
Parallel Space-Time Kernel Density Estimation

Erik Saule†, Dinesh Panchananam†, Alexander Hohl‡, Wenwu Tang‡, Eric Delmelle‡

† Dept. of Computer Science, ‡Dept. of Geography and Earth Sciences

UNC Charlotte

Charlotte, NC, USA

Email: {esaule,dpanchan,ahohl,wtang4,eric.delmelle}@uncc.edu

Abstract—The exponential growth of available data has
increased the need for interactive exploratory analysis. Dataset
can no longer be understood through manual crawling and
simple statistics. In Geographical Information Systems (GIS),
the dataset is often composed of events localized in space and
time; and visualizing such a dataset involves building a map
of where the events occurred.

We focus in this paper on events that are localized among
three dimensions (latitude, longitude, and time), and on com-
puting the first step of the visualization pipeline, space-time
kernel density estimation (STKDE), which is most computa-
tionally expensive. Starting from a gold standard implementa-
tion, we show how algorithm design and engineering, parallel
decomposition, and scheduling can be applied to bring near
real-time computing to space-time kernel density estimation.
We validate our techniques on real world datasets extracted
from infectious disease, social media, and ornithology.

Keywords-space-time kernel density; performance; spatial
algorithm; shared-memory parallelism; scheduling

I. INTRODUCTION

The rapid propagation of infectious diseases (e.g.

zika, Ebola, H1N1, dengue fever) is conducive to

serious, epidemic outbreaks, posing a threat to vulnerable

populations. Such diseases have complex transmission

cycles, and effective public health responses require the

ability to monitor outbreaks in a timely manner [1]. Space-

time statistics facilitate the discovery of disease dynamics

including rate of spread, seasonal cyclic patterns, direction,

intensity (i.e. clusters), and risk of diffusion to new regions.

However, obtaining accurate results from space-time

statistics is computationally very demanding, which is

problematic when public health interventions are promptly

needed. The issues of computational efforts are exacerbated

with spatiotemporal datasets of increasing size, diversity

and availability [2]. High-performance computing reduces

the effort required to identify these patterns, however

heterogeneity in the data must be accounted for [3].

Epidemiology is only one of the application domains

where it is important to understand how events occurring at

different locations and different times form clusters. Political

analysis, social media analysis, or the study of animal migra-

tion also require the understanding of spatial and temporal

locality of events. The massive amount of data we see nowa-

days is often analyzed using complex models. But before

these can be constructed, data scientists need to interactively

visualize and explore the data to understand its structure.

In this paper, we present the space-time kernel density

estimation application which essentially builds a 3D density

map of events located in space and time. This problem is

computationally expensive using existing algorithms. That

is why we developed better sequential algorithms for this

problem that reduced the complexity by orders of magnitude.

And to bring the runtime in the realm of near real-time, we

designed parallel strategies for shared memory machines.

Section II presents the STKDE application along with a

reference implementation that uses a voxel-based algorithm

VB to compute STKDE. In Section III, we investigate the

sequential problem and develop a point-based algorithm PB

that significantly reduce the complexity compared to VB.

We also identify invariants linked to the structure of the

kernel density estimate function that allows to reduce the

computational cost by an additional factor and build the PB-

SYM algorithm based on that observation. We develop two

parallelization strategies (PB-SYM-DR and PB-SYM-DD)

in Section IV that are designed to make the computation

pleasingly parallel. However both strategies are not work-

efficient and can cause significant work overhead in some

cases. That is why we introduce PB-SYM-PD in Section V

that provide a work-efficient decomposition of the points.

However that algorithm has internal dependencies which

can induce a long critical path and cause load imbalance;

and we develop PB-SYM-PD-SCHED to leverage alternative

ordering of the work to reduce the critical path. To reduce

the critical path further, we propose the PB-SYM-PD-REP

algorithm which introduces some work overhead only where

is needed to achieve a short critical path. Section VI presents

experimental results on 4 different datasets and 21 instances

extracted from these datasets. The experiments highlights

that the sequential strategies are efficient. The parallel strate-

gies have their pros and cons and different strategies appear

to be best in different scenarios. Section VII discusses the

applicability of related problems and techniques.

II. SPACE-TIME KERNEL DENSITY ESTIMATION

A. Description

Space-time kernel density (STKDE) is used for identi-

fying spatiotemporal patterns in datasets. It is a temporal



(a) hs = 2500m, ht = 14days (b) hs = 500m, ht = 7days

Figure 1. Visualization of Dengue fever cases in Cali, Colombia in 2010
and 2011 for different spatial bandwidth and temporal bandwidth.

extension of the traditional 2D kernel density estimation [4]

which generates density surface (“heatmap”) from a set

of n points located in a geographic space. The resulting

density estimates are visualized within the space-time cube

framework using two spatial (x, y) and a temporal dimension

(t) [5]. STKDE creates a discretized 3D volume where

each voxel (3D equivalent of a pixel) is assigned a density

estimate based on the surrounding points. The space-time

density is estimated using (following the notations of [3]):

f̂(x, y, t) =
1

nh2
sht

∑

i|di<hs,ti<ht

ks(
x− xi

hs

,
y − yi

hs

)kt(
t− ti

ht

)

Density f̂(x, y, t) of each voxel is determined by number

and distance of events (points) (xi, yi, ti) within its vicinity,

which is conceptualized by a cylinder. The spatial bandwidth

hs forms a circle which, due to the orthogonal relationship

between space and time, is extended to a cylinder by

temporal bandwidth ht. For every event inside the cylinder,

the spatial (di) and temporal (ti) distances are smaller than

hs and ht. Therefore, the event receives a weight based on

the kernel functions ks and kt (distance decay):

ks(u, v) =
π

2
(1− u)2(1− v)2

kt(w) =
3

4
(1− w)2

Figure 1 illustrates how varying the bandwidths used in

STKDE helps focusing the graphical visualization of Dengue

fever cases in Cali, Colombia [6]. Figure 2 shows the impact

of a single point on the neighboring space.

Computationally, the domain of size gx, gy , gt is dis-

cretized in voxels using a spatial resolution sres and a tem-

poral resolution tres. Therefore, the domain is represented

by a grid of size Gx =
⌈

gx
sres

⌉

, Gy =
⌈ gy
sres

⌉

, Gt =
⌈

gt
tres

⌉

.

Each point causes a density increase in the voxels that are

within a cylinder centered on the point, of radius equal to

the spatial bandwidth in voxels Hs =
⌈

hs

sres

⌉

, and of half

height equal to the temporal bandwidth Ht =
⌈

ht

tres

⌉

.

All the notations are summarized in Table I. As a conven-

tion all uppercase notations denote quantities in voxels and

all lowercase notations denote quantities in domain space.

Figure 2. The computation of STKDE happens in a domain space of size
gx, gy , gt. Each point impacts the neighboring space at a distance hs in
space and ht in time; forming a cylinder of diameter 2hs and of height
2ht.

n Number of points
s = (x, y, t) A voxel and sampling coordinate
(xi, yi, ti) Coordinate of point i
hs, ht Spatial and temporal bandwidth
gx, gy , gt Real size of the domain (in meters)

sres, tres Resolution (in meters)
s = (X,Y, T ) A voxel in voxel space
(Xi, Yi, Ti) Voxel of point i
Gx, Gy , Gt Size of the domain (in voxels)
Hs, Ht Bandwidth (in voxels)

Table I
NOTATIONS

B. Gold Standard Implementation

The gold standard implementation (for instance from [3])

follows the exact definition of STKDE as it is given above. It

is a voxel-based algorithm we call VB. For each voxel, VB

finds the points within the temporal and spatial bandwidths

and calculates the contribution to the density of this voxel.

The pseudo code is given in Algorithm 1.

Algorithm 1 VB

for all voxels s = (x, y, t) do

sum = 0
for all points i at xi, yi, ti do

if
√

(xi − x)2 + (yi − y)2 < hs and |ti − t| ≤ ht then

sum+ = ks(
x−xi
hs

,
y−yi
hs

)kt(
t−ti
ht

)

stkde[X][Y ][T ] = sum

nh2
sht

The algorithm performs θ(GxGyGtn) distance tests and

computes θ(nH2
sHt) densities. Since Hs is smaller than Gx

and Gy and since Ht is smaller than Gt, the complexity of

the algorithm is θ(GxGyGtn) and it requires θ(GxGyGt)
memory.

III. ALGORITHM DESIGN AND ENGINEERING

A. Point-based Algorithm

The voxel-based algorithm suffers from a massive cost

of computing distances. The gold implementation reduces

the number of distance computation by decomposing the

domain, but that still incurs many distance calculations. Most

of these calculations are unnecessary since we know where

each point will radiate density. The point-based algorithm

PB, given in Algorithm 2, leverages that property.



Algorithm 2 PB

for all voxels s = (x, y, t) do

stkde[X][Y ][T ] = 0

for each points i at xi, yi, ti do

for Xi − Hs ≤ X ≤ Xi + Hs do

for Yi − Hs ≤ Y ≤ Yi + Hs do

for Ti − Ts ≤ T ≤ Ti + Hs do

if
√

(xi − x)2 + (yi − y)2 < hs and |ti − t| ≤ ht then

stkde[X][Y ][T ]+ =
ks(

x−xi
hs

,
y−yi
hs

)kt(
t−ti
ht

)

nh2
sht

Figure 3. The contribution to the density estimate of each voxel of
a cylinder can be decomposed in two terms, one temporally invariant
Ks(x, y) and one spatially invariant Kt(t).

The algorithm PB incurs mostly two costs. Initializing

the memory which costs Θ(GxGyGt) and computing the

impact of each point Θ(nH2
sHt). Note that it is possible that

either of these two terms is significantly larger than the other.

Therefore the complexity of the algorithm is Θ(GxGyGt +
nH2

sHt).

B. Exploiting Symmetries

When the bandwidth is large, computing the density

contribution of each point each for voxel in the bandwidth

is the most expensive operation. Each of these n(2Hs)
22Ht

calculations costs approximately 40 floating point opera-

tions. (The exact cost is difficult to estimate since there

are floating point additions, multiplications, divisions, and

square root operations).

One can remark that the calculation is mostly redun-

dant since for one particular point, its contribution to the

neighboring voxels can be decomposed in two components.

Ks(x, y) only depends on the spatial coordinate of the

voxel with respect to the point and does not depend on

its temporal coordinate. And Kt(t) only depends on the

temporal coordinate and not on the spatial coordinates. See

Figure 3 for a graphical depiction.

Therefore, we write an algorithm to leverage these sym-

metries in the problem. We present three variants, the PB-

DISK variant ensures that the invariant on the spatial domain

is only computed once. The PB-BAR variant ensures that

the invariant on the temporal domain is only computed

once. The PB-SYM variant computes independently the

spatial invariant and the temporal invariant and then adds

the density caused by the point by taking the product of

the two invariants. (See pseudocode in Algorithm 3.) Notice

that leveraging the symmetries in the calculation does not

change the complexity (PB-SYM still has a complexity of

Θ(GxGyGt + nH2
sHt)) but reduces the number of flops.

Algorithm 3 PB-SYM

for all voxels s = (x, y, t) do

stkde[X][Y ][T ] = 0

for each points i at xi, yi, ti do

for Xi − Hs ≤ X ≤ Xi + Hs do

for Yi − Hs ≤ Y ≤ Yi + Hs do

if
√

(xi − x)2 + (yi − y)2 < hs then

Ks[X][Y ] =
ks(

x−xi
hs

,
y−yi
hs

)

nh2
sht

else

Ks[X][Y ] = 0

for Ti − Ts ≤ T ≤ Ti + Hs do

if |ti − t| ≤ ht then

Kt[T ] = kt(
t−ti
ht

)
else

Kt[T ] = 0

for Xi − Hs ≤ X ≤ Xi + Hs do

for Yi − Hs ≤ Y ≤ Yi + Hs do

for Ti − Ts ≤ T ≤ Ti + Hs do

stkde[X][Y ][T ]+ = Ks[X][Y ]Kt[T ]

Notice that this exploitation of symmetries is not possible

in a voxel-based algorithm.

IV. DOMAIN-BASED PARALLELISM

A. Domain Replication

The simplest way to parallelize this kind of computation

is to split the points equally among the P different compu-

tational units. Though, if two close-by points are computed

simultaneously, the cylinders of density around them might

intersect and there is a race condition.

The PB-SYM-DR algorithm solves the data race issue

by having each of the P computational unit aggregate the

result on a local copy of the domain. Once all the points

have been processed, the P copies need to be summed. The

pseudo code of PB-SYM-DR is given in Algorithm 4.

This algorithm has a memory requirement of

Θ(PGxGyGt) and a parallel amount of work of

Θ(PGxGyGt + nH2
sHt). Fortunately, the increase in

work enables the computation to be pleasingly parallel.

(There are actually in three pleasingly parallel phases:

initializing the memory, processing the points, and reducing

the partial results.)

Algorithm 4 PB-SYM-DR
for all processor p ≤ P in parallel do

for all voxels s = (x, y, t) do

stkdel[p][X][Y ][T ] = 0

for each points i at xi, yi, ti distributed among the P processors do

Processor p processes i using PB-SYM and aggregates it in stkdel[p]

for all voxels s = (x, y, t) in parallel do

stkde[X][Y ][T ] = 0
for all processor p ≤ P do

stkde[X][Y ][T ]+ = stkdel[p][X][Y ][T ]



Figure 4. When a cylinder is split among two subdomains, PB-SYM-DD
causes an overhead because one of the invariant needs to be recomputed.
Here each subdomains compute part of the temporal invariant Ks, but both
need to compute the spatial invariant Kt.

B. Domain Decomposition

Another strategy to avoid the data race is to compute voxel

intensity independently for different subdomains. We call

this method PB-SYM-DD (Algorithm 5). It splits the domain

in AxBxC subdomains and each subdomain is associated

the points which cylinder intersects with a voxel of the

subdomain. Then the algorithm proceeds with handling each

subdomain independently by only considering the impact of

the data-point on voxels within the subdomain.

Algorithm 5 PB-SYM-DD

for all points i = (xi, yi, ti) do

for each subdomain (a, b, c) do

if (X,Y, T ) ± (Hs, Hs, HT ) intersects

(
⌊

aGx
A

⌋

:
⌈

(a+1)Gx
A

⌉

,
⌊

bGy
B

⌋

:
⌈

(b+1)Gy
B

⌉

,
⌊

cGt
C

⌋

:
⌈

(c+1)Gt
C

⌉

) then

localpoints[a][b][c].add(xi, yi, ti)

for each subdomain (a, b, c) in parallel do

Process subdomain (a, b, c) using PB-SYM

The main problem with Domain Decomposition is that

it requires some points to be replicated across multiple

subdomain which incurs additional work. Indeed, if a point is

replicated in multiple subdomains, its cylinder is split across

multiple subdomains as well. Assuming the split is temporal,

then using PB-SYM in each subdomain requires computing

part of the temporal invariant, the entire spatial invariant,

and part of the cylinder. Therefore both subdomains need

to compute the entire spatial invariant. See Figure 4 for a

graphical depiction of this phenomenon.

If the algorithms keeps the number of subdomains small

such that each point is replicated less than a constant number

of times, then the work expressed in Big-Oh notation does

not change. (This can be achieved by having subdomains

larger than Hs ×Hs ×Ht.) However, the practical amount

of work can increase by a non-negligable factor.

Another issue with Domain Decomposition is load imbal-

ance. The points are unlikely to be equally distributed in the

domain space, but more likely clustered around some loca-

tions. The subdomain containing a cluster will have a signif-

icantly higher work than other subdomains. And this work is

not executed in parallel. One could decompose the domain

more, but replicated point will incur an even higher overhead

which may end up nullifying the gain in load balance.

Figure 5. Provided the subdomains are larger than twice the bandwidth,
the points contained in each blue boxes can be performed simultaneously.

V. POINT-BASED PARALLELISM

A. Point Decomposition

Both of the previous strategies increase the amount of

work significantly. We want to achieve parallelism without

cutting a cylinder and without requiring each thread to have

its own memory space. To achieve that goal, we propose the

PB-SYM-PD algorithm that decomposes the points in sets

that can be safely performed simultaneously.

As long as two points are separated by 2hs in space

dimension or by 2ht in time, the cylinders induced by

the two points will not overlap. PB-SYM-PD decomposes

the points in A × B × C subdomain of identical size. As

long as these subdomains are larger than 2hs in a spatial

dimension and 2ht in the temporal dimension, the points in

domain (x, y, z) can be done concurently with the points in

(x+ 2, y, z). See Figure 5 for a graphical depiction.

We implemented the first version of this algorithm that

organizes the subdomain in 8 sets where the first set is com-

posed of the subdomains (2i, 2j, 2k), the second of all the

subdomains (2i+1, 2j, 2k), the third of all the subdomains

(2i, 2j + 1, 2k), etc.. The algorithm processes the sets the

one after the other by doing each subdomain within a set in

parallel. Two such sets are depicted in Figure 5. In practice,

this is implemented using 8 OpenMP parallel-for constructs.

Algorithm 6 PB-SYM-PD

for all points i = (xi, yi, ti) do

localpoints[
⌊

AX
Gx

⌋

][
⌊

BY
Gy

⌋

][
⌊

CT
Gt

⌋

].add(xi, yi, ti)

for abase ∈ {0;+1} do

for bbase ∈ {0;+1} do

for cbase ∈ {0;+1} do

Do the work of the next three loops in parallel

for a = abase; a ≤ A; a+ = 2 do

for b = bbase; b ≤ B; b+ = 2 do

for c = cbase; c ≤ C; c+ = 2 do

Process points in localpoints[a][b][c] using PB-SYM

B. Coloring and Scheduling

Note that such an implementation overconstrains the ex-

ecution of the algorithm. Indeed, despite they are not in

the same set, subdomain (1, 0, 0) and (64, 64, 64) can be

computed at the same time. The real constraint is that the

points contained in a subdomain can be processed safely



A B C D

E F G H

I J K L
M N O P
Q R S T

A B C D

E F G H

I J K L

M N O P

Q R S T

Figure 6. Dependency structure implied by a coloring of the subdomain.
(Shown for a 2D decomposition for simplicity.)

as long as none of the point contained in a neighboring

subdomain is being processed. Using the OpenMP tasking

construct with dependency introduced in OpenMP 4.0 [7],

one can precisely express this constraint, which is a 27-point

stencil constraint.

Formally speaking, this problem is a combination of

multiple very classical graphs and scheduling problem. Mod-

eling the subdomains as a 27-point stencil graph, identifying

sets of subdomains to perform in parallel is coloring the

vertices of the graph so that no two neighboring vertices

share the same color. It differs from classical graph coloring

problems (surveyed in [8]) in that the objective is not to

minimize the number of colors or to balance the number of

vertices of each color but to minimize the execution time of

the implied schedule.

The implied schedule is actually a scheduling of a graph

of dependency which is extracted from the coloring. Each

edge of the stencil graph is oriented from the vertex of

the lowest color to the vertex with the highest color. Each

vertex is associated with a processing time proportional to

the number of points inside the sub-domain the vertex rep-

resents and the neighboring subdomains. This construction

is represented in Figure 6.

The OpenMP scheduler is not explicit in which order tasks

that are available are performed. Though it is reasonable

to assume that the tasks will be scheduled using a greedy

algorithm. Therefore, the classic guarantee from Graham’s

List Scheduling [9] is valid:

TP ≤
T1 − T∞

P
+ T∞,

where T1 is the total amount of work to perform and T∞ is

the length of the longest chain in the dependency graph.

We propose to reduce the critical path by using a load-

aware coloring of the subdomains. We use a greedy coloring

algorithm which considers the subdomains in a particular

order and for each subdomain will color it with the smallest

color that does not conflict with the already colored neigh-

bors. Such greedy coloring algorithm are commonly used in

parallel computing applications [8], [10], [11]. However, we

will use an ordering that color the vertices in non-increasing

order of the number of points contained in the subdomain.

While this algorithm is a heuristic, it is likely to obtain

a coloring that minimizes the critical path1. We call this

algorithm to compute STKDE: PB-SYM-PD-SCHED.

To decrease the critical path further, we propose an other

algorithm PB-SYM-PD-REP which replicates the subdo-

mains that are on the critical path (and its neighbors) of the

graph so that the points of a subdomain can be performed in

parallel. As long as the critical path is longer than n
2P , the

tasks on the path are replicated an additional time and the

critical path is recomputed. Replication of subdomain causes

to have to initialize additional subdomains and to reduce

them which increases the work in a similar way PB-SYM-

DR. However, the replication should be limited to a few

chains in the graph and therefore should limit the overhead.

Note that this problem is similar to scheduling a DAG of

moldable tasks [12], [13].

VI. EXPERIMENTS

A. Experimental Setting

Execution environment: The machine used to per-

form the experiments is composed of two Intel Xeon E5-

2667 v3 processors for a total of 16 cores clocked at

3.2Ghz. Despite each core is capable of hosting 2 hy-

perthreads, hyperthreading was disabled. The machine is

equipped with 128GB of DDR4 clocked at 2.133 Ghz.

The node uses RHEL 7.2 and Linux 3.10. All codes are

written in C++ and are compiled using GCC 5.3, which

implements OpenMP 4.0, with optimization flags -O3

-march=native -fopenmp -DNDEBUG. All reported

execution times exclude all IOs.

Dataset: Four datasets are used in our experiments.

Their key attributes are summarized in Table II. The Dengue

dataset is of epidemiological nature and consists of the

space-time locations of dengue fever cases reported to the

Sistema de Vigilancia en Salud Pública for the city of Cali,

Colombia during 2010 and 2011. The system is updated on

a daily basis with records of individuals that have been diag-

nosed with dengue fever, including patient address and the

date of diagnosis. Addresses are standardized to a common

format, and spelling and other syntactical errors are manu-

ally corrected [14]; they are then geocoded and masked to

the nearest street intersection level to maintain privacy [15].

In 2010, 9606 were successfully geocoded (11,760 reported

cases, or 81.7%), whereas in 2011, 1562 cases were suc-

cessfully geocoded (1822 reported cases, or 85.7%).

The PollenUS dataset is composed of 588K tweets of

US users from February 2016 to April 2016 related to

Pollen (i.e., that mention keywords such as “pollen” and

“allergy”). Tweets that did not contain a precise localization

were approximated by picking a random location in the

approximated region provided by Gnip2. Tweets are mostly

1The complexity of this problem is currently unknown to the authors.
The general case of an arbitrary graph is NP-Hard by reduction to graph
coloring. But the case of a 1D stencil is clearly polynomial.

2http://www.gnip.com/



Instance n Gx x Gy x Gt Size Hs Ht

Dengue Lr-Lb 11056 148x194x728 79MB 3 1
Dengue Lr-Hb 11056 148x194x728 79MB 25 1
Dengue Hr-Lb 11056 294x386x728 315MB 2 1
Dengue Hr-Hb 11056 294x386x728 315MB 50 1
Dengue Hr-VHb 11056 294x386x728 315MB 50 14
PollenUS Lr-Lb 588189 131x61x84 2MB 2 3
PollenUS Hr-Lb 588189 651x301x84 62MB 10 3
PollenUS Hr-Mb 588189 651x301x84 62MB 25 7
PollenUS Hr-Hb 588189 651x301x84 62MB 50 14
PollenUS VHr-Lb 588189 6501x3001x84 6252MB 100 3
PollenUS VHr-VLb 588189 6501x3001x84 6252MB 50 3
Flu Lr-Lb 31478 117x308x851 117MB 1 1
Flu Lr-Hb 31478 117x308x851 117MB 2 3
Flu Mr-Lb 31478 233x615x1985 1085MB 2 3
Flu Mr-Hb 31478 233x615x1985 1085MB 4 7
Flu Hr-Lb 31478 581x1536x5951 20260MB 5 7
Flu Hr-Hb 31478 581x1536x5951 20260MB 10 21
eBird Lr-Lb 291990435 357x721x2435 2391MB 2 3
eBird Lr-Hb 291990435 357x721x2435 2391MB 6 5
eBird Hr-Lb 291990435 1781x3601x2435 59570MB 10 3
eBird Hr-Hb 291990435 1781x3601x2435 59570MB 30 5

Table II
PROPERTIES OF THE DATASETS. THE DOMAIN IS EXPRESSED IN VOXELS

AND IN MB. BANDWIDTH ARE EXPRESSED IN VOXELS.

located in the contiguous continental US. Therefore, this is

the region we modeled with a spatial resolution ranging from

.2◦ to 1◦ and a temporal resolution of 1 day.

The Flu dataset was obtained from the Animal Surveil-

lance database of the Influenza Research Database3. The

dataset contains observations of birds tested positive for

carrying any strain the avian flu from 2001 to 2016. The

birds were observed all over the world and the modeled

region spans as West as Alaska and East as Japan, as South

as the southern shore of Australia and as North as the North-

ern shore of Russia. The domain is modeled with spatial

resolution from .2◦ to 1◦ and a temporal resolution of 1 day.

The eBird4 dataset is a collection of worldwide rare bird

spotting obtained from a crowdsourcing effort managed by

Cornell’s Lab or Ornithology [16]. Despite the service was

launched in 2002, the database contains many older entries

of birds that are known to have been observed at the time.

For our experiment, we use the last 20 years of bird spotting

and model the entire world with a temporal resolution of 3

days, and a spatial resolution of either .1◦ or .5◦.

For all datasets, we created multiple instances of the

problem coded Lr, Mr, Hr for low, medium, and high

resolution and Lb, Hb, VHb for low, high and very high

bandwidth. See details in Table II.

An abridged version of the results are included in the

following sections. A complete description of the results are

presented in the companion technical report [17].

B. Algorithm design

Table III presents the runtime of the point-based algo-

rithms presented in Section III. The runtime are given in

seconds. As expected for each dataset, the runtime increases

with resolution and bandwidth. Exploiting the disk invariant

with PB-DISK provides a large reduction in the runtime,

even more so when the temporal bandwidth is high. PB-

BAR provides a more modest time reduction.

3https://www.fludb.org/
4http://ebird.org

Time (in seconds) speedup
Instance VB VB-DEC PB PB-DISK PB-BAR PB-SYM PB-SYM

Dengue Lr-Lb 219.163 2.283 0.040 0.029 0.035 0.028 1.429
Dengue Lr-Hb 220.591 13.878 1.298 0.564 1.152 0.499 2.601
Dengue Hr-Lb 866.445 9.522 0.089 0.082 0.085 0.084 1.060
Dengue Hr-Hb 871.774 55.206 5.169 2.272 4.563 2.074 2.492
Dengue Hr-VHb 1056.172 404.845 51.885 11.478 42.994 7.431 6.982
PollenUS Lr-Lb 518.859 7.639 1.106 0.347 0.922 0.256 4.320
PollenUS Hr-Lb 12721.001 189.337 23.539 7.700 18.527 4.708 5.000
PollenUS Hr-Mb 17179.482 3126.947 357.743 86.129 295.791 57.528 6.219
PollenUS Hr-Hb 2666.104 583.175 2212.626 382.566 6.969
PollenUS VHr-Lb 2428.126 1004.174 1949.988 759.722 3.196
PollenUS VHr-VLb 603.789 240.236 488.388 179.834 3.357
Flu Lr-Lb 926.360 3.691 0.035 0.032 0.034 0.032 1.094
Flu Lr-Hb 966.328 3.797 0.081 0.046 0.070 0.042 1.929
Flu Mr-Lb 8591.165 30.355 0.305 0.278 0.298 0.277 1.101
Flu Mr-Hb 8957.175 32.018 0.714 0.384 0.608 0.323 2.211
Flu Hr-Lb 536.091 5.702 5.089 5.454 5.059 1.127
Flu Hr-Hb 591.955 12.795 6.822 10.992 7.072 1.809
eBird Lr-Lb 396.811 147.951 322.580 125.248 3.168
eBird Lr-Hb 6969.187 1897.051 5611.158 1067.395 6.529
eBird Hr-Lb 8373.273 3226.016 6470.764 2229.460 3.756
eBird Hr-Hb 34577.745

Table III
RUNTIME OF DIFFERENT ALGORITHM. THE SPEEDUP OF PB-SYM

OVER PB IS GIVEN.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

D
e
n
g
u
e
_
L
r-

L
b

D
e
n
g
u
e
_
L
r-

H
b

D
e
n
g
u
e
_
H

r-
L
b

D
e
n
g
u
e
_
H

r-
H

b

D
e
n
g
u
e
_
H

r-
V

H
b

P
o
ll
e
n
U

S
_
L
r-

L
b

P
o
ll
e
n
U

S
_
H

r-
L
b

P
o
ll
e
n
U

S
_
H

r-
M

b

P
o
ll
e
n
U

S
_
H

r-
H

b

P
o
ll
e
n
U

S
_
V

H
r-

L
b

P
o
ll
e
n
U

S
_
V

H
r-

V
L
b

F
lu

_
L
r-

L
b

F
lu

_
L
r-

H
b

F
lu

_
M

r-
L
b

F
lu

_
M

r-
H

b

F
lu

_
H

r-
L
b

F
lu

_
H

r-
H

b

e
B

ir
d
_
L
r-

L
b

e
B

ir
d
_
L
r-

H
b

e
B

ir
d
_
H

r-
L
b

e
B

ir
d
_
H

r-
H

b

Initialization
Compute

Figure 7. Breakdown of the runtime of PB-SYM. Some instances are
mostly Initialization.

PB-SYM combines the reductions of both PB-BAR and

PB-DISK and achieves the best performance in most cases.

PB-SYM provides improvements up to a factor of 6.969
on the PollenUS Hr-Hb case. The cases where PB-SYM

provides little improvement are explained either by the

instance having a low bandwidth, and therefore there is

little redundant computation to take advantange of, or by

the fact that the runtime is dominated by initialization cost.

The breakdown of the runtime of PB-SYM is given in Fig-

ure 7 and shows that PB-SYM is composed of two phases,

initializing the memory to store the density estimation of the

voxels, and computing the density cylinder surrounding the

points. PB-SYM reduces the computation cost but initializes

the memory in the same way as PB. Initialization is a

predominant runtime cost in the Flu dataset since there were

only 31K occurence of confirmed avian flu recorded in the

last 15 years but they span most of the earth.

Comparing to the gold implementation would not be fair

because it is in a different programming language. Though

we implemented the VB algorithm, and also a variant, VB-

DEC, that partitions the points in blocks of size equal to

the bandwidth to only compute distances between voxels

and points that have a chance to have an impact on it. The

results are given in Table III and show that even VB-DEC

is usually at least an order of magnitude larger than PB and

typically two orders of magnitude larger than PB-SYM.

C. Domain-based parallelism

PB-SYM-DR: The performance of the PB-SYM-DR

algorithm is given in Figure 8. Because it replicates the



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

D
engue_Lr-Lb

D
engue_Lr-H

b

D
engue_H

r-Lb

D
engue_H

r-H
b

D
engue_H

r-V
H
b

PollenU
S_Lr-Lb

PollenU
S_H

r-Lb

PollenU
S_H

r-M
b

PollenU
S_H

r-H
b

PollenU
S_V

H
r-Lb

PollenU
S_V

H
r-V

Lb

Flu_Lr-Lb

Flu_Lr-H
b

Flu_M
r-Lb

Flu_M
r-H

b

Flu_H
r-Lb

Flu_H
r-H

b

eB
ird_Lr-Lb

eB
ird_Lr-H

b

eB
ird_H

r-Lb

S
p

e
e
d

u
p

1
2
4

8
16

Figure 8. Speedup of PB-SYM-DR for different number of threads used. Some instances run out of memory.

domain space, PB-SYM-DR was not able to complete the

calculations for Flu Hr-Lb and Flu Hr-Hb when using 8

threads and 16 threads as the memory requirement exceeds

the 128GB available on the machine. None of the high res-

olution eBird instances could have their domain replicated.

All the instances that have a high initialization cost get a

speedup lesser than 1 since the threads spend their time al-

locating extra memory and reducing the content of that extra

memory. The only instances to achieve a speedup higher than

8 when using 16 threads are 3 of the PollenUS instances and

one low resolution eBird instances. Not surprisingly, they are

the instances with the largest fraction of computation. (See

Figure 7 for reference.)

PB-SYM-DD: The PB-SYM-DD algorithm (described

in Section IV-B) also has some overhead induced by cut

cylinder surrounding a point. We measure the overhead

beforehand using different number of subdomains ranging

from a single subdomain (1x1x1) to a very fine grain

decomposition in 64x64x64 subdomains. The results of that

experiment is omitted from this document but can be found

in [17] and we only present here our conclusions.

Some decomposition can actually reduce the runtime by

providing better cache locality. However, in most cases,

the decomposition actually increases the runtime. For in-

stance, a 64x64x64 decomposition induces an overhead of

254% in the Flu-Lr-Hb cases. An overhead of 69% for

a 16x16x16 decomposition applies to Dengue Lr-Hb. The

PollenUS suffers from a 74% overhead on PollenUS-Hr-Mb

for a 16x16x16 decomposition, and a 495% overhead for a

64x64x64 decomposition

The speedup achieved by a parallel execution of PB-

SYM-DD using 16 threads is presented in Figure 9. This

algorithm achieves overall better speedup than PB-SYM-DR.

It achieves a speedup greater than 8 on 9 instances. Let us

note that a speedup of 14.9 is achieved on Dengue Hr-VHb

using a 16x16x16 decomposition and of 14.8 on eBird Hr-

Hb with a 32x32x32 decomposition.

Despite a significant overhead on the PollenUS Hr in-

stances, a speedup of 10 and 11.5 can be observed on the

Mb and Hb cases using 8x8x8 decomposition. This speedup

is relatively impressive provided the decomposition induces

an overhead of 25% and 23% in these two cases. The

8x8x8 decomposition in that case is still imbalanced and a

finer decomposition can reach perfect load balance; however

the overhead induced by the decomposition prevents taking

advantages of that better load balance. For PB-SYM-DD

to be useful, it is important to pick the decomposition to

ensure load balance without suffering from an unbearable

computational overhead.

A more modest speedup between 2 and 4 can be observed

on the instances with higher initialization cost, e.g., the Flu

dataset. Indeed, most of the time is spent on initializing the

memory to hold the density estimates. Even performing the

initialization in parallel leads to little gain in performance.

Even more so since the initialization touches the memory for

the first time, which makes the operating system allocates the

pages in physical memory. The speedup of the initialization

phase using 16 threads is about the same for all instances and

is at about 3. This phenomenon explains the small speedup

of PB-SYM-DD on instances with high initialization cost.

D. Point-based parallelism

The details of performance of PB-SYM-PD is omitted

from this manuscript but can be found in [17]. The take

away message is that PB-SYM-PD does not scale well on all

instances. The highest speedup achieved on PollenUS Lr-Lb

is 2.6. The speedup is limited because of load imbalance.

Figure 10 shows the implicit critical path within the PB-

SYM-PD algorithm for a 64x64x64 decomposition. Most

instances have a critical path of about 10% of the total work.

If Graham’s bound is reached, that implies a speedup lesser

than 6.15. PollenUS Hr-Hb has a critical path of 55% which

implies a speedup lesser than 1.6.

PB-SYM-PD-SCHED aims at improving the load balance

by arranging the execution to process the most loaded

subdomain first. Even if that decrease is marginal (see

Figure 10), PB-SYM-PD-SCHED ensures that the most

loaded subdomain are executed first which tends to construct

a better execution in practice. The results of PB-SYM-PD-

SCHED are shown in Figure 11. A superlinear speedup oc-

curs on PollenUS VHr-VLb: it is due to the decomposition

of the points which improves the locality of the computation

compared to the sequential execution.



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

D
engue_Lr-Lb

D
engue_Lr-H

b

D
engue_H

r-Lb

D
engue_H

r-H
b

D
engue_H

r-V
H
b

PollenU
S_Lr-Lb

PollenU
S_H

r-Lb

PollenU
S_H

r-M
b

PollenU
S_H

r-H
b

PollenU
S_V

H
r-Lb

PollenU
S_V

H
r-V

Lb

Flu_Lr-Lb

Flu_Lr-H
b

Flu_M
r-Lb

Flu_M
r-H

b

Flu_H
r-Lb

Flu_H
r-H

b

eB
ird_Lr-Lb

eB
ird_Lr-H

b

eB
ird_H

r-Lb

eB
ird_H

r-H
b

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 9. Speedup of PB-SYM-DD with 16 threads.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

D
engue_Lr-Lb

D
engue_Lr-H

b

D
engue_H

r-Lb

D
engue_H

r-H
b

D
engue_H

r-V
H
b

PollenU
S_Lr-Lb

PollenU
S_H

r-Lb

PollenU
S_H

r-M
b

PollenU
S_H

r-H
b

PollenU
S_V

H
r-Lb

PollenU
S_V

H
r-V

Lb

Flu_Lr-Lb

Flu_Lr-H
b

Flu_M
r-Lb

Flu_M
r-H

b

Flu_H
r-Lb

Flu_H
r-H

b

eB
ird_Lr-Lb

eB
ird_Lr-H

b

eB
ird_H

r-Lb

eB
ird_H

r-H
b

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 11. Speedup of PB-SYM-PD-SCHED with 16 threads. Note that decompositions of subdomain smaller that twice the bandwidths are adjusted.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

D
engue_Lr-Lb

D
engue_Lr-H

b

D
engue_H

r-Lb

D
engue_H

r-H
b

D
engue_H

r-VH
b

PollenU
S_Lr-Lb

PollenU
S_H

r-Lb

PollenU
S_H

r-M
b

PollenU
S_H

r-H
b

PollenU
S_VH

r-Lb

PollenU
S_VH

r-VLb

Flu_Lr-Lb

Flu_Lr-H
b

Flu_M
r-Lb

Flu_M
r-H

b

Flu_H
r-Lb

Flu_H
r-H

b

eBird_Lr-Lb

eBird_Lr-H
b

eBird_H
r-Lb

R
e
la

ti
v
e
 l
e
n
g
th

 o
f 

th
e
 c

ri
ti

c
a
l 
p
a
th PB-SYM-PD

PB-SYM-PD-SCHED

Figure 10. Length of the critical path of the parallel algorithms PB-SYM-
PD and PB-SYM-PD-SCHED for a 64x64x64 decomposition relative to
the total amount of work.

However, the parallelism is still constrained by load im-

balance. PB-SYM-PD-REP performs domain decomposition

on the subdomain of the most loaded chains in the depen-

dency graph until the critical is small. Figure 12 shows the

speedup achieved by PB-SYM-PD-REP. Using PB-SYM-

PD-REP achieves a speedup larger than 8 on 8 instances.

Though the speedup is close to 0 for small decompositions

and on certain instances. Indeed, when there is no (or little)

decomposition, most of the domain is replicated and the

execution has similar drawbacks as PB-SYM-DR.

E. Summary and Discussion

Figure 13 summarizes the performance of all our methods.

It shows the performance achieved by the best configuration

of each particular algorithm. On Dengue instances, PB-

SYM-DD usually leads to the best performance because of

its low overhead while maintaining a good load balance.

On the PollenUS instances, the smart scheduling of PB-

SYM-PD-SCHED-REP is necessary to reach the highest

parallelism. The flu instances are mostly dominated by

initialization overhead because it is very sparse, as such,

PB-SYM-DR performs much worse, and past that issue,

the other method show to little performance difference. The

eBird instances have a very small memory initialization

overhead because they are dense in computation. This makes

approaches that replicate the voxel space perform well at low

resolution, but runs out of memory at high resolution there.

What we need to do is to develop a parametric model for

the problem that will take into account memory availability,

cost of memory initialization, expected cost of computing

the kernel density. Using that model finding the best execu-

tion strategy becomes a combinatorial problem.

VII. RELATED WORKS

The PhD Thesis of U. Lopez-Novoa [18] is on the topic

of computing kernel density estimation for arbitrarily shaped

kernels. The crop and chop method presented revolves

around cropping the voxel space around a point with similar

goal as PB, and compute the density estimates in parallel on

a multi-core CPU or on a GPU before the data is aggregated

back on the CPU. The arbitrarily shaped density considered

does not expose the invariants leveraged by PB-SYM which

makes their work inapplicable to STKDE. [19] considers the

same variant of kernel density that we consider and expand

the techniques of [18] by considering coalescing. However,

they still use a voxel based algorithm which is very slow (on

a resolution lower than our lowest resolution, the parallel

computation takes .6 seconds on a GPU which is slower

than our reported sequential time on a larger instance).



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

D
engue_Lr-Lb

D
engue_Lr-H

b

D
engue_H

r-Lb

D
engue_H

r-H
b

D
engue_H

r-V
H
b

PollenU
S_Lr-Lb

PollenU
S_H

r-Lb

PollenU
S_H

r-M
b

PollenU
S_H

r-H
b

PollenU
S_V

H
r-Lb

PollenU
S_V

H
r-V

Lb

Flu_Lr-Lb

Flu_Lr-H
b

Flu_M
r-Lb

Flu_M
r-H

b

Flu_H
r-Lb

Flu_H
r-H

b

eB
ird_Lr-Lb

eB
ird_Lr-H

b

eB
ird_H

r-Lb

eB
ird_H

r-H
b

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 12. Speedup of PB-SYM-PD-REP using 16 threads for different decompositions. Flu Hr-{Lb,Hb} run out of memory for small decompositions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

D
engue_Lr-Lb

D
engue_Lr-H

b

D
engue_H

r-Lb

D
engue_H

r-H
b

D
engue_H

r-VH
b

PollenU
S_Lr-Lb

PollenU
S_H

r-Lb

PollenU
S_H

r-M
b

PollenU
S_H

r-H
b

PollenU
S_VH

r-Lb

PollenU
S_VH

r-VLb

Flu_Lr-Lb

Flu_Lr-H
b

Flu_M
r-Lb

Flu_M
r-H

b

Flu_H
r-Lb

Flu_H
r-H

b

eBird_Lr-Lb

eBird_Lr-H
b

eBird_H
r-Lb

eBird_H
r-H

b

S
p
e
e
d
u
p

PB-SYM-DR
PB-SYM-DD
PB-SYM-PD

PB-SYM-PD-SCHED
PB-SYM-PD-SCHED-REP

Figure 13. Best configurations

The two most common spatial problems solved with

parallel computing are N-body interactions [20] and Particle

in Cell simulations [21]. STKDE is different in the sense

that there is no iterating over the problem multiple times as

we see in the timesteps of N-body or particle in cell, no

direct interaction between points, and no field updates as in

Particle in Cell (unless you consider a field discretized at a

one voxel size which makes the analogy not quite useful).

The summation of kernel function, in particular of radial

basis function attracted some attention [22], [23], [24].

While some method presented in these papers are similar

to some of the decomposition we discuss here, the math-

ematical property of the kernel function are different. In

particular the kernel functions that these papers consider

do not have the grid-aligned symmetries that the space-

time kernel density estimate have. That symmetry is what

we leverage in PB-SYM to gain an order of magnitude of

acceleration and that leads to a more complex management

of parallelism we investigated.

Spatial applications can use spatial partitioning techniques

such as recursive bisection [25], jagged partition [26], [27],

[28], or rectilinear partition [29], [30]. Depending on the al-

gorithms used for STKDE, the objective function is different.

A partitioning for PB-SYM-DD needs a good load balance,

to minimize the number of cut cylinders. But PB-SYM-

PD needs a decomposition where the subdomains have a

minimum size and the balance is more complex since neigh-

boring subdomains can not be processed simultaneously.

VIII. CONCLUSION

We presented in this paper the space-time kernel density

estimation problem which is useful in the visualization of

events located in space and time. We proposed sequential

algorithms to decrease the complexity of the problem. And

we investigated four parallel algorithms, two of which are

pleasingly parallel but at the cost of not being work efficient.

We then designed a work-efficient parallel algorithm but

the dependency structure tends to prevent high degree of

parallelism. Using graph coloring and moldable scheduling

techniques we made that latter parallel algorithm more

parallel by adding some work-overhead.

For each instance of the problem, one of the parallel

algorithm achieved an interesting performance. However, it

is clear that we need to model the instance and the platform

to control the various overhead and be able to pick the

parallel strategy that will derive the highest performance.

It would also be interesting to look at distributed memory

machines and accelerators to reduce the runtime further since

real-time is desirable for interactive applications. In term

of the application, we would like to investigate how these

methods apply to a bandwidth that adapts to the density of

population of the area is also of interest.

ACKNOWLEDGMENT

The authors would like to thank Dr. Daniel Janies for

pointing us to the Flu dataset. Support from US NSF

XSEDE Supercomputing Resource Allocation (SES170007)

”Accelerating and enhancing multi-scale spatiotemporally

explicit analysis and modeling of geospatial systems” is ac-

knowledged. This material is based upon work supported by

the National Science Foundation under Grant No. 1652442.



REFERENCES

[1] L. Eisen and R. J. Eisen, “Using geographic information
systems and decision support systems for the prediction,
prevention, and control of vector-borne diseases,” Annual
review of entomology, vol. 56, pp. 41–61, 2011.

[2] T. H. Grubesic, R. Wei, and A. T. Murray, “Spatial clustering
overview and comparison: Accuracy, sensitivity, and com-
putational expense,” Annals of the Association of American
Geographers, vol. 104, no. 6, pp. 1134–1156, 2014.

[3] A. Hohl, E. Delmelle, W. Tang, and I. Casas, “Accelerating
the discovery of space-time patterns of infectious diseases
using parallel computing,” Spatial and Spatio-temporal Epi-
demiology, 2016.

[4] B. W. Silverman, Density estimation for statistics and data
analysis. CRC press, 1986, vol. 26.

[5] T. Nakaya and K. Yano, “Visualising crime clusters in a
space-time cube: an exploratory data-analysis approach using
space-time kernel density estimation and scan statistics,”
Transactions in GIS, vol. 14, no. 3, pp. 223–239, 2010.

[6] E. Delmelle, C. Dony, I. Casas, M. Jia, and W. Tang, “Visual-
izing the impact of space-time uncertainties on dengue fever
patterns,” International Journal of Geographical Information
Science, vol. 28, no. 5, pp. 1107–1127, 2014.

[7] O. A. R. Board, “Openmp application program interface,”
OpenMP Architecture Review Board, Tech. Rep., Jul. 2013,
verion 4.0.0.

[8] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color
is your jacobian? Graph coloring for computing derivatives,”
SIAM Review, vol. 47, no. 4, pp. 629–705, 2005.

[9] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2,
pp. 416–429, Mar. 1969.

[10] E. Boman, D. Bozdağ, Ü. Çatalyürek, A. Gebremedhin, and
F. Manne, “A scalable parallel graph coloring algorithm for
distributed memory computers,” in Proc. of Euro-Par, Aug
2005, pp. 241–251.

[11] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajaman-
ickam, “Parallel graph coloring for manycore architectures,”
in 2016 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), May 2016, pp. 892–901.

[12] R. Lepère, D. Trystram, and G. J. Woeginger, “Approximation
algorithms for scheduling malleable tasks under precedence
constraints,” Int. J. Found. Comput. Sci., vol. 13, no. 4, pp.
613–627, 2002.

[13] S. Hunold, “Scheduling moldable tasks with precedence con-
straints and arbitrary speedup functions on multiprocessors,”
in Prof of PPAM, 2013, pp. 13–25.

[14] E. Delmelle, I. Casas, J. H. Rojas, and A. Varela, “Spatio-
temporal patterns of dengue fever in cali, colombia,” Inter-
national Journal of Applied Geospatial Research (IJAGR),
vol. 4, no. 4, pp. 58–75, 2013.

[15] M. P. Kwan, I. Casas, and B. Schmitz, “Protection of geo-
privacy and accuracy of spatial information: how effective
are geographical masks?” Cartographica: The International
Journal for Geographic Information and Geovisualization,
vol. 39, no. 2, pp. 15–28, 2004.

[16] N. Y. Cornell Lab of Ornithology, Ithaca, “ebird basic
dataset,” http://ebird.org/content/ebird/, May 2016, version:
EBD relMay-2016.

[17] E. Saule, D. Panchananam, A. Hohl, W. Tang, and
E. Delmelle, “Parallel space-time kernel density estimation,”
arXiv, Tech. Rep. arXiv:1705.09366, May 2017.

[18] U. Lopez-Novoa, “Contributions to the efficient use of gen-
eral purpose coprocessors: Kernel density estimation as case
study,” Ph.D. dissertation, Universidad del Paı́s Vasco, 2015.

[19] T. Eaglin, I. Cho, and W. Ribarsky, “Space-time kernel
density estimation for real-time interactive visual analytics,”
in Proceedings of the 50th Hawaii International Conference
on System Sciences, Jan. 2017.

[20] S. J. Aarseth, Gravitational N-Body Simulations: Tools and
Algorithms. Cambridge University Press, 2003.

[21] H. Karimabadi, H. X. Vu, D. Krauss-Varban, and
Y. Omelchenko, “Global hybrid simulations of the earth’s
magnetosphere,” Numerical Modeling of Space Plasma
Flows, Dec. 2006.

[22] W. B. March, B. Xiao, C. D. Yu, and G. Biros, “ASKIT: an
efficient, parallel library for high-dimensional kernel summa-
tions,” SIAM Journal on Scientific Computing, 2015.

[23] B. Fornberg, E. Larsson, and N. Flyer, “Stable computations
with gaussian radial basis functions,” SIAM Journal on Sci-
entific Computing, vol. 33, no. 2, pp. 869–892, 2011.

[24] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis,
“Improved fast gauss transform and efficient kernel density
estimation,” in Proceedings of the Ninth IEEE International
Conference on Computer Vision. IEEE, 2003, pp. 664–671.

[25] M. Berger and S. Bokhari, “A partitioning strategy for nonuni-
form problems on multiprocessors,” IEEE TC, vol. C36, no. 5,
pp. 570–580, 1987.

[26] M. Ujaldon, S. Sharma, E. Zapata, and J. Saltz, “Experimental
evaluation of efficient sparse matrix distributions,” in Proc. of
SuperComputing’96, 1996.

[27] A. Pınar and C. Aykanat, “Sparse matrix decomposition with
optimal load balancing,” in Proc. of HiPC 1997, 1997.

[28] M. Deveci, S. Rajamanickam, K. D. Devine, and Ü. V.
Çatalyürek, “Multi-jagged: A scalable parallel spatial par-
titioning algorithm,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 3, pp. 803–817, 2016.

[29] D. Nicol, “Rectilinear partitioning of irregular data parallel
computations,” JPDC, vol. 23, pp. 119–134, 1994.

[30] F. Manne and T. Sørevik, “Partitioning an array onto a mesh
of processors,” in Proc of PARA ’96, 1996, pp. 467–477.


