
M. Hajhashemkhani
Department of Mechanical Engineering,

Shiraz University,

Shiraz 71936, Iran

e-mail: m-hajhashemkhani@shirazu.ac.ir

M. R. Hematiyan
Professor

Department of Mechanical Engineering,

Shiraz University,

Shiraz 71936, Iran

e-mail: mhemat@shirazu.ac.ir

S. Goenezen1

Mem. ASME

Department of Mechanical Engineering,

Texas A & M University,

College Station, TX 77843

e-mail: sgoenezen@tamu.edu

Identification of Material
Parameters of a Hyper-Elastic
Body With Unknown Boundary
Conditions
Identification of material properties of hyper-elastic materials such as soft tissues of the
human body or rubber-like materials has been the subject of many works in recent deca-
des. Boundary conditions generally play an important role in solving an inverse problem
for material identification, while their knowledge has been taken for granted. In reality,
however, boundary conditions may not be available on parts of the problem domain such
as for an engineering part, e.g., a polymer that could be modeled as a hyper-elastic mate-
rial, mounted on a system or an in vivo soft tissue. In these cases, using hypothetical
boundary conditions will yield misleading results. In this paper, an inverse algorithm for
the characterization of hyper-elastic material properties is developed, which takes into
consideration unknown conditions on a part of the boundary. A cost function based on
measured and calculated displacements is defined and is minimized using the
Gauss–Newton method. A sensitivity analysis is carried out by employing analytic differ-
entiation and using the finite element method (FEM). The effectiveness of the proposed
method is demonstrated through numerical and experimental examples. The novel
method is tested with a neo–Hookean and a Mooney–Rivlin hyper-elastic material model.
In the experimental example, the material parameters of a silicone based specimen with
unknown boundary condition are evaluated. In all the examples, the obtained results are
verified and it is observed that the results are satisfactory and reliable.
[DOI: 10.1115/1.4039170]

Keywords: hyper-elastic material, inverse analysis, unknown boundary conditions, mate-
rial parameters, finite element method

1 Introduction

A wide range of materials with relevance in medicine and
industry exhibit large elastic deformations upon application of
loads. The mechanical behavior of these materials under quasi-
static loadings may be described by hyper-elastic material models.
Characterizing the mechanical behavior of soft tissues of the
human body has great potential for improvements in virtual
reality-based surgical simulation systems [1–4], diagnosis and sur-
gery planning [5–7], trauma research [8], and detection of breast
and liver cancer [9,10]. Further, identification of the constitutive
behavior of rubber-like materials is very important for accurate
modeling and analysis in different industrial applications, see for
example [11,12]. Generally, a hyper-elastic material model is
assumed to represent the solid and model parameters are deter-
mined to describe the underlying mechanical behavior.

Identification of material parameters using deformation meas-
urements has been the subject of study for many years, and vari-
ous approaches have been developed over time. A well-known
and widely used approach is to fabricate a sample of the material
with standard shapes and conduct simple tests, such as uniaxial or
biaxial tests, to record the stress versus strain behavior, which can
be fitted to a proper choice of a hyper-elastic material model.

In the following, we briefly summarize important approaches to
characterize mechanical properties of biological soft tissues and
rubber-like materials with various testing methods in which the
materials’ behavior has been modeled using hyper-elastic models.

Indentation tests along with finite element methods (FEM) have
been widely used for identification of local material parameters.
Samani and Plewes [13] and O’Hagan and Samani [14] used
indentation test to measure hyper-elastic material properties of
breast and breast tumor tissue, respectively. Tran et al. [15] mod-
eled the three layers of human skin with a nearly incompressible
neo–Hookean material and characterized their model parameters
in vivo using indentation tests. Ruggiero et al. [16] and Chen et al.
[17] employed an indentation procedure and an inverse method to
obtain material parameters of rubber-like materials. Liu et al. [18]
developed an algorithm for tissue parameters identification using
a rolling indentation test. Zisis et al. [19] used instrumented inden-
tation responses and an inverse method to characterize Mooney–
Rivlin mechanical parameters of incompressible hyper-elastic
materials. MacManus et al. [20] used a micro indentation test and
an inverse method to characterize regional dynamic mechanical
properties of brain tissue in vitro and in situ.

Other researchers have employed pipette aspiration experi-
ments to characterize the mechanical behavior of hyper-elastic
materials. Hendriks et al. [21] presented an experimental-
numerical technique to characterize nonlinear Mooney–Rivlin
mechanical properties of human dermis. They performed suction
experiments on volar forearm skin of ten cases at various pres-
sures and measured deformation of dermis and fat during the suc-
tion. Nava et al. [22] developed a technique to determine the
mechanical properties of soft tissues of human body by applying a
weak vacuum to the target tissue through a small tube. In the
work of Delalleau et al. [23], the homogenous mechanical behav-
ior of skin was identified by applying suction deformation on
volar aspect of the forearm of a subject.

Other testing methods for hyper-elastic material parameter
identification include propagation of elastic waves in the sample
[9], inflation experiments [24], and equi-biaxial tension [25].
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Mei et al. [26,27] recovered inclusions representative of tumors
using only displacements known at the boundary of samples with
no priori assumptions about location of inclusions, shape, and
stiffness distribution.

In the work of Gambarotta et al. [28], in vivo experiments were
performed during surgery on undermined scalp skin flaps to iden-
tify its isotropic hyper-elastic material parameters. Wang et al.
[29] identified hyper-elastic material parameters of a domain with
a breast-like geometry using undeformed and deformed configura-
tions. Lago et al. [30] identified hyper-elastic material parameters
of human cornea in vivo by using noncontact tonometry. In the
work of Sim�on-Allu�e et al. [31], mechanical behavior of abdomi-
nal wall was characterized in vivo for New Zealand rabbits by
performing pneumoperitoneum tests. Coordinates of several
boundary points on the surface of the abdomen was recorded and
used to create a three-dimensional finite element model.

In some identification techniques, such as the methods based on
indentation and pipette aspiration tests, where the sample size is
much greater than the dimension of the instrument contact size,
boundary conditions far from the contact region may have negligi-
ble effects. Further, for testing methods based on tracking the
propagation of elastic waves in a soft tissue, when the sample
dimension is much greater than the wavelength of the elastic
wave, effects of boundary conditions will not come into play.
However, in other identification methods, which are based on
elasto-static tests on the whole material, boundary conditions play
an important role. In other words, a small error in boundary condi-
tions may result in significant amplification of error in the identi-
fied material parameters [32]. Evaluating the properties of such a
material is more difficult and should be carried out by special
inverse analysis.

The main focus of this research is on identifying hyper-elastic
material properties of a member given incomplete boundary con-
ditions, using displacement measurements from static deformation
tests. In reality, conditions at some parts of the boundary of the
problem domain may be unknown and solving the inverse prob-
lem with hypothetical boundary conditions will likely result in
drastic errors in the recovered material parameters. For instance,
in the problem of in vivo identification of breast material proper-
ties, the boundary condition of the breast-chest interface is
unknown. In all of the works discussed previously and to the best
of our knowledge, in all of the previous works in this field, bound-
ary conditions have been considered to be known everywhere for
the inverse material identification problem. In the present work,
an inverse algorithm for the characterization of hyper-elastic
material properties is developed that handles a part of the bound-
ary with unknown conditions. The proposed inverse method
makes use of displacement measurements for the identification of
these unknowns. A cost function based on measured and calcu-
lated displacements is defined and is minimized using the Gauss-
Newton method. The sensitivity analysis is carried out by an ana-
lytic differentiation and using the FEM.

2 Constitutive Equations for Isotropic Hyper-Elastic
Materials

The stress field of a perfectly elastic material does not depend
on the deformation path. Hyper-elastic materials are capable of
representing the nonlinear stress–strain response of elastic materi-
als when subjected to large deformations. Hyper-elastic material
modeling has received much attention to in the past and still con-
tinuous in analyzing the mechanical behavior of polymeric mate-
rials to soft tissues [33–36].

There are many material models that can be used to describe
the behavior of hyper-elastic materials. Some of these models
such as neo–Hookean, Mooney–Rivlin, Ogden, Yeoh, and
Arruda-Boyce have been developed for rubber-like materials
[37,38], but have been used for soft tissues as well, see for exam-
ple Refs. [14], [15], [20], and [21]. However, the nonlinear
mechanical behavior of soft tissues at large deformations is

usually different from rubber-like materials [39] and special
hyper-elastic material models should be used for describing the
mechanical behavior of soft tissues. Demiray et al. [40] and
Holmes and Mow [41] used material models including exponen-
tial terms for isotropic soft tissues. Many anisotropic models have
also been developed to capture the direction dependent mechani-
cal behavior of soft tissues [39]. In this paper, neo–Hookean and
Mooney–Rivlin models are employed to demonstrate that their
material parameters can be recovered without knowing boundary
conditions on some part of the problem domain. These material
models were used by many other researchers, e.g., see references
in the Introduction. However, the formulations presented in this
paper can be adopted and extended for any other hyper-elastic
material model. We note, however, that the number of model
parameters varies with the particular hyper-elastic material model
and the inverse and sensitivity analysis may behave differently for
alternative hyper-elastic material models, and is beyond the scope
of this paper.

Consider a deformable solid at a stress-free condition. As
shown in Fig. 1, the stress-free condition is denoted by V0 and
referred to as the reference configuration. Traction boundary con-
dition (t*) and displacement boundary condition (u*) are applied
on separate parts of the boundary named as @V1 and @V2, respec-
tively, and induce the displacement field u(X). The deformed state
of the solid is denoted by V and referred to as the current configu-
ration. The position of a material particle in its reference and
deformed configuration are denoted by X and x, respectively.
Therefore, the following relation for displacement field holds:

uiðXkÞ ¼ xi � Xi (1)

Here, the subscript i and k have values 1, 2, or 3 and ui represents
the three Cartesian components of u.

The deformation gradient and its Jacobian are defined as
follows:

Fij ¼ dij þ
@ui
@Xj

(2)

J ¼ det ðFÞ (3)

The left Cauchy Green deformation tensor is denoted by B and
expressed as follows:

B ¼ FFT (4)

Invariants of B are defined as follows:

I1 ¼ trðBÞ ¼ Bkk (5)

I2 ¼
1

2
tr Bð Þð Þ2 � tr B2ð Þ

h i

¼ 1

2
I21 � BikBki

� �

(6)

Fig. 1 Reference and deformed configuration for a deformable
solid

051006-2 / Vol. 85, MAY 2018 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 03/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



I3 ¼ detB ¼ J2 (7)

where trðBÞ represents the trace of B. The invariants of B can be
expressed in terms of the invariants of B ¼ J�2=3B. Nearly incom-
pressible hyper-elastic materials are usually modeled using invari-
ants of B, which are defined as follows:

I1 ¼
I1

J2=3
¼ Bkk

J2=3
(8)

I2 ¼
I2

J4=3
¼ 1

2
I
2

1 �
BikBki

J4=3

� �

(9)

J ¼
ffiffiffiffiffiffiffiffiffiffiffi

det B
p

(10)

It is assumed that a Helmholtz free energy function W exists for a
hyper-elastic material. W is defined per unit reference volume. In
a case that W is only a function of strain or deformation gradient
tensor, it is referred to as the strain energy function [42]. The
strain energy density can be described in terms of three invariants
of the left Cauchy–Green deformation tensor as follows:

WðFÞ ¼ UðI1; I2; I3Þ ¼ UðI1; I2; JÞ (11)

The strain energy density function for neo–Hookean model is
defined as follows [43]:

U ¼ l1
2

I1 � 3
� �

þ K1

2
J � 1ð Þ2 (12)

in which l1 and K1 are material parameters that can be adjusted to
describe different materials.

The strain energy density for Mooney–Rivlin model is
expressed as follows [43]:

U ¼ l1
2
ðI1�3Þ þ l2

2
I2 � 3
� �

þ K1

2
J � 1ð Þ2 (13)

where l1, l2, and K1 are material parameters.

3 Finite Element Formulation for Direct Deformation
Analysis of Hyper-Elastic Materials

For finite element formulation of the problem, the principal of
virtual work is employed. This principle states that the change in
potential energy during a virtual displacement from equilibrium is
zero. We consider a virtual displacement field, du(x), that satisfies
the displacement boundary conditions. The principle of virtual
work is then expressed as follows:

ð

V

rij
@dui
@xj

dV �
ð

V

qbiduidV �
ð

@V2

t�i duidA ¼ 0 (14)

where rij are the components of the Cauchy stress tensor, q is den-
sity, and b is the force vector. The first integral is virtual strain
energy and the second and third integrals are the virtual work
done by body and surface forces, respectively.

The principle of virtual work expressed in Eq. (14) is based on
the current configuration, which is unknown. The following rela-
tions hold between reference and current configurations for area
and volume elements, respectively [42]:

dA

dA0

¼ g ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

miF
�1
ik F�1

jk mj

q

(15)

dV ¼ JdV0 (16)

where m is the normal to the boundary in the reference
configuration.

Using relations (15) and (16), the domain of the integration in
Eq. (14) changes to the known reference configuration as follows:

ð

V0

Jrij
@dui
@xj

dV0 �
ð

V0

JqbiduidV0 �
ð

@V0ð Þ2
t�i duigdA0 ¼ 0 (17)

where ð@V0Þ2 represents the undeformed shape of @V2 in the ref-
erence configuration.

For finite element analysis, the problem domain is discretized
with elements connected at nodal points in the element boundaries.
Unknown displacement at each element node is denoted by uai . The
superscript a ranges from 1 to n, where n is the total number of
nodes. Displacement field at an arbitrary point within the solid, X,
is obtained by interpolating nodal displacement values as follows:

uiðXÞ ¼
X

n

a¼1

NaðXÞuai (18)

where NaðXÞ is the shape function of node a in the domain. The
virtual displacement field can be interpolated within the solid as
follows:

duiðXÞ ¼
X

n

a¼1

NaðXÞduai (19)

Substituting Eqs. (18) and (19) in Eq. (17) and performing some
mathematical operations [40], the virtual work equation is
obtained as follows:

X

n

a¼1

ð

V0

sij Fð Þ @N
a

@Xm

F�1
mj dV0 �

ð

V0

q0biN
adV0

2

4

�
ð

@V0ð Þ2
t�i N

agdA0

#

duai ¼ 0 (20)

where q0 is the density of the material in reference configuration
and s is the Kirchhoff stress tensor defined as follows:

sij ¼ Jrij (21)

Equation (20) must hold for all duai . Therefore, the following rela-
tion is obtained:

ð

V0

sij Fð Þ @N
a

@Xm

F�1
mj dV0 �

ð

V0

q0biN
adV0 �

ð

@V0ð Þ2
t�i N

agdA0 ¼ 0

(22)

Equation (22) represents 2n nonlinear equations in two-dimensional
(2D) problems. The Newton–Raphson method is used in this
research to solve these nonlinear equations. Using this method to
solve for the increments of displacement, Eq. (22) becomes as fol-
lows [43]:

Kaibkdu
b
k þ Ra

i � Fa
i ¼ 0 (23)

where Kaibk, R
a
i and F

a
i are expressed as follows:

Kaibk ¼
ð

V0

@sij
@Fkl

@Nb

@Xl

@Na

@Xm

� �

F�1
mj dV0

�
ð

V0

sij
@Na

@Xm

F�1
mk

@Nb

@Xp

F�1
pj dV0 �

ð

@V0ð Þ2
t�i N

a @g

@ubk
dA0

(24)

Ra
i ¼

ð

V0

sij
@Na

@Xm

F�1
mj dV0 (25)
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Fa
i ¼

ð

V0

q0biN
adV0 þ

ð

ð@V0Þ2
t�i N

agdA0 (26)

4 Inverse Analysis

In this section, the inverse formulation to determine material
parameters of a member represented by a neo–Hookean and a
Mooney–Rivlin hyper-elastic material with unknown boundary
conditions on a part of its boundary is presented.

In this study, unknowns of the inverse problem are of two dif-
ferent types. The first type of unknowns is the material parameters
of the hyper-elastic model. From Eq. (12), material parameters for
the neo–Hookean hyper-elastic model that must be determined are
l1 and K1. Further, from Eq. (13), l1, l2, and K1 are material
parameters that must be determined for Mooney–Rivlin hyper-
elastic model. Unknowns of the second type are boundary condi-
tions, which are unknown displacements over a part of the
boundary.

Consider a hyper-elastic material as the one shown in Fig. 2(a).
The target material is attached to a different material or the same
material at a part of its boundary. The boundary condition, i.e.,
displacement or traction is unknown on this part of the boundary.
To identify the material parameters of such a hyper-elastic mate-
rial, the whole set is loaded and for inverse analysis the target
material is considered in a situation shown in Fig. 2(b). The points
A and B on the interface with unknown condition in Fig. 2(b) are
surface points and their displacements can be measured easily.
However, displacement boundary conditions of all the other points
on this interface are unknown. P points on this part of boundary
are chosen and named as controlling points in the inverse analysis.
It should be mentioned that the number of controlling points on
the interface is not necessarily the same as the number of nodes
on the interface. To reduce the number of unknowns of the inverse
problem, only a few points, less than the number of nodes on the
interface are considered as controlling points. The displacements
of these controlling points are unknown in the inverse problem. In
the inverse analysis, the displacement of other points on this inter-
face is interpolated using the displacements of controlling points.
In this study, the problems are solved for plane strain and plane
stress conditions and therefore, two unknown displacement com-
ponents are considered at each controlling point.

Measured displacement data at some points on the boundary or
within the domain with known deformation, called sampling
points, are used to determine the unknown data in the inverse

analysis. In real cases with plane strain condition, the end bounda-
ries (the domain of the problem in its 2D model) may not be avail-
able for any measurement, while for plane stress problems, the
domain of the problem, i.e., the member’s surface is accessible.
Therefore, sampling points are assumed to be located on the
boundary of the problem for plane strain condition, while for
problems with a plane stress condition, sampling points maybe
located within the domain or over the boundary. M sampling
points are considered as shown in Fig. 2(b).

The vector of unknowns for neo–Hookean and Mooney–Rivlin
hyper-elastic materials in the inverse analysis is respectively as
follows:

V ¼ ½l1 K1 uc11 uc12 uc21 uc22 … ucP1 ucP2 �T (27)

V ¼ ½l1 l2 K1 uc11 uc12 uc21 uc22 … ucP1 ucP2 �T (28)

where u
cj
1 and u

cj
2 are the first and second components of the dis-

placement vector at the jth controlling point. Since the nature of
components of the unknown vector V is of different types, the
numerical values of the components of V may have different
orders of magnitude. These differences may produce some diffi-
culties in the further computations. To overcome these difficulties,
we can replace the components of the vector V with dimension-
less values.

The vector of measured data at the M sampling points is
expressed as follows:

S ¼ ½us11 us12 us21 us22 us31 us32 … usM1 usM2 �T (29)

where u
sj
1 and u

sj
2 are the first and second components of the dis-

placement vector at the jth sampling point.
In the first step of the inverse analysis procedure, an initial

guess for the unknown vector is selected based on past experience,
approximated values, or reported values of similar materials.

After each iteration of the inverse analysis procedure, the dis-
placements of sampling points are calculated and the vector of
calculated displacements at sampling points is constructed as
follows:

C ¼ ½us11 us12 us21 us22 us31 us32 … usM1 usM2 �T (30)

where u
sj
1 and u

sj
2 are the first and second components of the com-

puted displacement at the jth sampling point. An objective func-
tion is defined and minimized to obtain the vector of unknowns.
The objective function is defined as follows:

w ¼ ðS� CÞTðS� CÞ (31)

By minimizing this objective function, the differences between
measured and computed data at sampling points are minimized.
Different methods can be used for minimizing the objective func-
tion. In this study, the damped Gauss–Newton optimization tech-
nique [44,45] is employed, where the vector of unknowns is
updated in each step as follows:

Vkþ1 ¼ Vk þ akRk (32)

where k is the step number, ak is the step length, and Rk is the
search direction. According to Ref. [44], the step length ak is first
set to be one. If this choice of step length increases the value of
the objective function instead of decreasing it, the step length is
divided by two and the step is repeated. This process continues
until the objective function in (kþ 1)th step is less than the objec-
tive function in kth step.

The search direction is computed using the following equation:

Rk ¼ ½ðLkÞTLk��1 ½ðLkÞTðS� CkÞ� (33)

Fig. 2 (a) target material attached to an unknown material and
(b) separate illustration of deformed target material after apply-
ing external forces for inverse analysis
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where L is the sensitivity matrix and its components are expressed
as follows:

Lij ¼
@Ci

@Vj

(34)

The dimension of the matrix L is M � Q, where M is the number
of sampling points and Q is the number of unknowns.

Different methods based on finite difference approximation and
direct differentiation can be used to compute elements of the sen-
sitivity matrix. In this research, direct differentiation formulation
is derived and used in the inverse analysis. The details of the sen-
sitivity analysis are described in Sec. 5.

Convergence rule for the optimization method is defined as
follows:

kVkþ1 � Vkk � e (35)

where e is a specified tolerance.
In order to enrich measured displacement data sets, we utilize

intermediate measurements while applying intermediate external
loads, i.e., applying 50%, 75%, and 100% of the full load. The
unknown material parameters are the same for all load cases;
however, the displacement components of the controlling points
on the boundary interface are different for each load case. The
measured data obtained from all load cases are simultaneously
used in the inverse analysis to find the unknowns. By this
approach, the ratio of the total number of unknowns to the total
number of measured data reduces and it is expected to get more
reliable solution from the inverse analysis. This approach is more
effective for problems in which the number of sampling points is
not sufficiently large [46–48].

5 The Sensitivity Analysis

An important part in solving an inverse problem is the sensitiv-
ity analysis. The objective of the sensitivity analysis in this
research is to evaluate the influence of perturbed material parame-
ters and boundary conditions (design parameters) on the displace-
ment response. Consider Eq. (22) in an equivalent form as
follows:

KðuÞ ¼ 0 (36)

As discussed earlier, this problem is solved using an iterative
Newton–Raphson method. If the solution in the current step is ui,
the residual in Eq. (36) is updated in the next step as follows:

K uiþ1ð Þ � K uið Þ þ @K uið Þ
@u

du ¼ 0 (37)

du is the incremental response (dubk in Eq. (23)) and @KðuiÞ=@u is
the tangent stiffness matrix (K in Eq. (24)). The incremental
response can be obtained from Eq. (37) as follows:

@K uið Þ
@u

du ¼ �K uið Þ (38)

The response of a system, also called the design response, depends
on design parameters such as material constants, shape parame-
ters, and load. The residual in Eq. (36) depends explicitly and
implicitly on the design parameters. In this study, displacements
at sampling points represent the design response, while material
parameters and unknown displacement boundary conditions repre-
sent the design parameters. The sensitivity analysis for each
design parameter should be carried out separately.

First, assume that Va is a material parameter. In other words, Va

can be one of the first two elements of V in Eq. (27) or one of the
first three elements of V in Eq. (28). The residual in Eq. (36) can
be expressed as follows:

KðuðVaÞ;VaÞ ¼ 0 (39)

Assume that we have solved Eq. (36) at the end of an increment
and obtained the converged solution u. The sensitivity expression
is obtained by differentiating each design response with respect to
design parameters.

The sensitivity of the design response (displacement at sam-
pling points) with respect to material parameters (Va) can be sim-
ply extracted from components of @u=@Va. In order to determine
@u=@Va, Eq. (39) is differentiated as follows:

@K

@u

@u

@Va

þ @K

@Va

¼ 0 (40)

Therefore, @u=@Va can be obtained by solving the following
equation:

@K

@u

@u

@Va

¼ � @K

@Va

(41)

Comparing Eqs. (38) and (41), it is clear that they have the same
tangent matrix K ¼ @K=@u. Therefore, the evaluation of the sen-
sitivity coefficients @u=@Va requires only the evaluation of
@K=@Va and can be explicitly determined. @K=@Va is often called
the pseudo-load vector ~K, since it appears on the right-hand side
of the sensitivity analysis equation.

Equation (41) can be rewritten as follows:

K
@u

@Va

¼ �~K (42)

The stiffness matrix K in Eq. (42) is obtained by solving for the
incremental displacement. Therefore, only the pseudo-load vector
~K has to be computed in an element by element manner.
Second, assume that Vb is a displacement component at control-

ling points such as given in Eq. (27) or (28). The residual in Eq.
(36) can be expressed as follows:

KðuðVbÞ;VbÞ ¼ 0 (43)

In order to compute @u=@Vb, Eq. (43) is differentiated as follows:

@K

@u

@u

@Vb

¼ � @K

@Vb

(44)

Again, by comparing Eqs. (38) and (44), it is clear that they have
the same tangent matrix K ¼ @K=@u. The elements of @K=@Vb

can be obtained from the stiffness matrix directly before applying
boundary conditions at controlling points, and therefore, no addi-
tional calculations are needed.

6 Results and Discussions

In this research, the examples are solved under plane strain/
stress conditions, which have many applications in engineering,
such as hyper-elastic materials mounted on structures and sys-
tems. Applications of identifying material properties of soft tis-
sues in vivo under plane strain/stress assumptions were made, in
past works see for example Refs. [49] and [50]. For three-
dimensional problems, displacements of surface points can be
measured, but displacement components within the domain cannot
be measured using a digital image correlation system. Therefore,
it is important to be able to find the unknown material parameters
by using measurement data solely from surface points. To take
this fact into account, in the presented inverse method, displace-
ments at boundary points is solely assumed to be measured and
used to identify unknown material properties under plane strain
conditions.
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At first, a theoretical/hypothetical example is numerically stud-
ied to verify the effectiveness of the presented inverse method. In
this example, the effects of measurement error, location of sam-
pling points, and values of initial guesses are investigated under
plane stress and plane strain conditions for both neo–Hookean and
Mooney–Rivlin hyper-elastic models. In the second example, the
material properties of a member made of silicone are estimated by
performing a simple tension test utilizing an INSTRON machine.

6.1 Numerical Study. The geometry of the direct problem
and its boundary conditions are shown in Fig. 3. A part of the
domain of the direct problem, i.e., the rectangle ABCD, is consid-
ered as the domain of the inverse problem (Fig. 4). For the inverse
problem, boundary conditions on edge AB and the hyper-elastic
material parameters are unknown, while displacements at some
points on edges AD, CD, and BC are known.

First, the direct problem is solved and the results from the direct
problem are used as the measured data for solving an inverse
problem. The exact solution of the inverse problem is known by
this approach.

The input for the inverse problem are measured displacements
of some boundary/domain points. The displacements assumed to
be known and used to solve the inverse problem are sampling
points and we introduce points on the interface AB with unknown
displacement values are called controlling points. If the area with
unknown boundary condition is large, more controlling points
should be considered on the interface and as a result, the number
of unknowns increases, which makes the inverse problem more
difficult to be solved.

609 elements were used to solve the direct problem shown in
Fig. 3. The rectangle ABCD, i.e., the problem domain for the
inverse problem, is discretized by 17� 15¼ 255 elements. Our
numerical study showed that this mesh models the problem with a
sufficient accuracy. A suitable mesh size in the inverse analysis
results in material parameters, which can reconstruct the measured
date with sufficient accuracy.

As mentioned earlier, under plane strain condition, some of the
boundaries may not be accessible for measurement and as a result,
sampling points are assumed to be located only on known bounda-
ries of the problem. This limitation makes the inverse problem
more difficult. To overcome this difficulty, multiple load cases
should be used under plane strain conditions to collect a rich
measured data set.

A neo–Hookean material with constants l1¼ 1 Pa and K1¼ 10
is considered under plane strain conditions. First, only one con-
trolling point is considered on the interface AB as shown in Fig. 4
and a quadratic shape is assumed for the deformed shape of AB.
The sampling points 1 to 4, shown in Fig. 4, are used in the

inverse analysis in which three load cases with the total tensile
force of 0.4, 0.7 and 1.1 N are considered. The inverse analysis
did not converge for this case, which shows that the number of
sampling points is not enough to solve the inverse problem.
Therefore, the sampling points 1 to 6 and the same three load
cases are used to solve the inverse problem. In Table 1, results
from the inverse analysis for the neo–Hookean hyper-elastic mate-
rial with constants l1¼1 Pa and K1¼10, one controlling point and
six sampling points are provided. In this case, the initial guesses
for material parameters are considered to be half of their real
values.

At first, material parameters are obtained using ideal inputs.
However, noise is unavoidable in experimental data. To investi-
gate the capability of the proposed method in handling noisy
experimental data, different cases with a maximum error of 2%,
5%, and 10% assuming Gaussian distribution in the measured
data are considered as well. In this case, the inverse analysis does
not converge for measurement errors of more than 5%. Using the
reconstructed material parameters reported in Table 1, the
deformed shape of the interface AB is reconstructed for different
measurement errors as shown in Fig. 5. As it can be seen from
Table 1, for the case without measurement error, one load case is
sufficient to solve the inverse problem. However, even in this
case, the obtained results have some errors and the interface is not
accurately reconstructed. This is due to the fact that only one con-
trolling point is used in the inverse analysis.

For better convergence and more accuracy, the sampling points
1–8 and the same three load cases are used to solve the inverse
problem. In Table 2, results of the inverse analysis for the
neo–Hookean hyper-elastic material with constants l1¼ 1 Pa and
K1¼ 10, one controlling point and eight sampling points are pro-
vided for the plane strain condition. In this case, the initial guesses
for material parameters are considered to be half of their real val-
ues. Using reconstructed material parameters from Table 2, the
deformed shape of the interface AB is reconstructed for different
measurement errors as shown in Fig. 6. As it can be seen from
Fig. 6, the unknown shape of the interface AB is determined more
precisely with eight sampling points.

The errors of the results given in Tables 1 and 2 for compared
in Table 3. Since identification of the material parameters is the
main concern of the inverse problem, only the error of l1 and K1

Fig. 3 The geometry of the direct problem and its boundary
conditions

Fig. 4 The geometry of the inverse problem with some control-
ling and sampling points

Table 1 Results of the inverse problem for the neo–Hookean
model with one controlling point and six sampling points in the
plane strain condition

0%
meas. error

2% meas.
error

5% meas.
error

Exact
value

l1 (Pa) 0.995 0.998 1.023 1
K1 9.47 8.52 8.99 10
No. of load cases 1 3 3
No. of iterations 9 12 13
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is reported in this table. As it is observed in Table 3, for the case
with six sampling points, the error is acceptable when no measure-
ment error is present. However, for 2% and 5% measurement
errors, the error in K1 is relatively large compared to the value of
the measurement error.

When eight sampling points are used, even with 10% measure-
ment error, the material constants are obtained with acceptable
accuracy. The fact that the obtained constants are within an
acceptable range of error shows the efficiency of the inverse
method in the presence of measurement errors. Increasing the
number of sampling points from 4 to 8 provides a richer data set
given on other parts of the boundary, and therefore, more accurate
results are obtained. An additional increase of the density of sam-
pling points in a specific area will not provide more information
and therefore does not improve the results. In summary, no matter
how complex the geometry of the domain is, if the sampling
points cover the material surface with adequate density, the mate-
rial constants will be obtained with acceptable accuracy even with
noisy measured data.

In order to examine the effectiveness of the presented method
that uses measured data from different portions of the full load,
the same inverse problem under plane strain conditions with one
(1.1 N) and two (0.55 and 1.1 N) load cases is solved. In the pres-
ence of measurement error and considering eight sampling points,
the case with one loading yields poor results and cannot minimize
the objective function sufficiently. The results for the cases with
two and three loadings are almost the same. For example, in the
presence of 10% measurement error, the computed parameters are
l1¼ 1.052 Pa and K1¼ 9.46, for two and l1¼ 1.042 Pa and
K1¼ 9.41 for three load cases, respectively. In the following parts
of this section, the results of the inverse problem corresponding to
three load cases are reported.

In Table 4, results of the same inverse problem are provided for
the plane strain condition when two controlling points are consid-
ered on the interface AB (Fig. 7).

Comparing the results of Tables 2 and 4 indicates that consider-
ing two controlling points instead of one improves the results of
the inverse problem considerably and the unknown interface AB is
determined more precisely as shown in Fig. 8. It should be noted

that if a large number of controlling points is considered, the num-
ber of unknowns of the inverse problem significantly increases
and we have to consider more sampling points and more load
cases to obtain an accurate solution.

The inverse problem is also solved without considering any
unknown parameters for the interface AB. In this case, the exact
values of the displacements of the points A and B are used, while
the displacements of other points on AB are linearly interpolated.
The inverse problem is solved using eight sampling points and the
same three load cases. The obtained results for material parame-
ters are l1¼ 0.956 Pa and K1¼ 5.56, which shows that ignoring
the deformation of the interface results in poor results.

In order to investigate the effects of the initial guess and robust-
ness of the proposed inverse method, the neo–Hookean material
parameters obtained in Ref. [51] for muscle with l1¼ 23,200 Pa
and K1¼ 168,067.23 are considered in the next analysis. 5% mea-
surement error is applied and using different initial guesses and
three load cases, the material constants are estimated. The results
are provided in Table 5. From Table 5 it is observed that, even in
the cases with an initial guess far from its real value, the material
constants are successfully obtained. Further, it is clear that with a
better initial guess, the material constants are obtained with fewer
number of iterations.

For plane stress problems, the problem domain, i.e., the mem-
ber’s surface is accessible; therefore, sampling points can be on
the boundaries and within the domain. As a result, using one load
case is sufficient to solve the inverse problem.

For Table 6, results of the inverse problem shown in Fig. 9, for
the neo–Hookean material with constants l1¼ 1 Pa and K1¼ 10,
are provided for the plane stress condition. As can be seen from
Fig. 9, ten sampling points are used to solve the inverse problem.
Two of these points are in the domain. Again, the problem is
solved with and without measurement errors. Three controlling
points are used for modeling the deformation of the interface AB
in the inverse analysis. In Table 7, the errors of the recovered

Fig. 5 The deformed shape of the interface AB obtained by the
inverse analysis for the neo–Hookean model with one controlling
point and six sampling points under plane strain conditions

Table 2 Results of the inverse problem for the neo–Hookean model with one controlling point and eight sampling
points under plane strain conditions

0% meas. error 2% meas. error 5% meas. error 10% meas. error Exact value

l1 (Pa) 0.9998 1.009 1.025 1.052 1
K1 10.09 9.69 9.70 9.46 10
No. of load cases 1 3 3 3
No. of iterations 17 21 16 23

Fig. 6 The deformed shape of the interface AB obtained by the
inverse analysis for the neo–Hookean model with one
controlling point and eight sampling points under plane strain
conditions
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constants reported in Table 6 are provided. From Table 7, it is
observed that the errors of the estimated parameters lie within an
acceptable range for all measurement errors.

In Table 8, results of the inverse problem are provided for the
Mooney–Rivlin material with constants l1¼ 80 Pa, l2¼ 20 Pa,
and K1¼ 2000. The problem is solved with and without measure-
ment errors. Ten sampling points are used and the problem is
solved under plain stress condition. The initial guesses for

material parameters are half of their exact values. In Table 9, the
errors of the recovered constants reported in Table 8 are provided.
It is observed that the error in material constants for some cases is
considerably large. However, according to the publication by
Rauchs et al. [52], for the Mooney–Rivlin hyper-elastic model,
the individual values of l1 and l2 are not very important, but their
summation (half the shear modulus) plays an important role for
their mechanical response. From Table 9, it is observed that the
error of l1þl2 falls within an acceptable range.

In Fig. 10, the nominal stress–stretch curves for the
Mooney�Rivlin material with constants l1¼ 80 Pa, l2¼ 20 Pa,
and K1¼ 2000, and the material parameters reported in Table 8
are plotted. As observed in Fig. 10, for the case without measure-
ment error (l1¼ 72.06 Pa, l2¼ 29.56 Pa, and K1¼ 1900), the
nominal stress–stretch curve lies on real material response
(l1¼ 80 Pa, l2¼ 20 Pa, and K1¼ 2000). We also observe that for
the reconstructed material parameters with 10% noise, the defor-
mation response is almost the same as the exact deformation from
the direct analysis. This confirms the fact that for the
Mooney–Rivlin hyper-elastic model, the summation of l1 and l2
plays the major role in material behavior.

6.2 Experimental Study. Digital image correlation (DIC) is
a straightforward imaging method that provides full field displace-
ment data on the surface of the sample under study. DIC has been
used in past in combination with inverse methods to estimate
material properties of silicone gel and soft tissues [24,51,53,54].
In DIC setup, several cameras are used to obtain sequential
images of the sample during deformation. To correlate these
images, the surface of the sample needs to be coated with a ran-
dom gray-scale pattern as shown in Fig. 11. The software that ana-
lyzes DIC images traces unique features in this pattern within
small facets on the surface of the sample. In order to create these
features, black paint was sprayed on the surface of the sample to
form a pattern that could be traced with the DIC system.

In our study, silicone samples (Ecoflex 00-10) were made and
used for experiments. At first, a rectangular sample with dimen-
sions shown in Fig. 12(a) was created. Uniaxial tension was

Table 3 The error in results of the inverse analysis for the neo–Hookean model with six and eight sampling points under plane
strain conditions

Measurement error 0% 2% 5% 10%

Error of the estimated parameters 6 Sampling points l1 (Pa) 0.5% 0.2% 2.3% —
K1 5.3% 14.8% 10.1% —

8 Sampling points l1 (Pa) 0.02% 0.9% 2.5% 5.2%
K1 0.9% 3.1% 3% 5.4%

Table 4 Results of the inverse problem for the neo–Hookean model with two controlling and eight sampling points
(Fig. 7) under plane strain conditions

0% meas. error 2% meas. error 5% meas. error 10% meas. error Exact value

l1 (Pa) 1.001 1.009 1.025 1.051 1
K1 10.05 10.09 9.85 9.51 10
No. of load cases 1 3 3 3
No. of iterations 11 17 17 16

Fig. 7 The inverse problem under plane strain conditions with
two controlling points and eight sampling points

Fig. 8 The deformed shape of the interface AB obtained by the
inverse analysis for the neo–Hookean model with two control-
ling points and eight sampling points under plane strain
conditions

Table 5 Results of the inverse problem for the neo–Hookean
material under plane strain conditions with different initial
guesses and 5% measurement error

Initial
guess

No. of
iterations

l1 (Pa)
(error %)

K1

(error %)
30% of real values 13 23,829 (2.71) 170,576 (1.49)
50% of real values 11 23,805 (2.61) 169,026 (0.57)
80% of real values 7 23,774 (2.47) 165,367 (1.61)
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applied to this sample using an INSTRON machine with loading
rate of 10mm per minute, which is the minimum loading rate of
the machine. In order to prevent the sample from slipping between
the grips, sandpaper was glued to the sample at both ends. The

force-stretch curve of the rectangular sample for uniaxial tension
is shown in Fig. 13. This curve is used to verify the results of the
inverse problem.

Another sample with dimensions shown in Fig. 14(a) was
molded in a customized wooden mold as shown in Fig. 14(b).
This sample was used for the inverse problem. A DIC system
(DANTEC DYNAMICS, Germany) with two cameras was used
to record the deformation of the sample during simple tension up
to 30mm using INSTRON 5567 as shown in Fig. 15. During the
deformation, top and bottom parts of the sample, which are in the
grips of INSTRON machine, are held between wooden pieces to
avoid slip. ISTRA 4D software (DANTEC DYNAMICS, Germany)
was then used to analyze the images and calculate displacements
of different points on the surface of the sample.

Since our purpose was to identify material properties with par-
tially unknown boundary conditions, only the region of the sample
shown in Fig. 16 is used for inverse analysis. In the inverse

Table 6 Result of the inverse problem for the neo–Hookean model with three controlling points and ten sampling
points for the plane stress condition

0% meas. error 2% meas. error 5% meas. error 10% meas. error Exact value

l1 (Pa) 0.999 1.008 1.025 1.045 1
K1 9.87 9.75 9.33 9.13 10
No. of Iterations 21 10 14 12

Fig. 9 The inverse problem with three controlling points and
ten sampling points for the plane stress condition

Table 7 The error of the obtained constants of the inverse
problem for the neo–Hookean model with ten sampling points
under plane stress conditions

Measurement error 0% 2% 5% 10%

Error of the estimated
parameter

l1 (Pa) 0.1% 0.8% 2.5% 4.5%
K1 1.3% 2.5% 6.7% 8.7%

Table 8 Result of the inverse problem for the Mooney–Rivlin model with three controlling points and ten sampling
points for the plane stress condition

0% meas. error 2% meas. error 5% meas. error 10% meas. error Exact value

l1 (Pa) 72.06 80.13 89.20 92.35 80
l2 (Pa) 29.56 20.77 12.25 11.00 20
l1þl2 101.62 100.90 101.45 103.35 100
K1 1900 1930 1880 1920 2000
No. of iterations 16 14 12 13

Table 9 The error of the obtained constants of the inverse
problem for the Mooney–Rivlin model with ten sampling points
under plane stress conditions

Measurement error 0% 2% 5% 10%

Error of the
estimated
parameter

l1 (Pa) 9.93% 016% 11.5% 15.44%
l2 (Pa) 47.8% 3.85% 38.75% 45%
l1þl2 1.62% 0.9% 1.45% 3.35%
K1 5% 3.5% 6% 4%

Fig. 10 Nominal stress–stretch curves for the Mooney–Rivlin hyper-elastic material with con-
stants l1580Pa, l25 20Pa, and K152000 and the material parameters reported in Table 8
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problem, the material parameters of this rectangular region and
the boundary condition on the interface AB are unknowns to be
found.

A finite element model of the rectangular domain with 517 ele-
ments in the undeformed configuration was constructed. Since the
thickness of the sample (0.008 m) is small in comparison with
other dimensions, the problem is considered to be under plane
stress condition. The load was applied on the upper edge of the
model as surface traction and displacement in x-direction at this
edge was held at zero. Three controlling points with unknown dis-
placements, i.e., six unknowns, are considered on the interface

AB. The neo–Hookean hyper-elastic model was used to predict
the behavior of the material.

Since DIC provides full field displacement on the surface of the
member, sampling points could be considered both within the
domain and on the boundary. Therefore, 12 sampling points in the
domain and on the boundary as shown in Fig. 17 were used to
solve the inverse problem.

The results of the inverse problem are presented in Table 10. In
order to verify the results of the inverse problem, a finite element
model of the rectangular sample shown in Fig. 12 was created and
using the neo–Hookean material parameters of Table 10, the
force-stretch curve of the model in comparison with the experi-
mental curve is shown in Fig. 18. It is observed that the generated
force-stretch curve is in good agreement with the experimental
one. In other words, the material constants obtained from the
inverse analysis predict the material behavior very well.

Further, for verification of the obtained neo–Hookean material
parameters of Table 10, the developed finite element model of the
problem shown in Fig. 17 was solved with these parameters. Dis-
placement contour of the solution in comparison with real

Fig. 11 A part of the speckle pattern on the sample surface
and a unique feature in a facet

Fig. 12 (a) Dimensions of the rectangular sample and (b) the
sample with sandpaper at both ends and random gray pattern
on its surface

Fig. 13 Force-stretch curve of the rectangular silicone sample

Fig. 14 (a) Dimensions of the silicone sample and (b) the sili-
cone sample molded in the customized wooden mold
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displacement contour obtained from ISTRA 4D software is shown in
Fig. 19. From Fig. 19, it is observed that the obtained material
parameters can predict material behavior very well. In Fig. 20, the
unknown interface AB reconstructed from the inverse analysis is
compared with the same interface obtained from the experiment

using ISTRA 4D software. As it can be seen form Fig. 20, the
unknown interface is reconstructed with a good accuracy.

7 Conclusions

An inverse method for identification of material properties of a
hyper-elastic member with partially unknown boundary condi-
tions was presented. The inverse problem was solved for
neo–Hookean and Mooney–Rivlin hyper-elastic models, which
are well-known models for hyper-elastic materials. Different lev-
els of error were applied to examine the effectiveness of the
method in dealing with measurement errors. The inverse problems
were solved in plane stress and plane strain conditions and in both
cases the results were promising. The effects of measurement

Fig. 15 The silicone sample under tension with INSTRON 5567

Fig. 16 The part of the sample used for inverse analysis

Fig. 17 Sampling points used for inverse analysis

Fig. 18 Force-stretch curve of the neo–Hookean model
obtained from the inverse analysis in comparison with the
experimental curve

Table 10 Results of the inverse analysis with sampling points
shown in Fig. 17

No. of iterations l1 (Pa) K1

4 31,814 275,152
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error, sampling points location, and initial guess were also investi-
gated. It was observed that when the initial guess was closer to exact
values, fewer number of iterations were required to obtain the final
solution. However, even in the cases with initial guess far from exact
values, the method converged to a solution with sufficient accuracy.

After a numerical study of the proposed inverse method, the
material parameters of a silicone specimen with unknown bound-
ary conditions were determined by employing the presented
inverse method and using real measurement data. The results were
satisfactory in this case, too.
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Nomenclature

A ¼ area in deformed configuration
A0 ¼ area in reference configuration

B ¼ left Cauchy Green deformation tensor
F ¼ deformation gradient
I1 ¼ first invariant of left Cauchy Green deformation tensor
I2 ¼ second invariant of left Cauchy Green deformation tensor
I3 ¼ third invariant of left Cauchy Green deformation tensor
J ¼ Jacobian of deformation gradient

K1 ¼ material parameter of Mooney–Rivlin and neo–Hookean
hyper-elastic models

u ¼ displacement field, m
V ¼ volume in deformed configuration
V0 ¼ volume in reference configuration
x ¼ position of a material particle in its deformed

configuration, m
X ¼ position of a material particle in its reference

configuration, m
r ¼ Cauchy stress tensor, Pa
q ¼ material density in deformed configuration, kg/m3

q0 ¼ material density in undeformed configuration
W ¼ Helmholtz free energy function
l1 ¼ material parameter of Mooney–Rivlin and neo–Hookean

hyper-elastic models
l2 ¼ material parameter of Mooney–Rivlin hyper-elastic model

References
[1] Basdogan, C., Ho, C. H., and Srinivasan, M. A., 2001, “Virtual Environments

for Medical Training: Graphical and Haptic Simulation of Laparoscopic

Common Bile Duct Exploration,” IEEE/ASME Trans. Mechatronics, 6(3),
pp. 269–285.

[2] Satava, R. M., and Jones, S. B., 1997, “Virtual Environments for Medical

Training and Education,” Presence: Teleoperators Virtual Environ., 6(2),
pp. 139–146.

[3] Tendick, F., Downes, M., Goktekin, T., Cavusoglu, M. C., Feygin, D., Wu, X.,

Eyal, R., Hegarty, M., and Way, L. W., 2000, “A Virtual Environment Testbed

for Training Laparoscopic Surgical Skills,” Presence: Teleoperators Virtual

Environ., 9(3), pp. 236–255.
[4] Avis, N. J., 2000, “Virtual Environment Technologies,” Minimally Invasive

Ther. Allied Technol., 9(5), pp. 333–339.
[5] Ayache, N., Cotin, S., Delingette, H., Clement, J. M., Russier, Y., and Mares-

caux, J., 1998, “Simulation of Endoscopic Surgery,” Minimally Invasive Ther.

Allied Technol., 7(2), pp. 71–77.
[6] Cotin, S., Delingette, H., and Ayache, N., 2000, “A Hybrid Elastic Model for

Real-Time Cutting, Deformations, and Force Feedback for Surgery Training

and Simulation,” Visual Comput., 16(8), pp. 437–452.
[7] Picinbono, G., Lombardo, J. C., Delingette, H., and Ayache, N., 2002,

“Improving Realism of a Surgery Simulator: Linear Anisotropic Elasticity,

Complex Interactions and Force Extrapolation,” Comput. Animation Virtual

Worlds, 13(3), pp. 147–167.
[8] Snedeker, J. G., Bajka, M., Hug, J. M., Szekely, G., and Niederer, P., 2002,

“The Creation of a High-Fidelity Finite Element Model of the Kidney for

Fig. 19 (a) Displacement contour in the member obtained from ISTRA 4D software in mm and
(b) displacement contour corresponding to the results of the inverse analysis in m

Fig. 20 Comparison of the deformed shape of the interface AB

in the experiment and reconstructed from the inverse analysis

051006-12 / Vol. 85, MAY 2018 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 03/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Use in Trauma Research,” Comput. Animation Virtual Worlds, 13(1),
pp. 53–64.

[9] Jiang, Y., Li, G. Y., Qian, L. X., Hu, X. D., Liu, D., Liang, S., and Cao, Y.,

2015, “Characterization of the Nonlinear Elastic Properties of Soft Tissues

Using the Supersonic Shear Imaging (SSI) Technique: Inverse Method, Ex

Vivo and In Vivo Experiments,” Med. Image Anal., 20(1), pp. 97–111.
[10] Goenezen, S., Dord, J. F., Sink, Z., Barbone, P. E., Jiang, J., Hall, T. J., and

Oberai, A. A., 2012, “Linear and Nonlinear Elastic Modulus Imaging: An

Application to Breast Cancer Diagnosis,” IEEE Trans. Med. Imaging, 31(8),
pp. 1628–1637.

[11] Mazurkiewicz, D., 2010, “Problems of Identification of Strength Properties of

Rubber Materials for Purposes of Numerical Analysis: A Review,” Arch. Civ.

Mech. Eng., 10(1), pp. 69–84.
[12] Le Saux, V., Marco, Y., Bles, G., Calloch, S., Moyne, S., Plessis, S., and Char-

rier, P., 2011, “Identification of Constitutive Model for Rubber Elasticity From

Micro-Indentation Tests on Natural Rubber and Validation by Macroscopic

Tests,” Mech. Mater., 43(12), pp. 775–786.
[13] Samani, A., and Plewes, D., 2004, “A Method to Measure the Hyperelastic

Parameters of Ex Vivo Breast Tissue Samples,” Phys. Med. Biol., 49(18),
p. 4395.

[14] O’Hagan, J. J., and Samani, A., 2009, “Measurement of the Hyperelastic Prop-

erties of 44 Pathological Ex Vivo Breast Tissue Samples,” Phys. Med. Biol.,

54(8), p. 2557.
[15] Tran, H. V., Charleux, F., Rachik, M., Ehrlacher, A., and Ho Ba Tho, M. C.,

2007, “In Vivo Characterization of the Mechanical Properties of Human Skin

Derived From MRI and Indentation Techniques,” Comput. Methods Biomech.

Biomed. Eng., 10(6), pp. 401–407.
[16] Ruggiero, L., Sol, H., Sahli, H., Adriaenssens, S., and Adriaenssens, N., 2011,

“An Inverse Method to Determine Material Properties of Soft Tissues,”

Mechanics of Biological Systems and Materials, Vol. 2, pp. 19–32.
[17] Chen, Z., Scheffer, T., Seibert, H., and Diebels, S., 2013, “Macroindentation of

a Soft Polymer: Identification of Hyperelasticity and Validation by Uni/Biaxial

Tensile Tests,” Mech. Mater., 64, pp. 111–127.
[18] Liu, H., Sangpradit, K., Li, M., Dasgupta, P., Althoefer, K., and Seneviratne, L.

D., 2014, “Inverse Finite-Element Modeling for Tissue Parameter Identification

Using a Rolling Indentation Probe,” Med. Biol. Eng. Comput., 52(1),
pp. 17–28.

[19] Zisis, T., Zafiropoulou, V. I., and Giannakopoulos, A. E., 2015, “Evaluation of

Material Properties of Incompressible Hyperelastic Materials Based on Instru-

mented Indentation of an Equal-Biaxial Prestretched Substrate,” Int. J. Solids

Struct., 64–65, pp. 132–144.
[20] MacManus, D. B., Pierrat, B., Murphy, J. G., and Gilchrist, M. D., 2016,

“Mechanical Characterization of the P56 Mouse Brain Under Large-

Deformation Dynamic Indentation,” Sci. Rep., 6(1), p. 21569.
[21] Hendriks, F. M., Brokken, D. V., Van Eemeren, J. T. W. M., Oomens, C. W. J.,

Baaijens, F. P. T., and Horsten, J. B. A. M., 2003, “A Numerical-Experimental

Method to Characterize the Non-Linear Mechanical Behaviour of Human

Skin,” Skin Res. Technol., 9(3), pp. 274–283.
[22] Nava, A., Mazza, E., Kleinermann, F., Avis, N. J., and McClure, J., 2003,

“Determination of the Mechanical Properties of Soft Human Tissues Through

Aspiration Experiments,” International Conference on Medical Image Comput-

ing and Computer-Assisted Intervention (MICCAI), Montreal, QC, Canada,

Nov. 15–18, pp. 222–229.

[23] Delalleau, A., Josse, G., Lagarde, J. M., Zahouani, H., and Bergheau, J. M.,

2008, “A Nonlinear Elastic Behavior to Identify the Mechanical Parameters of

Human Skin In Vivo,” Skin Res. Technol., 14(2), pp. 152–164.
[24] Nguyen, T. D., and Boyce, B. L., 2011, “An Inverse Finite Element Method for

Determining the Anisotropic Properties of the Cornea,” Biomech. Model.

Mechanobiol., 10(3), pp. 323–337.
[25] Delgadillo, J. O. V., Delorme, S., Thibault, F., DiRaddo, R., and Hatzikiriakos,

S. G., 2015, “Large Deformation Characterization of Porcine Thoracic Aortas:

Inverse Modeling Fitting of Uniaxial and Biaxial Tests,” J. Biomed. Sci. Eng.,

8(10), p. 717.
[26] Mei, Y., Fulmer, R., Raja, V., Wang, S., and Goenezen, S., 2016, “Estimating

the Non-Homogeneous Elastic Modulus Distribution From Surface

Deformations,” Int. J. Solids Struct., 83, pp. 73–80.
[27] Mei, Y., Wang, S., Shen, X., Rabke, S., and Goenezen, S., 2017, “Mechanics

Based Tomography: A Preliminary Feasibility Study,” Sensors, 17(5), p. 1075.
[28] Gambarotta, L., Massabo, R., Morbiducci, R., Raposio, E., and Santi, P., 2005,

“In Vivo Experimental Testing and Model Identification of Human Scalp Skin,”

J. Biomech., 38(11), pp. 2237–2247.
[29] Wang, Z. G., Liu, Y., Wang, G., and Sun, L. Z., 2011, “Nonlinear Elasto-

Mammography for Characterization of Breast Tissue Properties,” Int. J.

Biomed. Imaging, 2011, p. 5.
[30] Lago, M. A., Rup�erez, M. J., Mart�ınez-Mart�ınez, F., Monserrat, C., Larra, E.,

G€uell, J. L., and Peris-Mart�ınez, C., 2015, “A New Methodology for the

In Vivo Estimation of the Elastic Constants That Characterize the Patient-

Specific Biomechanical Behavior of the Human Cornea,” J. Biomech., 48(1),
pp. 38–43.

[31] Sim�on-Allu�e, R., Calvo, B., Oberai, A. A., and Barbone, P. E., 2017, “Towards

the Mechanical Characterization of Abdominal Wall by Inverse Analysis,” J.

Mech. Behav. Biomed. Mater., 66, pp. 127–137.
[32] Roan, E., and Vemaganti, K., 2007, “The Nonlinear Material Properties of

Liver Tissue Determined From No-Slip Uniaxial Compression Experiments,”

ASME J. Biomech. Eng., 129(3), pp. 450–456.
[33] Zhang, C., Wu, J., Hwang, K. C., and Huang, Y., 2016, “Postbuckling of

Hyperelastic Plates,” ASME J. Appl. Mech., 83(5), p. 051012.
[34] Breslavsky, I. D., Amabili, M., and Legrand, M., 2016, “Static and Dynamic

Behavior of Circular Cylindrical Shell Made of Hyperelastic Arterial Material,”

ASME J. Appl. Mech., 83(5), p. 051002.
[35] Zhang, C., Wu, J., and Hwang, K. C., 2015, “Hyperelastic Thin Shells:

Equilibrium Equations and Boundary Conditions,” ASME J. Appl. Mech.,

82(9), p. 094502.
[36] Dhavale, N. N., Tamadapu, G., and DasGupta, A., 2014, “Finite Inflation Anal-

ysis of Two Circumferentially Bonded Hyperelastic Circular Flat Membranes,”

ASME J. Appl. Mech., 81(9), p. 091012.
[37] Boyce, M. C., and Arruda, E. M., 2000, “Constitutive Models of Rubber

Elasticity: A Review,” Rubber Chem. Technol., 73(3), pp. 504–523.
[38] Vahapo�glu, V., and Karadeniz, S., 2006, “Constitutive Equations for Isotropic

Rubber-Like Materials Using Phenomenological Approach: A Bibliography

(1930–2003),” Rubber Chem. Technol., 79(3), pp. 489–499.
[39] Payan, Y., and Ohayon, J., 2017, Biomechanics of Living Organs: Hyperelastic

Constitutive Laws for Finite Element Modeling, World Bank Publications, London.

[40] Demiray, H., Weizs€acker, H. W., Pascale, K., and Erbay, H., 1988, “A

Stress-Strain Relation for a Rat Abdominal Aorta,” J. Biomech., 21(5), pp.
369–374.

[41] Holmes, M. H., and Mow, V. C., 1990, “The Nonlinear Characteristics of Soft

Gels and Hydrated Connective Tissues in Ultrafiltration,” J. Biomech., 23(11),
pp. 1145–1156.

[42] Holzapfel, A. G., 2000, Nonlinear Solid Mechanics II, Wiley, West Sussex,

UK.

[43] Bower, A. F., 2009, Applied Mechanics of Solids, CRC Press, Boca Raton, FL.
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