graph.

Note that in power grids nodes can be connected by multiple

edges, and therefore, if there are k multiple edges between nodes

u and v, auv = −
∑k

i=1 1/ruv i
. Once �θ is computed, the flows,

puv , can be obtained from (2).

Notation: Throughout this paper we use bold uppercase char-

acters to denote matrices (e.g., A), italic uppercase characters to

denote sets (e.g., V ), and italic lowercase characters and over-

line arrow to denote column vectors (e.g., �θ). For a matrix Q,

qij denotes its (i, j)th entry. For a column vector �y, �yt denote

its transpose, yi denotes its ith entry, ‖�y‖1 :=
∑n

i=1 |yi | is its

l1-norm, ‖�y‖2 := (
∑n

i=1 y2
i )1/2 is its l2-norm, and supp(�y) :=

{i|yi �= 0} is its support.

B. Control Network

We use a modified version of the model described in [10] to

model the SCADA system to which we refer as the control net-

work. Fig. 1 illustrates the components of the control network.

We assume that there is a Phasor Measurement Unit (PMU) at

each node of G. The PMU at node i reports the phase angle θi ,

as well as the status of the lines (either operational or failed)

adjacent to node i. Phasor Data Concentrators (PDC) gather the

data collected by PMUs. The data gathered by PDCs is sent to

a control center which monitors and controls the entire grid. A

zone is a subgraph induced by a subset of nodes with a single

associated PDC.

C. Attack Model

We study attacks on power grids that affect both the physical

infrastructure and the control network. We assume that an adver-

sary attacks a zone by: (i) disconnecting some edges within the

attacked zone (physical attack), and (ii) obstructing the flow of

information from the PMUs within the zone to the control center

(cyber attack). An adversary can perform the cyber attack by,

for example, disabling the zone’s associated PDC. Alternatively,

the communication network between the PMUs and the PDC

or between the PDC and the control center can be attacked. We

assume that disconnecting edges within a zone does not make

G disconnected.

Fig. 2 shows an example of an attack on the zone represented

by H . Due to the attack, some edges are disconnected (we refer

to these edges as failed lines) and the phase angles and the

status of the lines within the attacked zone become unavailable.

We denote the set of failed lines in zone H by F ⊆ EH . Upon

failure, the failed lines are removed from the graph and the flows

are redistributed according to (1)–(2).

Notation: Throughout this paper, we denote an attacked

zone by H = (VH , EH ). Without loss of generality we as-

sume that the indices are such that VH = {1, 2, . . . , |VH |} and

EH = {e1 , e2 , . . . , e|EH |}. We denote the complement of the

zone H by H̄ = G\H . If X,Y are two subgraphs of G, AX |Y

and AVX |VY
both denote the submatrix of the admittance matrix

of G with rows from VX and columns from VY . For instance,

A can be written in any of the following forms:

A=

[

AH |H AH |H̄

AH̄ |H AH̄ |H̄

]

,A=
[

AG |H AG |H̄

]

,A=

[

AH |G

AH̄ |G

]

.
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TABLE I
SUMMARY OF NOTATION

Notation Description

G = (V, E) Graph representing the power grid
A Admittance matrix of G
�θ Vector of the phase angles of the nodes in G
H Subgraph of G representing the attacked zone
F Set of failed lines due to an attack
D Incidence matrix of G
©′ Value of © after an attack

© Complement of ©
©∗ Dual of ©

We use the very same notation for the vectors. For instance, �θH

and �θH̄ are the vectors of phase angle of the nodes in H and H̄ ,

respectively. We use the prime symbol (′) to denote the values

after an attack. For instance, G′, A′, and �θ′ are used to represent

the graph, the admittance matrix of the graph, and the phase

angles of the nodes after an attack. Table I provides a summary

of the notations.

D. Graph Theoretical Terms

In this paper, we use several graph theoretical terms and

theorems mostly borrowed from [35]. We briefly review some

of the important definitions in this subsection.

Subgraphs, Cuts, and Cycles: Let X and Y be subsets of the

nodes of a graph G. G[X] denotes the subgraph of G induced

by X . We denote by E[X,Y ] the set of edges of G with one

end in X and the other end in Y . We denote the complement

of a set X by X̄ = V \X . The coboundary of X is the set

E[X, X̄] and is denoted by ∂(X). ∂(v) denotes the coboundary

of X = {v}. G[X, X̄] denotes the subgraph of G induced by the

edges from E[X, X̄]. N(X) is the set of neighbors of the nodes

in X excluding X itself, and Nc(X) = X ∪ N(X). We say

that Q ⊆ E is G-separable, if there are pairwise edge-disjoint

cycles Cq (q ∈ Q), such that ∀q ∈ Q, q ∈ Cq [36].

Planar Graphs: A graph G is planar, if it can be drawn

in the plane so that its edges intersect only at their ends. A

planar graph G partitions the rest of the plane into a number of

edgewise-connected open sets called the faces of G.

Given a planar graph G, its dual graph G∗ is defined as fol-

lows. Corresponding to each face c of G there is a node c∗ of

G∗, and corresponding to each edge e of G there is an edge e∗

of G∗. Two nodes c∗1 and c∗2 are joined by the edge e∗ in G∗, if

and only if their corresponding faces c1 and c2 are separated by

the edge e in G. It is easy to see that the dual G∗ of a planar

graph G is itself a planar graph [35].

Incidence Matrix: Suppose we assign an arbitrary orientation

to the edges of G. We denote the set of oriented edges by

E = {ε1 , ε2 , . . . , εm}. The (node-edge) incidence matrix of G
is denoted by D ∈ {−1, 0, 1}|V |×|E | and defined as follows,

dij =

⎧

⎪

⎨

⎪

⎩

0 if εj is not incident to node i

1 if εj is coming out of node i

−1 if εj is going into node i.

When we use the incidence matrix, we assume an arbitrary

orientation for the edges unless we mention an specific orien-

tation. DH ∈ {−1, 0, 1}|VH |×|EH | is the submatrix of D with

rows from VH and columns from EH .

IV. ATTACK ANALYSIS

In this section, we study the effects of an attack and provide

analytical methods for recovering the phase angles and detecting

failed lines in the attacked zone H . We find conditions on the

structural properties of a zone and constraints on the failed

lines for which these methods successfully recover the phase

angles and detect the failed lines. These conditions depend on the

connections between VH and V̄H as well as the inner connections

of the nodes in H . Therefore, we refer to them as external and

internal conditions on H , respectively. Finally, we briefly study

the case in which multiple zones are attacked simultaneously.

Table II summarizes the results regarding the resilience of a zone

based on its internal and external conditions, and the constraints

on the set of failed lines F .

In this section, when we describe our methods, we assume

that there are no edges {i, j} ∈ EH for which θ′i = θ′j (we refer

to these edges as null-edges). Following (2), a null-edge does not

carry any flow. Thus, we cannot detect the status of those edges

since they cannot be distinguished from failed lines. However,

we can detect the null-edges and treat them separately (we con-

sider this in the PARD Algorithm provided in the next section).

A. Recovery of Phase Angles

In this subsection, we introduce a method to recover the phase

angles of the nodes in an attacked zone H . We provide sufficient

conditions on G[VH , V̄H ] such that the method recovers the

phase angles of the nodes in VH successfully. As we mentioned,

since these conditions depend only on the connections between

VH and V̄H , we refer to them as the external conditions on H .

The following lemma is the first step towards designing the

method for recovering the phase angles and for detecting the

failed lines (see Subsection IV-B).

Lemma 1: supp(A(�θ − �θ′)) ⊆ VH.

Proof: Suppose F = {ei1
, ei2

, . . . , eik
} ⊆ EH are the edges

that are disconnected from the grid after the attack on the zone

H . Define the column vectors �x1 , �x2 · · · �xk ∈ {−1, 0, 1}n asso-

ciated with the failed lines as follows. If eij
= {sj , tj} then

�xj is 1 in its s th
j entry, −1 in its tth

j entry, and 0 every-

where else. It is easy to see that A′ is related to A as A′ =
A −

∑k
j=1 asj tj

�xj �xj
t . Since the graph G does not get discon-

nected after an attack, the flow equations in G′ are A′�θ′ = �p.

On the other hand, A�θ = �p, therefore A�θ − A′�θ′ = 0. Thus

0 = A�θ − A′�θ′ = A�θ − A�θ′ +
k

∑

j=1

asj tj
�xj �xj

t�θ′

⇒ supp(A(�θ − �θ′)) ⊆
k

⋃

i=1

{sj , tj} ⊆ VH . �

One of the immediate results of Lemma 1 is the following

corollary. This corollary gives a true statement about �θ′ (recall
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TABLE II
SUMMARY OF THE RESULTS IN SECTION IV

Case External conditions Internal conditions Attack constraints Resilience Results

I Matching Acyclic None Attack-resilient Corollary 2/Lemma 3
II Matching Planar ∀ cycle C , |C ∩ F | < |C\F | F ∗ is H ∗-separable Weakly-attack-resilient Corollary 2/Theorem 2
III Partial matching Acyclic ∀v ∈ V in

H , |∂(v) ∩ F | < |∂(v)\F | Weakly-attack-resilient Lemmas 3, 6/Corollary 5

IV Partial matching Planar No cycle contains
aninner-connected-node

∀ cycle C , |C ∩ F | < |C\F | ∀v ∈ V in
H ,

|∂(v) ∩ F | < |∂(v)\F |F ∗ is H ∗-separable
Weakly-attack-resilient Theorem 3/Corollary 5

that �θ′ is partly unknown). It states that �θ′ is in the solution space

of the matrix equation (4).

Corollary 1: For any U ⊆ H̄ , AU |N c (U )(�θN c (U ) −
�θ′N c (U )) = 0. In particular, when U = H̄

AH̄ |G (�θ − �θ′) = 0. (4)

For simplicity of the notations and equations, through the

most of this paper we consider the case in which U = H̄ . How-

ever, as we briefly describe in Subsection IV-D, using a smaller

U allows the recovery of the phase angles after an attack on

multiple zones.

We find sufficient conditions such that the solution �θ′H to (4) is

unique (given �θ and �θ′
H̄

), and consequently �θ′H can be recovered

after any attack on H . We first define a well-supported zone.

Definition 1: A zone H is called well-supported, if �θ′H can

be recovered after any attack on H .

Using Corollary 1, the following theorem gives sufficient

condition for a zone H to be well-supported.

Theorem 1: A zone H is well-supported, if AH̄ |H has

linearly independent columns.

Proof: From Corollary 1 we know that AH̄ |G (�θ − �θ′) = 0,

therefore AH̄ |H
�θ′H = AH̄ |H̄ (�θH̄ − �θ′

H̄
) + AH̄ |H

�θH . The only

unknown in this equation is �θ′H . Now since AH̄ |H has linearly

independent columns, this equation has a unique solution �θ′H
which can be computed in polynomial time. Thus, �θ′H can be

recovered in this case and zone H is well-supported. �

It can be seen that the sufficient condition in Theorem 1 de-

pends on the reactance values. However, the following corollary

relaxes the condition in Theorem 1. It shows that if G[VH , V̄H ]
has a matching that covers VH , then for almost any reactance

values for the edges in E[VH , V̄H ], H is well-supported. The

idea is that the set of reactance values for the edges in E[VH , V̄H ]
for which AH̄ |H does not have linearly independent columns is

a measure zero set in the real space [37].

Corollary 2: If there is a matching in G[VH , V̄H ] that covers

VH , then H is well-supported almost surely.4

Proof: Suppose M = (U, VH ) is the matching for

G[VH , V̄H ] that covers VH , and suppose U ⊆ V̄H are the

matched nodes which are in V̄H . Since M is the matching in

G[VH , V̄H ] that covers H , thus |U | = |VH |. Regarding The-

orem 1, to show that H is well-supported almost surely, we

need to show that the columns of the matrix AH̄ |H are lin-

early independent almost surely. For this reason, we show that

4 In probability theory, one says that an event happens almost surely, if it
happens with probability one.

Fig. 3. Example of a graph and set of zones such that each zone is both
well-supported and acyclic.

det(AU |VH
) �= 0 almost surely. det(AU |VH

) can be considered

as a polynomial of the nonzero entries of the admittance matrix

using Leibniz formula. Now assume U = {u1 , u2 , . . . , u|VH |}
are matched to VH = {v1 , v2 , . . . , v|VH |} in order. It can be

seen that
∏|VH |

i=1 au i v i
is a term with nonzero coefficient in

det(AU |VH
). Therefore, det(AU |VH

) is not a zero polynomial

in terms of its nonzero entries. Now since the set of reactance

values for the edges in E[VH , V̄H ] such that det(AU |VH
) = 0

is a measure zero set in the real space, thus det(AU |VH
) �= 0

almost surely. �

In reality, since the reactance values are derived by the

physical properties of the lines, we expect that these values

are relatively random around a mean value. Thus, following

Corollary 2, the existence of a matching that covers every node

in VH is enough for a zone to be well-supported (see Fig. 3 for

an example of a graph in which every node in a zone is covered

by a matching). Hence, in the following sections we consider

the existence of a matching as a sufficient external condition on

H to be well-supported.

B. Detecting Failed Lines

In this subsection, we assume that after an attack, the phase

angles are recovered using the method in Subsection IV-A (i.e.,

by solving (4)). We introduce methods to detect the failed lines

using �θ′. We provide sufficient conditions on H such that these

methods detect the failed lines successfully. As we mentioned,

since these conditions depend only on the connections between

the nodes in H , we refer to them as internal conditions on H .

The following Lemma is the foundation for our approach

to find the failed lines. It limits the set of failed lines to the

solution space of the matrix equation (5). It can be considered

as the complement of Corollary 1.
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Lemma 2: There exists a vector �x ∈ R
|EH | such that

supp(�x) = {i|ei ∈ F} and

DH �x = AH |G (�θ − �θ′). (5)

Moreover, for any W ⊆ G such that Nc(H) ⊆ W , DH �x =

AH |W (�θW − �θ′W ).
Proof: We use the notation that we used in proof of

Lemma 1. Recall from the proof of Lemma 1 that A(�θ − �θ′) =

−
∑k

j=1 asj tj
�xj �xj

t�θ′. It is easy to see that if �d1 , �d2 , . . . , �dm are

the columns of the incidence matrix D, then ∀j(1 ≤ j ≤ k),

there exists bj ∈ R such that bj
�dij

= −asj tj
�xj �xj

t�θ′. Therefore,

A(�θ − �θ′) =
∑k

j=1 bj
�dij

. Thus, if we define �y ∈ R
m such that

∀eij
∈ F, yij

= bj and 0 elsewhere, then A(�θ − �θ′) = D�y and

supp(�y) ⊆ {i1 , i2 , . . . , ik}. However, from the Corollary 1 we

know that AH̄ |G (�θ − �θ′) = 0. Moreover, since F ⊆ EH , �yH̄ =
0. Thus, we can restrict the equation only to the components of

the zone H , which means that AH |G (�θ − �θ′) = DH �yH . Now it

is easy to see that since we assumed that no null-edges are in F ,

all the bi s are nonzero and supp(�yH ) = {i1 , i2 , . . . , ik}. There-

fore, �x = �yH is a solution to (5) and supp(�x) = {i|ei ∈ F}.

Now, since for any i ∈ H and j /∈ Nc(H) we have aij = 0,

it is easy to see that for any W ⊆ G such that Nc(H) ⊆ W ,

DH �x = AH |W (�θW − �θ′W ). �

Lemma 2 provides important information regarding the failed

lines. It states that there exists a solution �x to (5) such that

supp(�x) reveals the set of failed lines. However, the solution to

(5) may not be unique. Again, for simplicity of the notations and

equations, through the most of this paper we consider the case

in which W = G. However, as we briefly describe in Subsec-

tion IV-D, using a smaller W allows the failed lines detection

after an attack on multiple zones.

The lemma below provides a necessary and sufficient

condition on H such that the solution to (5) is unique.

Lemma 3: The solution to (5) is unique and supp(�x) =
{i|ei ∈ F}, if and only if H is acyclic.

Proof: It is easy to see that the solution to (5) is unique if and

only if DH has linearly independent columns. It is known that

rank(DH ) = |VH | − c in which c is the number of connected

components of H [38, Theorem 2.3]. Therefore,DH has linearly

independent columns if and only if each connected component

of DH is a tree, which means that DH should be acyclic. �

According to Lemma 3 the set of failed lines for any attack

can be detected, if and only if H is acyclic. Fig. 3 shows an

example of a graph and set of zones such that each zone is both

well-supported and acyclic (case I in Table II).

Although Lemma 3 requires H to be an acyclic graph in order

for the solution of (5) to be unique, by setting some constraints

on the failed lines F , we provide a method to detect the failed

lines in broader class of graphs. The underlying idea is that the

set of failed lines is expected to be relatively sparse compared

to the overall set of edges within a zone. Thus, we are interested

in the solutions of (5) that are relatively sparse. The l0-norm

should be used to capture the sparseness of a vector. However,

since minimizing l0-norm is a combinatorial problem in general

cases, we prefer to use l1-norm which is known to be a good

approximation of the l0-norm. Thus, we consider the following

minimization problem,

min ‖�x‖1 s.t. DH �x = AH |G (�θ − �θ′). (6)

Notice that (6) is still linear and can be solved using Linear

Programming. Moreover, when the solution to (6) also appears

to be sparse, which is usually the case in the considered scenario,

there are very fast algorithms to solve it [39].

The Lemma below states that by solving (6), the failed lines

can be detected in more cases than by solving (5). The idea

that we use in proof of Lemma 4 is the core idea in proofs of

Theorems 2 and 3, as well. Namely, the null space of DH is

in one-to-one correspondence with the cycle space of the graph

H . Therefore, there are graph theoretical interpretations to the

solution space of (5). Hence, by using tools from graph theory

and linear algebra, we find the solution to (5) with the minimum

l1-norm.

Lemma 4: If H is a cycle and |EH ∩ F | < |EH \F |, the

solution to (6) is unique and supp(�x) = {i|ei ∈ F}.

Proof: Here without loss of generality, we assume that DH

is the incidence matrix of H when edges of H has been oriented

clockwise. Since H is connected, it is known that rank(DH ) =
|VH | − 1 [38, Theorem 2.2]. Therefore, dim(Null(DH )) = 1.

Suppose �e ∈ R
|EH | is the all one vector. It is easy to see that

DH�e = 0. Since dim(Null(DH )) = 1, �e is the basis for the null

space of D. Suppose �x is a solution to (5) such that supp(�x) =
{i|ei ∈ F} (from Lemma 2 we know that such a solution ex-

ists). To prove that �x is the unique solution for (6), we only need

to prove that ∀c ∈ R\{0}, ‖�x‖1 < ‖�x − c�e‖1 . Without loss of

generality we can assume that x1 , x2 , . . . , xk are the nonzero

elements of �x, in which k = |F |. From the assumption we

know that |EH ∩ F | < |EH \F |, therefore k < |EH |/2. Hence,

we have

‖�x − c�e‖1 =

k
∑

i=1

|xi − c| + (|EH | − k)|c|

=

k
∑

i=1

(|xi − c| + |c|) + (|EH | − 2k)|c|

≥

k
∑

i=1

|xi | + (|EH | − 2k)|c| >

k
∑

i=1

|xi | = ‖�x‖1 .

Thus, the solution to (6) is unique. �

Corollary 3: If all the cycles in H are edge-disjoint and for

any cycle C in H , |C ∩ F | < |C\F |, then the solution to (6) is

unique and supp(�x) = {i|ei ∈ F}.

The following Theorem extends the idea in the proof of

Lemma 4 and provides sufficient conditions for failed lines

in a planar graph H to be detected by solving (6) (recall from

Subsection III-D that H∗ is the dual of the planar graph H and

F ∗ is the dual of the set of failed lines). For the proof details

see [1].

Theorem 2: In a planar graph H , the solution to (6) is unique

and supp(�x) = {i|ei ∈ F}, if (i) for any cycle C in H , |C ∩
F | < |C\F |, and (ii) F ∗ is H∗-separable.
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Fig. 4. Example of a zone H and a set of failed lines (shown by red dashed
lines) that can be detected by solving (6) based on Theorem 2. The diamond
orange nodes are the nodes of the dual graph H ∗. As can be seen, the dual of the
failed lines can be covered by three edge disjoint cycles O∗

1 , O∗
2 , O∗

3 (shown by
dotted lines) in H ∗. Thus, as Theorem 2 requires, F ∗ is H ∗-separable.

Fig. 4 shows an example of a zone H for which the set of

failed lines can be detected by solving (6) based on Theorem 2

(case iI in Table II).

The Corollary below states that in planar bipartite graphs,

condition (ii) in Theorem 2 immediately holds, if condition (i)

holds. For the proof details see [1].

Corollary 4: In a planar bipartite graph H , the solution to

(6) is unique and supp(�x) = {i|ei ∈ F}, if for any cycle C in

H , |C ∩ F | < |C\F |.
Theorem 2 and Corollary 4 are important since power grids

are usually considered to be planar. For instance, lattice graphs

are planar bipartite.

C. Simultaneous Phase Angles Recovery and Failed

Lines Detection

In Subsection IV-A we showed that the phase angles of the

zone H are recoverable, if there is a matching in G[VH , V̄H ]
that covers VH . However, in reality, this condition might be

very difficult and costly to maintain (i.e., it may require to

increase the number of zones). Therefore, in this subsection,

using similar ideas as in Subsection IV-B, we relax the external

conditions on H .

The key idea which is summarized in the following Lemma,

is to combine Corollary 1 and Lemma 2.

Lemma 5: There exist vectors �x ∈ R
|EH | and �δH ∈ R

|VH |

such that supp(�x) = {i|ei ∈ F}, �δH = �θH − �θ′H , and

DH �x = AH |H
�δH + AH |H̄

�δH̄ (7)

AH̄ |H
�δH + AH̄ |H̄

�δH̄ = 0

where �δH̄ = �θH̄ − �θ′
H̄

and is known.

From Subsection IV-A and IV-B we know that the solution

to (7) is unique, if and only if H is acyclic and AH̄ |H has

linearly independent columns. Therefore, to deal with cases for

which AH̄ |H does not have linearly independent columns, we

consider a similar optimization problem as in (6) but with more

constraints. For this reason, as we mentioned in Subsection IV-

B, since the set of failed lines is expected to be relatively sparse

compared to the overall set of edges, we consider the following

optimization problem:

min ‖�x‖1 s.t. (8)

DH �x = AH |H
�δH + AH |H̄

�δH̄

AH̄ |H
�δH + AH̄ |H̄

�δH̄ = 0.

The following Lemma states that if there is an independent

set of nodes in H with no neighbors in H̄ , then under some

conditions on F , we can recover F and �θ′H by solving (8) even

when AH̄ |H does not have linearly independent columns (case

III in Table II). First, we define inner-connected nodes.

Definition 2: A node v ∈ VH is called H-inner-connected if

N(v) ⊆ VH . It is called H-outer-connected if N(v) ⊆ VH̄ . We

denote the set of H-inner-connected and H-outer-connected

nodes by V in
H and V out

H , respectively.

Lemma 6: Suppose H-inner-connected nodes form an inde-

pendent set. If H is acyclic, rank(AH̄ |H ) = |VH | − |V in
H |, and

∀v ∈ V in
H , |∂(v) ∩ F | < |∂(v)\F |, then the solution �x,�δ to (8) is

unique. Moreover, supp(�x) = {i|ei ∈ F} and �δH = �θH − �θ′H .

Proof: The idea of the proof is very similar to the proof

of Lemma 4. Suppose �x,�δH is the solution to (7) such that

supp(�x) = {i|ei ∈ F} and �δH = �θH − �θ′H . From Lemma 5,

we know that such a solution exists. We show that this solution

is the unique solution to (8) in this setting.

Without loss of generality in addition to assuming VH =
{1, 2, 3, . . . , |VH |} and EH = {e1 , e2 , . . . , e|EH |}, we can as-

sume the labeling of the nodes in G is such that V in
H =

{1, 2, . . . , t} is the set of H-inner-connected nodes. Suppose

�α1 , �α2 , . . . , �αt ∈ R
|VH | are the coordinate vectors, in other

words �αi is 1 at its ith entry and 0 everywhere else. It is

easy to see that ∀i ∈ V in
H : AH̄ |H �αi = 0. On the other hand,

since rank(AH̄ |H ) = |VH | − t and �αi s are linearly indepen-

dent, �α1 , �α2 , . . . , �αt form a basis for Null(AH̄ |H ).
Assume DH is the incidence matrix of H when its edges are

oriented such that for each i ∈ V in
H , the edges are coming out of

i. Now suppose �z is another solution to (8), it is easy to see that

DH (�z − �x) = AH |H �α for a vector �α ∈ Null(AH̄ |H ). Since

�α ∈ Null(AH̄ |H ), there are unique coefficients c1 , c2 , . . . , ct

∈ R such that �α = c1 �α1 + c2 �α2 + · · · + ct �αt . Thus

DH (�z − �x) = AH |H �α = AH |H (c1�α1 + c2�α2 + · · · + ct�αt)

= c1AH |H �α1 + c2AH |H �α2 + · · · + ctAH |H �αt .

Suppose �dj is the column associated with edge ej in DH .

Notice that for each i ∈ V in
H , ∂(i) ⊆ EH . Therefore, ∀i ∈ V in

H

and ∀ej ∈ ∂(i), �dj is a column of DH . It is easy to see that for

any i ∈ V in
H ,

∑

j :ej ∈∂ (i)
�dj = AH |H �αi . If for any i ∈ V in

H we

define vector�bi ∈ {0, 1}|EH | as follows,

bij :=

{

1 if ej ∈ ∂(i)

0 otherwise
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then DH
�bi = AH |H �αi for any i ∈ V in

H . Thus

DH (c1
�b1 + · · · + ct

�bt) = c1AH |H �α1 + · · · + ctAH |H �αt

⇒ DH (�z − �x) = DH (c1
�b1 + c2

�b2 + · · · + ct
�bt).

Now since H is acyclic, DH has linearly independent columns.

Thus, from the equation above, we can conclude that

�z − �x = c1
�b1 + c2

�b2 + · · · + ct
�bt

⇒ �z = �x + c1
�b1 + c2

�b2 + · · · + ct
�bt .

Using equation above, we show that ‖�z‖1 > ‖�x‖1 unless c1 =
c2 = · · · = ct = 0. First, notice that since V in

H is an independent

set, ∀i �= j ∈ V in
H , ∂(i) ∩ ∂(j) = ∅. Suppose ∀i ∈ V in

H , |∂(i) ∩
F | = ki , we have

‖�z‖1 = ‖�x + c1
�b1 + c2

�b2 + · · · + ct
�bt‖1

=
∑

i∈V in
H

(

(|∂(i)| − ki)|ci | +
∑

j∈F ∩∂ (i)

|xj + ci |
)

+
∑

i∈F \∂(V in
H )

|xi |

=
∑

i∈V in
H

(

(|∂(i)| − 2ki)|ci |+
∑

j∈F ∩∂ (i)

(

|xj + ci | + |ci |
)

)

+
∑

i∈F \∂ (V in
H )

|xi |

≥
∑

i∈V in
H

(

(|∂(i)| − 2ki)|ci | +
∑

j∈F ∩∂ (i)

|xj |
)

+
∑

i∈F \∂ (V in
H )

|xi |

=
∑

i∈V in
H

(

(|∂(i)| − 2ki)|ci |
)

+
∑

i∈V in
H

∑

j∈F ∩∂ (i)

|xj | +
∑

i∈F \∂ (V in
H )

|xi |

=
∑

i∈V in
H

(

(|∂(i)| − 2ki)|ci |
)

+ ‖�x‖1 .

Now, since from the assumptions ∀i ∈ V in
H , ki < |∂(i)|/2, it is

easy to see that
∑

i∈V in
H

((∂(i) − 2ki)|ci |) + ‖�x‖1 > ‖�x‖1 , un-

less c1 = c2 = · · · = ct = 0. Since �z is a solution to (8), we

should have c1 = c2 = · · · = ct = 0, and �z = �x. Thus, �x is the

unique solution to (8) and supp(�x) = {i|ei ∈ F}. From the

proof, it is easy to see that �δH is also unique. �

To generalize Lemma 6, first let us consider cases in which

H contains H-outer-connected nodes. The Lemma below shows

that the value of δ for these nodes is unique.

Lemma 7: If v is H-outer-connected and �δH is a solution to

(7), then δv is unique and equal to δv = 1/d(v)
∑

u∈N (v ) δu ,

where d(v) is the degree of node v.

Proof: First, notice that since v is H-outer-connected,

N(v) ⊆ V̄H . Thus, δv = 1/d(v)
∑

u∈N (v ) δu implies that δv is

unique. Now, let us compute the vth entry of the vectors on

the both side of the equation DH �x = AH |H
�δH + AH |H̄

�δH̄ .

Since v is H-outer-connected, the vth row of DH is a zero

vector. Thus, (DH �x)v = 0 for any �x. It is also easy to see

that (AH |H
�δH )v = δvd(v) and (AH |H̄

�δH̄ )v = −
∑

u∈N (v ) δu .

Since (DH �x)v = (AH |H
�δH )v + (AH |H̄

�δH̄ )v , we can conclude

that δv = 1/d(v)
∑

u∈N (v ) δu . Thus, the proof is complete. �

In the following theorem, we generalize Lemma 6. This theo-

rem combines Lemma 6 and Theorem 2, and provides a broader

class of graphs in which solving (8) recovers phase angles and

Fig. 5. Example of a zone H and an attack such that the phase angles can be
recovered and the failed lines can be detected by solving (8) based on Theorem 3.
The squared green nodes are the H -inner-connected nodes. The failed lines are
shown by red dashed edges.

detects the failed lines after an attack. For the proof details,

see [1].

Theorem 3: In a planar graph H , the solution �x,�δH to (8) is

unique with supp(�x) = {i|ei ∈ F} and �δH = �θH − �θ′H , if the

following conditions hold: ∀v ∈ V in
H , |∂(v) ∩ F | < |∂(v)\F |,

(ii) for any cycle C in H , |C ∩ F | < |C\F |, (iii) F ∗ is H∗-

separable, (iv) in AH̄ |H , columns associated with nodes that

are neither H-inner-connected nor H-outer-connected are lin-

early independent, (v) no cycle in H contains a H-inner-

connected node, and (vi) H-inner-connected nodes form an

independent set.

Note that when H is well-supported, there are no H-inner-

connected or H-outer-connected nodes. Thus, conditions (i),

(iv), (v), and (vi) immediately hold and Theorem 3 reduces to

Theorem 2.

Fig. 5 shows an example of a zone H and an attack such that

the phase angles can be recovered and the failed lines can be

detected by solving (8) using Theorem 3 (case iv in Table II).

As it can be seen, this theorem covers a broad set of graphs and

attacks for which we can recover the phase angles and detect

the failed lines. Notice that here, with similar argument as in

Corollary 2 we can replace condition (iv) in Theorem 3 with a

simpler matching condition as follows.

Corollary 5: If there is a matching in G[VH , V̄H ] that covers

VH \(V in
H ∪ V out

H ), then condition (iv) in Theorem 3 holds almost

surely.

To conclude, we define the attack-resilient and weakly-attack-

resilient notions to summarize the resilience of a zone to joint

cyber and physical attacks.

Definition 3: A zone H is called attack-resilient, if it is both

well-supported and acyclic.

Definition 4: A zone H is called weakly-attack-resilient, if
�θ′H and F can be uniquely found after a constrained attack on

the zone H by solving (8).

It is easy to see that an attack-resilient zone is also

weakly-attack-resilient.

D. Recovery and Detection After Attacks on Multiple Zones

In this subsection, we study the case in which multiple zones

are attacked simultaneously. When the attacked zones are close

to each other, it may not always be possible to recover informa-

tion. However, if the attacked zones are relatively distant from

each other, any of the methods provided in the previous sub-

sections (depending on the conditions on the zones and attacks)
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can be applied to recover the information and detect the failures

in the attacked zones.

The idea is to use Corollary 1 and Lemma 2 for sets U and W
much smaller than H̄ and G, respectively. Assume H1 and H2

are two attacked zones. Let U1 and U2 be two sets with the min-

imum size such that U1 ⊆ H̄1 , H1 ⊆ Nc(U1), U2 ⊆ H̄2 , and

H2 ⊆ Nc(U2). Following Corollary 1, AU1 |N c (U1 )(�θN c (U1 ) −
�θ′N c (U1 )) = 0 and AU2 |N c (U2 )(�θN c (U2 ) − �θ′N c (U2 )) = 0. Now if

Nc(U1) ∩ H2 = Nc(U2) ∩ H1 = ∅ (i.e., H1 and H2 are dis-

tant enough), and both AU1 |H1
and AU2 |H2

have linearly inde-

pendent columns, then similar to the proof of Theorem 1, the

phase-angles of the nodes in H1 and H2 can be recovered by

solving a set of linear equations.

To detect the failed lines, let W1 and W2 be two sets

with the minimum size such that W1 ,W2 ⊆ G, Nc(H1) ⊆ W1 ,

and Nc(H2) ⊆ W2 . Following Lemma 2, there exist vectors

�x1 , �x2 ∈ R
|EH | such that supp( �x1) and supp( �x2) give the failed

lines in H1 and H2 , and also DH1
�x1 = AH1 |W 1

(�θW 1
− �θ′W 1

)

and DH2
�x2 = AH2 |W 2

(�θW 2
− �θ′W 2

). Now, if H1 and H2 are

acyclic and W1 ∩ H2 = W2 ∩ H1 = ∅, then similar to the

Lemma 3, the solutions to DH1
�x1 = AH1 |W 1

(�θW 1
− �θ′W 1

) and

DH2
�x2 = AH2 |W 2

(�θW 2
− �θ′W 2

) are unique and the failed lines

can be detected by supp( �x1) and supp( �x2).
Notice that the methods in Section IV-C can also be simply

used to recover the phase angles and detect the failed lines in the

attacked zones that are distant enough. The following corollary

summarizes our discussion in this subsection.

Corollary 6: The phase angles and the failed lines can

be recovered/detected after a simultaneous attack on zones

H1 ,H2 , . . . , Hk , if followings hold: (i) for any 1 ≤ i ≤ k, if

Hi was the only attacked zone, then the phase angle of the

nodes and the failed lines could be recovered/detected using the

methods in Subsection IV-A, IV-B, and IV-C, (ii) there exist

U1 , U2 , . . . , Uk ⊆ G and W1 ,W2 , · · ·Wk ⊆ G such that:

1. For any 1 ≤ i ≤ k, Ui ⊆ H̄i , Hi ⊆ Nc(Ui), and

Nc(Hi) ⊆ Wi .

2. For any 1 ≤ i �= j ≤ k, Nc(Ui) ∩ Hj = ∅ and Wi ∩
Hj = ∅.

Proof: For any 1 ≤ i ≤ k, consider equations

AU i |N c (U i )(
�θN c (U i ) −

�θ′N c (U i )
) = 0 and DH i

�xi =

AH i |W i
(�θW i

− �θ′W i
) instead of (4) and (5). Then, re-

cover the phase angle of the nodes and detect the failed lines

at each Hi separately using any of the methods provided in

Sections IV-A, IV-B, and IV-C. �

V. POST-ATTACK RECOVERY AND DETECTION ALGORITHM

In this section, we present the Post-Attack Recovery and

Detection (PARD) Algorithm for recovering the phase angles

and detecting the failed lines after an attack on a zone H . Based

on the results provided in previous subsections, if a zone H is

weakly-attack-resilient, the PARD Algorithm will recover the

phase angles and detect the failed lines after a constrained attack.

Notice that if there are some failed lines but no data is missing,

then from the data that is gathered by the PDCs from the PMUs,

all the information regarding the status of the lines and phase

Algorithm 1: Post-Attack Recovery & Detection (PARD).

Input: A connected graph G, phase angles before the

attack �θ, and partial phase angles after the attack �θ′
H̄

.

1: Detect the attacked zone H by checking for missing

data.

2: Compute �x,�δH the solution to (8) by Linear

Programming.

3: Compute �θ′H = �θH − �δH .

4: Compute F = {ei |i ∈ supp(�x)}.

5: Detect the set of null-edges that appear after the attack

as N = {{i, j} ∈ EH |θ′i = θ′j}.

6: return N , F , �θ′H .

angles is available and there is no need for the algorithm. Thus,

as the first step, the PARD Algorithm detects the attacked zone

H by checking the missing data (line 1). Then, it solves (8)

by Linear Programming to obtain �x,�δH . If H is weakly-attack-

resilient, from the results in previous subsections, we know

that �x,�δH are unique, �θ′H = �θH − �δH (line 3), and F = {ei |i ∈

supp(�x)} (line 4). Finally, using �θ′ computed in previous line,

the PARD Algorithm detects the set of null-edges N (line 5),

and returns N , F , and �θ′H .

VI. ATTACK ANALYSIS IN THE PRESENCE OF MEASUREMENT

NOISE AND UNCERTAINTY

In this section, we briefly discuss the problem of information

recovery after an attack in the presence of a measurement noise

and uncertainty. We follow [21] and model the measurement

noise by changing (3) to A(�θ − �e) = �p where �e ∈ R
|V |×1 is a

Gaussian measurement noise with a diagonal covariance matrix

Σ. Following [9], �e can also account for the perturbations in

�p after failures. It is obvious that in the presence of noise, the

optimization problem (8) has no feasible solution. However,

since the l1-norm is relatively robust against noise, one possible

approach to generalize the optimization problem (8) to the noisy

case is to relax the conditions as follows:

min ‖�x‖1 s.t.

‖DH �x − AH |H
�δH − AH |H̄

�δH̄ ‖2 < ε

‖AH̄ |H
�δH + AH̄ |H̄

�δH̄ ‖2 < ε. (9)

It is easy to see that the optimization problem (9) is a second-

order cone program that can be solved using gradient decent

methods. After solving (9), the line failures can then be detected

as before by F = {ei |i ∈ supp(�x)}.

Generalizing Theorem 3 to take into account the noisy

case modeled by (9) is part of the future work. However, in

Section VIII, we show via simulation that solving the optimiza-

tion problem (9) can correctly recover the phase angles and

detect the failed lines depending on the level of the Signal to

Noise Ratio (SNR).5

5 We define the SNR (in dB) as 20 log10 (‖�θ‖2 /‖�e‖2 ).
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Algorithm 2: 3-Acyclic Partition of Planar (3APP).

Input: A non-empty planar graph G.

1: Find a node v ∈ V such that deg(v) ≤ 5.

2: if G\v = ∅ then set Q1 = Q2 = Q3 = ∅.

3: else Find 3-partition of G\v using 3APP Algorithm as

Q1 , Q2 , Q3 .

4: Add v to the partition that |N(v) ∩ Qi | is minimum.

5: return Q1 , Q2 , Q3 .

Algorithm 3: Zone Selection (ZS).

Input: A connected graph G.

1: Find an optimal matching cover M1 ,M2 , . . . , Mt of G
[32].

2: For each Mi , separate the matched nodes into two set

of nodes V2i−1 , V2i such that ∀{v, u} ∈ M , v ∈ V2i−1

and u ∈ V2i .

3: For any 1 ≤ i ≤ 2t, Qi = Vi\
⋃i−1

j=1 Qj .

4: for each Qi do

5: if G[Qi ] is acyclic then continue

6: if G[Qi ] is a planar graph then

7: Use 3APP Algorithm to partition G[Qi ].
8: else

9: Use any greedy algorithm to partition G[Qi ]
into acyclic subgraphs.

10: Name the resulted partitions P1 , . . . , Pk .

11: return P1 , . . . , Pk .

VII. ZONE SELECTION ALGORITHM

In this section we use the results from Section IV to pro-

vide an algorithm for partitioning the power grid into the min-

imum number of attack-resilient zones. From Lemma 3 and

Corollary 2, for a zone H to be attack-resilient, it is sufficient

that H is acyclic and there is a matching in G[VH , V̄H ] that

covers every node in VH . Fig. 3 shows an example of a parti-

tioning such that each zone is attack-resilient. Thus, we define

a matched-forest partition of a graph G as follows.

Definition 5: A matched-forest partition of a graph G into

H1 ,H2 , . . . , Hk is a partition such that for any i, Hi is acyclic

and G[VH i
, V̄H i

] has a matching that covers VH i
.

The problem of finding a matched-forest partition of G is

closely related to two previously known problems of vertex ar-

boricity and k-matching cover of a graph. The vertex arboricity

a(G) of a graph G is the minimum number of subsets into which

the nodes of G can be partitioned so that each subset induces

an acyclic graph. It is known that determining a(G) is NP-hard

[31, p. 193].

A k-matching cover of a graph G is a union of k matchings of

G which covers V . The matching cover number of G, denoted by

mc(G), is the minimum number k such that G has a k-matching

cover. An optimal matching cover of a graph on n nodes can be

found in O(n3) time [32].

Using these results, we study the time complexity of the min-

imum matched-forest partition problem.6 The following Lemma

6 To the best of our knowledge, this is the first time that the problem is studied.

shows that it is hard to find the minimum matched-forest

partition of a graph. For the proof details see [1].

Lemma 8: The problem of finding the minimum matched-

forest partition of a graph G is NP-hard.

Moreover, we show that finding the minimum matched-forest

partition is even hard to approximate. We use the well-known

result by Zuckerman [40] that for all ε > 0, it is NP-hard to

approximate chromatic number to within n1−ε .

Lemma 9: For all ε > 0, it is NP-hard to approximate the

minimum matched-forest partition of a graph G to within n1−ε .

Proof: For a graph G, assume χ(G) is its chromatic number.

Since each color gives an independent set of G, induced sub-

graph by the nodes with the same color is acyclic with no edges.

Thus, it is easy to see that a(G) ≤ χ(G). Suppose there is an α-

approximation algorithm for the minimum matched-forest prob-

lem. Define Ĝ as in proof of Lemma 8. Assume this algorithm

partitions Ĝ into k subsets. From the proof of Lemma 8, it is easy

to see that k ≤ αa(G). On the other hand, since each acyclic

graph has the chromatic number of at most 2, this algorithm gives

the 2k coloring of graph G. However, 2k ≤ 2αa(G) ≤ 2αχ(G).
Thus, this algorithm gives a 2α-approximation of the chromatic

number of G. However, the result by Zuckerman [40] states that

for all ε > 0, it is NP-hard to approximate chromatic number

to within n1−ε . Therefore, for all ε > 0, it is NP-hard to ap-

proximate the minimum matched-forest problem to within n1−ε

as well. �

Despite these hardness results, we provide the polynomial-

time Zone Selection (ZS) Algorithm to find a matched-forest

partition of a graph. We prove that the ZS Algorithm pro-

vides a constant approximation for the minimum matched-forest

partition of a graph G when G is planar.

Before describing the ZS Algorithm in detail, we first describe

an algorithm that is used in the ZS Algorithm, when G is planar.

It is known that for a planar graph G, a(G) ≤ 3 [41]. Based on

the proof provided in [41], we introduce a recursive 3-Acyclic

Partition of Planar (3APP) Algorithm. The Lemma below shows

the correctness of this Algorithm.

Lemma 10: The 3APP Algorithm partitions the nodes of a

planar graph G into 3 subsets such that each subset induces an

acyclic graph.

Proof: It is known that every planar graph has a node of

degree less than or equal to 5 [42]. Therefore, line 1 of the

algorithm can always find v. At line 4, recursively we know that

subgraphs induced by Q1 , Q2 , Q3 in G\v are acyclic. Now since

deg(v) ≤ 5, there exists a partition such that |N(v) ∩ Qi | ≤ 1.

Without loss of generality we can assume that |N(v) ∩ Q1 | ≤ 1.

Hence, adding v to Q1 does not produces any cycles. Thus,

subgraphs induced by Q1 ∪ {v}, Q2 , Q3 in G are acyclic. �

We now present the ZS Algorithm. The ZS Algorithm first

finds an optimal matching cover M1 ,M2 , . . . , Mt of G us-

ing an O(n3) algorithm introduced in [32] (line 1). Then,

in lines 2 and 3, it uses this matching cover to partition

V into Q1 , Q2 , . . . , Q2t . It is easy to see that for each Qi ,

M�i/2� ∩ E[Qi , Q̄i ] is the matching in G[Qi , Q̄i ] that covers

nodes in Qi . Then, in order to satisfy the acyclicity condition

on the partitions, it partitions Qi s that do not induce an acyclic

graph, into subsets so that each subset induces an acyclic graph.
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Fig. 6. The graph and the zone H that are used in the simulations in
Section VIII-A. All the edges in the graph have admittance value equal 1.
The supply/demand values are chosen randomly.

When G[Qi ] is a planar graph, it uses 3APP Algorithm to par-

tition G[Qi ]. When it is not, it uses any greedy algorithm to

do so. Thus, the resulted partition P1 , P2 , . . . , Pk satisfies the

conditions of a matched-forest partition.

The lemma below states that when G is planar, the ZS

Algorithm provides a constant approximation of the optimal

matched-forest partition. We demonstrate the results obtained

by the algorithm in the following section. For the proof details

see [1].

Lemma 11: If G is planar, the ZS Algorithm provides a 6-

approximation of the minimum matched-forest partition of G in

O(n3).
Notice that the planarity of G is a sufficient but not a necessary

condition for the successful execution of the 3APP Algorithm.

Hence, as we show in Section VIII, the ZS algorithm can be

applied to almost any power grid network without checking its

planarity as long as the 3APP algorithm is executed successfully.

VIII. NUMERICAL RESULTS

A. Recovering the Information in the Presence

of a Measurement Noise

In this subsection, we show via simulation that solving the

optimization problem (9) can correctly recover the phase angles

and detect the failed lines in the presence of the measurement

noise depending on the SNR level. To evaluate the results, we

count number of false negatives and false positives. False neg-

atives are the failed lines that are not detected in the solution

of (9). False positives are the edges that are detected as failed

lines in the solution of (9) despite the fact that they were not

failed. We use the Matlab-based solver CVX [43] for solving the

optimization problem (9).

We provide simulation results with the graph and zone H
shown in Fig. 6 (it is easy to see that H is attack-resilient). No-

tice that the graph in Fig. 6 can be part of a much bigger graph,

however following Corollary 1 and Lemma 2, only the local

information is needed to recover the information inside the at-

tacked zone. As we mentioned in Section VI, in the simulations,

we assume that the readings from the PMUs somewhat differ

from the solution of (3) (i.e., to the DC power flow). Hence,

if �θ and �θ′ are the phase angles obtained from the PMUs (be-

fore and after the attack, respectively), then A(�θ − �e) = �p and

A′(�θ′ − �e′) = �p for unknown Gaussian noise vectors �e and �e′

with equal covariance matrices.

Figs. 7 and 8 show two attack scenarios with different SNR

values and the information recovered by solving (9). Fig. 9

Fig. 7. Example of an attack and recovered information in the presence of
the measurement noise for SNR = 50 dB. Red dashed lines show the attacked
lines. As can be seen, the attacked lines can be detected successfully in this case.

Fig. 8. Example of an attack and recovered information in the presence of
the measurement noise for SNR = 30 dB. Red dashed lines show the attacked
lines. As can be seen, 2 out of the 3 attacked lines can be detected in this case.

shows the average number of false negatives and positives in

detecting line failures by solving (9) versus the SNR level for

different numbers of line failures. As can be seen, for any num-

ber of line failures, when the SNR is above a certain level (e.g.,

40 dB) the solution to (9) can detect the line failures with ac-

ceptable accuracy (less than one false negative and zero false

positives on average). Using the CVX solver, the solution to the

optimization problem (9) can be found in 0.07 sec in our system

with Intel Core i7-2600 @3.40 GHz CPU and 16 GB RAM for

the graph depicted in Fig. 6.

B. Evaluating the Performance of the ZS Algorithm

In this subsection, we demonstrate the results obtained by the

ZS Algorithm in several known power grid networks. Table III

lists the considered grids and number of resulting partitions.

For example, Fig. 10 shows the partitions obtained by ZS Algo-

rithm in the IEEE 14-Bus and 30-Bus benchmark systems [44].

As can be seen, in both cases the graphs can be partitioned into

two attack-resilient zones. We also evaluated the ZS Algorithm

on the IEEE 118 and 300-bus systems, the Polish grid (available
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Fig. 9. Average number of false negatives and positives in detecting line failures by solving (9) in the presence of the measurement noise versus the SNR. Each
data point is the average over 100 trials. (a)–(h) Show this relationship for different number of line failures (|F |). Figs. 7 and 8 provide the detailed information
for two of the points in (c). (a) |F | = 1, (b) |F | = 2, (c) |F | = 3, (d) |F | = 4, (e) |F | = 5, (f) |F | = 6, (g) |F | = 7, (h) |F | = 8.

TABLE III
NUMBER OF PARTITIONS INTO WHICH THE ZS ALGORITHM DIVIDES

DIFFERENT NETWORKS

Network Nodes Edges Partitions

IEEE 14-Bus 14 20 2
IEEE 30-Bus 30 41 2
IEEE 118-Bus 118 179 5
IEEE 300-Bus 300 409 14
Polish grid 3120 3684 10
Colorado state grid 662 864 6
Western interconnection 13135 16860 9

Fig. 10. Partitioning of the IEEE 14 and IEEE 30 bus systems into 2 attack
resilient zones (using the ZS Algorithm).

with MATPOWER [45]), the Colorado state grid, and the U.S.

Western Interconnection network.7 Recall form Section VII that

when G is planar, the ZS Algorithm is a 6-approximation al-

gorithm for the minimum matched-forest problem. However, as

can be seen from the examples above, in practice, it partitions

the networks into few zones.

7 The data of the Western Interconnection (and of Colorado) was obtained
from the Platts Geographic Information System (GIS) [46].

Fig. 11. Partitioning of the U.S. Western Interconnection into 9 attack-resilient
zones (using the ZS Algorithm). Nodes with the same color are in the same zone.

We note that the ZS Algorithm does not take the geographi-

cal constraints into account. Thus, when partitioning very large

networks such as the Western Interconnection (see Fig. 11), the

nodes in the same partition may be geographically distant from

each other. This is impractical, since the PMUs from the same

zone should send the data to a single PDC. However, it is easy

to see that if a zone is attack-resilient, any of its subgraphs is

also attack-resilient. Therefore, the partitions obtained by the ZS

Algorithm can be further divided into smaller zones based on

geographical constraints (e.g., into zones within different states

in Fig. 11). This approach does not result in an optimal partition-

ing. Hence, obtaining an efficient partitioning with geographical

constraints is a subject of future work.

IX. CONCLUSION

We studied joint cyber and physical attacks on power grids.

We developed methods to estimate the state of the grid inside the

attacked zone using only the information available outside of the
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attacked zone. We identified graph topologies and constraints

on the attacked edges for which these methods are guaranteed

to recover the state information. We briefly studied the problem

of information recovery in the presence of measurement noise

and showed that by relaxing some of the constraints the same

methods can be used for information recovery in noisy sce-

narios. Moreover, we showed that the problem of partitioning

the grid into the minimum number of attack-resilient zones is

not approximable to within n1−ε for all ε > 0 unless P = NP.

However, for planar graphs, we developed an approximation al-

gorithm for the partitioning problem and numerically illustrated

the operation of the algorithm.

This is one of the first steps towards understanding the vul-

nerabilities of power grids to joint cyber and physical attacks

and developing methods to mitigate their effects. Hence, there

are still many open problems. In particular, we have been eval-

uating the performance of the recovery method presented in

Section VI when the phase angles are obtained using the AC

power flow model. Preliminary results are promising, and there-

fore, future work will focus on its large scale evaluation using

MATPOWER [45]. We also plan to generalize Theorems 2 and

3 to a broader class of graphs, noisy scenarios, and when the

control network is limited (e.g., limited number of PMUs).

Moreover, we will develop algorithms to partition the grid

into weakly-attack-resilient zones while taking into account

geographical constraints and constraints on the number and

positions of the PDCs.
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