Paper Session: Solutions in Hardware Security

ASHES'17, November 3, 2017, Dallas, TX, USA

Boolean Circuit Camouflage: Cryptographic Models,
Limitations, Provable Results and a Random Oracle Realization

Giovanni Di Crescenzo*
Vencore Labs
Basking Ridge, NJ, 07920, USA
gdicrescenzo@vencorelabs.com

Ramesh Karri
NYU Tandon School of Engineering
Brooklyn, NY, 11201, USA
rkarri@nyu.edu

ABSTRACT

Recent hardware advances, called gate camouflaging, have opened
the possibility of protecting integrated circuits against reverse-
engineering attacks. In this paper, we investigate the possibility
of provably boosting the capability of physical camouflaging of a
single Boolean gate into physical camouflaging of a larger Boolean
circuit. We first propose rigorous definitions, borrowing approaches
from modern cryptography and program obfuscation areas, for cir-
cuit camouflage. Informally speaking, gate camouflaging is defined
as a transformation of a physical gate that appears to mask the gate
to an attacker evaluating the circuit containing this gate. Under
this assumption, we formally prove two results: a limitation and a
construction. Our limitation result says that there are circuits for
which, no matter how many gates we camouflaged, an adversary
capable of evaluating the circuit will correctly guess all the camou-
flaged gates. Our construction result says that if pseudo-random
functions exist (a common assumptions in cryptography), a small
number of camouflaged gates suffices to: (a) leak no additional in-
formation about the camouflaged gates to an adversary evaluating
the pseudo-random function circuit; and (b) turn these functions
into random oracles. These latter results are the first results on
circuit camouflaging provable in a cryptographic model (previously,
construction were given under no formal model, and were even-
tually reverse-engineered, or were argued secure under specific
classes of attacks). Our results imply a concrete and provable real-
ization of random oracles, which, even if under a hardware-based
assumption, is applicable in many scenarios, including public-key
infrastructures. Finding special conditions under which provable
realizations of random oracles has been an open problem for many

“Part of work done while visiting NYU Tandon School of Engineering.
T Part of work done while at NYU Tandon School of Engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASHES’17, November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5397-7/17/11...$15.00
https://doi.org/10.1145/3139324.3139331

Jeyavijayan Rajendran’
Texas A&M University
College Station, TX, 777840, USA
jv.rajendran@tamu.edu

Nasir Memon
NYU Tandon School of Engineering
Brooklyn, NY, 11201, USA
memon@nyu.edu

years, since a software-only provable implementation of random
oracles was proved to be (almost certainly) impossible.

CCS CONCEPTS

« Security and privacy — Hardware reverse engineering; Pub-
lic key encryption; Cryptanalysis and other attacks; Mathematical
foundations of cryptography; Privacy-preserving protocols; Hardware-
based security protocols; Malicious design modifications;

KEYWORDS

Hardware security, Camouflaging, Intellectual Property, Piracy,
Cryptography, Program Obfuscation

1 INTRODUCTION

Reverse engineering of an integrated circuit (IC) entails identifying
its structure, design and functionality. Reverse engineering can
identify the device technology used in an IC [11], extract the circuit
of the design [29], and infer its functionality [17]. Several techniques
and tools have been developed to enable reverse engineering of an
IC (see, e.g., [27] for a tutorial and [10, 15] for software products). An
attacker can reverse-engineer an IC to steal and/or pirate a circuit
design. One can use the readily available tools and techniques for
reverse engineering. IC reverse engineering was listed as one of
the serious threats to semiconductor industry [26].

To prevent reverse engineering, SypherMedia [28] provides IC
camouflaging services for this purpose. IC camouflaging involves
designing a Boolean logic gate in hardware that can implement
a plurality of functions. The actual function implemented by the
gate is known only to the designer. To a reverse engineer, the
camouflaging gate can look as any of the functions that can be
implemented by it [25, 28].

Intrigued by recent hardware advances in camouflaging as a
possible avenue for protection of integrated circuits against reverse-
engineering attacks [28], we start a comprehensive and rigorous
approach to the study of circuit camouflaging. We borrow from
research approaches in the modern cryptography and program
obfuscation areas, by showing formal definitions, the first provable
limitation result, the first provable positive result, and an interpreta-
tion of the positive result as a construction of a circuit that behaves
like a random oracle.

https://doi.org/10.1145/3139324.3139331

Paper Session: Solutions in Hardware Security

Our problem: In general terms, the circuit camouflaging problem
can be described as follows. Let ¢ be a Boolean circuit realizing a
function f. The camouflaging problem for ¢ asks to transform ¢
into a related Boolean circuit that computes an equivalent function,
critically building on gate camouflaging techniques, based on a class
of hardware techniques [28], so to limit an adversary’s efforts to
reverse-engineer c or obtain some information about c or f, even
when given enough computational resources and while being capa-
ble to read and evaluate the camouflaged version of c. As stated, the
problem bears some resemblance to the well-studied problem of pro-
gram obfuscation, recently receiving much attention in the security
and cryptography literature. One main difference between the two
areas is that camouflaging mainly relies on hardware-based circuit
design techniques while obfuscation mainly relies on software-
based cryptographic computation techniques.

Our contribution: In this paper we first propose rigorous defini-
tions for the stated circuit camouflage problem. Briefly speaking,
circuit camouflaging is formally defined so to prevent an efficient
adversary which has both partial information about the circuit, and
oracle access to it, to obtain some information about the functional-
ity of the camouflaged gates in the circuit. Although camouflaging
seems superficially similar to program obfuscation [2], our camou-
flage security definitions are significantly different than obfuscation
definitions in the literature (although we do propose similar exact
functionality and bounded slowdown requirements).

Our first result is a limitation on what circuits can be camou-
flaged in this model. We rigorously prove that monotone formulae
cannot be camouflaged in a strong sense, in that any adversary hav-
ing oracle access to a monotone formula with even all gates being
camouflaged, can quickly find all formula gates, with probability
1. This result can be extended to all circuits that are learnable by a
learner who knows the circuit structure, has oracle access to the
camouflaged circuit, and targets exactly learning its camouflaged
gates. Previously, no limitations were known on camouflaging. Lim-
itations based on learning, although of different type, were known
in the program obfuscation area (see, e.g., [30]), and somewhat
inspired our result.

Our second (and main) result is a positive result. Assuming phys-
ical means of camouflaging single Boolean gates (as surfaced in
recent advances on hardware techniques like dummy contacting)
and the existence of families of pseudo-random functions (a stan-
dard assumption in modern cryptography), we show how to provide
provable camouflaging of the keys in pseudo-random functions,
thus resulting in a concrete hardware-based implementation of a
random oracle (or, more accurately speaking, a circuit whose in-
put/output behavior is computationally indistinguishable from that
of a random oracle). This result is the first result provable in a cryp-
tographic model on circuit camouflaging (previously, constructions
were given under no formal model and were eventually reverse-
engineered, or only targeted specific attacks). We show that even
an adversary with read and evaluation access to the camouflaged
circuits can only efficiently guess the value of the camouflaged gates
better than by random guessing by no more than negligible proba-
bility. Also, this result implies a concrete and provable realization of
random oracles, which, even if under a hardware-based assumption,
is applicable to scenarios where a server can be trusted to ship

ASHES'17, November 3, 2017, Dallas, TX, USA

hardware circuits to clients (e.g., public-key infrastructures among
companies, universities, organizations). Finding special conditions
under which provable realizations of random oracles has been an
open problem for many years. On one hand, random oracles have
been used to enable several cryptographic constructions; on the
other hand a software-only provable implementation of random or-
acles was proved to be (almost certainly) impossible (see [9], as well
as [20] for a survey of the many results in this area). This should
be contrasted with the positive results in cryptographic program
obfuscation, where only for a handful of simpler specific functions,
obfuscators have been designed (see, e.g., [8, 23, 30]) and demon-
strated (see, e.g., [1, 13]) using software-only techniques, based on
intractability assumptions that are standard in cryptography.

Related work. Rajendran et al. showed that when gates in a de-
sign are camouflaged randomly, an attacker can infer their correct
functionality by propagating the camouflaged gates’ output to the
primary outputs of the circuit [25]. To thwart this attack, clique-
based selection camouflages a set of gates such that the outputs
of these gates cannot be sensitized to a primary output without
accounting for the other gates in the set; this set of camouflaged
gates is referred to as a clique [25]. The DeCamo attack demon-
strated that the functionality of camouflaged gates selected using
clique-based selection can be determined by generating a set of
input patterns [22]. Despite these attacks, camouflaging with im-
proved security guarantees against the DeCamo attack has been
demonstrated [21, 31]. However, [21] has been broken by removal
attacks [32]. Note that all these techniques try to protect general
Boolean circuits, under specific attack models. In this work, we
consider camouflaging of specific sets of Boolean functions, in gen-
eral attack models, as in the cryptography literature. For a more
detailed survey of gate camouflaging approaches, including and be-
yond dummy contacts, as well as alternative methods to strengthen
circuits against reverse-engineering, we refer the reader to Section 7
of [31]. Recent alternative approaches also include threshold-based
camouflaging (see, e.g., [12]).

Organization of the paper. In Section 2 we detail definitions and
models of interest, including our adversary model, and a formal
definition for both gate camouflaging and circuit camouflaging.
In Section 3 we present our limitation result on camouflaging of
circuits derived from monotone formulae. In Section 4 we present
our positive result on how to provably camouflage pseudo-random
functions starting from any gate camouflaging technique. Finally,
in Sections 5 we present our conclusions.

2 MODELS AND DEFINITIONS

In this section we detail definitions and models of interest, including
our adversary model, and a formal definition for gate camouflaging
and circuit camouflaging.

2.1 Basic Definitions

By |x| we denote the length of x if x is a string, the size of x if x isa
set, the number of gates of x if x is a circuit. A function € over the set
of natural numbers is negligible if for any constant c, there exists an
integer ng such that for all n > ny, it holds that e(n) < 1/n€. Given
a (discrete) probability distribution D, the notation x < D is used
to denote the random process of independently drawing a sample

Paper Session: Solutions in Hardware Security

x according to D. Similarly, the notation y < A(x), where A is an
algorithm, denotes the random process of obtaining y when running
algorithm A on input x, where the probability space is given by the
random coins (if any) of algorithm A. By Prob[R;;...;R, : E] we
denote the probability of event E, after the sequential execution of
random processes Ry, ..., Rp.

Logical representations of gates and circuits. For modeling
purposes, we consider function computation as implemented on
hardware via generic, yet standard, notions of physical gates and
physical circuits. As algorithmic computation is defined over digital
strings, we now define logical abstractions of physical gates and
circuits into digital strings.

We consider a logical abstraction as a map associating a physical
gate to a binary string, called logical gate. A conventional logical
abstraction entails mapping a physical gate to its truth table, where
the truth table of a gate is defined as the list of values output by
the gate for all possible input values. We consider that the logical
representation of a physical gate is the logical gate obtained after
applying a logical abstraction to the physical gate. However, we
note that if a physical gate is available to an adversary, the adversary
can choose to generate its own logical abstraction, which may be
different than the conventional one.

To every physical circuit ¢, we associate a directed graph G(c) =
(V(c), E(c)), called the c-graph, as follows:

1. for each input in ¢, an associated vertex is entered in V;(c);

2. for each gate in c, an associated vertex is entered in Vj(c);

3. for each output in c, a vertex is associated and entered in
Vo(c);

4. V() = Vi(e) U V() U Vo(e):

5. for each wire between an input and a gate, between two
gates, or between a gate and a circuit output, an associated
directed edge between the two associated vertices is entered
into E(c).

We can view a c-graph as a representation of circuit ¢ that ignores
the types of gates present in c. For every physical circuit ¢ and its
c-graph G(c) = (V(c), E(c)), we associate a vertex labeling L(c) that
maps every v € V(c) to a pair of attributes (vtype, gtype), defined
as follows:

1. vtype € {input, gate, output} denotes the vertex type,

2. gtype € {and,or, ..., L} denotes the gate type if the vertex
type is ‘gate’ or an ‘undefined’ symbol L otherwise.
Finally, we define the logical representation of a physical circuit c as
the pair (G(c), L(c)), where G(c) is the c-graph and L(c) is the vertex
labeling of circuit c. If a physical circuit is available to an adversary,
the adversary can choose to generate its own logical abstraction,

which may different than what was just defined.

2.2 The circuit camouflaging problem

In general terms, the circuit camouflaging problem asks the follow-
ing question. Let ¢ be a physical circuit computing a function f; is
it possible to transform c into a related circuit that computes an
“equivalent” function, building on, among other techniques, “a class
of dummy contacting techniques” so to limit an adversary with
“some computational resources” and “some type of access to ¢” in
his/her efforts to reverse-engineer ¢ and obtain “some information”

ASHES'17, November 3, 2017, Dallas, TX, USA

about c or f. There are several ways to formalize each of the expres-
sions between quotes in the above description, resulting in multiple
distinct formalizations of the circuit camouflaging problem. We
specify and then study some of these formulations, by focusing the
class of dummy contacting techniques, the adversary model, the
camouflage circuit oracle model, and the camouflage correctness
and security properties.

Dummy contacts. Contacts are conducting materials that connect
adjacent metal layers in a physical gate. While a true contact has
no gap and realizes an electrical connection, a dummy contact has
a gap in the middle and thus fakes a connection between the layers.
From the top view of the IC, which is used by an attacker in reverse
engineering, both the true and dummy contacts appear identical,
even under a microscope. While the layouts of two distinct physical
gates look obviously different (and are hence easy to reverse engi-
neer), the layouts of the same gates, after using dummy contacts,
look identical and difficult to differentiate [4, 5, 7, 28]. We refer
to papers [12, 14, 16, 24, 25, 28] for more on the class of dummy
contacts and other camouflaging techniques.

Adversary model. To formalize the adversary’s resources, we con-
sider adversaries as algorithms that run in time polynomial (in
a security parameter o), where the size (i.e., number of gates) of
circuit ¢, denoted as |c|, is also polynomial in 0.

In terms of resource access, we consider adversaries with both
read and oracle access to resources related to circuits. For a circuit c,
we consider adversaries that have read access to the logical represen-
tation (G(c), L(c)) of circuit c, as defined above; we note, however,
that an adversary could also generate its own representation of c.
An efficient algorithm Adv has oracle access to function O if it can
run the following attack experiment, for some m polynomial in o:

1. fori=1,...,m,
on input x1, y1, . . ., Xi—1, Yi-1, compute x;;
call oracle O on input x;; and
set y; be the response obtained from O on input x;.
2. oninput x1,Y1,. . ., Xm, Ym, return: out
We summarize this experiment by the random process denoted as
‘out «— AdvC©(19). We say that Adv is an oracle adversary if it is
an efficient algorithm that is given oracle access to function O.

In our model, the adversary will have access to the logical repre-
sentation of a camouflaged circuit as well as oracle access to the
camouflaged circuit.

Camouflaged circuit oracle model. Using the described dummy
contacting techniques, for modeling purposes, we define a gate
camouflaging transformation gCam that maps a physical gate g into
a physical gate g’, and assumed to satisfy certain security properties
(which is defined in Section II). Analogously, we define a circuit
camouflaging transformation cCam that maps a physical circuit ¢
to another physical circuit ¢/ = cCam(c), where ¢’ differs from ¢
in that some or all gates in ¢ have been transformed through gate
camouflaging, and is assumed to satisfy certain security properties
(which we define later).

For every camouflaged physical circuit ¢’ = c¢Cam(c) and its
¢’-graph G(c”) = (V(¢’), E(¢”)), we associate a vertex labeling L(c’),
defined similarly as before, with the extension that we add camou-
flaged as a new gate type; specifically, L(c”) maps every v € V(c’)
to a pair of attributes (vtype, gtype), defined as follows:

Paper Session: Solutions in Hardware Security

1. vtype € {input, gate, output} denotes the vertex type,
2. gtype € {and, or, . ..,camouflaged, 1} denotes the gate type
if the vertex type is ‘gate’ or ‘undefined’ symbol L otherwise.

For any physical gate g, we define the logical representation of a cam-
ouflaged physical gate g’ = gCam(g) as a fixed binary string, with
the only property of being different from any logical representation
of any (not camouflaged) physical gate. Note that, as defined, this
representation does not allow an adversary to compute g’; however,
as formalized for circuits, g’ can be considered as an oracle that
might be evaluated by an adversary. Even after camouflaging, ¢’
can always be evaluated, unless both its inputs are set to a constant
(a case that will appear in our construction).

We define the logical representation of a camouflaged physi-
cal circuit as an extension of the logical representation of a (not
camouflaged) physical circuit, with special attention to gates be-
ing camouflaged or not, and treating the camouflaged circuit as
an oracle that can be evaluated. Formally, for any physical circuit
¢, we define the logical representation of a camouflaged physical
circuit ¢’ = cCam(c) as the triple (¢’-graph, L(c’), eval(c’)), where
by eval(c’) we denote the oracle that evaluates ¢’

We express the information available to the adversary in differ-
ent scenarios of interest, depending on whether all, some, or none
of the gates in the given circuit have been camouflaged First of all,
in all the three cases, the adversary has access to the c-graph. When
L(c) maps some or all vertices of the c-graph to a pair such that
vtype = gate and gtype =camouflaged, then those vertices corre-
spond to physical gates in ¢ that have been camouflaged, and access
to eval(c’) guarantees the adversary the capability to evaluate ¢’.
Finally, when no such pairs exist in the vertex labeling L(c), the
c-graph and the labeling L(c) contain a full description of circuit c,
on which no gate has been camouflaged.

Gate Camouflaging. By applying dummy contacting techniques,
every 2-input, 1-output Boolean gate can be camouflaged within all
sets of 2-input, 1-output gates. Informally, our formal definition for
gate camouflaging consists of two requirements and one (arguably
reasonable) assumption. First, we require that a physical gate is
camouflaged by an implementation that preserves computation of
the same function. Second, we require that camouflaging does not
significantly slow down the gate’s running time. Finally, we would
like to formulate a security requirement for gate camouflaging.

A first intuition is that gate camouflaging does not leak any
information on what physical gate was camouflaged. Because, in
any reasonable application gates will not exist in isolation but
will be part of Boolean circuits, this preliminary intuition of gate
camouflaging needs to take into account that an adversary will most
likely evaluate the Boolean circuit that contains the camouflaged
gate. Evaluation of the circuit might reveal information on what
physical gate was camouflaged. Accordingly, we modify the original
intuition to say that to any efficient adversary, oracle access to a
circuit containing a set of camouflaged gates ‘does not help’ more
than oracle access to the logical representation of the circuit (which
is independent on the gate types of the camouflaged gates, and
thus provides ideally minimal security leakage on them). Formally,
the adversary’s output with one type of oracle is computationally
indistinguishable from the adversary’s output with the other type of
oracle, using the computational indistinguishability notion [19] that

10

ASHES'17, November 3, 2017, Dallas, TX, USA

is pervasive in formalizing security requirements of cryptographic
primitives in the literature.

By gS; we denote a set of 2-input, d-output Boolean gates, for
some known d > 1, and we denote ¢gS; as gS.

Definition 2.1. Let gCam be a transformation mapping a physical
gate g € ¢S to a physical gate g’. We say that gCam is a gate cam-
ouflage transformation for gate set ¢S if the logical representation
LogRep(g’) = (9’-graph, L(g’), eval(g’)) of g’ satisfies the following
properties:

(1) (Exact functionality): For any gate g € ¢S, and all by, b1 €

{0, 1}, it holds that eval(g")(bo, b1) = g(bo, b1).

(2) (Bounded slowdown): The running time of eval(g’) is at
most p times the running time to evaluate physical gate g,
for some small p.

(3) (Camouflaging security): For any circuit ¢, any circuit ¢’
obtained by applying algorithm gCam to (some or all) gates
in circuit c, for any distribution D over the set gS of gates,
any logical abstraction LogAbs, and any efficient algorithm
Adv it holds that |py — p1| < €, where

c|:

e po = Prob [c" — Adveval)(LogAbs(c’)) : ¢
(|

For any given transformation gCam between physical gates, the
exact functionality and bounded slowdown properties can be veri-
fied, while the security property of the camouflaging gates can at
best be conjectured to hold (which has been done for camouflaging
based on dummy contacts).

e p1 = Prob [c" — Advev) (LogRep(c)) : ¢’

e ¢ is negligible as a function of ¢.

Remark on physical aspects. To give more details on known justifi-
cations of this assumption, we recall that a reverse engineer may
face the following difficulties while identifying the functionality of
camouflaged cells through physical means [25, 28]:

(1) Delayering the lower metal layers (M1 and M2) is more
difficult than delayering a higher metal layer (M3 and above).
Consequently, the dummy contacts placed at those layers
cannot be reverse engineered.

A reverse engineer can try to differentiate between a true
and a dummy contact by slicing the die and imaging the
side-view. However, this is not possible as there are millions
of contacts in an IC. Classifying them is a cumbersome task
and will not be feasible.

A reverse engineer can use anisotropic techniques like reactive-
ion etching to partially etch the layers. However, this causes
the the dummy contacts to be eroded because of the chemi-
cals used in the upper layers. One may not know whether a
an eroded/dummy contact is because of chemical erosion or
camouflaging [3, 6].

Remark on distribution aspects. For simplicity we have used in the
definition a single set of gates ¢S and a single distribution D over ¢S.
We note that it is immediate (although notationally cumbersome)
to generalize the definition to multiple gate sets gS; (up to one for
each gate in the circuit), as well as to multiple distributions D; over
gate set gS; (again, up to one for each gate in the circuit). All our
results continue to hold when considering this generalized version
of the definition of gate camouflaging.

Paper Session: Solutions in Hardware Security

Remark on security limitations. Let us consider some extreme con-
ditions. First, consider a 1-gate circuit ¢, and assume this gate is
camouflaged, using gCam, into a circuit ¢’; note that oracle access
to eval(c’) can easily be used to derive the truth table of c. Thus,
camouflage security is easily seen to not hold for 1-gate circuits,
regardless of how powerful algorithm gCam is. Furthermore, limi-
tations on the power of camouflaging similar to this do not only
depend on the fact that ¢ has a single gate, as detailed in Section 3.
Moreover, under assumptions that are standard in cryptography,
for some circuits, oracle access does not help and camouflaging
does keep gates secret, as detailed in Section 4.

Remark on adversary goals. Definition 2.1 considers an adversary
that, given its resources, attempts to exactly compute the entire
circuit with camouflaged gates. It is not hard to obtain similar def-
initions with alternative and interesting goals for the adversary.
For instance, an adversary could be interested in obtain a related
circuit which computed the same function only with some proba-
bility, or which reasonably well approximates the computation by
the original circuit. We defer the investigation of these alternative
definitions to the full version of the paper.

Circuit camouflaging. By applying dummy contacting techniques,
some or all of the physical gates in a circuit can be camouflaged,
by independently camouflaging each gate within all sets of gates
with the same number of inputs and outputs. This leads to some
form of circuit camouflaging, which we formalize here, by extend-
ing the definition for gate camouflaging. Informally, our formal
definition for circuit camouflaging consists of two requirements
and one assumption.

First, we require that a physical circuit is camouflaged by an
implementation that preserves computation of the same function.

Second, we require that camouflaging does not significantly slow
down the circuit’s running time.

Finally, we would like to formulate a security requirement on
circuit camouflaging. A first intuition could be that circuit camou-
flaging, being defined as a natural application of gate camouflaging,
does not leak any information on what physical gates were camou-
flaged (similar to the requirement for gate camouflaging). As for
gate camouflaging, we take into account that an adversary will most
likely evaluate the camouflaged circuit. However, differently than
gate camouflaging, in circuit camouflaging the goal is to protect the
privacy of the circuit, even as the adversary is allowed oracle access
to the camouflaged circuit. Accordingly, we modify the original
intuition to say that even oracle access to the camouflaged circuit
does not allow the adversary to guess the circuit any better than by
randomly guessing the gates that were camouflaged, plus at most a
negligible probability amount.

By ¢S we denote a set of n-input, n-output Boolean circuits, for
some integer n > 1.

Definition 2.2. Let gCam be a transformation mapping a physical
gate g € ¢S to a physical gate ¢/, and let cCam be a physical trans-
formation mapping a physical circuit ¢ € ¢S to a physical circuit ¢/,
by applying gCam to some or all of the physical gates in c. We say
that cCam is a circuit camouflage transformation for circuit set ¢S if
the logical representation LogRep(c’) = (c’-graph, L(c’), eval(c’))
of circuit ¢’ satisfies the following properties:

1

ASHES'17, November 3, 2017, Dallas, TX, USA

(1) (Exact functionality): For any n-input circuit ¢ € ¢S, and
all by,...,b, € {0,1}, it holds that eval(c’)(by,...,by) =
c(b1,....bp).

(2) (Bounded slowdown): The running time of eval(c’) is at most
p times the running time to evaluate physical circuit ¢, for
some small p.

(3) (Camouflaging security): For any circuit ¢, any circuit ¢’
obtained by applying algorithm cCam to circuit c, for any
distribution D over the set gS of gates, any logical abstraction
LogAbs, and any efficient algorithm Adv, it holds that p <
|gS|™* + €, where

e p="Prob [c" — Adve¥) (LogAbs(c")) : ¢ = ¢ |;
e t is the number of camouflaged gates in ¢’;
e ¢ is negligible as a function of 0.

Similarly as for gate camouflaging, we note that for any given trans-
formation cCam between physical circuits, the exact functionality
and bounded slowdown properties can be proved unconditionally,
while the camouflaging security property can at best be proved to
hold under some assumption (say, on gate camouflaging, which, in
turn can be assumed to hold for gate camouflaging transformations
based on dummy contacting techniques).

Remark on physical aspects. We notice that even if the camouflag-
ing security property of the transformation gCam (applied to a
single gate) holds, it needs to be justified why one expects the cam-
ouflaging security property the cCam transformation (applied to
multiple gates) to holds. This can be justified using the fact that the
structure of a camouflaged seems to look identical to an attacker,
independent of the function implemented by it. Thus, the infor-
mation on the functionality of one camouflaged gate can neither
reveal the functionality of another camouflaged gate through vi-
sual inspection, nor help him performing previously mentioned
reverse engineering attacks on another camouflaged gate (i.e., de-
layering, differentiating between true and dummy contact, and
using anisotropic techniques).

Remark on distribution aspects. As for gate camouflaging, we note
that it is immediate (although notationally cumbersome) to gener-
alize the definition to multiple gate sets gS; (up to one for each gate
in the circuit), as well as to multiple distributions D; over gate set
gS;i (again, up to one for each gate in the circuit). In this case, even
the expression of the probability of a random guess of the circuit in
the upper bound for p becomes somewhat more complex. All our
results continue to hold when considering this generalized version
of the definition of circuit camouflaging.

Remark on adversary goals. As for gate camouflaging, it is not hard to
obtain similar definitions with alternative and interesting goals for
the adversary, such as obtaining a related circuit which computed
the same function only with some probability, or which reasonably
well approximates the computation by the original circuit, or which
tries to distinguish the original circuit from a black-box comput-
ing the same function (this latter definition being in the spirit of
cryptographic program obfuscation, as defined in [2]). We defer the
investigation of these alternative definitions and comparisons with
Definition 2.2 to the full version of the paper.

Paper Session: Solutions in Hardware Security

3 LIMITATIONS ON CAMOUFLAGING

A first, natural, approach to camouflage Boolean circuits starting
from gate camouflage techniques in Definition 1 is using these
techniques to camouflage every gate in the given circuit. It turns out
that there are classes of circuits for which this approach completely
fails. In this section we prove that this is the case for a family of
monotone circuits (i.e., circuits only containing AND and OR gates
with fan-out 1), where even camouflaging all gates would not suffice
to hide them against an efficient adversary that can evaluate the
camouflaged circuit. We start by formally stating our result.

THEOREM 3.1. Let mtC be the class of monotone circuits with fan-
out-1 gates. Also, let gCam be a gate camouflaging transformation
for 2-input, 1-output, physical gates, and let cCam be the circuit
camouflaging transformation defined by applying gCam to each
gate in the input circuit. There exists an efficient adversary Adv
such that for any circuit ¢ € mtC,

Prob | ¢’ — cCam(c);c”’ — Adve® () (LogRep(c')) : "’ =¢| =1,

where LogRep(c’) = (¢’-graph, L(c’), eval(c’)) is the logical repre-
sentation of circuit ¢’.

We note that the adversary claimed in Theorem 3.1 negates Defi-
nition 2.2 in a very strong sense, as in particular it computes the
exact circuit ¢ with probability 1 (as opposed to, say, only learning
partial information about the camouflaged gates better than by
randomly guessing). To describe the proof of Theorem 3.1, we first
state known and new definitions related to monotone formulae
and circuits, and then we prove the theorem by induction over
the monotone formula. Finally, we conclude the section with a
discussion of the theorem and its possible extensions.

Definitions on monotone formulae. Let ® = {¢, |n € N} de-
note a family of (Boolean) monotone formulae, where each ¢, is a
(Boolean) monotone formula over n input bits x1, . .., x,. Recall
that a monotone formula can be expressed using only AND and OR
Boolean operators. It is well known that any monotone formula
can be computed by a monotone circuit with fan-out-1 gates. By
mtC = {mtCp | n € N'} we denote the family of circuits computing
monotone formulae. Accordingly, monotone circuits in mtC will
only have AND and OR Boolean gates, with fan-out 1.

Base case: single-gate monotone formulae. Let mtC; be a mono-
tone circuit with a single 2-input, 1-output gate g € {AND, OR}.
Also, let g’ = gCam(g) and let LogRep(g”) = (¢9”-graph, L(g”), eval(g’))
be the logical representation of g’. We define the following oracle
adversary Adv.

Input to Adv: access to a 2-input, 1-output oracle eval(g”)
Instructions for Adv:
(1) setby =0and by = 1;
(2) if eval(g’)(b1, b2) = 0 then return: AND
else return: OR.

By the definition of Adv and direct inspection of a single gate’s
possible truth tables, one sees that Adv’s output is a correct guess
for gate g with probability 1.

Induction case. Let mtC,, be a monotone circuit over n inputs. We
can write, without loss of generality, mtCp, as the circuit computing
monotone formula ¢}, = a(B], ..., B}), for some monotone formula

12

ASHES'17, November 3, 2017, Dallas, TX, USA

a, some camouflaged monotone formulae i, ..., ﬂ,’c and some
integer k > 1.In other words, the outputs of camouflaged monotone
formulae g, ..., ﬂ,’(are inputs to (not camouflaged) monotone
formula &, where the latter is assumed, by induction hypothesis, to
have been correctly guessed by Adv.

To show the inductive step, we need to show that Adv can use
oracle access to eval(¢},) to correctly guess the root camouflaged
gate in any one among camouflaged monotone formulae f7, . . ., ,B;c

Without loss of generality, let us pick], and assume it can
be written as g’(ﬂ{’L,ﬂ{,R), for some camouflaged gate g’, and
camouflaged subformulae ﬁ{ Iz ﬂ{ R

Generalizing the base case, Adv would like to find a setting for
input by, ..., by such that eval(¢,,)(b1,...,bn) = 0 (resp., 1) im-
plies that g’ is a camouflage of an AND (resp., OR) gate. A direct
generalization of the base case approach would consist of setting
all input bits to /3{ ; to 0 and all input bits to ﬁl’ g to 1. This setting
has the property that eval(f]) evaluating to 0 (resp., 1) implies
that ¢’ is a camouflage of an AND (resp., OR) gate. However, Adv
cannot directly observe the eval(ﬁ{), since it has oracle access to
eval(¢y,). To bypass this problem, in our construction, Adv deter-
mines a setting for input by, . . ., b, in more steps, depending on the
gates already guessed in (not camouflaged) monotone subformula
a. Specifically, the input bits by, ..., b, are set in a way so that
eval(¢y,) = eval(f]), which allows Adv to use the mentioned direct
generalization of the base case approach.

We now formally define the oracle adversary Adv.

Input to Adv: Access to an n-input, 1-output oracle eval(¢},), which
can be written as ¢, = a(ﬁ{, o ﬁ]’c) for some monotone formula
a, some camouflaged monotone formulae ,B{ o, ﬂ,’(and some
integer k > 1.
Instructions for Adv:
(1) Write ¢y, = a(py..... BL)
(2) write] = g'(ﬁ{’L, ﬂ{,R)’ for some camouflaged monotone
gate g’ and subformulae ﬁ{ Iz ﬁ{ R
(3) setall b; input to ﬁ{L as = 0 and all b; input to f p as = 1;
(4) set hg = g’ and hy as the gate parent of g’
(5) repeat
consider the subformula 7 of hq not including ho
if hy is an AND gate
set as 1 all b; inputs to subformula
if hy is an OR gate
set as 0 all b; inputs to subformula n
set hg = hy and h; as the gate parent (if any) of hg
(6) until hy is the root gate of ¢},;
(7) if eval(¢},)(b1, . .., by) = 0 then return: g’ = AND
else return: g’ = OR.

We now show that Adv’s output is a correct guess for gate g such
that g’ = gCam(g) with probability 1. We start by proving a few
properties of Adv and then combine the properties to obtain our
main claim.

LEMMA 3.2. Algorithm Adv assigns all input bits by, ..., b, ex-

actly once during its execution.

Proor. Input bits by, . .., b, may either belong to the subfor-
mula having ¢’ as a root gate or not. All those who do belong are

Paper Session: Solutions in Hardware Security

assigned by Adv in step 3. Those who don’t are set in step 5, as the
repeat loop steps over all gates ho between g’ and the root gate of
@n, where, at each step, it sets all b; bits in the subformula eta of
ho’s parent which does not include hg. Then the lemma follows by
observing that the set of the n inputs to ¢}, is the disjoint union of
the input bits to the subformula having ¢’ as a root gate and to the
subformulae 5 defined in step 5. O

LEMMA 3.3. As set by algorithm Adv, input bits by, . .
eval(¢p,) (b1,bn) = eval(B])(b1,...,bn).

., by satisfy

Proor. The lemma follows by observing that at each iteration
of the loop in step 5 of algorithm Adv the bits b; input to subfor-
mula 7 are set so to preserve the invariant eval(y)(by,...,by) =
eval(ﬂ{)(bl, ...,by), where ¢ is the subformula with hy as root
gate. Since hy varies from the root gate of §] to the root gate of ¢y,
the equality in the lemma statement follows from the mentioned
invariant. O

By combining Lemma 3.2 and Lemma 3.3, and by applying induc-
tively over the path between g’ and the root gate of ¢}, the same
reasoning used in the base case of a single-gate monotone formula,
we obtain that Adv’s output is a correct guess for gate g such that
g’ = gCam(g) with probability 1.

This concludes the induction case, from which Theorem 3.1
follows.

Theorem extension and discussion. The result in Theorem 3.1
can be extended to all circuits that are learnable, under a suitable
definition of computational learning. (In fact, the result could also be
stated saying that monotone formulae are learnable in this model.)
This model and associated definition of learning seem somewhat
different than those more frequently used in computational learning
theory (most importantly, PAC-learning), in at least the following
3 important aspects. First, as for the learner’s knowledge of the
circuit, our result allows the learner knowledge of the structure
of the circuit, while in PAC learning this is generally not allowed.
Then, as for the learner’s access to the circuit, our result allows the
learner access to the camouflaged circuit, while in PAC learning the
learner views the circuit as a black box. Finally, as for the learner’s
objective, in our result the learner tries to obtain the camouflaged
gates, while in PAC learning the learner tries to obtain a potentially
different circuit which well approximates the unknown circuit with
high probability. Because of these differences, we believe positive
or limitation results in the area of PAC learning do not directly
carry to our model.

In light of Theorem 3.1, in the rest of the paper, we focus on
very specific families of circuits, with pseudo-randomness (and
thus, unlearnability) properties for which we will be able to obtain
positive camouflaging results.

4 PROVABLE CAMOUFLAGE OF
PSEUDO-RANDOM FUNCTIONS

In this section, we present our main result: a provable circuit cam-
ouflage transformation for any class of circuits associated with an
arbitrary family of pseudo-random functions. Formally, we obtain
the following:

13

ASHES'17, November 3, 2017, Dallas, TX, USA

THEOREM 4.1. Let prF be a family of pseudo-random functions
with n-bit keys, inputs and outputs, and let prC be the class of
circuits computing pseudo-random functions in prF. If there exists
a gate camouflage transformation gCam satisfying Definition 2.1,
there exists (constructively) a circuit camouflage transformation
cCam for prC that satisfies Definition 2.2 and returns a circuit with
a set of k camouflaged gates. Moreover, cCam returns a family of
camouflaged circuits roC” such that roC’(x) = prF(k, x), for some
k randomly distributed in {0, 1}*.

There are two statements of interest in Theorem 4.1: the first state-
ment says that there exists a circuit for which gate camouflaging
(in the sense of Definition 2.1) implies circuit camouflaging (in the
sense of Definition 2.2); the second statement says that, after cam-
ouflaging, this circuit behaves like a pseudo-random function with
a random key, which is computationally indistinguishable from a
random oracle, by definition of pseudo-random functions [18].

We divide the proof of (the first part of) Theorem 4.1 in 4 steps,
with relative subsections. First, in Section 4.1 we recall basic no-
tions and introduce new notions about pseudo-random functions.
Then, in Section 4.2 we describe a first physical circuit transforma-
tion that transforms circuits computing (keyed) pseudo-random
functions to circuits computing pseudo-random functions where
the key is instantiated. In Section 4.3 we describe a second phys-
ical circuit transformation that uses gate camouflaging to trans-
form circuits computing pseudo-random functions where the key
is instantiated into analogue circuits where gates associated with
key bits are camouflaged. Finally, in Section 4.4 we show that the
resulting camouflaged circuit family satisfies Definition 2.2, and
therefore Theorem 4.1. The second part of Theorem 4.1, namely,
that cCam returns a family of camouflaged circuits roC” such that
roC’(x) = prF(k,x), for some k randomly distributed in {0, 1}*,
directly follows from the proof for the first part.

4.1 Random and Pseudo-random Functions

We recall formal definitions of random and pseudo-random func-
tions, and define a notion of key-set pseudo-random functions.

Random functions. A function R, : {0,1}" — {0,1}" is a ran-
dom function over {0, 1}" if it is randomly chosen among all func-
tions with n-bit inputs and n-bit outputs. In a random function R,
for any input string x € {0, 1}", the output string R,(x) € {0,1}"
is uniformly and independently distributed. We say that a family
of functions {R,, : n € N'} is a family of random functions if each
function Ry, is a random function over {0, 1}". As a consequence,
an adversary querying R, on several input strings and obtaining
the corresponding output strings still cannot predict the output
string Ry (x) corresponding to a new input string x, better than by
randomly choosing a string of the same length.

As any logical description of a random function over {0, 1}"
requires Q(2") space, families of random functions cannot be ef-
ficiently described. Pseudo-random functions are widely used to
approximate the properties of random functions in in both theo-
retical research and (a large number of) practical applications [18].
Their evaluation only requires a short random key, and their pseudo-
randomness property holds as long as the key used to evaluate them
is kept secret.

Paper Session: Solutions in Hardware Security

Pseudo-random functions. A function prF, : {0,1}*x{0,1}" —
{0, 1}" is a keyed function over {0, 1}" if for each k € {0, 1}*, the
resulting function prFy(k,), also denoted prFy(-), is a function
with n-bit inputs and n-bit outputs.

Foranyn € N, let Randy, be the set of all functions R, : {0,1}" —
{0,1}" and let prFy : {0,1}"* — {0, 1}" be a keyed function. Con-
sider the following probabilistic experiment Init:

1. Uniformly choose Ry, from Randp; and
2. uniformly choose k from {0, 1}*.

We say that a family of functions prF = {prF, : n € N'}isa fam-
ily of pseudo-random functions if for any efficient oracle adversary
Adv, the difference |pr — pprF| is negligible in n, where

1. pr = {Init; O(-) « Ry(-); A°(1™) = 1}; and
2. pprr = {Init; O(-) — prFu(k,-); A°(1") = 1};.

To the family of functions prF, we can associate a family of

circuits prC that computes the same family of functions.

Key-set pseudo-random functions. Let prF be a family of pseudo-
random functions, and let K = {k,, : n € N'} be a sequence of keys

such that k, is uniformly distributed over {0,1}"” for alln € N.

We define the family of K-keyed pseudo-random functions prFg,

as the family of functions such that prF(k,,x) = prFg(x) for all

x € {0,1}" and all n € N. To the family of K-keyed pseudo-random

functions prFg, we can associate a family of circuits prCx that com-

putes the same family of functions.

Pseudo-random functions well approximate the properties of
random functions in all applications where the key used to evalu-
ate them is kept secret. However, in some applications, we cannot
afford to keep the key secret from the adversary, and the stronger
properties of random functions happen to be extremely useful to
obtain plausibility and/or efficiency results. Because of their wide
usefulness and applicability, practitioners often approximate ran-
dom functions with efficient cryptographic functions like block
ciphers (e.g., AES) or hash functions (e.g., SHA3), which, while
known to be not random, are conjectured to have somewhat close
randomness properties.

4.2 A Procedure to Hardware Keys

Our circuit transformation uses a procedure that involves no cam-
ouflaging and takes as input a key k and the family prC of circuits
associated with the pseudo-random functions prF. This procedure’s
goal is to pre-process the circuit, based on key k, before applying
gate camouflaging. The pre-processing consists of hardwiring the
input key k into the circuit and then suitably encoding each key bit
into the circuit as a gate, where the encoding satisfies the following
two properties:

(1) the gate differs depending on the key bit value; and
(2) the gate’s output is equal to the key bit value.

Thus, this procedure turns a circuit with a key and a second string
as inputs into a circuit with a single string as input, getting us one
step closer to realizing a random oracle. Now, we proceed more
formally.

Formal description: Let prF denote a family of pseudo-random
functions, and let prC denote the associated family of circuits com-
puting the same functions. Then, we consider the associated family

14

ASHES'17, November 3, 2017, Dallas, TX, USA

prF(k, -) of k-keyed pseudo-random functions, and the associated
family prCy(+) of circuits computing the same functions.

Input to KH: circuit prCy,, € prC associated with function prFy,(-,-) €
prF, key k € {0,1}*

Instructions for KH:

(1) letk = kq| - - - |kx, with k; € {0,1}, fori=1,...,k;
(2) foreachi=1,...,x,
let h; denote a gate with 2 input bits set = 1;
if k; = 0 then let h; be a NAND gate;
if k; = 1 then let h; be an AND gate;
(3) consider k-keyed pseudo-random function prF(k, -)
(4) consider the associated circuit prCy(-) computing the same
function
(5) set roCy(-) equal to prCr.(-)
(6) for each input wire in circuit roCy (-) using bit k;,
add one output wire for gate h;;
(7) in circuit roCy(+), do the following:
replace input k; with gate h;;
(8) return: roCy.

It is not hard to see that other settings for h; would have also
worked in guaranteeing h; to be set as a different gate depending
on the key bit value, without modifying the computation of the
overall circuit.

4.3 The Circuit Transformation

On input a circuit associated with a pseudo-random function, our
circuit transformation randomly chooses a key k and hardwires
it into this circuit using procedure KH. Let roCy. be the family
of circuits returned by this procedure execution. Then the circuit
transformation continues by applying gate camouflaging to this
circuit. It turns out that for our goal it only suffices to camouflage
the newly introduced gates Ay, . .., hy associated with the key bits
k1, ..., ki. Here, the intuition is that camouflaging of these gates
is used to hide these key bits from the adversary. Then, once the
key bits are hidden, the properties of pseudo-random functions can
be used to show that the adversary’s evaluation of the camouflaged
circuit does not help in learning the camouflaged gates and there-
fore the key bits of the original pseudo-random function. Now, we
proceed more formally.

Formal description: Let prF(k, -) denote a family of k-keyed pseudo-
random functions, and let prCy(-) denote the associated family of
circuits computing the same function, and let KH be the procedure
described in Section 4.2.

Input to cCam: circuit roCy
Instructions for cCam:

(1) randomly choose k € {0, 1}*
(2) let roCy = KH(k,prCy)
(3) let hy, ..., hy denote the gates added to roCk during proce-
dure KH;
(4) foreachi=1,...,x,
let h] = gCam(h;)
replace gate h; with camouflaged gate h};
(5) let roC;. denote the resulting camouflaged circuit;
(6) return: roC]'<.

Paper Session: Solutions in Hardware Security

4.4 Properties of the Camouflaged Circuit

In what follows, we prove that our camouflage transformation cCam
satisfies Theorem 4.1. To this, we need to prove that it satisfies the
three properties of Definition 2.2: exact functionality, bounded
slowdown, and security properties of camouflaging; as well as the
two remaining items in the theorem statement. We start from the
latter: we observe that

Exact functionality. The family of circuits prC and its camou-
flaged version roC’ only differ in some of the inputs, where prC
uses key bits ki, ..., ki, and roC’ uses some camouflaged gates
hi,....hy.Specifically, in the first step of circuit camouflage trans-
formation cCam on input circuit prC, each input key bit k; is re-
placed by gate h;. In the second step, each gate h; is replaced by
its camouflaged implementation h} returned by gCam(h;). By the
exact functionality property of gate camouflaging algorithm gCam,
eval(h}) computes the same function as h;. By construction of gate
h;, in step 2 of procedure KH, its output is equal to bit k;, for all
i =1,...,x and any k; € {0,1}. Therefore, roC,’C computes the
exact same function prC(k, -), for any k € {0, 1}".

Bounded slowdown. An execution of camouflaged algorithm
cCam on input circuit prC only results in an increase of k gates, as
each input key bit k; is replaced by a gate h; and then a cam-
ouflaged version of that gate, for i = 1,...,k. Thus, we have
[roC’| < |prC| + k, from which the desired property follows.

Camouflage security. Let ¢ be a Boolean circuit. If 7P is a random
process, we let Procqm[rP] denote the probability

Prob [k «— {0,1}*;¢" = cCam(cy);rP: c” = c] .

Our goal is to prove that for any distribution D over ¢S, any logical
abstraction LogAbs of physical circuit ¢/ = cCam(c), and any effi-
cient algorithm Adv, it holds that p < |gS|~ + €, for some function
€ negligible in the security parameter o, where:
(1) p = Precamlc” — Adve??) (LogAbs(c’))]; and
(2) t is the number of gates camouflaged in ¢’.
We prove this property by a modified version of a hybrid argument
[19], where, informally speaking, we evaluate and compare the
success of adversary Adv in guessing circuit ¢”’/, and thus the x
camouflaged gates according to cCam, in the following 4 “worlds":
1. Adv has read access to LogAbs(c”) and oracle access to eval(c’);
2. Adv has read access to LogRep(c”) and oracle access to eval(c’);
3. Adv has read access to LogRep(c”) and oracle access to a random
oracle Ry; and
4. Adv’, depending on Adv, has read access to LogRep(c’).
More formally, we first define the following random processes:

Py = “c” (—Adveval(e’)(LOgAbs(c’))”,

c

rPy = “c” — Adve? () (LogRep(c"))”,
Py = “’ <—Ad’UR"(LOgR€p(C’))”,

rPy = “c”’ «— Adv’(LogRep(c’))”.

Then we show the following lemmas.
LEMMA 4.2. p = PrecamlrPi]
Proor. This directly follows from definitions of p, rP;. O

LEMMA 4.3. |PrecamlrP1] = PrecamlrPell < €geam, for some
function egcam negligible in o.

15

ASHES'17, November 3, 2017, Dallas, TX, USA

PROOF. Let pg, p1 be the probability quantities defined in Defini-
tion 2.1. By the definitions of r Py, r P2, we observe that Precam[rP1] =
po and Precam|rP1] = po. Then the lemma follows as a direct ap-
plication of Definition 2.1.]

LEMMA 44. |Precam[rPe] = PrecamlrPsl| < eprf, for some func-
tion €, negligible in o.

Proor. We first observe that the difference between rP; and rPs
only consists of the oracle to which Adv has oracle access. Specif-
ically, in rP,, Adv has access to eval(c’), an oracle that evaluates
the circuit ¢’ for pseudo-random function prF, while in rP3;, Adv
has access to a random oracle R,,. Moreover, the input LogRep(c”)
to Adv in both rP; and rP3 does not depend on the camouflaged
gates in ¢’ (which, in turn, encode the bits of key k), by defini-
tion of the LogRep function. This latter fact is critical to apply the
pseudo-randomness property of prF, and obtain that Adv can only
distinguish the two worlds with at most negligible probability €, f.
(In particular, note that the pseudo-randomness property of prF
might not suffice to prove that |Precam|rP1] —PrecamlrP3]| is neg-
ligible, since LogAbs(c”) is a function of the camouflaged gates in
¢’ in rP1). O

LEMMA 4.5. For any efficient algorithm Adv, there exists an effi-
cient algorithm Adv’ such that Procam[rPs] = Precam[rPs].

Proor. Consider algorithm Adv in random process rP3. Then,
define algorithm Adv’ as the algorithm that runs Adv and, in this
execution, simulates the answers to Adv’s queries to the random
oracle as random strings (for new queries) or previously generated
random strings (for repeated queries); finally, Adv’ returns the
same output as Adv. Since the simulation performed by Adv’ of
the random oracle answers is perfect, it holds that Pr.cam[rPs] =
PrecamlrPs], from which the lemma follows. o

LEMMA 4.6. For any efficient algorithm Adv’, we have that
PrecamlrPa] < |gs|_t-

Proor. Note that in random process rPy, algorithm Adv’ has no
access to camouflaged gates or to an oracle for ¢’. Accordingly, at
best, it can randomly guess the value of the gates input to gCam.
The lemma follows by observing that there are t such gates, and
they are uniformly and independently drawn from set gS. O

Finally, we use Lemma 4.2, 4.3, 4.4, 4.5, and 4.6 to conclude the
proof that cCam satisfies Definition 2.2. Specifically, we have that

p = PrecamlrPil
< |PrecamlrPi] = PrecamlrPall + PrecamlrPal
< |PrecamlrPi] = Precam[rPall +1gS|™*
< |PrecamlrPi] = PrecamlrPel|

+|PrecamlrPz] = PrecamlrPs]|
+|Precam(rP3] = Precam[rPall + 1gS|™*
< egeam * |Precaml[rP2] — PrecamlrPsll
+|PrecamlrP3] = PrecamlrPall + 198 ™"
€gcam T €prf + |PrecamlrPs] — PrecamlrPall + |95|_t

IA

IA

€gcam + €prf + lgs|~*,

Paper Session: Solutions in Hardware Security

where the first equality follows from Lemma 4.2, the first and third
inequalities follow by applying the triangle inequality, the second
inequality follows from Lemma 4.6, the fourth inequality follows
from Lemma 4.3, the fifth inequality follows from Lemma 4.4, and
the last inequality follows from Lemma 4.5.

5 CONCLUSIONS

Recent hardware advances have opened the possibility for pro-
tection of integrated circuits against reverse-engineering attacks
via gate camouflaging [12, 14, 21, 24, 25, 28]. While many of these
works consider general Boolean functions in specific attack model,
here we consider specific set of Boolean functions in general attack
models.

We propose a formal model for the analysis and proof of func-
tionality, efficiency and security properties for circuit camouflaging,
inspired by the formal models in [2] for cryptographic (software)
program obfuscation. We propose formal definitions for security
of gate camouflaging and circuit camouflaging. We use these def-
initions to show the first provable limitations and constructions
results for circuit camouflaging, assuming hardware constructions
guaranteeing gate camouflaging. Our construction also shows that
circuit camouflaging can be used to obtain one practical realization
of a random oracle, a long-sought object from the cryptographic
community (which was proved to be very unlikely to exist without
hardware [9]).

A large number of open problems is uncovered by these results,
including finding more limitations (following our result in Theo-
rem 3.1), more constructions (following our result in Theorem 4.1),
and applications of our hardware-based realization of a random
oracle, as implied by our construction underlying Theorem 4.1. Our
future work includes realizing hardware implementations of these
results to obtain the power, area, and delay overheads.

6 ACKNOWLEDGMENTS

Many thanks to Yevgeniy Dodis for interesting discussions. Part of
the first author’s work was supported by the Defense Advanced
Research Projects Agency (DARPA) via U.S. Army Research Office
(ARO), contract number W911NF-15-C-0233. Part of the second
author’s work was supported by the NSF Award # CNS-1652842.
The third and fourth authors are part of Center for Cybersecu-
rity at NYU and NYU-AD. The third author is funded by ARO
Award # W911NF-15-1-0278. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation hereon. Disclaimer: The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA,
ARO, NSF, or the U.S. Government.

REFERENCES

[1] Lisa Bahler, Giovanni Di Crescenzo, Yuriy Polyakov, Kurt Rohloff, and David B.
Cousins. 2017. Practical implementations of lattice-based program obfuscators
for point functions. In International Conference on High Performance Computing
& Simulation, HPCS 2017, Genoa, Italy, July 2017.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. 2012. On the (im)possibility of obfuscating programs.
9. ACM 59, 2 (2012), 6.

16

ASHES'17, November 3, 2017, Dallas, TX, USA

[3] James P. Baukus, Lap-Wai Chow, Jr. William M. Clark, and Gavin J. Harbison.
2012. Conductive channel pseudo block process and circuit to inhibit reverse
engineering. US Patent no. 8258583 (2012).

[4] James P. Baukus, Lap Wai Chow, and William Clark. 2002. Integrated circuits pro-

tected against reverse engineering and method for fabricating the same using an

apparent metal contact line terminating on field oxide. US Patent no. 20020096776

(2002).

James P. Baukus, Lap Wai Chow, Ronald P. Cocchi, Paul Ouyang, and Bryan J.

Wang. 2012. Building block for a secure CMOS logic cell library. US Patent no.

8111089 (2012).

James P. Baukus, Lap Wai Chow, Ronald P. Cocchi, Paul Ouyang, and Bryan J.

Wang. 2012. Camouflaging a standard cell based integrated circuit. US Patent no.

8151235 (2012).

James P. Baukus, Lap Wai Chow, Ronald P. Cocchi, and Bryan J. Wang. 2012.

Method and apparatus for camouflaging a standard cell based integrated circuit

with micro circuits and post processing. US Patent no. 20120139582 (2012).

Mihir Bellare and Igors Stepanovs. 2016. Point-Function Obfuscation: A Frame-

work and Generic Constructions. In Proc. of TCC 2016-A2. 565-594.

Ran Canetti, Oded Goldreich, and Shai Halevi. 2004. The random oracle method-

ology, revisited. 7. ACM 51, 4 (2004), 557-594.

Chipworks. 2010. Reverse Engineering Software. https://tinyurl.com/yb9zkkpo.

(2010).

Chipworks. 2012. Intels 22-nm Tri-gate Transistors Exposed. https://tinyurl.com/

y7ukldbp. (2012).

M. I. M. Collantes, M. El Massad, and S. Garg. 2016. Threshold-Dependent

Camouflaged Cells to Secure Circuits Against Reverse Engineering Attacks. IEEE

Computer Society Annual Symposium on VLSI (2016), 443-448.

Giovanni Di Crescenzo, Lisa Bahler, Brian A. Coan, Yuriy Polyakov, Kurt Rohloff,

and David B. Cousins. 2016. Practical implementations of program obfuscators

for point functions. In Proc. of HPCS 2016. 460-467.

Joseph Davis, Niranjan Kulkarni, Jinghua Yang, Aykut Dengi, and Sarma Vrud-

hula. 2016. Digital IP Protection Using Threshold Voltage Control. IEEE Int.

Symposium on Quality Electronic Design (2016), 344-349.

Degate. [n. d.]. http://www.degate.org/documentation/. ([n. d.]).

B. Erbagci, C. Erbagci, N. E. C. Akkaya, and K. Mai. 2016. A secure camouflaged

threshold voltage defined logic family. IEEE Int. Symp. on Hardware-Oriented

Security and Trust (2016), 229-235.

ExtremeTech. 2012. iPhone 5 A6 SoC reverse engineered, reveals rare hand-made

custom CPU, and tri-core GPU. https://tinyurl.com/9yn23he. (2012).

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construct

random functions. J. ACM 33, 4 (1986), 792-807.

Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. J. Comput.

Syst. Sci. 28, 2 (1984), 270-299.

Neal Koblitz and Alfred J. Menezes. 2015. The random oracle model: a twenty-year

retrospective. Des. Codes Cryptography 77, 2-3 (2015), 587-610.

Meng Li, Kaveh Shamsi, and et al. Meade. 2016. Provably Secure Camouflaging

Strategy for IC Protection. IEEE/ACM Int. Conference on Computer-Aided Design

(2016), 28:1-28:8.

D. Liu, C. Yu, X. Zhang, and D. Holcomb. 2016. Oracle-guided Incremental SAT

Solving to Reverse Engineer Camouflaged Logic Circuits. IEEE/ACM Design,

Automation and Test in Europe (2016), 433-438.

Ben Lynn, Manoj Prabhakaran, and Amit Sahai. 2004. Positive Results and

Techniques for Obfuscation. In Proc. of EUROCRYPT 2004. 20-39.

Ithihasa Reddy Nirmala, Deepak Reddy Vontela, Swaroop Ghosh, and Anirudh

Iyengar. 2016. A Novel Threshold Voltage Defined Switch for Circuit Camouflag-

ing. IEEE European Test Symposium (2016).

J. Rajendran, M. Sam, O. Sinanoglu, and R Karri. 2013. Security Analysis of

Integrated Circuit Camouflaging. ACM Conference on Computer Communications

and Security (2013).

Semi. 2008. Innovation Is At Risk As Semiconductor Equipment And Ma-

terials Industry Loses Up To $4 Billions Annually Due To IP Infringement.

https://tinyurl.com/y8rfv8t. (2008).

Silicon Zoo. [n. d.]. The Layman’s Guide to IC Reverse Engineering. http:

//siliconzoo.org/tutorial.html. ([n. d.]).

SypherMedia. [n. d.]. SypherMedia Library Circuit Camouflage Technology.

http://bit.ly/2xvXrOE. ([n. d.]).

R. Torrance and D. James. 2011. The state-of-the-art in semiconductor reverse

engineering. in the Proc. of IEEE/ACM Design Automation Conference (2011),

333-338.

Hoeteck Wee. 2005. On obfuscating point functions. In Proc. of 37th ACM STOC,

2005. 523-532.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan

Rajendran. 2016. CamoPerturb: secure IC camouflaging for minterm protection.

In Proc. of 35th ICCAD, 2016. 29.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Ra-

jendran. 2017. Removal Attacks on Logic Locking and Camouflaging Techniques.

IEEE Trans. on Emerging Topics in Computing 99, 0 (2017).

[5

G

7

8

[9

[10

[11

(12]

(13

[14

[22]

[23]

[24

[25]

[26

[27

[28

[29]

@
=

[31

[32

https://tinyurl.com/yb9zkkpo
https://tinyurl.com/y7ukldbp
https://tinyurl.com/y7ukldbp
http://www.degate.org/documentation/
https://tinyurl.com/9yn23he
http://siliconzoo.org/tutorial.html
http://siliconzoo.org/tutorial.html
http://bit.ly/2xvXrOE

	Abstract
	1 Introduction
	2 Models and Definitions
	2.1 Basic Definitions
	2.2 The circuit camouflaging problem

	3 Limitations on camouflaging
	4 Provable Camouflage of Pseudo-Random Functions
	4.1 Random and Pseudo-random Functions
	4.2 A Procedure to Hardware Keys
	4.3 The Circuit Transformation
	4.4 Properties of the Camouflaged Circuit

	5 Conclusions
	6 Acknowledgments
	References

