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ABSTRACT
Recent hardware advances, called gate camouflaging, have opened
the possibility of protecting integrated circuits against reverse-

engineering attacks. In this paper, we investigate the possibility

of provably boosting the capability of physical camouflaging of a

single Boolean gate into physical camouflaging of a larger Boolean

circuit. We first propose rigorous definitions, borrowing approaches

from modern cryptography and program obfuscation areas, for cir-

cuit camouflage. Informally speaking, gate camouflaging is defined

as a transformation of a physical gate that appears to mask the gate

to an attacker evaluating the circuit containing this gate. Under

this assumption, we formally prove two results: a limitation and a

construction. Our limitation result says that there are circuits for

which, no matter how many gates we camouflaged, an adversary

capable of evaluating the circuit will correctly guess all the camou-

flaged gates. Our construction result says that if pseudo-random

functions exist (a common assumptions in cryptography), a small

number of camouflaged gates suffices to: (a) leak no additional in-

formation about the camouflaged gates to an adversary evaluating

the pseudo-random function circuit; and (b) turn these functions

into random oracles. These latter results are the first results on
circuit camouflaging provable in a cryptographic model (previously,
construction were given under no formal model, and were even-

tually reverse-engineered, or were argued secure under specific

classes of attacks). Our results imply a concrete and provable real-
ization of random oracles, which, even if under a hardware-based

assumption, is applicable in many scenarios, including public-key

infrastructures. Finding special conditions under which provable

realizations of random oracles has been an open problem for many
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years, since a software-only provable implementation of random

oracles was proved to be (almost certainly) impossible.
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1 INTRODUCTION
Reverse engineering of an integrated circuit (IC) entails identifying

its structure, design and functionality. Reverse engineering can

identify the device technology used in an IC [11], extract the circuit

of the design [29], and infer its functionality [17]. Several techniques

and tools have been developed to enable reverse engineering of an

IC (see, e.g., [27] for a tutorial and [10, 15] for software products). An

attacker can reverse-engineer an IC to steal and/or pirate a circuit

design. One can use the readily available tools and techniques for

reverse engineering. IC reverse engineering was listed as one of

the serious threats to semiconductor industry [26].

To prevent reverse engineering, SypherMedia [28] provides IC

camouflaging services for this purpose. IC camouflaging involves

designing a Boolean logic gate in hardware that can implement

a plurality of functions. The actual function implemented by the

gate is known only to the designer. To a reverse engineer, the

camouflaging gate can look as any of the functions that can be

implemented by it [25, 28].

Intrigued by recent hardware advances in camouflaging as a

possible avenue for protection of integrated circuits against reverse-

engineering attacks [28], we start a comprehensive and rigorous

approach to the study of circuit camouflaging. We borrow from

research approaches in the modern cryptography and program

obfuscation areas, by showing formal definitions, the first provable

limitation result, the first provable positive result, and an interpreta-

tion of the positive result as a construction of a circuit that behaves

like a random oracle.
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Our problem: In general terms, the circuit camouflaging problem
can be described as follows. Let c be a Boolean circuit realizing a

function f . The camouflaging problem for c asks to transform c
into a related Boolean circuit that computes an equivalent function,

critically building on gate camouflaging techniques, based on a class
of hardware techniques [28], so to limit an adversary’s efforts to

reverse-engineer c or obtain some information about c or f , even
when given enough computational resources and while being capa-

ble to read and evaluate the camouflaged version of c . As stated, the
problem bears some resemblance to the well-studied problem of pro-

gram obfuscation, recently receiving much attention in the security

and cryptography literature. One main difference between the two

areas is that camouflaging mainly relies on hardware-based circuit

design techniques while obfuscation mainly relies on software-

based cryptographic computation techniques.

Our contribution: In this paper we first propose rigorous defini-

tions for the stated circuit camouflage problem. Briefly speaking,

circuit camouflaging is formally defined so to prevent an efficient

adversary which has both partial information about the circuit, and

oracle access to it, to obtain some information about the functional-

ity of the camouflaged gates in the circuit. Although camouflaging

seems superficially similar to program obfuscation [2], our camou-

flage security definitions are significantly different than obfuscation

definitions in the literature (although we do propose similar exact

functionality and bounded slowdown requirements).

Our first result is a limitation on what circuits can be camou-

flaged in this model. We rigorously prove that monotone formulae

cannot be camouflaged in a strong sense, in that any adversary hav-

ing oracle access to a monotone formula with even all gates being

camouflaged, can quickly find all formula gates, with probability

1. This result can be extended to all circuits that are learnable by a

learner who knows the circuit structure, has oracle access to the

camouflaged circuit, and targets exactly learning its camouflaged

gates. Previously, no limitations were known on camouflaging. Lim-

itations based on learning, although of different type, were known

in the program obfuscation area (see, e.g., [30]), and somewhat

inspired our result.

Our second (and main) result is a positive result. Assuming phys-

ical means of camouflaging single Boolean gates (as surfaced in

recent advances on hardware techniques like dummy contacting)

and the existence of families of pseudo-random functions (a stan-

dard assumption in modern cryptography), we show how to provide

provable camouflaging of the keys in pseudo-random functions,

thus resulting in a concrete hardware-based implementation of a

random oracle (or, more accurately speaking, a circuit whose in-

put/output behavior is computationally indistinguishable from that

of a random oracle). This result is the first result provable in a cryp-
tographic model on circuit camouflaging (previously, constructions

were given under no formal model and were eventually reverse-

engineered, or only targeted specific attacks). We show that even

an adversary with read and evaluation access to the camouflaged

circuits can only efficiently guess the value of the camouflaged gates

better than by random guessing by no more than negligible proba-

bility. Also, this result implies a concrete and provable realization of
random oracles, which, even if under a hardware-based assumption,

is applicable to scenarios where a server can be trusted to ship

hardware circuits to clients (e.g., public-key infrastructures among

companies, universities, organizations). Finding special conditions

under which provable realizations of random oracles has been an

open problem for many years. On one hand, random oracles have

been used to enable several cryptographic constructions; on the

other hand a software-only provable implementation of random or-

acles was proved to be (almost certainly) impossible (see [9], as well

as [20] for a survey of the many results in this area). This should

be contrasted with the positive results in cryptographic program

obfuscation, where only for a handful of simpler specific functions,

obfuscators have been designed (see, e.g., [8, 23, 30]) and demon-

strated (see, e.g., [1, 13]) using software-only techniques, based on

intractability assumptions that are standard in cryptography.

Related work. Rajendran et al. showed that when gates in a de-

sign are camouflaged randomly, an attacker can infer their correct

functionality by propagating the camouflaged gates’ output to the

primary outputs of the circuit [25]. To thwart this attack, clique-

based selection camouflages a set of gates such that the outputs

of these gates cannot be sensitized to a primary output without

accounting for the other gates in the set; this set of camouflaged

gates is referred to as a clique [25]. The DeCamo attack demon-

strated that the functionality of camouflaged gates selected using

clique-based selection can be determined by generating a set of

input patterns [22]. Despite these attacks, camouflaging with im-

proved security guarantees against the DeCamo attack has been

demonstrated [21, 31]. However, [21] has been broken by removal

attacks [32]. Note that all these techniques try to protect general

Boolean circuits, under specific attack models. In this work, we

consider camouflaging of specific sets of Boolean functions, in gen-

eral attack models, as in the cryptography literature. For a more

detailed survey of gate camouflaging approaches, including and be-

yond dummy contacts, as well as alternative methods to strengthen

circuits against reverse-engineering, we refer the reader to Section 7

of [31]. Recent alternative approaches also include threshold-based

camouflaging (see, e.g., [12]).

Organization of the paper. In Section 2 we detail definitions and

models of interest, including our adversary model, and a formal

definition for both gate camouflaging and circuit camouflaging.

In Section 3 we present our limitation result on camouflaging of

circuits derived from monotone formulae. In Section 4 we present

our positive result on how to provably camouflage pseudo-random

functions starting from any gate camouflaging technique. Finally,

in Sections 5 we present our conclusions.

2 MODELS AND DEFINITIONS
In this section we detail definitions andmodels of interest, including

our adversary model, and a formal definition for gate camouflaging

and circuit camouflaging.

2.1 Basic Definitions
By |x | we denote the length of x if x is a string, the size of x if x is a

set, the number of gates of x if x is a circuit. A function ϵ over the set
of natural numbers is negligible if for any constant c , there exists an
integer n0 such that for all n ≥ n0, it holds that ϵ(n) ≤ 1/nc . Given
a (discrete) probability distribution D, the notation x ← D is used

to denote the random process of independently drawing a sample
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x according to D. Similarly, the notation y ← A(x), where A is an

algorithm, denotes the random process of obtainingy when running
algorithm A on input x , where the probability space is given by the

random coins (if any) of algorithm A. By Prob[R1; . . . ;Rn : E] we
denote the probability of event E, after the sequential execution of

random processes R1, . . . ,Rn .

Logical representations of gates and circuits. For modeling

purposes, we consider function computation as implemented on

hardware via generic, yet standard, notions of physical gates and
physical circuits. As algorithmic computation is defined over digital

strings, we now define logical abstractions of physical gates and

circuits into digital strings.

We consider a logical abstraction as a map associating a physical

gate to a binary string, called logical gate. A conventional logical

abstraction entails mapping a physical gate to its truth table, where

the truth table of a gate is defined as the list of values output by

the gate for all possible input values. We consider that the logical
representation of a physical gate is the logical gate obtained after

applying a logical abstraction to the physical gate. However, we

note that if a physical gate is available to an adversary, the adversary

can choose to generate its own logical abstraction, which may be

different than the conventional one.

To every physical circuit c , we associate a directed graph G(c) =
(V (c),E(c)), called the c-graph, as follows:

1. for each input in c , an associated vertex is entered in Vi (c);
2. for each gate in c , an associated vertex is entered in Vд(c);
3. for each output in c , a vertex is associated and entered in

Vo (c);
4. V (c) = Vi (c) ∪Vд(c) ∪Vo (c);
5. for each wire between an input and a gate, between two

gates, or between a gate and a circuit output, an associated

directed edge between the two associated vertices is entered

into E(c).
We can view a c-graph as a representation of circuit c that ignores
the types of gates present in c . For every physical circuit c and its

c-graph G(c) = (V (c),E(c)), we associate a vertex labeling L(c) that
maps every v ∈ V (c) to a pair of attributes (vtype,дtype), defined
as follows:

1. vtype ∈ {input ,дate,output} denotes the vertex type,
2. дtype ∈ {and,or , . . . ,⊥} denotes the gate type if the vertex

type is ‘gate’ or an ‘undefined’ symbol ⊥ otherwise.

Finally, we define the logical representation of a physical circuit c as
the pair (G(c),L(c)), whereG(c) is the c-graph and L(c) is the vertex
labeling of circuit c . If a physical circuit is available to an adversary,

the adversary can choose to generate its own logical abstraction,

which may different than what was just defined.

2.2 The circuit camouflaging problem
In general terms, the circuit camouflaging problem asks the follow-

ing question. Let c be a physical circuit computing a function f ; is
it possible to transform c into a related circuit that computes an

“equivalent” function, building on, among other techniques, “a class

of dummy contacting techniques” so to limit an adversary with

“some computational resources” and “some type of access to c” in
his/her efforts to reverse-engineer c and obtain “some information”

about c or f . There are several ways to formalize each of the expres-

sions between quotes in the above description, resulting in multiple

distinct formalizations of the circuit camouflaging problem. We

specify and then study some of these formulations, by focusing the

class of dummy contacting techniques, the adversary model, the

camouflage circuit oracle model, and the camouflage correctness

and security properties.

Dummy contacts. Contacts are conducting materials that connect

adjacent metal layers in a physical gate. While a true contact has

no gap and realizes an electrical connection, a dummy contact has

a gap in the middle and thus fakes a connection between the layers.

From the top view of the IC, which is used by an attacker in reverse

engineering, both the true and dummy contacts appear identical,

even under a microscope. While the layouts of two distinct physical

gates look obviously different (and are hence easy to reverse engi-

neer), the layouts of the same gates, after using dummy contacts,

look identical and difficult to differentiate [4, 5, 7, 28]. We refer

to papers [12, 14, 16, 24, 25, 28] for more on the class of dummy

contacts and other camouflaging techniques.

Adversarymodel. To formalize the adversary’s resources, we con-

sider adversaries as algorithms that run in time polynomial (in

a security parameter σ ), where the size (i.e., number of gates) of

circuit c , denoted as |c |, is also polynomial in σ .
In terms of resource access, we consider adversaries with both

read and oracle access to resources related to circuits. For a circuit c ,
we consider adversaries that have read access to the logical represen-
tation (G(c),L(c)) of circuit c , as defined above; we note, however,

that an adversary could also generate its own representation of c .
An efficient algorithm Adv has oracle access to function O if it can

run the following attack experiment, for somem polynomial in σ :
1. for i = 1, . . . ,m,

on input x1,y1, . . . ,xi−1,yi−1, compute xi ;
call oracle O on input xi ; and
set yi be the response obtained from O on input xi .

2. on input x1,y1, . . . ,xm ,ym , return: out
We summarize this experiment by the random process denoted as

‘out ← AdvO (1σ )’. We say that Adv is an oracle adversary if it is

an efficient algorithm that is given oracle access to function O .
In our model, the adversary will have access to the logical repre-

sentation of a camouflaged circuit as well as oracle access to the

camouflaged circuit.

Camouflaged circuit oracle model. Using the described dummy

contacting techniques, for modeling purposes, we define a gate
camouflaging transformation дCam that maps a physical gate д into
a physical gateд′, and assumed to satisfy certain security properties

(which is defined in Section II). Analogously, we define a circuit
camouflaging transformation cCam that maps a physical circuit c
to another physical circuit c ′ = cCam(c), where c ′ differs from c
in that some or all gates in c have been transformed through gate

camouflaging, and is assumed to satisfy certain security properties

(which we define later).

For every camouflaged physical circuit c ′ = cCam(c) and its

c ′-graph G(c ′) = (V (c ′),E(c ′)), we associate a vertex labeling L(c ′),
defined similarly as before, with the extension that we add camou-
flaged as a new gate type; specifically, L(c ′) maps every v ∈ V (c ′)
to a pair of attributes (vtype,дtype), defined as follows:
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1. vtype ∈ {input ,дate,output} denotes the vertex type,
2. дtype ∈ {and,or , . . . ,camouflaged,⊥} denotes the gate type

if the vertex type is ‘gate’ or ‘undefined’ symbol⊥ otherwise.

For any physical gateд, we define the logical representation of a cam-
ouflaged physical gate д′ = дCam(д) as a fixed binary string, with

the only property of being different from any logical representation

of any (not camouflaged) physical gate. Note that, as defined, this

representation does not allow an adversary to compute д′; however,
as formalized for circuits, д′ can be considered as an oracle that

might be evaluated by an adversary. Even after camouflaging, д’
can always be evaluated, unless both its inputs are set to a constant

(a case that will appear in our construction).

We define the logical representation of a camouflaged physi-

cal circuit as an extension of the logical representation of a (not

camouflaged) physical circuit, with special attention to gates be-

ing camouflaged or not, and treating the camouflaged circuit as

an oracle that can be evaluated. Formally, for any physical circuit

c , we define the logical representation of a camouflaged physical
circuit c ′ = cCam(c) as the triple (c ′-graph, L(c ′), eval(c ′)), where
by eval(c ′) we denote the oracle that evaluates c ′.

We express the information available to the adversary in differ-

ent scenarios of interest, depending on whether all, some, or none

of the gates in the given circuit have been camouflaged First of all,

in all the three cases, the adversary has access to the c-graph. When

L(c) maps some or all vertices of the c-graph to a pair such that

vtype = дate and дtype =camouflaged, then those vertices corre-

spond to physical gates in c that have been camouflaged, and access

to eval(c ′) guarantees the adversary the capability to evaluate c ′.
Finally, when no such pairs exist in the vertex labeling L(c), the
c-graph and the labeling L(c) contain a full description of circuit c ,
on which no gate has been camouflaged.

Gate Camouflaging. By applying dummy contacting techniques,

every 2-input, 1-output Boolean gate can be camouflaged within all

sets of 2-input, 1-output gates. Informally, our formal definition for

gate camouflaging consists of two requirements and one (arguably

reasonable) assumption. First, we require that a physical gate is

camouflaged by an implementation that preserves computation of

the same function. Second, we require that camouflaging does not

significantly slow down the gate’s running time. Finally, we would

like to formulate a security requirement for gate camouflaging.

A first intuition is that gate camouflaging does not leak any

information on what physical gate was camouflaged. Because, in

any reasonable application gates will not exist in isolation but

will be part of Boolean circuits, this preliminary intuition of gate

camouflaging needs to take into account that an adversary will most

likely evaluate the Boolean circuit that contains the camouflaged

gate. Evaluation of the circuit might reveal information on what

physical gate was camouflaged. Accordingly, wemodify the original

intuition to say that to any efficient adversary, oracle access to a

circuit containing a set of camouflaged gates ‘does not help’ more

than oracle access to the logical representation of the circuit (which

is independent on the gate types of the camouflaged gates, and

thus provides ideally minimal security leakage on them). Formally,

the adversary’s output with one type of oracle is computationally

indistinguishable from the adversary’s output with the other type of

oracle, using the computational indistinguishability notion [19] that

is pervasive in formalizing security requirements of cryptographic

primitives in the literature.

By дSd we denote a set of 2-input, d-output Boolean gates, for

some known d ≥ 1, and we denote дS1 as дS .

Definition 2.1. Let дCam be a transformation mapping a physical

gate д ∈ дS to a physical gate д′. We say that дCam is a gate cam-
ouflage transformation for gate set дS if the logical representation

LoдRep(д′) = (д′-graph, L(д′), eval(д′)) of д′ satisfies the following
properties:

(1) (Exact functionality): For any gate д ∈ дS , and all b0,b1 ∈
{0, 1}, it holds that eval(д′)(b0,b1) = д(b0,b1).

(2) (Bounded slowdown): The running time of eval(д′) is at
most ρ times the running time to evaluate physical gate д,
for some small ρ.

(3) (Camouflaging security): For any circuit c , any circuit c ′

obtained by applying algorithm дCam to (some or all) gates

in circuit c , for any distribution D over the set дS of gates,

any logical abstraction LoдAbs , and any efficient algorithm

Adv it holds that |p0 − p1 | ≤ ϵ , where

• p0 = Prob

[
c ′′ ← Adveval (c

′)(LoдAbs(c ′)) : c ′′ = c
]
;

• p1 = Prob

[
c ′′ ← Adveval (c

′)(LoдRep(c ′)) : c ′′ = c
]
;

• ϵ is negligible as a function of σ .

For any given transformation дCam between physical gates, the

exact functionality and bounded slowdown properties can be veri-

fied, while the security property of the camouflaging gates can at

best be conjectured to hold (which has been done for camouflaging

based on dummy contacts).

Remark on physical aspects. To give more details on known justifi-

cations of this assumption, we recall that a reverse engineer may

face the following difficulties while identifying the functionality of

camouflaged cells through physical means [25, 28]:

(1) Delayering the lower metal layers (M1 and M2) is more

difficult than delayering a higher metal layer (M3 and above).

Consequently, the dummy contacts placed at those layers

cannot be reverse engineered.

(2) A reverse engineer can try to differentiate between a true

and a dummy contact by slicing the die and imaging the

side-view. However, this is not possible as there are millions

of contacts in an IC. Classifying them is a cumbersome task

and will not be feasible.

(3) A reverse engineer can use anisotropic techniques like reactive-

ion etching to partially etch the layers. However, this causes

the the dummy contacts to be eroded because of the chemi-

cals used in the upper layers. One may not know whether a

an eroded/dummy contact is because of chemical erosion or

camouflaging [3, 6].

Remark on distribution aspects. For simplicity we have used in the

definition a single set of gates дS and a single distributionD over дS .
We note that it is immediate (although notationally cumbersome)

to generalize the definition to multiple gate sets дSi (up to one for

each gate in the circuit), as well as to multiple distributions Di over

gate set дSi (again, up to one for each gate in the circuit). All our

results continue to hold when considering this generalized version

of the definition of gate camouflaging.
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Remark on security limitations. Let us consider some extreme con-

ditions. First, consider a 1-gate circuit c , and assume this gate is

camouflaged, using дCam, into a circuit c ′; note that oracle access
to eval(c ′) can easily be used to derive the truth table of c . Thus,
camouflage security is easily seen to not hold for 1-gate circuits,

regardless of how powerful algorithm дCam is. Furthermore, limi-

tations on the power of camouflaging similar to this do not only

depend on the fact that c has a single gate, as detailed in Section 3.

Moreover, under assumptions that are standard in cryptography,

for some circuits, oracle access does not help and camouflaging

does keep gates secret, as detailed in Section 4.

Remark on adversary goals. Definition 2.1 considers an adversary

that, given its resources, attempts to exactly compute the entire

circuit with camouflaged gates. It is not hard to obtain similar def-

initions with alternative and interesting goals for the adversary.

For instance, an adversary could be interested in obtain a related

circuit which computed the same function only with some proba-

bility, or which reasonably well approximates the computation by

the original circuit. We defer the investigation of these alternative

definitions to the full version of the paper.

Circuit camouflaging.By applying dummy contacting techniques,

some or all of the physical gates in a circuit can be camouflaged,

by independently camouflaging each gate within all sets of gates

with the same number of inputs and outputs. This leads to some

form of circuit camouflaging, which we formalize here, by extend-

ing the definition for gate camouflaging. Informally, our formal

definition for circuit camouflaging consists of two requirements

and one assumption.

First, we require that a physical circuit is camouflaged by an

implementation that preserves computation of the same function.

Second, we require that camouflaging does not significantly slow

down the circuit’s running time.

Finally, we would like to formulate a security requirement on

circuit camouflaging. A first intuition could be that circuit camou-

flaging, being defined as a natural application of gate camouflaging,

does not leak any information on what physical gates were camou-

flaged (similar to the requirement for gate camouflaging). As for

gate camouflaging, we take into account that an adversary will most

likely evaluate the camouflaged circuit. However, differently than

gate camouflaging, in circuit camouflaging the goal is to protect the

privacy of the circuit, even as the adversary is allowed oracle access

to the camouflaged circuit. Accordingly, we modify the original

intuition to say that even oracle access to the camouflaged circuit

does not allow the adversary to guess the circuit any better than by

randomly guessing the gates that were camouflaged, plus at most a

negligible probability amount.

By cS we denote a set of n-input, n-output Boolean circuits, for

some integer n ≥ 1.

Definition 2.2. Let дCam be a transformation mapping a physical

gate д ∈ дS to a physical gate д′, and let cCam be a physical trans-

formation mapping a physical circuit c ∈ cS to a physical circuit c ′,
by applying дCam to some or all of the physical gates in c . We say

that cCam is a circuit camouflage transformation for circuit set cS if

the logical representation LoдRep(c ′) = (c ′-graph, L(c ′), eval(c ′))
of circuit c ′ satisfies the following properties:

(1) (Exact functionality): For any n-input circuit c ∈ cS , and
all b1, . . . ,bn ∈ {0, 1}, it holds that eval(c

′)(b1, . . . ,bn ) =
c(b1, . . . ,bn ).

(2) (Bounded slowdown): The running time of eval(c ′) is at most

ρ times the running time to evaluate physical circuit c , for
some small ρ.

(3) (Camouflaging security): For any circuit c , any circuit c ′

obtained by applying algorithm cCam to circuit c , for any
distributionD over the setдS of gates, any logical abstraction
LoдAbs , and any efficient algorithm Adv , it holds that p ≤
|дS |−t + ϵ , where

• p = Prob

[
c ′′ ← Adveval (c

′)(LoдAbs(c ′)) : c ′′ = c
]
;

• t is the number of camouflaged gates in c ′;
• ϵ is negligible as a function of σ .

Similarly as for gate camouflaging, we note that for any given trans-

formation cCam between physical circuits, the exact functionality

and bounded slowdown properties can be proved unconditionally,

while the camouflaging security property can at best be proved to

hold under some assumption (say, on gate camouflaging, which, in

turn can be assumed to hold for gate camouflaging transformations

based on dummy contacting techniques).

Remark on physical aspects.We notice that even if the camouflag-

ing security property of the transformation дCam (applied to a

single gate) holds, it needs to be justified why one expects the cam-

ouflaging security property the cCam transformation (applied to

multiple gates) to holds. This can be justified using the fact that the

structure of a camouflaged seems to look identical to an attacker,

independent of the function implemented by it. Thus, the infor-

mation on the functionality of one camouflaged gate can neither

reveal the functionality of another camouflaged gate through vi-

sual inspection, nor help him performing previously mentioned

reverse engineering attacks on another camouflaged gate (i.e., de-

layering, differentiating between true and dummy contact, and

using anisotropic techniques).

Remark on distribution aspects. As for gate camouflaging, we note

that it is immediate (although notationally cumbersome) to gener-

alize the definition to multiple gate sets дSi (up to one for each gate

in the circuit), as well as to multiple distributions Di over gate set

дSi (again, up to one for each gate in the circuit). In this case, even

the expression of the probability of a random guess of the circuit in

the upper bound for p becomes somewhat more complex. All our

results continue to hold when considering this generalized version

of the definition of circuit camouflaging.

Remark on adversary goals.As for gate camouflaging, it is not hard to

obtain similar definitions with alternative and interesting goals for

the adversary, such as obtaining a related circuit which computed

the same function only with some probability, or which reasonably

well approximates the computation by the original circuit, or which

tries to distinguish the original circuit from a black-box comput-

ing the same function (this latter definition being in the spirit of

cryptographic program obfuscation, as defined in [2]). We defer the

investigation of these alternative definitions and comparisons with

Definition 2.2 to the full version of the paper.
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3 LIMITATIONS ON CAMOUFLAGING
A first, natural, approach to camouflage Boolean circuits starting

from gate camouflage techniques in Definition 1 is using these

techniques to camouflage every gate in the given circuit. It turns out

that there are classes of circuits for which this approach completely

fails. In this section we prove that this is the case for a family of

monotone circuits (i.e., circuits only containing AND and OR gates

with fan-out 1), where even camouflaging all gates would not suffice

to hide them against an efficient adversary that can evaluate the

camouflaged circuit. We start by formally stating our result.

Theorem 3.1. LetmtC be the class of monotone circuits with fan-

out-1 gates. Also, let дCam be a gate camouflaging transformation

for 2-input, 1-output, physical gates, and let cCam be the circuit

camouflaging transformation defined by applying дCam to each

gate in the input circuit. There exists an efficient adversary Adv
such that for any circuit c ∈ mtC ,

Prob

[
c ′ ← cCam(c); c ′′ ← Adveval (c

′)(LoдRep(c ′)) : c ′′ = c
]
= 1,

where LoдRep(c ′) = (c ′-graph, L(c ′), eval(c ′)) is the logical repre-
sentation of circuit c ′.

We note that the adversary claimed in Theorem 3.1 negates Defi-

nition 2.2 in a very strong sense, as in particular it computes the

exact circuit c with probability 1 (as opposed to, say, only learning

partial information about the camouflaged gates better than by

randomly guessing). To describe the proof of Theorem 3.1, we first

state known and new definitions related to monotone formulae

and circuits, and then we prove the theorem by induction over

the monotone formula. Finally, we conclude the section with a

discussion of the theorem and its possible extensions.

Definitions on monotone formulae. Let Φ = {ϕn | n ∈ N} de-
note a family of (Boolean) monotone formulae, where each ϕn is a

(Boolean) monotone formula over n input bits x1, . . . ,xn . Recall
that a monotone formula can be expressed using only AND and OR

Boolean operators. It is well known that any monotone formula

can be computed by a monotone circuit with fan-out-1 gates. By

mtC = {mtCn | n ∈ N} we denote the family of circuits computing

monotone formulae. Accordingly, monotone circuits inmtC will

only have AND and OR Boolean gates, with fan-out 1.

Base case: single-gatemonotone formulae. LetmtC2 be amono-

tone circuit with a single 2-input, 1-output gate д ∈ {AND, OR}.
Also, letд′ = дCam(д) and letLoдRep(д′) = (д′-graph,L(д′), eval(д′))
be the logical representation of д′. We define the following oracle

adversary Adv .

Input to Adv : access to a 2-input, 1-output oracle eval(д′)

Instructions for Adv :
(1) set b1 = 0 and b2 = 1;

(2) if eval(д′)(b1,b2) = 0 then return: AND

else return: OR.

By the definition of Adv and direct inspection of a single gate’s

possible truth tables, one sees that Adv’s output is a correct guess
for gate д with probability 1.

Induction case. LetmtCn be a monotone circuit over n inputs. We

can write, without loss of generality,mtCn as the circuit computing

monotone formulaϕ ′n = α(β
′
1
, . . . , β ′k ), for somemonotone formula

α , some camouflaged monotone formulae β ′
1
, . . . , β ′k , and some

integerk ≥ 1. In other words, the outputs of camouflagedmonotone

formulae β ′
1
, . . . , β ′k are inputs to (not camouflaged) monotone

formula α , where the latter is assumed, by induction hypothesis, to

have been correctly guessed by Adv .
To show the inductive step, we need to show that Adv can use

oracle access to eval(ϕ ′n ) to correctly guess the root camouflaged

gate in any one among camouflaged monotone formulae β ′
1
, . . . , β ′k .

Without loss of generality, let us pick β ′
1
, and assume it can

be written as д′(β ′
1,L , β

′
1,R ), for some camouflaged gate д′, and

camouflaged subformulae β ′
1,L , β

′
1,R .

Generalizing the base case, Adv would like to find a setting for

input b1, . . . ,bn such that eval(ϕ ′n )(b1, . . . ,bn ) = 0 (resp., 1) im-

plies that д′ is a camouflage of an AND (resp., OR) gate. A direct

generalization of the base case approach would consist of setting

all input bits to β ′
1,L to 0 and all input bits to β ′

1,R to 1. This setting

has the property that eval(β ′
1
) evaluating to 0 (resp., 1) implies

that д′ is a camouflage of an AND (resp., OR) gate. However, Adv
cannot directly observe the eval(β ′

1
), since it has oracle access to

eval(ϕ ′n ). To bypass this problem, in our construction, Adv deter-

mines a setting for input b1, . . . ,bn in more steps, depending on the

gates already guessed in (not camouflaged) monotone subformula

α . Specifically, the input bits b1, . . . ,bn are set in a way so that

eval(ϕ ′n ) = eval(β ′
1
), which allowsAdv to use the mentioned direct

generalization of the base case approach.

We now formally define the oracle adversary Adv .

Input to Adv : Access to an n-input, 1-output oracle eval(ϕ ′n ), which
can be written as ϕ ′n = α(β

′
1
, . . . , β ′k ), for some monotone formula

α , some camouflaged monotone formulae β ′
1
, . . . , β ′k , and some

integer k ≥ 1.

Instructions for Adv :
(1) Write ϕ ′n = α(β

′
1
, . . . , β ′k )

(2) write β ′
1
= д′(β ′

1,L , β
′
1,R ), for some camouflaged monotone

gate д′ and subformulae β ′
1,L , β

′
1,R

(3) set all bi input to β
′
1,L as = 0 and all bi input to β

′
1,R as = 1;

(4) set h0 = д
′
and h1 as the gate parent of д

′

(5) repeat

consider the subformula η of h1 not including h0
if h1 is an AND gate

set as 1 all bi inputs to subformula η
if h1 is an OR gate

set as 0 all bi inputs to subformula η
set h0 = h1 and h1 as the gate parent (if any) of h0

(6) until h0 is the root gate of ϕ
′
n ;

(7) if eval(ϕ ′n )(b1, . . . ,bn ) = 0 then return: д′ = AND

else return: д′ = OR.

We now show that Adv’s output is a correct guess for gate д such
that д′ = дCam(д) with probability 1. We start by proving a few

properties of Adv and then combine the properties to obtain our

main claim.

Lemma 3.2. Algorithm Adv assigns all input bits b1, . . . ,bn ex-
actly once during its execution.

Proof. Input bits b1, . . . ,bn may either belong to the subfor-

mula having д′ as a root gate or not. All those who do belong are
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assigned by Adv in step 3. Those who don’t are set in step 5, as the

repeat loop steps over all gates h0 between д
′
and the root gate of

ϕ ′n , where, at each step, it sets all bi bits in the subformula eta of

h0’s parent which does not include h0. Then the lemma follows by

observing that the set of the n inputs to ϕ ′n is the disjoint union of

the input bits to the subformula having д′ as a root gate and to the

subformulae η defined in step 5. �

Lemma 3.3. As set by algorithm Adv , input bits b1, . . . ,bn satisfy
eval(ϕ ′n )(b1, . . . ,bn ) = eval(β ′

1
)(b1, . . . ,bn ).

Proof. The lemma follows by observing that at each iteration

of the loop in step 5 of algorithm Adv the bits bi input to subfor-

mula η are set so to preserve the invariant eval(ψ )(b1, . . . ,bn ) =
eval(β ′

1
)(b1, . . . ,bn ), where ψ is the subformula with h1 as root

gate. Since h1 varies from the root gate of β ′
1
to the root gate of ϕ ′n ,

the equality in the lemma statement follows from the mentioned

invariant. �

By combining Lemma 3.2 and Lemma 3.3, and by applying induc-

tively over the path between д′ and the root gate of ϕ ′n the same

reasoning used in the base case of a single-gate monotone formula,

we obtain that Adv’s output is a correct guess for gate д such that

д′ = дCam(д) with probability 1.

This concludes the induction case, from which Theorem 3.1

follows.

Theorem extension and discussion. The result in Theorem 3.1

can be extended to all circuits that are learnable, under a suitable

definition of computational learning. (In fact, the result could also be

stated saying that monotone formulae are learnable in this model.)

This model and associated definition of learning seem somewhat

different than those more frequently used in computational learning

theory (most importantly, PAC-learning), in at least the following

3 important aspects. First, as for the learner’s knowledge of the

circuit, our result allows the learner knowledge of the structure

of the circuit, while in PAC learning this is generally not allowed.

Then, as for the learner’s access to the circuit, our result allows the

learner access to the camouflaged circuit, while in PAC learning the

learner views the circuit as a black box. Finally, as for the learner’s

objective, in our result the learner tries to obtain the camouflaged

gates, while in PAC learning the learner tries to obtain a potentially

different circuit which well approximates the unknown circuit with

high probability. Because of these differences, we believe positive

or limitation results in the area of PAC learning do not directly

carry to our model.

In light of Theorem 3.1, in the rest of the paper, we focus on

very specific families of circuits, with pseudo-randomness (and

thus, unlearnability) properties for which we will be able to obtain

positive camouflaging results.

4 PROVABLE CAMOUFLAGE OF
PSEUDO-RANDOM FUNCTIONS

In this section, we present our main result: a provable circuit cam-

ouflage transformation for any class of circuits associated with an

arbitrary family of pseudo-random functions. Formally, we obtain

the following:

Theorem 4.1. Let prF be a family of pseudo-random functions

with n-bit keys, inputs and outputs, and let prC be the class of

circuits computing pseudo-random functions in prF . If there exists
a gate camouflage transformation дCam satisfying Definition 2.1,

there exists (constructively) a circuit camouflage transformation

cCam for prC that satisfies Definition 2.2 and returns a circuit with

a set of κ camouflaged gates. Moreover, cCam returns a family of

camouflaged circuits roC ′ such that roC ′(x) = prF (k,x), for some

k randomly distributed in {0, 1}κ .

There are two statements of interest in Theorem 4.1: the first state-

ment says that there exists a circuit for which gate camouflaging

(in the sense of Definition 2.1) implies circuit camouflaging (in the

sense of Definition 2.2); the second statement says that, after cam-

ouflaging, this circuit behaves like a pseudo-random function with

a random key, which is computationally indistinguishable from a

random oracle, by definition of pseudo-random functions [18].

We divide the proof of (the first part of) Theorem 4.1 in 4 steps,

with relative subsections. First, in Section 4.1 we recall basic no-

tions and introduce new notions about pseudo-random functions.

Then, in Section 4.2 we describe a first physical circuit transforma-

tion that transforms circuits computing (keyed) pseudo-random

functions to circuits computing pseudo-random functions where

the key is instantiated. In Section 4.3 we describe a second phys-

ical circuit transformation that uses gate camouflaging to trans-

form circuits computing pseudo-random functions where the key

is instantiated into analogue circuits where gates associated with

key bits are camouflaged. Finally, in Section 4.4 we show that the

resulting camouflaged circuit family satisfies Definition 2.2, and

therefore Theorem 4.1. The second part of Theorem 4.1, namely,

that cCam returns a family of camouflaged circuits roC ′ such that

roC ′(x) = prF (k,x), for some k randomly distributed in {0, 1}κ ,

directly follows from the proof for the first part.

4.1 Random and Pseudo-random Functions
We recall formal definitions of random and pseudo-random func-

tions, and define a notion of key-set pseudo-random functions.

Random functions. A function Rn : {0, 1}n → {0, 1}n is a ran-
dom function over {0, 1}n if it is randomly chosen among all func-

tions with n-bit inputs and n-bit outputs. In a random function Rn ,
for any input string x ∈ {0, 1}n , the output string Rn (x) ∈ {0, 1}

n

is uniformly and independently distributed. We say that a family

of functions {Rn : n ∈ N} is a family of random functions if each
function Rn is a random function over {0, 1}n . As a consequence,

an adversary querying Rn on several input strings and obtaining

the corresponding output strings still cannot predict the output

string Rn (x) corresponding to a new input string x , better than by

randomly choosing a string of the same length.

As any logical description of a random function over {0, 1}n

requires Ω(2n ) space, families of random functions cannot be ef-

ficiently described. Pseudo-random functions are widely used to

approximate the properties of random functions in in both theo-

retical research and (a large number of) practical applications [18].

Their evaluation only requires a short random key, and their pseudo-

randomness property holds as long as the key used to evaluate them

is kept secret.
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Pseudo-random functions.A functionprFn : {0, 1}κ×{0, 1}n →

{0, 1}n is a keyed function over {0, 1}n if for each k ∈ {0, 1}κ , the
resulting function prFn (k, ·), also denoted prFk (·), is a function

with n-bit inputs and n-bit outputs.
For anyn ∈ N , letRandn be the set of all functionsRn : {0, 1}n →

{0, 1}n and let prFk : {0, 1}n → {0, 1}n be a keyed function. Con-

sider the following probabilistic experiment Init :
1. Uniformly choose Rn from Randn ; and
2. uniformly choose k from {0, 1}κ .

We say that a family of functions prF = {prFn : n ∈ N} is a fam-
ily of pseudo-random functions if for any efficient oracle adversary

Adv , the difference |pR − ppr F | is negligible in n, where

1. pR = {Init ;O(·) ← Rn (·);A
O (1n ) = 1}; and

2. ppr F = {Init ;O(·) ← prFn (k, ·);A
O (1n ) = 1};.

To the family of functions prF , we can associate a family of

circuits prC that computes the same family of functions.

Key-set pseudo-randomfunctions. LetprF be a family of pseudo-

random functions, and let K = {kn : n ∈ N} be a sequence of keys
such that kn is uniformly distributed over {0, 1}n for all n ∈ N .

We define the family of K-keyed pseudo-random functions prFK ,
as the family of functions such that prF (kn ,x) = prFK (x) for all
x ∈ {0, 1}n and all n ∈ N . To the family ofK-keyed pseudo-random
functions prFK , we can associate a family of circuits prCK that com-

putes the same family of functions.

Pseudo-random functions well approximate the properties of

random functions in all applications where the key used to evalu-

ate them is kept secret. However, in some applications, we cannot

afford to keep the key secret from the adversary, and the stronger

properties of random functions happen to be extremely useful to

obtain plausibility and/or efficiency results. Because of their wide

usefulness and applicability, practitioners often approximate ran-

dom functions with efficient cryptographic functions like block

ciphers (e.g., AES) or hash functions (e.g., SHA3), which, while

known to be not random, are conjectured to have somewhat close

randomness properties.

4.2 A Procedure to Hardware Keys
Our circuit transformation uses a procedure that involves no cam-

ouflaging and takes as input a key k and the family prC of circuits

associated with the pseudo-random functions prF . This procedure’s
goal is to pre-process the circuit, based on key k , before applying
gate camouflaging. The pre-processing consists of hardwiring the

input key k into the circuit and then suitably encoding each key bit

into the circuit as a gate, where the encoding satisfies the following

two properties:

(1) the gate differs depending on the key bit value; and

(2) the gate’s output is equal to the key bit value.

Thus, this procedure turns a circuit with a key and a second string

as inputs into a circuit with a single string as input, getting us one

step closer to realizing a random oracle. Now, we proceed more

formally.

Formal description: Let prF denote a family of pseudo-random

functions, and let prC denote the associated family of circuits com-

puting the same functions. Then, we consider the associated family

prF (k, ·) of k-keyed pseudo-random functions, and the associated

family prCk (·) of circuits computing the same functions.

Input toKH : circuitprCn ∈ prC associatedwith functionprFn (·, ·) ∈
prF , key k ∈ {0, 1}κ

Instructions for KH :

(1) let k = k1 | · · · |kκ , with ki ∈ {0, 1}, for i = 1, . . . ,κ;
(2) for each i = 1, . . . ,κ,

let hi denote a gate with 2 input bits set = 1;

if ki = 0 then let hi be a NAND gate;

if ki = 1 then let hi be an AND gate;

(3) consider k-keyed pseudo-random function prF (k, ·)
(4) consider the associated circuit prCk (·) computing the same

function

(5) set roCk (·) equal to prCk (·)
(6) for each input wire in circuit roCk (·) using bit ki ,

add one output wire for gate hi ;
(7) in circuit roCk (·), do the following:

replace input ki with gate hi ;
(8) return: roCk .

It is not hard to see that other settings for hi would have also

worked in guaranteeing hi to be set as a different gate depending

on the key bit value, without modifying the computation of the

overall circuit.

4.3 The Circuit Transformation
On input a circuit associated with a pseudo-random function, our

circuit transformation randomly chooses a key k and hardwires

it into this circuit using procedure KH . Let roCk be the family

of circuits returned by this procedure execution. Then the circuit

transformation continues by applying gate camouflaging to this

circuit. It turns out that for our goal it only suffices to camouflage

the newly introduced gates h1, . . . ,hκ associated with the key bits

k1, . . . ,kκ . Here, the intuition is that camouflaging of these gates

is used to hide these key bits from the adversary. Then, once the

key bits are hidden, the properties of pseudo-random functions can

be used to show that the adversary’s evaluation of the camouflaged

circuit does not help in learning the camouflaged gates and there-

fore the key bits of the original pseudo-random function. Now, we

proceed more formally.

Formal description: LetprF (k, ·) denote a family ofk-keyed pseudo-
random functions, and let prCk (·) denote the associated family of

circuits computing the same function, and let KH be the procedure

described in Section 4.2.

Input to cCam: circuit roCk
Instructions for cCam:

(1) randomly choose k ∈ {0, 1}κ

(2) let roCk = KH (k,prCk )
(3) let h1, . . . ,hκ denote the gates added to roCK during proce-

dure KH ;

(4) for each i = 1, . . . ,κ,
let h′i = дCam(hi )
replace gate hi with camouflaged gate h′i ;

(5) let roC ′k denote the resulting camouflaged circuit;

(6) return: roC ′k .
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4.4 Properties of the Camouflaged Circuit
In what follows, we prove that our camouflage transformation cCam
satisfies Theorem 4.1. To this, we need to prove that it satisfies the

three properties of Definition 2.2: exact functionality, bounded

slowdown, and security properties of camouflaging; as well as the

two remaining items in the theorem statement. We start from the

latter: we observe that

Exact functionality. The family of circuits prC and its camou-

flaged version roC ′ only differ in some of the inputs, where prC
uses key bits k1, . . . ,kκ , and roC ′ uses some camouflaged gates

h′
1
, . . . ,h′κ . Specifically, in the first step of circuit camouflage trans-

formation cCam on input circuit prC , each input key bit ki is re-
placed by gate hi . In the second step, each gate hi is replaced by

its camouflaged implementation h′i returned by дCam(hi ). By the

exact functionality property of gate camouflaging algorithm дCam,

eval(h′i ) computes the same function as hi . By construction of gate

hi , in step 2 of procedure KH , its output is equal to bit ki , for all
i = 1, . . . ,κ and any ki ∈ {0, 1}. Therefore, roC

′
k computes the

exact same function prC(k, ·), for any k ∈ {0, 1}n .

Bounded slowdown. An execution of camouflaged algorithm

cCam on input circuit prC only results in an increase of κ gates, as

each input key bit ki is replaced by a gate hi and then a cam-

ouflaged version of that gate, for i = 1, . . . ,κ. Thus, we have

|roC ′ | ≤ |prC | + κ, from which the desired property follows.

Camouflage security. Let c be a Boolean circuit. If rP is a random

process, we let PrcCam [rP] denote the probability

Prob

[
k ← {0, 1}κ ; c ′ = cCam(ck ); rP : c ′′ = c

]
.

Our goal is to prove that for any distribution D over cS , any logical

abstraction LoдAbs of physical circuit c ′ = cCam(c), and any effi-

cient algorithm Adv , it holds that p ≤ |дS |−t + ϵ , for some function

ϵ negligible in the security parameter σ , where:

(1) p = PrcCam [c
′′ ← Adveval (c

′)(LoдAbs(c ′))]; and
(2) t is the number of gates camouflaged in c ′.

We prove this property by a modified version of a hybrid argument

[19], where, informally speaking, we evaluate and compare the

success of adversary Adv in guessing circuit c ′′, and thus the κ
camouflaged gates according to cCam, in the following 4 “worlds":

1. Adv has read access to LoдAbs(c ′) and oracle access to eval(c ′);
2. Adv has read access to LoдRep(c ′) and oracle access to eval(c ′);
3.Adv has read access to LoдRep(c ′) and oracle access to a random
oracle Rn ; and
4. Adv ′, depending on Adv , has read access to LoдRep(c ′).

More formally, we first define the following random processes:

rP1 = “c ′′ ← Adveval (c
′)(LoдAbs(c ′))”,

rP2 = “c ′′ ← Adveval (c
′)(LoдRep(c ′))”,

rP3 = “c ′′ ← AdvRn (LoдRep(c ′))”,
rP4 = “c ′′ ← Adv ′(LoдRep(c ′))”.

Then we show the following lemmas.

Lemma 4.2. p = PrcCam [rP1]

Proof. This directly follows from definitions of p, rP1. �

Lemma 4.3. |PrcCam [rP1] − PrcCam [rP2]| ≤ ϵдcam , for some
function ϵдcam negligible in σ .

Proof. Let p0,p1 be the probability quantities defined in Defini-

tion 2.1. By the definitions of rP1, rP2, we observe that PrcCam [rP1] =
p0 and PrcCam [rP1] = p0. Then the lemma follows as a direct ap-

plication of Definition 2.1. �

Lemma 4.4. |PrcCam [rP2]−PrcCam [rP3]| ≤ ϵpr f , for some func-
tion ϵpr f negligible in σ .

Proof. We first observe that the difference between rP2 and rP3
only consists of the oracle to which Adv has oracle access. Specif-

ically, in rP2, Adv has access to eval(c ′), an oracle that evaluates

the circuit c ′ for pseudo-random function prF , while in rP3, Adv
has access to a random oracle Rn . Moreover, the input LoдRep(c ′)
to Adv in both rP2 and rP3 does not depend on the camouflaged

gates in c ′ (which, in turn, encode the bits of key k), by defini-

tion of the LoдRep function. This latter fact is critical to apply the

pseudo-randomness property of prF , and obtain that Adv can only

distinguish the two worlds with at most negligible probability ϵpr f .
(In particular, note that the pseudo-randomness property of prF
might not suffice to prove that |PrcCam [rP1]−PrcCam [rP3]| is neg-
ligible, since LoдAbs(c ′) is a function of the camouflaged gates in

c ′ in rP1). �

Lemma 4.5. For any efficient algorithm Adv , there exists an effi-
cient algorithm Adv ′ such that PrcCam [rP4] = PrcCam [rP3].

Proof. Consider algorithm Adv in random process rP3. Then,
define algorithm Adv ′ as the algorithm that runs Adv and, in this

execution, simulates the answers to Adv’s queries to the random
oracle as random strings (for new queries) or previously generated

random strings (for repeated queries); finally, Adv ′ returns the
same output as Adv . Since the simulation performed by Adv ′ of
the random oracle answers is perfect, it holds that PrcCam [rP4] =
PrcCam [rP3], from which the lemma follows. �

Lemma 4.6. For any efficient algorithm Adv ′, we have that

PrcCam [rP4] ≤ |дS |
−t .

Proof. Note that in random process rP4, algorithmAdv ′ has no
access to camouflaged gates or to an oracle for c ′. Accordingly, at
best, it can randomly guess the value of the gates input to дCam.

The lemma follows by observing that there are t such gates, and

they are uniformly and independently drawn from set дS . �

Finally, we use Lemma 4.2, 4.3, 4.4, 4.5, and 4.6 to conclude the

proof that cCam satisfies Definition 2.2. Specifically, we have that

p = PrcCam [rP1]

≤ |PrcCam [rP1] − PrcCam [rP4]| + PrcCam [rP4]

≤ |PrcCam [rP1] − PrcCam [rP4]| + |дS |
−t

≤ |PrcCam [rP1] − PrcCam [rP2]|

+|PrcCam [rP2] − PrcCam [rP3]|

+|PrcCam [rP3] − PrcCam [rP4]| + |дS |
−t

≤ ϵдcam + |PrcCam [rP2] − PrcCam [rP3]|

+|PrcCam [rP3] − PrcCam [rP4]| + |дS |
−t

≤ ϵдcam + ϵpr f + |PrcCam [rP3] − PrcCam [rP4]| + |дS |
−t

≤ ϵдcam + ϵpr f + |дS |
−t ,
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where the first equality follows from Lemma 4.2, the first and third

inequalities follow by applying the triangle inequality, the second

inequality follows from Lemma 4.6, the fourth inequality follows

from Lemma 4.3, the fifth inequality follows from Lemma 4.4, and

the last inequality follows from Lemma 4.5.

5 CONCLUSIONS
Recent hardware advances have opened the possibility for pro-

tection of integrated circuits against reverse-engineering attacks

via gate camouflaging [12, 14, 21, 24, 25, 28]. While many of these

works consider general Boolean functions in specific attack model,

here we consider specific set of Boolean functions in general attack

models.

We propose a formal model for the analysis and proof of func-

tionality, efficiency and security properties for circuit camouflaging,

inspired by the formal models in [2] for cryptographic (software)

program obfuscation. We propose formal definitions for security

of gate camouflaging and circuit camouflaging. We use these def-

initions to show the first provable limitations and constructions

results for circuit camouflaging, assuming hardware constructions

guaranteeing gate camouflaging. Our construction also shows that

circuit camouflaging can be used to obtain one practical realization

of a random oracle, a long-sought object from the cryptographic

community (which was proved to be very unlikely to exist without

hardware [9]).

A large number of open problems is uncovered by these results,

including finding more limitations (following our result in Theo-

rem 3.1), more constructions (following our result in Theorem 4.1),

and applications of our hardware-based realization of a random

oracle, as implied by our construction underlying Theorem 4.1. Our

future work includes realizing hardware implementations of these

results to obtain the power, area, and delay overheads.
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