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Abstract—The exponential growth of available data has
increased the need for interactive exploratory analysis. Dataset
can no longer be understood through manual crawling and
simple statistics. In Geographical Information Systems (GIS),
the dataset is often composed of events localized in space and
time; and visualizing such a dataset involves building a map
of where the events occurred.

We focus in this paper on events that are localized among
three dimensions (latitude, longitude, and time), and on com-
puting the first step of the visualization pipeline, space-time
kernel density estimation (STKDE), which is most computa-
tionally expensive. Starting from a gold standard implementa-
tion, we show how algorithm design and engineering, parallel
decomposition, and scheduling can be applied to bring near
real-time computing to space-time kernel density estimation.
We validate our techniques on real world datasets extracted
from infectious disease, social media, and ornithology.

Keywords-space-time kernel density; performance; spatial
algorithm; shared-memory parallelism; scheduling

I. INTRODUCTION

The rapid propagation of infectious diseases (e.g.
zika, Ebola, HINI, dengue fever) is conducive to
serious, epidemic outbreaks, posing a threat to vulnerable
populations. Such diseases have complex transmission
cycles, and effective public health responses require the
ability to monitor outbreaks in a timely manner [1]. Space-
time statistics facilitate the discovery of disease dynamics
including rate of spread, seasonal cyclic patterns, direction,
intensity (i.e. clusters), and risk of diffusion to new regions.
However, obtaining accurate results from space-time
statistics is computationally very demanding, which is
problematic when public health interventions are promptly
needed. The issues of computational efforts are exacerbated
with spatiotemporal datasets of increasing size, diversity
and availability [2]. High-performance computing reduces
the effort required to identify these patterns, however
heterogeneity in the data must be accounted for [3].

Epidemiology is only one of the application domains
where it is important to understand how events occurring at
different locations and different times form clusters. Political
analysis, social media analysis, or the study of animal migra-
tion also require the understanding of spatial and temporal
locality of events. The massive amount of data we see nowa-
days is often analyzed using complex models. But before

these can be constructed, data scientists need to interactively
visualize and explore the data to understand its structure.
In this paper, we present the space-time kernel density
estimation application which essentially builds a 3D density
map of events located in space and time. This problem is
computationally expensive using existing algorithms. That
is why we developed better sequential algorithms for this
problem that reduced the complexity by orders of magnitude.
And to bring the runtime in the realm of near real-time, we
designed parallel strategies for shared memory machines.
Section II presents the STKDE application along with a
reference implementation that uses a voxel-based algorithm
VB to compute STKDE. In Section III, we investigate the
sequential problem and develop a point-based algorithm PB
that significantly reduce the complexity compared to VB.
We also identify invariants linked to the structure of the
kernel density estimate function that allows to reduce the
computational cost by an additional factor and build the PB-
SYM algorithm based on that observation. We develop two
parallelization strategies (PB-SYM-DR and PB-SYM-DD)
in Section IV that are designed to make the computation
pleasingly parallel. However both strategies are not work-
efficient and can cause significant work overhead in some
cases. That is why we introduce PB-SYM-PD in Section V
that provide a work-efficient decomposition of the points.
However that algorithm has internal dependencies which
can induce a long critical path and cause load imbalance;
and we develop PB-SYM-PD-SCHED to leverage alternative
ordering of the work to reduce the critical path. To reduce
the critical path further, we propose the PB-SYM-PD-REP
algorithm which introduces some work overhead only where
is needed to achieve a short critical path. Section VI presents
experimental results on 4 different datasets and 21 instances
extracted from these datasets. The experiments highlights
that the sequential strategies are efficient. The parallel strate-
gies have their pros and cons and different strategies appear
to be best in different scenarios. Section VII discusses the
applicability of related problems and techniques.

II. SPACE-TIME KERNEL DENSITY ESTIMATION

A. Description

Space-time kernel density (STKDE) is used for identi-
fying spatiotemporal patterns in datasets. It is a temporal
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Figure 1. Visualization of Dengue fever cases in Cali, Colombia in 2010
and 2011 for different spatial bandwidth and temporal bandwidth.

extension of the traditional 2D kernel density estimation [4]
which generates density surface (“heatmap”) from a set
of n points located in a geographic space. The resulting
density estimates are visualized within the space-time cube
framework using two spatial (x, y) and a temporal dimension
(t) [5]. STKDE creates a discretized 3D volume where
each voxel (3D equivalent of a pixel) is assigned a density
estimate based on the surrounding points. The space-time
density is estimated using (following the notations of [3]):

s 1

xr —X; — Y t—ti
f(w,y,1) L

ks(

>

i|ldi<hs,t;<hi

hs 7 hs hy

Density f(x,,t) of each voxel is determined by number
and distance of events (points) (z;, y;,t;) within its vicinity,
which is conceptualized by a cylinder. The spatial bandwidth
hs forms a circle which, due to the orthogonal relationship
between space and time, is extended to a cylinder by
temporal bandwidth h;. For every event inside the cylinder,
the spatial (d;) and temporal (¢;) distances are smaller than
hs and h,;. Therefore, the event receives a weight based on

the kernel functions k, and k, (distance decay):
m 2 2
ks(u,v) = 5(1 —u)*(1—v)
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Figure 1 illustrates how varying the bandwidths used in
STKDE helps focusing the graphical visualization of Dengue
fever cases in Cali, Colombia [6]. Figure 2 shows the impact
of a single point on the neighboring space.

Computationally, the domain of size g, gy, g; is dis-
cretized in voxels using a spatial resolution sres and a tem-
poral resolution tres. Therefore, the domain is represented
by a grld of size G93 = ’V%—" GU = |st’z,5-|’ Gt = {tfés]'
Each point causes a density increase in the voxels that are
within a cylinder centered on the point, of radius equal to
the spatial bandwidth in voxels Hy = {S}TL;J, and of half
height equal to the temporal bandwidth H; = [ ;2 ].

All the notations are summarized in Table I. As a conven-
tion all uppercase notations denote quantities in voxels and

all lowercase notations denote quantities in domain space.
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Figure 2. The computation of STKDE happens in a domain space of size
9z 9y, g¢. Each point impacts the neighboring space at a distance hs in
space and h: in time; forming a cylinder of diameter 2hs and of height
2hs.

n Number of points
s=(z,y,t) A voxel and sampling coordinate
(z4,vi,t:) Coordinate of point 4
hs, ht Spatial and temporal bandwidth
9z, 9y, 9t Real size of the domain (in meters)
sres, tres Resolution (in meters)
s=(X,Y,T) | A voxel in voxel space
(X:,Y:,Ty) Voxel of point 4
Gz, Gy, Gy Size of the domain (in voxels)
Hs, H; Bandwidth (in voxels)
Table I
NOTATIONS

B. Gold Standard Implementation

The gold standard implementation (for instance from [3])
follows the exact definition of STKDE as it is given above. It
is a voxel-based algorithm we call VB. For each voxel, VB
finds the points within the temporal and spatial bandwidths
and calculates the contribution to the density of this voxel.
The pseudo code is given in Algorithm 1.

Algorithm 1 VB

for all voxels s = (z, y,t) do
sum = 0
for all points ¢ at z,;, y;, t; do
if /(zi —2)2 + (yi — y)2 < hs and |¢; — t| < hy then
sum+ = k(L2 y;;h Vke( = )

Ts Ty
stkde[X][Y][T] =

sum
nh2hy

The algorithm performs 6(G,G,G;n) distance tests and
computes §(nH?2H,) densities. Since H is smaller than G,
and G, and since H; is smaller than G, the complexity of
the algorithm is §(G,G,Gn) and it requires 8(G,GyGy)
memory.

III. ALGORITHM DESIGN AND ENGINEERING
A. Point-based Algorithm

The voxel-based algorithm suffers from a massive cost
of computing distances. The gold implementation reduces
the number of distance computation by decomposing the
domain, but that still incurs many distance calculations. Most
of these calculations are unnecessary since we know where
each point will radiate density. The point-based algorithm
PB, given in Algorithm 2, leverages that property.



Algorithm 2 PB

for all voxels s = (z,y,t) do
stkde[X][Y][T] =0
for each points 4 at x;, y;, t; do
< < X;+ Hs do
for Y, — H; <Y <Y, + Hs do
<T<T,

i + Hs do

<
)2 + (yi —y)?2 < hs and |t; — t| < hy then
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Figure 3. The contribution to the density estimate of each voxel of
a cylinder can be decomposed in two terms, one temporally invariant
K(z,y) and one spatially invariant K¢ (t).

The algorithm PB incurs mostly two costs. Initializing
the memory which costs ©(G,GyG¢) and computing the
impact of each point ©(nH2H,;). Note that it is possible that
either of these two terms is significantly larger than the other.
Therefore the complexity of the algorithm is ©(G,G, G +

B. Exploiting Symmetries

When the bandwidth is large, computing the density
contribution of each point each for voxel in the bandwidth
is the most expensive operation. Each of these n(2H,)?2H;
calculations costs approximately 40 floating point opera-
tions. (The exact cost is difficult to estimate since there
are floating point additions, multiplications, divisions, and
square root operations).

One can remark that the calculation is mostly redun-
dant since for one particular point, its contribution to the
neighboring voxels can be decomposed in two components.
K(z,y) only depends on the spatial coordinate of the
voxel with respect to the point and does not depend on
its temporal coordinate. And K;(t) only depends on the
temporal coordinate and not on the spatial coordinates. See
Figure 3 for a graphical depiction.

Therefore, we write an algorithm to leverage these sym-
metries in the problem. We present three variants, the PB-
DISK variant ensures that the invariant on the spatial domain
is only computed once. The PB-BAR variant ensures that
the invariant on the temporal domain is only computed
once. The PB-SYM variant computes independently the
spatial invariant and the temporal invariant and then adds
the density caused by the point by taking the product of

the two invariants. (See pseudocode in Algorithm 3.) Notice
that leveraging the symmetries in the calculation does not
change the complexity (PB-SYM still has a complexity of
O(G.G,Gt + nH2Hy)) but reduces the number of flops.

Algorithm 3 PB-SYM

for all voxels s = (z,y,t) do
stkde[X][Y][T] =0
for each points 7 at x;, y;, t; do
for X; — H; < X < X, + Hs do
for Y; — H, <Y <Y; + H, do
if \/(z; — )2 + (y: — y)2 < hs then
Ro(SEEL VUL

nh2hyg

K [X][Y] =
else
K, X]|[Y]=0
for T, — T, <T <T; + Hs do
if |t; — t] < hy then
K[T] = ke (57%)
else

IA =
+
=
g

Notice that this exploitation of symmetries is not possible
in a voxel-based algorithm.

IV. DOMAIN-BASED PARALLELISM
A. Domain Replication

The simplest way to parallelize this kind of computation
is to split the points equally among the P different compu-
tational units. Though, if two close-by points are computed
simultaneously, the cylinders of density around them might
intersect and there is a race condition.

The PB-SYM-DR algorithm solves the data race issue
by having each of the P computational unit aggregate the
result on a local copy of the domain. Once all the points
have been processed, the P copies need to be summed. The
pseudo code of PB-SYM-DR is given in Algorithm 4.

This algorithm has a memory requirement of
©(PG,G,G:) and a parallel amount of work of
O(PG.G,Gy + nHZ2H;). Fortunately, the increase in
work enables the computation to be pleasingly parallel.
(There are actually in three pleasingly parallel phases:
initializing the memory, processing the points, and reducing
the partial results.)

Algorithm 4 PB-SYM-DR

for all processor p < P in parallel do
for all voxels s = (z,y, t) do
stkdel[p][X][Y][T] =0
for each points ¢ at x;, y;, t; distributed among the P processors do
Processor p processes ¢ using PB-SYM and aggregates it in stkdel[p]
for all voxels s = (z,y, t) in parallel do
stkde[X][Y][T] =0
for all processor p < P do
stkde[X][Y][T]+ = stkdel[p][X][Y][T]
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Figure 4. When a cylinder is split among two subdomains, PB-SYM-DD
causes an overhead because one of the invariant needs to be recomputed.
Here each subdomains compute part of the temporal invariant Ks, but both
need to compute the spatial invariant K.

B. Domain Decomposition

Another strategy to avoid the data race is to compute voxel
intensity independently for different subdomains. We call
this method PB-SYM-DD (Algorithm 5). It splits the domain
in AxBxC subdomains and each subdomain is associated
the points which cylinder intersects with a voxel of the
subdomain. Then the algorithm proceeds with handling each
subdomain independently by only considering the impact of
the data-point on voxels within the subdomain.

Algorithm 5 PB-SYM-DD

for all points i = (z;, y;, t;) do
for each subdomain (a, b, c) do
if (X,Y,T)+ (H, ,Hg, Hr) intersects
qach . ”(“‘*’1)61‘ ’rcy <b+1>Gy

b][c] add(wiyyivti)
for each subdomain (a, b, ¢) in parallel do
Process subdomain (a, b, ¢) using PB-SYM

{%J . [%—‘)then

localpoints|a]

The main problem with Domain Decomposition is that
it requires some points to be replicated across multiple
subdomain which incurs additional work. Indeed, if a point is
replicated in multiple subdomains, its cylinder is split across
multiple subdomains as well. Assuming the split is temporal,
then using PB-SYM in each subdomain requires computing
part of the temporal invariant, the entire spatial invariant,
and part of the cylinder. Therefore both subdomains need
to compute the entire spatial invariant. See Figure 4 for a
graphical depiction of this phenomenon.

If the algorithms keeps the number of subdomains small
such that each point is replicated less than a constant number
of times, then the work expressed in Big-Oh notation does
not change. (This can be achieved by having subdomains
larger than H; x Hg x H;.) However, the practical amount
of work can increase by a non-negligable factor.

Another issue with Domain Decomposition is load imbal-
ance. The points are unlikely to be equally distributed in the
domain space, but more likely clustered around some loca-
tions. The subdomain containing a cluster will have a signif-
icantly higher work than other subdomains. And this work is
not executed in parallel. One could decompose the domain
more, but replicated point will incur an even higher overhead
which may end up nullifying the gain in load balance.

Figure 5. Provided the subdomains are larger than twice the bandwidth,
the points contained in each blue boxes can be performed simultaneously.

V. POINT-BASED PARALLELISM
A. Point Decomposition

Both of the previous strategies increase the amount of
work significantly. We want to achieve parallelism without
cutting a cylinder and without requiring each thread to have
its own memory space. To achieve that goal, we propose the
PB-SYM-PD algorithm that decomposes the points in sets
that can be safely performed simultaneously.

As long as two points are separated by 2hg in space
dimension or by 2h; in time, the cylinders induced by
the two points will not overlap. PB-SYM-PD decomposes
the points in A x B x C' subdomain of identical size. As
long as these subdomains are larger than 2h, in a spatial
dimension and 2h; in the temporal dimension, the points in
domain (z,y, z) can be done concurently with the points in
(x 4+ 2,y, 2). See Figure 5 for a graphical depiction.

We implemented the first version of this algorithm that
organizes the subdomain in 8 sets where the first set is com-
posed of the subdomains (2i,27, 2k), the second of all the
subdomains (27 + 1,27, 2k), the third of all the subdomains
(2i,25 + 1,2k), etc.. The algorithm processes the sets the
one after the other by doing each subdomain within a set in
parallel. Two such sets are depicted in Figure 5. In practice,
this is implemented using 8 OpenMP parallel-for constructs.

Algorithm 6 PB-SYM-PD
for all points ¢ = (z;,yi, t;) do
localpoints| L gf J 1 { g}yf J 1 L%J].add(azi, Yisti)

for abase € {0;+1} do
for bbase € {0;+1} do
for cbase € {0;+1} do
Do the work of the next three loops in parallel
for a = abase;a < A;a+ = 2 do
for b = bbase; b < B; b+ = 2 do
for ¢ = cbase;c < Cic+ = 2 do
Process points in localpoints[a][b][c] using PB-SYM

B. Coloring and Scheduling

Note that such an implementation overconstrains the ex-
ecution of the algorithm. Indeed, despite they are not in
the same set, subdomain (1,0,0) and (64,64,64) can be
computed at the same time. The real constraint is that the
points contained in a subdomain can be processed safely
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Figure 6. Dependency structure implied by a coloring of the subdomain.
(Shown for a 2D decomposition for simplicity.)

as long as none of the point contained in a neighboring
subdomain is being processed. Using the OpenMP tasking
construct with dependency introduced in OpenMP 4.0 [7],
one can precisely express this constraint, which is a 27-point
stencil constraint.

Formally speaking, this problem is a combination of
multiple very classical graphs and scheduling problem. Mod-
eling the subdomains as a 27-point stencil graph, identifying
sets of subdomains to perform in parallel is coloring the
vertices of the graph so that no two neighboring vertices
share the same color. It differs from classical graph coloring
problems (surveyed in [8]) in that the objective is not to
minimize the number of colors or to balance the number of
vertices of each color but to minimize the execution time of
the implied schedule.

The implied schedule is actually a scheduling of a graph
of dependency which is extracted from the coloring. Each
edge of the stencil graph is oriented from the vertex of
the lowest color to the vertex with the highest color. Each
vertex is associated with a processing time proportional to
the number of points inside the sub-domain the vertex rep-
resents and the neighboring subdomains. This construction
is represented in Figure 6.

The OpenMP scheduler is not explicit in which order tasks
that are available are performed. Though it is reasonable
to assume that the tasks will be scheduled using a greedy
algorithm. Therefore, the classic guarantee from Graham’s
List Scheduling [9] is valid:

where T} is the total amount of work to perform and 7, is
the length of the longest chain in the dependency graph.
We propose to reduce the critical path by using a load-
aware coloring of the subdomains. We use a greedy coloring
algorithm which considers the subdomains in a particular
order and for each subdomain will color it with the smallest
color that does not conflict with the already colored neigh-
bors. Such greedy coloring algorithm are commonly used in
parallel computing applications [8], [10], [11]. However, we
will use an ordering that color the vertices in non-increasing
order of the number of points contained in the subdomain.
While this algorithm is a heuristic, it is likely to obtain

a coloring that minimizes the critical path!. We call this
algorithm to compute STKDE: PB-SYM-PD-SCHED.

To decrease the critical path further, we propose an other
algorithm PB-SYM-PD-REP which replicates the subdo-
mains that are on the critical path (and its neighbors) of the
graph so that the points of a subdomain can be performed in
parallel. As long as the critical path is longer than 53, the
tasks on the path are replicated an additional time and the
critical path is recomputed. Replication of subdomain causes
to have to initialize additional subdomains and to reduce
them which increases the work in a similar way PB-SYM-
DR. However, the replication should be limited to a few
chains in the graph and therefore should limit the overhead.
Note that this problem is similar to scheduling a DAG of
moldable tasks [12], [13].

V1. EXPERIMENTS
A. Experimental Setting

Execution environment: The machine used to per-
form the experiments is composed of two Intel Xeon ES5-
2667 v3 processors for a total of 16 cores clocked at
3.2Ghz. Despite each core is capable of hosting 2 hy-
perthreads, hyperthreading was disabled. The machine is
equipped with 128GB of DDR4 clocked at 2.133 Ghz.
The node uses RHEL 7.2 and Linux 3.10. All codes are
written in C++ and are compiled using GCC 5.3, which
implements OpenMP 4.0, with optimization flags -03
-march=native —-fopenmp -DNDEBUG. All reported
execution times exclude all 10s.

Dataset: Four datasets are used in our experiments.
Their key attributes are summarized in Table II. The Dengue
dataset is of epidemiological nature and consists of the
space-time locations of dengue fever cases reported to the
Sistema de Vigilancia en Salud Piblica for the city of Cali,
Colombia during 2010 and 2011. The system is updated on
a daily basis with records of individuals that have been diag-
nosed with dengue fever, including patient address and the
date of diagnosis. Addresses are standardized to a common
format, and spelling and other syntactical errors are manu-
ally corrected [14]; they are then geocoded and masked to
the nearest street intersection level to maintain privacy [15].
In 2010, 9606 were successfully geocoded (11,760 reported
cases, or 81.7%), whereas in 2011, 1562 cases were suc-
cessfully geocoded (1822 reported cases, or 85.7%).

The PollenUS dataset is composed of 588K tweets of
US users from February 2016 to April 2016 related to
Pollen (i.e., that mention keywords such as “pollen” and
“allergy”). Tweets that did not contain a precise localization
were approximated by picking a random location in the
approximated region provided by Gnip®. Tweets are mostly

IThe complexity of this problem is currently unknown to the authors.
The general case of an arbitrary graph is NP-Hard by reduction to graph
coloring. But the case of a 1D stencil is clearly polynomial.

Zhttp://www.gnip.com/



Instance n Gz x Gy x Gy Size Hs H;
Dengue_Lr-Lb 11056 148x194x728 79MB 3 1
Dengue_Lr-Hb 11056 148x194x728 T9MB 25 1
Dengue_Hr-Lb 11056 294x386x728 315MB 2 1
Dengue_Hr-Hb 11056 294x386x728 315MB 50 1
Dengue_Hr-VHb 11056 294x386x728 315MB 50 14
PollenUS_Lr-Lb 588189 131x61x84 2MB 2 3
PollenUS_Hr-Lb 588189 651x301x84 62MB 10 3
PollenUS_Hr-Mb 588189 651x301x84 62MB 25 7
PollenUS_Hr-Hb 588189 651x301x84 62MB 50 14
PollenUS_VHr-Lb 588189 6501x3001x84 6252MB | 100 3
PollenUS_VHr-VLb 588189 6501x3001x84 6252MB 50 3
Flu_Lr-Lb 31478 117x308x851 117MB 1 1
Flu_Lr-Hb 31478 117x308x851 117MB 2 3
Flu_Mr-Lb 31478 233x615x1985 1085MB 2 3
Flu_Mr-Hb 31478 233x615x1985 1085MB 4 7
Flu_Hr-Lb 31478 581x1536x5951  20260MB 5 7
Flu_Hr-Hb 31478 581x1536x5951  20260MB 10 21
eBird_Lr-Lb 291990435 357x721x2435 2391MB 2 3
eBird_Lr-Hb 291990435 357x721x2435 2391IMB 6 5
eBird_Hr-Lb 291990435  1781x3601x2435  59570MB 10 3
eBird_Hr-Hb 291990435  1781x3601x2435  59570MB 30 5

Table 11
PROPERTIES OF THE DATASETS. THE DOMAIN IS EXPRESSED IN VOXELS
AND IN MB. BANDWIDTH ARE EXPRESSED IN VOXELS.

located in the contiguous continental US. Therefore, this is
the region we modeled with a spatial resolution ranging from
.2° to 1° and a temporal resolution of 1 day.

The Flu dataset was obtained from the Animal Surveil-
lance database of the Influenza Research Database®. The
dataset contains observations of birds tested positive for
carrying any strain the avian flu from 2001 to 2016. The
birds were observed all over the world and the modeled
region spans as West as Alaska and East as Japan, as South
as the southern shore of Australia and as North as the North-
ern shore of Russia. The domain is modeled with spatial
resolution from .2° to 1° and a temporal resolution of 1 day.

The eBird* dataset is a collection of worldwide rare bird
spotting obtained from a crowdsourcing effort managed by
Cornell’s Lab or Ornithology [16]. Despite the service was
launched in 2002, the database contains many older entries
of birds that are known to have been observed at the time.
For our experiment, we use the last 20 years of bird spotting
and model the entire world with a temporal resolution of 3
days, and a spatial resolution of either .1° or .5°.

For all datasets, we created multiple instances of the
problem coded Lr, Mr, Hr for low, medium, and high
resolution and Lb, Hb, VHb for low, high and very high
bandwidth. See details in Table II.

An abridged version of the results are included in the
following sections. A complete description of the results are
presented in the companion technical report [17].

B. Algorithm design

Table III presents the runtime of the point-based algo-
rithms presented in Section III. The runtime are given in
seconds. As expected for each dataset, the runtime increases
with resolution and bandwidth. Exploiting the disk invariant
with PB-DISK provides a large reduction in the runtime,
even more so when the temporal bandwidth is high. PB-
BAR provides a more modest time reduction.

3https://www.fludb.org/
“http://ebird.org

Time (in seconds) speedup
Instance VB VB-DEC PB  PB-DISK PB-BAR PB-SYM | PB-SYM
Dengue_Lr-Lb 219.163 2.283 0.040 0.029 0.035 0.028 1.429
Dengue_Lr-Hb 220.591 13.878 1.298 0.564 1.152 0.499 2.601
Dengue_Hr-Lb 866.445 9.522 0.089 0.082 0.085 0.084 1.060
Dengue_Hr-Hb 871.774 55.206 5.169 2272 4.563 2.074 2492
Dengue_Hr-VHb 1056.172 404.845 51.885 11.478 42.994 7.431 6.982
PollenUS_Lr-Lb 518.859 7.639 1.106 0.347 0.922 0.256 4.320
PollenUS_Hr-Lb 12721.001 189.337 23.539 7.700 18.527 4.708 5.000
PollenUS_Hr-Mb 17179.482  3126.947 357.743 86.129 295791 57.528 6.219
PollenUS_Hr-Hb 2666.104 583.175  2212.626 382.566 6.969
PollenUS_VHr-Lb 2428.126 1004.174  1949.988 759.722 3.196
PollenUS_VHr-VLb 603.789 240.236  488.388 179.834 3357
Flu_Lr-Lb 926.360 3.691 0.035 0.032 0.034 0.032 1.094
Flu_Lr-Hb 966.328 3.797 0.081 0.046 0.070 0.042 1.929
Flu_Mr-Lb 8591.165 30.355 0.305 0.278 0.298 0.277 1.101
Flu_Mr-Hb 8957.175 32,018 0.714 0.384 0.608 0.323 2211
Flu_Hr-Lb 536.091 5.702 5.089 5454 5.059 1.127
Flu_Hr-Hb 591.955 12.795 6.822 10.992 7.072 1.809
eBird_Lr-Lb 396.811 147.951 322.580 125.248 3.168
eBird_Lr-Hb 6969.187  1897.051  5611.158 1067.395 6.529
eBird_Hr-Lb 8373.273  3226.016  6470.764  2229.460 3.756
eBird_Hr-Hb 34577.745

Table III
RUNTIME OF DIFFERENT ALGORITHM. THE SPEEDUP OF PB-SYM

OVER PB IS GIVEN.
1.4

T T T
Initialization s
1.2 Compute ===

o0 000000000000000008a08a0
JI—'IIAJEI—'SIAIAIJIJIAI
LTI TS T LT IL OO O R R
5 > 5 Z 5 5
R BN L Rk
2338028982222 252 8¢
o o O c £ 2 S5 wn w T L om @y
S ¢ ¢ 230 c g [ a
552238 §5cT2 % 3
0808583535325

038235932

o @3

Figure 7. Breakdown of the runtime of PB-SYM. Some instances are
mostly Initialization.

PB-SYM combines the reductions of both PB-BAR and
PB-DISK and achieves the best performance in most cases.
PB-SYM provides improvements up to a factor of 6.969
on the PollenUS_Hr-Hb case. The cases where PB-SYM
provides little improvement are explained either by the
instance having a low bandwidth, and therefore there is
little redundant computation to take advantange of, or by
the fact that the runtime is dominated by initialization cost.
The breakdown of the runtime of PB-SYM is given in Fig-
ure 7 and shows that PB-SYM is composed of two phases,
initializing the memory to store the density estimation of the
voxels, and computing the density cylinder surrounding the
points. PB-SYM reduces the computation cost but initializes
the memory in the same way as PB. Initialization is a
predominant runtime cost in the Flu dataset since there were
only 31K occurence of confirmed avian flu recorded in the
last 15 years but they span most of the earth.

Comparing to the gold implementation would not be fair
because it is in a different programming language. Though
we implemented the VB algorithm, and also a variant, VB-
DEC, that partitions the points in blocks of size equal to
the bandwidth to only compute distances between voxels
and points that have a chance to have an impact on it. The
results are given in Table III and show that even VB-DEC
is usually at least an order of magnitude larger than PB and
typically two orders of magnitude larger than PB-SYM.

C. Domain-based parallelism

PB-SYM-DR: The performance of the PB-SYM-DR
algorithm is given in Figure 8. Because it replicates the



Figure 8.

domain space, PB-SYM-DR was not able to complete the
calculations for Flu_Hr-Lb and Flu_Hr-Hb when using 8
threads and 16 threads as the memory requirement exceeds
the 128GB available on the machine. None of the high res-
olution eBird instances could have their domain replicated.

All the instances that have a high initialization cost get a
speedup lesser than 1 since the threads spend their time al-
locating extra memory and reducing the content of that extra
memory. The only instances to achieve a speedup higher than
8 when using 16 threads are 3 of the PollenUS instances and
one low resolution eBird instances. Not surprisingly, they are
the instances with the largest fraction of computation. (See
Figure 7 for reference.)

PB-SYM-DD: The PB-SYM-DD algorithm (described
in Section IV-B) also has some overhead induced by cut
cylinder surrounding a point. We measure the overhead
beforehand using different number of subdomains ranging
from a single subdomain (1x1x1) to a very fine grain
decomposition in 64x64x64 subdomains. The results of that
experiment is omitted from this document but can be found
in [17] and we only present here our conclusions.

Some decomposition can actually reduce the runtime by
providing better cache locality. However, in most cases,
the decomposition actually increases the runtime. For in-
stance, a 64x64x64 decomposition induces an overhead of
254% in the Flu-Lr-Hb cases. An overhead of 69% for
a 16x16x16 decomposition applies to Dengue_Lr-Hb. The
PollenUS suffers from a 74% overhead on PollenUS-Hr-Mb
for a 16x16x16 decomposition, and a 495% overhead for a
64x64x64 decomposition

The speedup achieved by a parallel execution of PB-
SYM-DD using 16 threads is presented in Figure 9. This
algorithm achieves overall better speedup than PB-SYM-DR.
It achieves a speedup greater than 8 on 9 instances. Let us
note that a speedup of 14.9 is achieved on Dengue_Hr-VHb
using a 16x16x16 decomposition and of 14.8 on eBird_Hr-
Hb with a 32x32x32 decomposition.

Despite a significant overhead on the PollenUS_Hr in-
stances, a speedup of 10 and 11.5 can be observed on the
Mb and Hb cases using 8x8x8 decomposition. This speedup
is relatively impressive provided the decomposition induces
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Speedup of PB-SYM-DR for different number of threads used. Some instances run out of memory.

an overhead of 25% and 23% in these two cases. The
8x8x8 decomposition in that case is still imbalanced and a
finer decomposition can reach perfect load balance; however
the overhead induced by the decomposition prevents taking
advantages of that better load balance. For PB-SYM-DD
to be useful, it is important to pick the decomposition to
ensure load balance without suffering from an unbearable
computational overhead.

A more modest speedup between 2 and 4 can be observed
on the instances with higher initialization cost, e.g., the Flu
dataset. Indeed, most of the time is spent on initializing the
memory to hold the density estimates. Even performing the
initialization in parallel leads to little gain in performance.
Even more so since the initialization touches the memory for
the first time, which makes the operating system allocates the
pages in physical memory. The speedup of the initialization
phase using 16 threads is about the same for all instances and
is at about 3. This phenomenon explains the small speedup
of PB-SYM-DD on instances with high initialization cost.

D. Point-based parallelism

The details of performance of PB-SYM-PD is omitted
from this manuscript but can be found in [17]. The take
away message is that PB-SYM-PD does not scale well on all
instances. The highest speedup achieved on PollenUS_Lr-Lb
is 2.6. The speedup is limited because of load imbalance.
Figure 10 shows the implicit critical path within the PB-
SYM-PD algorithm for a 64x64x64 decomposition. Most
instances have a critical path of about 10% of the total work.
If Graham’s bound is reached, that implies a speedup lesser
than 6.15. PollenUS_Hr-Hb has a critical path of 55% which
implies a speedup lesser than 1.6.

PB-SYM-PD-SCHED aims at improving the load balance
by arranging the execution to process the most loaded
subdomain first. Even if that decrease is marginal (see
Figure 10), PB-SYM-PD-SCHED ensures that the most
loaded subdomain are executed first which tends to construct
a better execution in practice. The results of PB-SYM-PD-
SCHED are shown in Figure 11. A superlinear speedup oc-
curs on PollenUS_VHr-VLb: it is due to the decomposition
of the points which improves the locality of the computation
compared to the sequential execution.
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Figure 10. Length of the critical path of the parallel algorithms PB-SYM-
PD and PB-SYM-PD-SCHED for a 64x64x64 decomposition relative to
the total amount of work.

However, the parallelism is still constrained by load im-
balance. PB-SYM-PD-REP performs domain decomposition
on the subdomain of the most loaded chains in the depen-
dency graph until the critical is small. Figure 12 shows the
speedup achieved by PB-SYM-PD-REP. Using PB-SYM-
PD-REP achieves a speedup larger than 8 on 8 instances.
Though the speedup is close to 0 for small decompositions
and on certain instances. Indeed, when there is no (or little)
decomposition, most of the domain is replicated and the
execution has similar drawbacks as PB-SYM-DR.

E. Summary and Discussion

Figure 13 summarizes the performance of all our methods.
It shows the performance achieved by the best configuration
of each particular algorithm. On Dengue instances, PB-
SYM-DD usually leads to the best performance because of
its low overhead while maintaining a good load balance.
On the PollenUS instances, the smart scheduling of PB-
SYM-PD-SCHED-REP is necessary to reach the highest

Speedup of PB-SYM-PD-SCHED with 16 threads. Note that decompositions of subdomain smaller that twice the bandwidths are adjusted.

parallelism. The flu instances are mostly dominated by
initialization overhead because it is very sparse, as such,
PB-SYM-DR performs much worse, and past that issue,
the other method show to little performance difference. The
eBird instances have a very small memory initialization
overhead because they are dense in computation. This makes
approaches that replicate the voxel space perform well at low
resolution, but runs out of memory at high resolution there.

What we need to do is to develop a parametric model for
the problem that will take into account memory availability,
cost of memory initialization, expected cost of computing
the kernel density. Using that model finding the best execu-
tion strategy becomes a combinatorial problem.

VII. RELATED WORKS

The PhD Thesis of U. Lopez-Novoa [18] is on the topic
of computing kernel density estimation for arbitrarily shaped
kernels. The crop and chop method presented revolves
around cropping the voxel space around a point with similar
goal as PB, and compute the density estimates in parallel on
a multi-core CPU or on a GPU before the data is aggregated
back on the CPU. The arbitrarily shaped density considered
does not expose the invariants leveraged by PB-SYM which
makes their work inapplicable to STKDE. [19] considers the
same variant of kernel density that we consider and expand
the techniques of [18] by considering coalescing. However,
they still use a voxel based algorithm which is very slow (on
a resolution lower than our lowest resolution, the parallel
computation takes .6 seconds on a GPU which is slower
than our reported sequential time on a larger instance).
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The two most common spatial problems solved with
parallel computing are N-body interactions [20] and Particle
in Cell simulations [21]. STKDE is different in the sense
that there is no iterating over the problem multiple times as
we see in the timesteps of N-body or particle in cell, no
direct interaction between points, and no field updates as in
Particle in Cell (unless you consider a field discretized at a
one voxel size which makes the analogy not quite useful).

The summation of kernel function, in particular of radial
basis function attracted some attention [22], [23], [24].
While some method presented in these papers are similar
to some of the decomposition we discuss here, the math-
ematical property of the kernel function are different. In
particular the kernel functions that these papers consider
do not have the grid-aligned symmetries that the space-
time kernel density estimate have. That symmetry is what
we leverage in PB-SYM to gain an order of magnitude of
acceleration and that leads to a more complex management
of parallelism we investigated.

Spatial applications can use spatial partitioning techniques
such as recursive bisection [25], jagged partition [26], [27],
[28], or rectilinear partition [29], [30]. Depending on the al-
gorithms used for STKDE, the objective function is different.
A partitioning for PB-SYM-DD needs a good load balance,
to minimize the number of cut cylinders. But PB-SYM-
PD needs a decomposition where the subdomains have a
minimum size and the balance is more complex since neigh-
boring subdomains can not be processed simultaneously.

VIII. CONCLUSION

We presented in this paper the space-time kernel density
estimation problem which is useful in the visualization of

PB-SYM-DR = ' PB-SYM-PD-SCHED =
PB-SYM-DD =1 PB-SYM-PD-SCHED-REP = -|
PB-SYM-PD mm

% % % % % % % % % &
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Best configurations

events located in space and time. We proposed sequential
algorithms to decrease the complexity of the problem. And
we investigated four parallel algorithms, two of which are
pleasingly parallel but at the cost of not being work efficient.
We then designed a work-efficient parallel algorithm but
the dependency structure tends to prevent high degree of
parallelism. Using graph coloring and moldable scheduling
techniques we made that latter parallel algorithm more
parallel by adding some work-overhead.

For each instance of the problem, one of the parallel
algorithm achieved an interesting performance. However, it
is clear that we need to model the instance and the platform
to control the various overhead and be able to pick the
parallel strategy that will derive the highest performance.
It would also be interesting to look at distributed memory
machines and accelerators to reduce the runtime further since
real-time is desirable for interactive applications. In term
of the application, we would like to investigate how these
methods apply to a bandwidth that adapts to the density of
population of the area is also of interest.

ACKNOWLEDGMENT

The authors would like to thank Dr. Daniel Janies for
pointing us to the Flu dataset. Support from US NSF
XSEDE Supercomputing Resource Allocation (SES170007)
”Accelerating and enhancing multi-scale spatiotemporally
explicit analysis and modeling of geospatial systems” is ac-
knowledged. This material is based upon work supported by
the National Science Foundation under Grant No. 1652442.



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

REFERENCES

L. Eisen and R. J. Eisen, “Using geographic information
systems and decision support systems for the prediction,
prevention, and control of vector-borne diseases,” Annual
review of entomology, vol. 56, pp. 41-61, 2011.

T. H. Grubesic, R. Wei, and A. T. Murray, “Spatial clustering
overview and comparison: Accuracy, sensitivity, and com-
putational expense,” Annals of the Association of American
Geographers, vol. 104, no. 6, pp. 1134-1156, 2014.

A. Hohl, E. Delmelle, W. Tang, and 1. Casas, “Accelerating
the discovery of space-time patterns of infectious diseases
using parallel computing,” Spatial and Spatio-temporal Epi-
demiology, 2016.

B. W. Silverman, Density estimation for statistics and data
analysis. CRC press, 1986, vol. 26.

T. Nakaya and K. Yano, “Visualising crime clusters in a
space-time cube: an exploratory data-analysis approach using
space-time kernel density estimation and scan statistics,”
Transactions in GIS, vol. 14, no. 3, pp. 223-239, 2010.

E. Delmelle, C. Dony, I. Casas, M. Jia, and W. Tang, “Visual-
izing the impact of space-time uncertainties on dengue fever
patterns,” International Journal of Geographical Information
Science, vol. 28, no. 5, pp. 1107-1127, 2014.

0. A. R. Board, “Openmp application program interface,”
OpenMP Architecture Review Board, Tech. Rep., Jul. 2013,
verion 4.0.0.

A. H. Gebremedhin, F. Manne, and A. Pothen, “What color
is your jacobian? Graph coloring for computing derivatives,”
SIAM Review, vol. 47, no. 4, pp. 629-705, 2005.

R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2,
pp. 416-429, Mar. 1969.

E. Boman, D. Bozdag, U. Catalytirek, A. Gebremedhin, and
F. Manne, “A scalable parallel graph coloring algorithm for
distributed memory computers,” in Proc. of Euro-Par, Aug
2005, pp. 241-251.

M. Deveci, E. G. Boman, K. D. Devine, and S. Rajaman-
ickam, “Parallel graph coloring for manycore architectures,”
in 2016 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), May 2016, pp. 892-901.

R. Lepere, D. Trystram, and G. J. Woeginger, “Approximation
algorithms for scheduling malleable tasks under precedence
constraints,” Int. J. Found. Comput. Sci., vol. 13, no. 4, pp.
613-627, 2002.

S. Hunold, “Scheduling moldable tasks with precedence con-
straints and arbitrary speedup functions on multiprocessors,”
in Prof of PPAM, 2013, pp. 13-25.

E. Delmelle, I. Casas, J. H. Rojas, and A. Varela, “Spatio-
temporal patterns of dengue fever in cali, colombia,” Inter-
national Journal of Applied Geospatial Research (IJAGR),
vol. 4, no. 4, pp. 58-75, 2013.

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M. P. Kwan, I. Casas, and B. Schmitz, “Protection of geo-
privacy and accuracy of spatial information: how effective
are geographical masks?” Cartographica: The International
Journal for Geographic Information and Geovisualization,
vol. 39, no. 2, pp. 15-28, 2004.

N. Y. Cornell Lab of Ornithology, Ithaca, “ebird basic
dataset,” http://ebird.org/content/ebird/, May 2016, version:
EBD_relMay-2016.

E. Saule, D. Panchananam, A. Hohl, W. Tang, and
E. Delmelle, “Parallel space-time kernel density estimation,”
arXiv, Tech. Rep. arXiv:1705.09366, May 2017.

U. Lopez-Novoa, “Contributions to the efficient use of gen-
eral purpose coprocessors: Kernel density estimation as case
study,” Ph.D. dissertation, Universidad del Pais Vasco, 2015.

T. Eaglin, I. Cho, and W. Ribarsky, “Space-time kernel
density estimation for real-time interactive visual analytics,”
in Proceedings of the 50th Hawaii International Conference
on System Sciences, Jan. 2017.

S. J. Aarseth, Gravitational N-Body Simulations: Tools and
Algorithms. Cambridge University Press, 2003.

H. Karimabadi, H. X. Vu, D. Krauss-Varban, and
Y. Omelchenko, “Global hybrid simulations of the earth’s
magnetosphere,” Numerical Modeling of Space Plasma
Flows, Dec. 2006.

W. B. March, B. Xiao, C. D. Yu, and G. Biros, “ASKIT: an
efficient, parallel library for high-dimensional kernel summa-
tions,” SIAM Journal on Scientific Computing, 2015.

B. Fornberg, E. Larsson, and N. Flyer, “Stable computations
with gaussian radial basis functions,” SIAM Journal on Sci-
entific Computing, vol. 33, no. 2, pp. 869-892, 2011.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis,
“Improved fast gauss transform and efficient kernel density
estimation,” in Proceedings of the Ninth IEEE International
Conference on Computer Vision. 1EEE, 2003, pp. 664-671.

M. Berger and S. Bokhari, “A partitioning strategy for nonuni-
form problems on multiprocessors,” IEEE TC, vol. C36, no. 5,
pp. 570-580, 1987.

M. Ujaldon, S. Sharma, E. Zapata, and J. Saltz, “Experimental
evaluation of efficient sparse matrix distributions,” in Proc. of
SuperComputing’96, 1996.

A. Pmar and C. Aykanat, “Sparse matrix decomposition with
optimal load balancing,” in Proc. of HiPC 1997, 1997.

M. Deveci, S. Rajamanickam, K. D. Devine, and U. V.
Catalytirek, “Multi-jagged: A scalable parallel spatial par-
titioning algorithm,” [EEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 3, pp. 803-817, 2016.

D. Nicol, “Rectilinear partitioning of irregular data parallel
computations,” JPDC, vol. 23, pp. 119-134, 1994.

F. Manne and T. Sgrevik, “Partitioning an array onto a mesh
of processors,” in Proc of PARA 96, 1996, pp. 467-477.



