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Abstract Recently reported lidar observations have revealed a persistent wave activity in the Antarctic
middle and upper atmosphere that has no counterpart in observations at midlatitude and low-latitude
locations. The unusual wave activity suggests a geographically specific source of atmospheric waves with
periods of 3-10 h. Here we investigate theoretically the hypothesis that the unusual atmospheric wave
activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf
(RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice
shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate
in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the
dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the
resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by
the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the
acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS,
which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be
in a remarkable agreement with the key features of the observed persistent wave activity.

1. Introduction

Recently, observations were reported of rather unusual atmospheric wave activity in Antarctica [Chen et al.,
2016]. With a lidar instrument operating at McMurdo, Antarctica, Chen et al. [2016] observed persistent,
large-amplitude acoustic-gravity waves with 3-10h periods and vertical wavelengths between 20 and
30km from the stratosphere to lower thermosphere. Remarkably, these waves were present during every
lidar observation throughout the 5 year observation period at McMurdo, and no similar atmospheric wave
activity was ever observed at midlatitude and low-latitude locations [Chen et al., 2016].

From tropospheric to mesospheric heights, dominant nontidal atmospheric waves are believed to be gener-
ated by moist convection, shear flow instabilities, jets, atmospheric fronts, and interaction of winds with the
Earth’s topography [Gossard and Hooke, 1975; Fritts and Alexander, 2003; Geller et al., 2013; Vincent et al., 2013;
Plougonven and Zhang, 2014; Alexander et al., 2016]. At high latitudes, auroral activity also makes a significant
contribution [Hunsucker, 1982; Oyama and Watkins, 2012]. These wave sources are intermittent and are not
known to generate persistent wave activity or a narrow range of vertical wavelengths.

In this paper, we propose a possible explanation for the cause of the observed persistent atmospheric wave
activity at McMurdo, Antarctica. The observations were made in the immediate vicinity of the Ross Ice Shelf (RIS)
(Figure 1). The RIS occupies the southern part of the Ross Sea and is the world’s largest ice shelf. Presence of ice
sheets introduces additional vibration modes [Press and Ewing, 1951; Holdsworth and Glynn, 1978, 1981;
Sergienko, 2013; MacAyeal et al., 2015], which can potentially enhance conversion of oceanic wave energy into
atmospheric waves. Exceptionally large horizontal dimensions of the RIS facilitate radiation by the ice shelf
oscillations of long atmospheric waves that can reach thermospheric altitudes. Previous studies revealed
waves in the middle and upper atmosphere that were generated by various wave processes in the ocean
and solid earth such as tsunamis [Artru et al., 2005; Makela et al., 2011; Galvan et al., 2012; Komjathy et al.,
2012; Occhipinti et al., 2013], earthquakes [Lognonné, 2010; Maruyama et al.,, 2012; Astafyeva et al., 2013;
Occhipinti et al., 2013; Garcia et al, 2014; Jin et al, 2014], volcanic eruptions [Tahira, 1995; Watada and
Kanamori, 2010], and background infragravity waves in the ocean [Godin et al., 2015; Zabotin et al., 2016].

We hypothesize that the persistent atmospheric waves in mesosphere and lower thermosphere are related to
the ice cover and, specifically, to low-frequency vibration resonances of the RIS. By analyzing several idealized
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Figure 1. Ross Ice Shelf. (left) Google Earth image of the Ross Ice Shelf area. The yellow hexahedrons are locations of two Antarctic stations, McMurdo and Jang Bogo.
An approximate grounding line of the shelf is shown by the magenta line. (middle) A transect of the shelf's ice/water/bedrock geometry along a line roughly
orthogonal to the Ross Ice Shelf front (adapted from Bromirski et al. [2015]). Horizontal axis is compressed by a factor of about 700 compared to the vertical one.
(right) Simplified geometry of the ice shelf that is used for analytical modeling of wave processes. The ice shelf grounding line and the ice front are perpendicular to
the plane of the figure. L is the distance between the grounding line and the ice front. Hy and H, are the thicknesses of the ice and the water-filled cavity beneath the
ice; Hg is the depth of ice-free water.

models of the coupled ice shelf-ocean system, we show that the temporal and spatial scales of atmospheric
waves, which are radiated by the lowest-order modes of RIS vibrations, are consistent with the lidar observa-
tions of Chen et al. [2016] at McMurdo, Antarctica, that “the raw temperature data from the stratosphere to
the lower thermosphere (about 30-115 km) exhibit persistent, dominant, large-amplitude waves with nonti-
dal periods of ~3-10 h and vertical wavelengths of ~20-30 km.”

Vibrations of floating glaciers are primarily studied in connection with iceberg calving and ice shelf stability
[Holdsworth and Glynn, 1978, 1981; MacAyeal et al., 2006; Sergienko, 2013; Papathanasiou et al., 2015]. In that
context, resonances with periods of less than about 30s, which can be efficiently excited by sea swell and
lead to the glacier breakup, are of primarily interest. In contrast, the fundamental mode and other low-order
(hence longer period) resonances are most relevant to problem of origin of the persistent atmospheric wave
activity, which has periods of several hours. To make an analytical treatment of the problem possible, we sim-
plify geometry of the ice shelf. We will model RIS as a homogeneous rectangular plate of constant thickness,
which is grounded on one (southern) side, faces the ocean on another (northern) side, and is supported by
solid earth on the other (east and west) sides. Seafloor will be modeled as a rigid horizontal plane. We will
be interested in long waves with horizontal wavelengths that are much larger than the ocean depth and
the ice thickness.

Below, a Cartesian coordinate system is used with horizontal coordinates x and y and a vertical coordinate z.
The vertical coordinate z is zero on the seafloor and increases upward. The ice shelf grounding line (the south
edge of the ice shelf) is located at x=0. The ice front (the north edge of the ice shelf) is located at x=L. The
east and west edges of the ice shelf are at y=+[,/2, 0 <x < L.

The paper is organized as follows. In section 2, low-frequency oscillations of the RIS are studied in a traditional
thin-plate, long-wave approximation. To overcome some physically undesirable limitations of this approach,
a layered-fluid approximation is introduced and investigated in section 3. A simple model of generation of
waves in the atmosphere by oscillations of large ice shelves is applied in section 4 to evaluate kinematic para-
meters of the forced atmospheric waves. Effects of Earth’s rotation on the RIS resonant vibrations and result-
ing atmospheric waves are studied in section 5. Section 6 summarizes our findings.

2. Ice Shelf Vibrations in the Thin-Plate Approximation

Vibrations of ice shelves and ice tongues are usually described mathematically in the thin-beam (assuming
that the wavefield depends on a single Cartesian horizontal coordinate) or thin-plate (where the wavefield
can be a generic function of horizontal coordinates) approximations [Press and Ewing, 1951; Wadhams, 1973;
Holdsworth and Glynn, 1978, 1981; Williams and Robinson, 1981; Squire et al., 1995; Squire, 2007; Sergienko,
2013; Papathanasiou et al., 2015]. In these approximations, vertical motions are averaged, and the problem
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dimensionality is decreased. Vertical displacement w(x, y, t) of a thin plate and velocity potential &(x, y, t) of
fluid motion in the cavity below the plate satisfy simultaneous partial differential equations [Holdsworth and
Glynn, 1978, 1981; Squire et al., 1995; Sergienko, 2013; Papathanasiou et al., 2015]:

Pw 0
prhh i vi (DVﬁW) — P2gW _Pza_(fy m
ow o 0
o ~Vh-(HVhp), V= (&7 EYR 0)- v

Here tis time, p; and p; are densities of ice and water, H; is ice thickness, and H, is the thickness of the water-
filled cavity beneath the ice (Figure 1). The flexural rigidity D of the plate is given by

D =EH}/12(1 —?), 3)

where E is the dynamic modulus of elasticity of the ice in bending, and v is Poisson’s ratio. Compressibility of
water and ice is not taken into account [Holdsworth and Glynn, 1978, 1981; Squire et al., 1995; Sergienko, 2013;
Papathanasiou et al., 2015]. This is justified as long as the phase speed of wave solutions to equations (1) and
(2) is small compared to the velocity of compressional waves in water (~1500 m/s) and ice (~3500 m/s).

In the case of a uniform plate of constant thickness (H; =const., p; =const, and D=const.) and constant
depth of a homogeneous fluid (H, = const. and p, = const.), equations (1) and (2) have plane-wave solutions
with dependence exp(ik.x + ik,y — iwt) on horizontal coordinates and time. For the plane waves, differential
equations (1), (2) reduce to the algebraic equation [Squire et al., 1995; Sergienko, 2013]:

DK® + (p,g — py’Hy ) k> = p,0® [H,. (4)

Equation (4) relates wave number k = (k,? +ky2)”2 and circular frequency w of the plane waves and has the

meaning of the dispersion relation of free waves in the coupled ice-ocean system, when there are no nonhor-
izontal boundaries. When viewed in 3-D, the plane waves are horizontally propagating surface waves.

Equation (4) is cubic with respect to k% and its analytic solutions are readily available and are given, e.g., by
Cardano'’s formula [Korn and Korn, 1968]. We are interested in the fundamental mode and low-order modes of
the RIS vibrations. In these modes, k~L~" and is very small. Below, we obtain long-wave asymptotics, equa-
tion (5), of the free-wave dispersion relation directly from equation (4). The same result can be also obtained
—but with much more algebra—from Cardano’s formula in the limit @ — 0.

For waves with a bounded phase speed c= w/k, frequency w — 0 when k— 0. In the long-wave limit, it is suf-
ficient to retain only the lowest-order term, pogk?, in the left side of equation (4). Then, we obtain rather sim-
ple dispersion relation:

w:k\/gTz. 5

This is the only solution to equation (4) that gives a finite, nonzero phase speed in the limit k— 0. It follows
from equations (4) and (5) that neglecting the term p;H;w? compared to p,g and Dk® compared to pogk® in
equation (4) is justified as long as L » H, + H, and the shear wave speed in the plate (i.e., in ice) is small com-
pared to (gL*H; %)%, These conditions are easily met for the RIS and other large ice shelves.

The dispersion relation equation (5) for long free waves in the coupled ice shelf-ocean system coincides with
the dispersion relation of long waves in ice-free water of depth H,. Hence, flexural-gravity waves propagate
within ice horizontally with the speed of infragravity waves [Webb et al., 1991; Godin et al., 2014; Ardhuin et al.,
2014] in an ice-free ocean. In this approximation, neither flexural rigidity nor inertia of the ice shelf has any
effect on the wave propagation speed. The free waves are not dispersive; their phase and group speeds have
frequency independent value (gH,)'"? according to equation (5).

In an unbounded floating ice shelf, the wave frequency and wave number vary continuously in equation (5).
In the case of a finite ice shelf, appropriate boundary conditions need to be imposed at the ice grounding line,
on the ice front, and at the side boundaries. The boundary conditions select discrete values of wave vector k
and, through equation (5), determine resonant frequencies of the ice shelf. We assume that the ocean is lim-
ited by rigid vertical walls at the grounding line and the side boundaries. Then
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Op/ox=0, x=0 (6)
and

0p/oy =0, y==L,/2. 7)

Ocean depth Hy in ice-free ocean beyond the ice front is related to H; and H, by the condition of hydrostatic
equilibrium, which gives Hy = H, + H; p1/p>. Let fluid motion in the ice-free ocean be described by the velocity
potential ¢o(x, y, t). At the ice front we impose the following boundary conditions:

p=g¢. x=1L (8)
and
Op _ ., Opg _
HzaX—Ho aX’ x=1L. (9)

Although highly idealized, the boundary conditions (6)—(9) are the conditions that are normally employed
when considering linear dynamics of ice shelves in the long-wave approximation [Squire et al, 1995;
Sergienko, 2010; Papathanasiou et al., 2015]. Equation (8) expresses continuity of pressure in fluid at x=L.
Equation (9) expresses continuity of mass flux through the plane x=L and ensures conservation of the mass
of fluid in the long-wave approximation.

Potentials that satisfy the boundary conditions (6) and (7) and the radiation condition at x — e are

27l 2 4p2f
o(x,y) = Aqcos oy coskixx, ki = o 712 , 0<x<lL, (10)
Ly gH2 Ly
2zly\ | w?  4r?
X,y) = Agcos | == ekt kg = [— — —— x> L, 11
po(X,y) = Ao (Ly) ox o Lﬁ (n

where A7 and Ag are arbitrary constants, Imko,>0,and /=0, 1, 2, ... . Time dependence exp(—iwt) is assumed
and suppressed. Equation (11) describes an infragravity wave [Webb et al., 1991; Godin et al., 2014; Ardhuin
et al., 2014] that is propagating in ice-free ocean away from the ice shelf.

Substitution of equations (10) and (11) into boundary conditions (8) and (9) on the ice front gives two simul-
taneous linear algebraic equations for unknown A, and Ag. Nontrivial solutions of the simultaneous algebraic
equations exist when

tankqxL = —ikoXHo/k1XH2. (12)

Equation (12) is the dispersion relation of low-order ice shelf resonances in the thin-plate approximation. It is
expected that the resonance oscillations of the RIS are excited by tides [Padman et al., 2003; Bromirski et al.,
2015], incident ocean waves [Holdsworth and Glynn, 1978, 1981; MacAyeal et al., 2006; Sergienko, 2010;
Bromirski et al., 2010; Bromirski and Stephen, 2012; Bromirski et al., 2015; Papathanasiou et al., 2015], and pos-
sibly by wind. Specific mechanisms of the excitation and amplitudes of the RIS oscillations are beyond the
scope of this paper.

Consider the resonances that do not involve horizontal motion along the ice front; /=0 for these resonances.
Then, therightside of equation (12) is independent of frequency and solutions are readily obtained analytically:

w,,zL”s/gHz{n(n—i—%)—i—iC], C:%In Hhp1 [Hap, s, n=0,1,2,.. (13)
(1+ 1+H1p1/H2p2)

Note that { < 0. Only complex solutions w,, exist at /=0. Complexity of the resonance frequency w, means
that after being excited by an external action, resonant oscillations decay in time: |exp(—iw,t)| = exp((t).
Spatially, the amplitude of the resonance oscillations increases with distance from the grounding line accord-
ing to equation (10).

For some I+0, L, and L,, dispersion equation (12) may admit real-valued solutions for resonance frequencies

provided that 2zl(gH,)'?w ™ ' < L, < 2zl(gHo) 0 .
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Figure 2. Fundamental and other low-order resonant vibrations of the Ross Ice Shelf. (a) Dimensionless resonant frequencies
op, ILgH2) ™ 172 6f the RIS oscillations that are calculated for different mode orders n, /=0, 1,2, ... in the thin-plate approxi-
mation as roots of the dispersion relation equation (12). Real and imaginary parts of the dimensionless frequencies are shown
by circles and triangles, respectively. (b) Same as in Figure 2a but using the layered fluid approximation instead of the thin-
plate approximation. Resonant frequencies are calculated as roots of the dispersion relation equation (28) and are real valued.
(c) Periods of the resonance oscillations that are calculated in the thin-plate approximation and adjusted for the Earth's
rotation according to equation (41). (d) Same as in Figure 2c but using the layered fluid approximation instead of the thin-
plate approximation. The RIS parameters assumed in calculations are L = 550 km, L, = 800 km, H; =300 m, H =400 m, and
pa/py =0.9; the value of the Coriolis parameter fcis taken for the latitude of 77°. Color in all panels marks the transversal mode
order / as shown in Figure 2c legend.

The fundamental mode of ice shelf vibrations corresponds to /=0 and n=0. From equations (5) and (13) for
the fundamental mode we find

_VgHy m . _lymo 2z Al
wo =2 (5+1¢), k=7(5+1¢,0.0). To = Rews ~ Volls: (4)

As expected, k is of the order of L~". Ty has the meaning of the period of resonance oscillations. Periods
T,=2n/Re w, are progressively shorter for higher-order resonances according to equation (13). Using
L=550km and H,=400m to estimate the longest period of the RIS resonant vibrations, from equation
(14) we obtain Ty~ 9.8 h, which is close to the reported longest period (10-10.6 h) of persistent atmospheric
waves observed at McMurdo, Antarctica [Chen et al., 2016]. The periods of the RIS resonance vibrations will be
further discussed in section 5, where the effects of Earth’s rotation are taken into account.

Figure 2a illustrates solutions of equation (12) for different values of /. For each n, the real part of the reso-
nance frequency w, ; increases with /. Note a large difference between periods of the fundamental and
the other modes of resonant oscillations. At /=0, Re w1 = 3 Re wy; the real parts of all frequencies w,, ;are even
larger than Re w; when /> 0.Imaginary parts of the resonance frequencies w,, ;only weakly depend on n and
I'when [ > 0. However, Im g > =0, and this mode of resonant oscillations does not decay in time.

3. Ice Shelf Vibrations in the Layered Fluid Approximation

While it is expected that flexural rigidity of ice has little effect on long waves [Squire et al., 1995; Papathanasiou
et al,, 2015], the absence in equation (5) of any inertial effect of the ice motion on free wave propagation is
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surprising and cannot be justified physically. To overcome this drawback of the thin-plate approximation, one
has to account for the vertical structure of the wave motion in the coupled ice shelf-ocean system and, speci-
fically, rapid variations with z of the horizontal component of the wave-induced particle velocity in the vicinity
of the ice-water interface. Here this is done approximately by neglecting shear rigidity of ice and modeling the
latter as an incompressible fluid with density p; that is smaller than water density p».

Consider waves with harmonic dependence expl(ik,x + ik,y — icwt) on horizontal coordinates and time. Vertical
dependencies of pressure p and vertical displacement w in fluid satisfy equations:

op , w  kKp.

E:Pw w, E_W' (15)

and the boundary conditions w =0 on the seafloor z=0 and p =p;gw on the free surface z=H; + H, [see, e.g.,
Godin, 2012]. Solving equation (15) with the boundary condition on the rigid seafloor, one finds

w = Asinhkz, p = p,w’k 'coshkz, 0 <z < H,, (16)

w =B +Be ™ p=pwk’ (B e — Bze’kz), H, <z < Hy + Ho, (17)

where A and B, , are arbitrary constants. By imposing the boundary condition on the free surface and the con-
ditions of continuity of w and p — pgw on the fluid-fluid interface z = H, [Godin, 2012], one obtains from equa-
tions (16) and (17) the dispersion equation of surface gravity waves in a horizontally unbounded layered fluid:

k 2 2k
L2 (cotthz - —€> (1 - w—cotth1> -2 3 (18)
P1 ® kg

For long waves such that k(H, + H,) < 1, the dispersion relation equation (18) simplifies and gives a quadratic
equation

¢t = g(Hr +Hy)c* + g*HiHy(1 = py/p;) = O (19)
for ¢, where c=w/k. In this limit,
By = —By = Ap,/2p;. (20)

Solutions of equation (19) define the phase speeds of “fast” (with the plus sign) and “slow” (with the minus

sign) long gravity waves:
4HH
c= | 2(H +Hy) |1+ 1—%(1—ﬂ) . @1
2 (H1 + Hz) P2

For the fast wave, the ratio ¢/\/g(H, + H.) varies between (1 + \/p1/p2) /2, when H;H, —0and 1, when

H;=H,. The range of the variations is rather narrow when 1 —p;/p, < 1. For the slow wave, the ratio ¢/
\/9(H1 + H,) varies between 0, when H,H, — 0, and (1 — \/p1/p2)/2, when Hy =H,.

On the ice front, which is now modeled as a boundary of two-layer fluid and a single layer of fluid 2 (water),
we impose the following boundary conditions (compare with equations (8) and (9)):

Hy+H,
vx(x =L —0,y,2z)dz =0, (22)
H
Hy Ho
(J; Vy(x=L—-0.y,z)dz = l vi(x =L+0,y,z)dz, (23)
and

Hy+H, Ho
p(x=L—-0,y,2)dz = J p(x =L+0,y,z)dz. (24)

0 0

Here v, is the x component of the wave-induced particle velocity. Equations (22) and (23) insure mass conserva-
tion for fluids 1 and 2, respectively. Equation (24) expresses the balance of forces applied to the boundary x=L.
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Taking into account the rigid wall conditions at {x=0, 0 < z < H; + H,} and using equations (16), (17), and (20),
at0<x <L we find

2zl 2 4g2P
vy = o(Arsinkiex + Agsinkpx)cos (2 ) kg = [ 2L 0<z<H, (25)
L, (e L
P2 . . 27T/y
Vy = cup—(A15|nk1Xx + Azsinkacx)cos <) Hy <z < Hy + Hy, (26)
1 y

A A 2rl
p= —iw2p2 (—1 coskiyXx + —Zcoskux) cos (Ly), 0<z<H;+H,, (27)

k1x k2x Ly

Here j=1, 2; ¢; > ¢, are phase speeds of the fast and slow gravity waves as given by equation (21); and A, »
are unknown constants, which describe amplitudes of the fast and slow gravity waves; /=0, 1, 2, ... charac-
terizes the zonal structure of resonant oscillations and has the same meaning as in section 2.

Only one surface gravity wave is present at x > L. It is described by equation (11). Note that v, = d¢o/0x and
p=iwpaepg at x > L.

Substitution of equations (11) and (25)—(27) into boundary conditions equations (22)-(24) gives a set of three
linear algebraic equations for unknown amplitudes A;, Ay, and Ao. Nontrivial solutions of the algebraic equa-
tions exist when

k1Xtank1xL = kthankZXL. (28)

Equation (28) is the dispersion relation of ice shelf resonances in the fluid model. As expected, equation (28)
indicates that in addition to ice shelf dimensions, both the ice thickness and water depth as well as the ice-
water density ratio affect the frequencies of ice shelf resonances. This is in contrast to the thin-plate model
that we considered in section 2.

Equation (28) gives real-valued resonance frequencies when kq, and k;, are either simultaneously real or
simultaneously imaginary. In particular, one obtains real resonance frequencies w,, n=0, 1, 2, ..., when
[=0. It follows from equation (21) that c;*/c;%> « 1 in the ice shelf problem because the ice and water density
difference is relatively small. Then, for the fundamental mode we find from equation (28)

TCy c
~~—(14+—=). 29
@0~ ( + c%) (29)

Terms of the third order in the ratio c,/c; are neglected in equation (29) compared to unity. Each mode of
resonance vibrations contains fast and slow surface waves. The relative weights of the slow and fast waves
are determined by the ratio of constants A, and A; in equations (25)-(27). It follows from equations (22),
(26), and (29) that A, » A, in the fundamental mode, i.e., slow waves with k= w/c, dominate in ice shelf vibra-
tions in this resonance.

To estimate the longest period of resonance oscillations of the RIS, we take L=550km, H;=300m, and
H, =400 m (see Figure 1) and obtain Ty = 27/wq ~ 22.7 h. However, the atmospheric waves that are generated
by slow surface waves in the ice shelf are unlikely to propagate to high altitudes due to dissipation in air and
the critical level filtering, which are briefly discussed in section 4. Another solution of equation (28) gives a
resonance, which is expected to generate atmospheric waves much more efficiently because the fast waves
are dominant in that case. When ¢,/c; « 1 and /=0, equation (28) has solutions in the vicinity of points, where
kixL=m(n+ 1/2). The lowest-order resonance in this series has the frequency

TTCy C Tcy
T (4 2ot (). 30
@ ZL( T (2c2>> (30

For the set of parameters that we have chosen to represent the RIS, equation (30) gives wave period T~ 6.3 h.
This solution corresponds to n=2,/=0 in Figures 2b and 2d, which show numerical solutions of equation (28).

An improved description of the ice shelf interaction with ocean in the underice cavity in the layered fluid
model leads to a richer set of long-period resonant oscillations than in the thin-plate model. For representa-
tive parameters of the RIS, equation (28) gives nondecaying resonances at /=0, 1, 2. Comparison of Figures 2a
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and 2b shows that the difference in periods between the fundamental mode (n=/=0) and other low-order
modes of resonant oscillations is much smaller in the layered fluid model than in the thin-plate model. Note
that w,,, 1 and w,, » increase with n slower than w,, ¢ (Figure 2b). At n > 1, vibration modes with a zonal struc-
ture (/> 0) can have longer periods than respective modes without dependence of the ice displacement on
the coordinate y along the ice front.

We postpone comparison of the resonance periods that are predicted in the layered fluid model and the per-
iods of persistent atmospheric waves observed at McMurdo, Antarctica [Chen et al.,, 2016], until section 5,
where effects of Earth’s rotation are taken into account.

4. Properties of Atmospheric Waves

Waves that propagate along the surface of the ocean or ice shelf generate perturbations in the atmosphere.
These perturbations are propagating or evanescent atmospheric waves depending on the frequency and
phase speed of waves on the surface. Because air density is small compared to the water and ice densities,
to first order one can neglect the effect of atmospheric loading on long waves in the ocean. Then, one can
investigate the nature of induced atmospheric perturbations by using the properties of waves on the surface
that were predicted without taking the atmospheric loading into account [Godin et al., 2015].

Acoustic-gravity waves (AGWs) in the atmosphere have the dispersion relation [Godin, 2014, 2015]

2 2.2 _ 2
2:ﬂ_79_k2{1_(7 1)9} 31)

2 22
&  Ack w32

s

where ¢; and u are the sound speed and wind velocity, y~ 1.4 is the ratio of specific heats in air at constant
pressure and constant volume, (k,, k,, m) and w are the AGW wave vector and frequency, k= (k,, k,, 0) is the
horizontal wave vector, and wy=w — k-u is the intrinsic frequency. Here we disregard the effect of dissipative
processes on the AGW dispersion relation. When atmosphere is horizontally stratified and stationary, i.e., y, ¢,
and u are independent of horizontal coordinates and time, w and k remain constant, while m varies with
height. Strictly speaking, AGWs reduce to gravity waves and acoustic waves in the limits where fluid compres-
sibility or buoyancy becomes negligible [Gossard and Hooke, 1975]. Often, AGWs with frequencies |w4| <
(y—1)"?g/c;and |wq| > yg/2¢, are loosely referred to as gravity waves and infrasound, respectively. (With this
loose terminology—which we will not use—the atmospheric waves that are discussed further in this section
would be called gravity waves.)

Atmospheric perturbations that are generated by surface waves have the same frequency w and horizontal
wave vector k as the surface waves. The sign of m? in equation (31) determines whether AGWs are propagat-
ing (m? > 0) or evanescent (m? < 0). Consider first AGWs in the absence of wind. From equation (31) we find

PR A o P a2, C
m= 22 ! 4(y— 1) k{ a)’ (32

s

where c=w/k. For the fundamental and low-order ice shelf resonances considered in sections 2 and 3, c is
frequency independent and is small compared to the sound speed ¢; in air. Then, the quantity in brackets
in the right side of equation (32) is close to 1. The term with K in the right side of equation (32) is small com-
pared to the term (y — 1)g%/c’c,? for all waves with frequencies w < g/c, i.e., for waves with periods longer
than about 10 min. This condition is easily met by the fundamental and low-order ice shelf resonances con-
sidered in sections 2 and 3. Hence, these resonance vibrations of ice shelves generate upward propagating
atmospheric waves. Their vertical wavelength

2 27mcsC 2\ V2
I, =—rn— -1 -
z m g (V 4C§) (33)

is moderately sensitive to height and varies approximately proportional to the square root of absolute tem-
perature of air. This is consistent with the observation by Chen et al. [2016] that changes in 1, are typically
within the factor of 1.5 from the stratosphere to lower thermosphere. As discussed above, typical values of
c in different models are between (gHz)”2 and (gH, +gH2)”2 (except for slow surface waves in the layered
fluid model), or about 50-90 m/s for the RIS. According to equation (33), it translates into 4, values of about
20-30 km. This is in very good agreement with the observed values [Chen et al., 2016].
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According to equation (31), one needs to replace ¢ with |c — uy| in equations (32) and (33) in order to take the
wind into account. Here uy is the projection of the wind velocity u on the direction of vector k. The effect of
wind on the atmospheric waves generated by ice-shelf vibrations is threefold. First, AGWs are strongly dissi-
pated in the vicinity of the critical height where w =0 or, equivalently, c=uy. Therefore, winds filter out
slower waves, which encounter critical heights between the ice surface and the observation altitude.
Second, variations of wind velocity with altitude contribute, in addition to temperature variations, to changes
in the vertical wavelength of AGWs with height and in time. Third, winds can complicate the anisotropy of the
field of atmospheric waves. In the absence of winds, the longest-period atmospheric waves, which are gen-
erated by the fundamental mode of ice shelf vibrations, are expected to propagate meridionally. Winds
change the group speed and propagation direction of AGWs with a given k and, through the critical level fil-
tering [Gossard and Hooke, 1975; Fritts and Alexander, 2003] and changes in dissipation rate [Godin, 2014],
affect the azimuthal distribution of AGW power flux. Despite these potentially significant effects, winds do
not change the period of atmospheric waves that are generated by ice shelf vibrations. The range of vertical
wavelengths 4, is little changed by winds as long as the ranges of variation of ¢ and |c — vy are similar. For
predominantly zonal winds, this is expected to be the case for the fundamental mode of the RIS vibrations
and lower-order modes with k,=0.

We supplement these theoretical considerations with calculations for a realistic model of the Antarctic atmo-
sphere at the time of observations (Figure 3). Wind velocity profiles at McMurdo were generated by the
Horizontal Wind Model 2014 (HWM14) model [Drob et al., 2015] for 1day in June 2014. The wind velocity
experiences strong and rapid variations, especially at altitudes above 35 km. To obtain a background wind
profile that is suitable to model propagation of waves with periods of 3-10 h, the output of the HWM14
model was averaged over 1day and smoothed by calculating a running average over 15 km range of alti-
tudes (Figure 3a). The zonal component of the background wind (not shown) was found to be an order of
magnitude stronger than the meridional component at altitudes from the sea level to 110km. The
NRLMSISE-00.2 model [Picone et al., 2002] was utilized to obtain an average profile of temperature for the
same day (Figure 3b). The dispersion equation (31) of atmospheric waves was used to calculate the vertical
wavelength A,=2z/m (Figures 3c and 3d). The calculations demonstrated that strong zonal winds block
upward propagation of atmospheric waves that were generated by the RIS resonances with /+ 0. The reso-
nances with /=0 generate atmospheric waves with k,=0; these waves are not sensitive to zonal winds.
Figures 3c-3e refer to waves with k,=0.

Figure 3cillustrates the altitude dependence of 1, when the thin-plate approximation is employed to find the
RIS resonant vibrations. Meridional component of the wind velocity makes the wavelengths different for
waves with opposite signs of the x component, k,, of the wave vector. Within the 30-115 km altitude range
of the Chen et al. [2016] observations, the predicted wavelengths for both k, signs are within the range of 17—
26 km. This is close to the observed range of 20-30 km [Chen et al., 2016]. In agreement with theoretical con-
siderations, 4, proves to be insensitive to the mode order n of the RIS resonant vibrations.

In the layered fluid approximation, fast and slow waves in ice contribute to generation of atmospheric waves.
Atmospheric waves that are generated by slow waves in ice are much shorter than the atmospheric waves
generated by the fast waves (Figure 3d) and, as has been already mentioned, are expected to be strongly
attenuated by dissipative processes in the atmosphere [Gossard and Hooke, 1975; Fritts and Alexander,
2003; Godin, 2014]. Fast waves generate atmospheric waves with 23 km < 1, < 33 km (Figure 3d), which is
consistent with observations of Chen et al. [2016]. Approximate equation (33) provides a good estimate for
the 1, range (Figure 3d).

The results presented in Figures 3c and 3d are insensitive to n and, hence, to wave period. However, as dis-
cussed in the next section, the latter conclusion is valid only for waves with periods less than about 5 h.

5. Effects of Earth Rotation

So far, we have ignored possible effects of Earth rotation on atmospheric waves and oscillations in the
coupled ocean-ice shelf system. This can be justified only for waves with periods much smaller than the per-
iod T, =24 h of the Earth rotation. In practice, the rotation effects are usually negligible for waves with periods
less than a few hours. This condition is certainly not met by the longer-period part of the persistent
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Figure 3. Vertical wavelength of the atmospheric waves that are generated by resonant vibrations of the Ross Ice Shelf. (a)
Altitude profiles of the meridional wind at McMurdo, Antarctica, as provided by the HWM14 model [Drob et al., 2015] for
1 day in June 2014. Blue lines are the wind profiles obtained with 1 h time increments; red line is the profile averaged over
one day; green line shows the time-averaged wind profile smoothed over 15 km altitude intervals. The latter profile has
been used in our calculations. (b) Average temperature profile as provided by the NRLMSISE-00.2 model [Picone et al., 2002]
for the same day. (c) Altitude dependence of the vertical wavelength /1, of the atmospheric wave calculated for the RIS
resonances with /=0 and n=0, 1 that are predicted in the thin-plate approximation. Earth’s rotation is not taken into
account. Red and blue curves correspond to opposite directions of the horizontal wave vector. Curves for different n
overlap and cannot be distinguished on the scale of the plot. (d) Same as in Figure 3c but for the RIS resonances that are
predicted in the layered fluid approximation. The two groups of curves correspond to the slow and fast waves as defined by
equation (21). The colors (red and black for the slow wave, magenta and blue for the fast wave) distinguish solutions with
the opposite directions of the horizontal wave vector. The green curves correspond to the approximate analytical solution
equation (33) in the absence of wind. Curves that are calculated for different n overlap and are indistinguishable in the plot.
(e) Same as in Figure 3d but with the Earth’s rotation taken into account. Notation is the same as in the Figure 3d, but now
n=0, 1, 2, 3 and the curves corresponding to different n do not overlap.

atmospheric wave activity observed at McMurdo [Chen et al., 2016]. In this section, we evaluate the effects of
Earth rotation in the f plane approximation [Gill, 1982], where fluid motion in a noninertial reference frame is
described by including in the Euler equation the Coriolis force due to vertical component of the angular velo-
city of the Earth’s rotation.

In the f plane approximation, linearized equations of wave motion in a moving, compressible fluid in a gravity
field [Godin, 1997], become

d? \/ d
Vp +pd—‘2’ + (w-V)Vpy — (p+ w-Vpo)ig + 2pQx {_w - (w~V)u] =0, (34)
t e dt
V-w + (p+w-Vp,)/pc2 = 0. (35)

Here x denotes cross product of vectors, d/dt=0/0t+u -V is the convective time derivative, u is the velocity
of background flow, py, p, and ¢, are the pressure, density, and sound speed in the absence of waves, and w is
oscillatory displacement of fluid parcels. In terms of the oscillatory displacement, wave-induced perturba-
tions in fluid velocity are v=dw/dt— (w-V)u. In equation (34) Q=(0, 0, f/2) is the angular velocity,
fe=4xT,”" sind is the Coriolis parameter, and @ is latitude. The Coriolis parameter equals twice the vertical
component of the angular velocity of the Earth’s rotation. Equations (34) and (35) apply to ideal fluids with
an arbitrary equation of state [Godin, 1997].
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Consider waves with harmonic dependence exp(ik,x + ik,y — iwt) on horizontal coordinates and time in a hor-
izontally stratified fluid with a horizontal background flow. Then py, p, u, and ¢; are functions of the vertical
coordinate z only, dpo/dz= — pg, and equations (34) and (35) simplify to become

ap  gp dp 92
= " = w, | pw} + gdz (36)
Vhp = paiwh + 2pQx (iwgw + Wzdu/dz), 37)
o+ e PPON (38)
0z pe:

Here V,,=(0/0x, 0/0y, 0), wy=(wy, wy, 0), and k= (k,, k,, 0) is the horizontal wave vector. By eliminating
unknown wj, from simultaneous equations (37) and (38), one obtains

ow, gw, 2w, [20Q%dwy du K? 1\ p
e Wz Wz (222904 (o8 = (2 )P 39
0z & wi-4Q? {wd dz “dz wi—4Q% ¢ )p (39)

When supplemented by appropriate boundary conditions, first-order differential equations (36) and (39)
allow one to determine unknown vertical dependencies of the wave-induced pressure perturbation p and
vertical displacement w,. After these are found, all other characteristics of the wavefield can be calculated
in terms of p and w,. When Q =0, equations (36) and (39) reduce to known governing equations for AGW
in nonrotating fluids, see equations (5) and (6) in Godin [2012]. (Specifically, equation (36) coincides with
equation (5) in Godin [2012], and equation (39) with Q = 0 gives equation (6) in Godin [2012]). In the particular
case of incompressible, quiescent fluid of constant density, equations (36) and (39) reduce to equation (15)
that we used in section 3. (In section 3 the notation w was used for the vertical displacement w,.)

Note that when written in terms of p and w,, boundary conditions on horizontal fluid-fluid interfaces as well
as on rigid and pressure-release surfaces contain neither k nor w [Godin, 1997, 2012]. Let us consider motion-
less layered fluids with piecewise continuous variations of p and ¢, and a uniform background flow. When du/
dz=0, governing equations for waves in rotating and nonrotating fluids differ only by k being replaced with

KD = k(1= f2/w2) 2 (40)

in equation (39). Hence, dispersion equations of surface waves and other normal modes in horizontally
unbounded rotating fluids differ from respective dispersion equations in nonrotating fluids by replacing k
with k. In particular, equation (21) remains valid for long waves in a two-layered incompressible rotating
fluid but with ¢ = w/k™ rather than c= w/k. This is consistent with known results [Gill, 1982] for single-layered
incompressible rotating fluids. Equation (40) shows that surface waves, which are nondispersive in the
absence of rotation, become dispersive, when fc+0, and are strongly dispersive, when vy~ fc.

More generally, in the long-wave limit (i.e., at k — 0) the dispersion equation of surface waves with finite, non-
zero phase speed ¢ has the form k= w/c in nonrotating fluids. Let the surface wave give a resonance with fre-
quency w, and wave vector k,, in the nonrotating, quiescent (u=0) layered fluid with vertical boundaries.

Equation (40) suggests that in the presence of rotation, the resonance frequency wﬁ,') =k = ck,,

)2
(1 fi)w ”2) ,,(1 - f%/w,(q’)z) . Hence,
o) =/ +f. (41)

Equation (41) is a simple relation between the resonance frequencies w,, which are calculated in a nonrotat-
ing fluid, and the frequencies wﬁ,'), which are observed on rotating Earth.

To be more specific, consider the fluid model of the ice shelf that was introduced in section 3. For simplicity,
here we limit our analysis to waves without dependence on the horizontal coordinate y, which is parallel to
the ice front. We assume that such waves satisfy boundary conditions on the side boundaries y = +L,/2 of the
ice shelf. Repeating the derivations that are outlined in section 3, at 0 < x < L we obtain from equations (36)
and (39)
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Vy = o(Arsinkix + Aysinkox), ki =1/w? —f2/c;, 0<z<H,, (42)
vy = w%(msinlﬁx + Agsinkox), Hy <z < Hy + Ha, 43)
1
o) 2 Al AZ
p=—i(w®—f¢)p, k—cosk1x +k—cosk2x , 0<z<H +H, (44)
1 2

instead of equations (25)-(27). Equations (42)—(44) describe long-wave motion of an ice shelf in the presence
of rotation. At x> L, i.e., in the ocean without ice cover, equation (11) can no longer be used because wave
motion is not potential in rotating fluids. Instead, from equations (36) and (39) we find

vy = —iwAoexp(ikox), ko =1/w? — f%/gHo, 0 < z < Ho, (45)

p = —i(w? — f2)pAcexp(ikox), 0 <z < Hy. (46)

Boundary conditions on the ice front, equations (22)-(24), give a set of three linear algebraic equations for
unknown constants Ao, A;, and A, in equations (42)-(46). The dispersion relation of ice shelf resonances

k1tank1L = kztankzL (47)
is obtained as the condition of existence of nontrivial solutions of the algebraic equations.

Equation (47) is similar to the dispersion relation equation (28) in the no-rotation case except k; and k; in the
presence of rotation are given by equation (42) instead of equation (25) with /=0. A comparison of equations
(25) and (42) verifies the relation equation (41) between the resonance frequencies of ice shelf vibrations in
problems with and without rotation.

Now consider the influence of rotation on atmospheric waves. The terms with the angular velocity Q in the
left side of equation (39) vanish in the limit du/dz— 0 and are small in the case of slow, gradual variation of
the wind velocity with altitude. The terms with du/dz are inversely proportional to the spatial scale of the alti-
tude dependence of wind velocity. This spatial scale serves as a large parameter in the asymptotic expansions
that lead to the ray and Wentzel-Kramers-Brillouin (WKB) approximations [Godin, 2014, 2015]. Therefore, the
terms with du/dz have no effect on the AGW dispersion relation but will affect the Berry phase and wave
amplitude in the ray and WKB approximations [see Godin, 2014, 2015]. Hence, AGW dispersion equation in
rotating atmosphere is obtained from equation (31) by replacing k with K", equation (40):

2 2 22 N2
m? — 2d re o [1_(7 1)9}

2 a4 > 2 2 2
& 4c] a)d_f [Op1er

4

(48)

This result agrees with a known dispersion equation [Gossard and Hooke, 1975, p. 112] for the particular case
of waves in an isothermal, quiescent, rotating atmosphere.

We use the AGW dispersion equation (48) to address properties of atmospheric waves that are generated by
I . _ 1/2 .
resonance vibrations of ice shelves. Letu=0, » > f¢, and denote c = k™' (w? — f%) 2 In the case of ice shelf
vibrations, ¢ has the meaning of the phase speed of a long surface wave as calculated without account for
rotation; c is frequency independent in the long-wave limit and small compared to the sound speed c; in

air. From equation (48) we find

—1Na? 2.2 2 2
R Vil PR S B PR Y (49)
e | “ap-na e\ a

Equation (49) is quite similar to equation (32) that has been discussed in section 4 except in the right side of

equation (49) we have w?c 2 = k? + f%cf2 instead of k? in equation (32). As before, the term with w 2 in the
right side of equation (49) is small compared to the term (y — 1)gz/c2c52 for all waves with frequencies w <« g/c,,
or with periods longer than about 10 min. For the vertical wavelength of atmospheric waves we again obtain
equation (33). Hence, Earth’s rotation does not change any conclusions that are made in section 4 regarding
the vertical structure of atmospheric waves as long as the wind speed is sufficiently small.

In contrast to the vertical structure of atmospheric waves radiated by ice shelf resonance vibrations, Earth’s
rotation has a significant effect on the frequencies of the atmospheric waves. The frequencies are determined
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by resonant frequencies of the ice shelf. Equation (41) shows that the rotation increases resonance fre-

quencies, and the effect is the stronger the lower the resonant frequency. We have wﬁ,') >max(wy, fo), and

wﬁ,') ~fc when w,<«fc In polar regions 2z/fc is close to 12h. Then equation (41) maps the range
3h < T, < 24h of the ice-shelf resonant periods T, = 2z/w,,, which are calculated in the nonrotating case, into

the range 2.9h < T < 10.7 h of resonant periods T = 27/’ to be observed in polar regions.

Figure 2 complements these general considerations with numerical results obtained for a specific RIS model
in the thin-plate (Figure 2¢) and layered-fluid (Figure 2d) approximations. In the thin-plate approximation, the
RIS is predicted to have two modes of resonant vibrations (n=0, 1 and /=0) that radiate atmospheric waves
with periods in the 3-10 h range (Figure 2¢). In the layered-fluid approximation, at least 15 modes of resonant
vibrations (0 <n<4 and 0</<?2) fill this range of periods (Figure 2d). This is consistent with the diversity of
atmospheric wave periods observed by Chen et al. [2016]. In the absence of rotation, Ty~ 22.7 h for the fun-
damental mode, see section 3. Due to effects of Earth’s rotation, the fundamental mode period in Figure 2d
decreases and proves to be very close to the upper bound of periods of the persistent atmospheric wave
activity observed at McMurdo [see Chen et al., 2016, Figure 6]. This coincidence suggests that the upper
bound of the observed periods is primarily determined by the Coriolis parameter rather than details of the
resonant oscillations. The vertical wavelength 1,=2z/m, on the other hand, is sensitive to the phase speed
¢ of the waves, which are responsible for resonant vibrations of the ice shelf.

Figure 3e illustrates the altitude dependence of the vertical wavelength of atmospheric waves, which is cal-
culated from the dispersion equation (48) for the realistic atmospheric model shown in Figures 3a and 3b. The
atmospheric waves in Figure 3e are generated by the RIS resonant vibrations, which are modeled in the
layered-fluid approximation (Figure 2d). As in the nonrotating case (Figure 3d), upward propagation of waves
with k,#0 is blocked by strong zonal winds, and only resonances with /=0 are represented in Figure 3e.

Calculations confirm that the effect of Earth'’s rotation on /, is negligible in the absence of winds. However,
the combined effect of the rotation and winds proves to be rather strong. In contrast to the nonrotating case
(Figure 3d), there is a significant difference in 4, values in atmospheric waves due to ice-shelf resonances with
distinct mode orders n (Figure 3e). Due to Earth’s rotation, numerous altitudes appear where 1,=0 for the
atmospheric waves that are radiated by slow waves in the ice (Figure 3e). These altitudes are the critical levels
where the waves are fully dissipated [Gossard and Hooke, 1975, pp. 170-181]. Presence of the critical levels
adds to the argument made in section 4 for why slow waves in ice are not expected to contribute appreciably
to the observed persistent atmospheric wave activity, especially at thermospheric altitudes. For atmospheric
waves that are radiated by fast waves in the ice, the combined effect of Earth’s rotation and wind leads to
more diversity in vertical wavelengths and somewhat stronger altitude dependence (compare Figures 3d
and 3e). At altitudes below 115 km, predicted A, values fill the 20-30 km range in an excellent agreement with
observations of Chen et al. [2016].

6. Conclusions

Radiation of atmospheric waves by fundamental and other low-order resonance vibrations of large ice
shelves is qualitatively similar to previously considered radiation of atmospheric waves by infragravity waves
in ice-free water [Godin et al., 2015; Zabotin et al., 2016]. Properties of the persistent atmospheric wave
activity, which are observed in Antarctica in the vicinity of the Ross Ice Shelf [Chen et al., 2016], differ from
the properties of AGWs, which are directly generated by infragravity waves in an open ocean, because of
differences in the power spectra of background infragravity waves [Godin et al., 2013; Ardhuin et al., 2014]
and ice shelf vibrations. The key features of the persistent atmospheric wave activity reported by
[Chen et al., 2016], including frequency band, vertical wavelength range, and weak variation of the vertical
wavelength with height, can be explained by simplified models of the Ross Ice Shelf proposed in this paper.

It is hoped that the present work will serve as a motivation for in-depth studies of coupling between vibra-
tions of ice shelves and waves in the upper and middle atmosphere at high latitudes. Further research invol-
ving detailed numerical simulations is necessary to account for actual shape of the ice shelf and variations in
its thickness and ocean depth, which were ignored in the simplified models. As long as the atmospheric
waves are generated by the ice shelf vibrations, they reveal the low-order resonances, which can be difficult
to observe by other means [Williams and Robinson, 1981; Padman et al., 2003; Bromirski and Stephen, 2012;
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Bromirski et al., 2015] because of their long periods and small surface slopes. The atmospheric waves are sen-
sitive to geometrical and physical parameters of the RIS and carry information about its properties. It would
be important to investigate which physical parameters of the ice shelf and its dynamics can be retrieved from
lidar and radar observations of atmospheric waves.
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