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Abstract—The conditional mutual information 7(X;Y|2)
measures the average information that X and Y contain
about each other given Z. This is an important primitive in
many learning problems including conditional independence
testing, graphical model inference, causal strength estimation
and time-series problems. In several applications, it is desirable
to have a functional purely of the conditional distribution
Py|x,z rather than of the joint distribution px y,z. We
define the potential conditional mutual information as the
conditional mutual information calculated with a modified joint
distribution py| x, zqx,z, where gx 7 is a potential distribution,
fixed airport. We develop K nearest neighbor based estimators
for this functional, employing importance sampling, and a
coupling trick, and prove the finite £ consistency of such an
estimator. We demonstrate that the estimator has excellent
practical performance and show an application in dynamical
system inference.

I. INTRODUCTION

Given three random variables X,Y, 7, the conditional
mutual information 7(X;Y|Z) (CMI) is the expected value
of the mutual information between X and Y given Z, and
can be expressed as follows [1]:

CMIxsyz(pxy,z) = 1(X;Y]Z) (1
= D(pxy.z|lpzpx|zpy|2z)

Thus CMI is a functional of the joint distribution px y,z.
A basic property of CMI, and a key application, is the
following: I(X;Y|Z) = 0 iff X is independent of Y given
Z. This measure depends on the joint distribution between
the three variables px y,z. There are certain circumstances
where such a dependence on the entire joint distribution
is not favorable, and a measure that depends purely on
the conditional distribution py|x,7 is more useful. This is
because, in a way, conditional independence can be well
defined purely in terms of the conditional distribution and
the measure px 7 is extraneous. This motivates the direction
that we explore in this paper: we define potential conditional
mutual information as a function purely of py|x, 7 evaluated
with a distribution ¢x, 7 that is fixed a-priori.

An Example: Consider the following causal graph where
X =Y, Z — X and Z — Y shown in Figure la. Let
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us say py|x,z has a strong dependence on both X and Z,
say defined by the structural equation ¥ = X + Z. We
would like to measure the strength of the edge X — Y
in this causal graphical model. One natural measure in this
context is I(X;Y|Z). However, if we use I(X;Y]|Z) as
the strength, the strength goes to zero when Z ~ X and
this is undesirable. In such a case, Janzing et al [2] pointed
out that a better strength of causal influence is given by the
following:

C(X =Y):= D(px,y,zllpzpxpy|z)- (2

This causal measure satisfies certain axioms laid out in that
paper and is nonzero in the aforesaid example. However, in
the case that the distribution px approaches a deterministic
distribution (X is approximately a constant), this measure
becomes zero, irrespective of the fact that the relationship
from X and Z to Y remains unaltered. We would like to
define a potential dependence measure that is dependent
purely on py|x z and which has no dependence on the
observed px 7. We note that such a measure should give
a (strong) non-zero result if Y = X + Z.

The Measure: We define potential conditional information
measure as the conditional mutual information evaluated
under a predefined distribution ¢x z, and denote it as
gqCMI(X < Y|Z), and express it as follows.

qQCMIx oy z(py|x,z) = CMIx oy z(ax.zpy|x,2). (3)

A Simple Property: The main question here is how to
choose gx.z. A simple property that maybe of interest is
the following, which can be easily stated in case that all
three variables X,Y, Z are discrete. In such a case, it will
be useful if we can have that qCMIxy|z(py|x,z) =0
if and only if py|x z depends purely only on Z. Such a
property will be true for qCMI as long as ¢x,z is non-zero
for every value of X, Z. In case that all three variables are
real valued, a similar statement can be asserted when gx 7
is a positive everywhere density, under the assumption that
Dx,v,z induces a joint density.
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Instantiations: We will propose some instantiations of the

potential CMI by giving examples of the distribution ¢x_ z.

e CMI: gx.z = px,z. Here the ¢x, 7 is the factual
measure and hence qCMI devolves to pure CMI.

e uCMIL: ¢x,z = wux,z, where uyx 7 is the product
uniform distribution on X, 7. This is well defined
when X, Z is either discrete or has a joint density
with a bounded support.

e nCMI: ¢x, 7z = nx, z, where nx 7 is the i.i.d. Gaussian
distribution on X, Z. This is well defined when X, Z
are real-valued (whether scalar or vector).

o maxCMI = max,, , CMI(¢x zpy|x,z) is defined as
an analog of the Shannon capacity in the conditional
case, where we maximize the CMI over all possible
distributions on X, Z. This is akin to tuning the input
distribution to maximize the signal in the graph. Note
that uCMI or nCMI is not invariant to invertible
functional transformations on X, Z, whereas maxCMI
is indeed invariant to such functional transformations.

e iCMI: ¢x,z = pxpz is the CMI evaluated not under
the true joint distribution of X,Z but under the
product distribution on X, Z. This measure is related
to the causal strength measure proposed in [2], though
not identical.

Note that uCMI, nCMI, maxCMI all satisfy the property
that they are zero if and only if py|x,z has no dependence
on X, whereas CMI and iCMI do not.

Applications: A key application of the potential infor-
mation measures is in testing graphical models, where
conditional independence tests are the basic primitive by
which models are built [3], [4], [5]. To give a concrete
example of the setting, which motivated us to pursue this line
of study, consider the following problem, which can model
gene regulatory network inference from time-series data. We
observe a set of n time series, X, (t) for t = 1,2,...T with
1 = 1,2,..n and wish to infer the graph of the dynamical
system. The underlying model assumption is that X is a
markov chain with X, (¢) depending only on X, (¢ — 1) for
j € Pa(i) and the goal is to determine Pa(i), the set of
parents of a given node. This was originally studied in the
setting when the variables are jointly Gaussian and hence
the dependence is linear (see [6] for the original treatment,
and [7], [8] for versions with latent variables). This problem
was generalized to the setting with arbitrary probability
distributions and temporal dependences in [9] and studied
further in [10], for one-step markov chains in [11] and
deterministic relationships in [12]. From these works, under

(a)

4.0

35
w301
H
£ 2.5 — 0Olig2
& —— Pax6
ﬁ 2.04 f‘ —— Hes5
é —— Mashl
[-*]
B L5 Brn2
c
8

1.0 A

0.5 |

0.0

'

T T T T T
0 2000 4000 6000 8000 10000

No of steps

(b)

Fig. 1: (a): A causal graph, where the interest is in deter-
mining the strength of X to Y. (b) A gene expression trace
as a function of time for a few example genes.

some technical condition, we can assert that the following
method is guaranteed to be consistent,

Thus to solve this problem, we estimate the CMI between
the aforesaid variables. However, we observed while ex-
perimenting with gene regulatory network data (from [13]),
that there is a strange phenomenon; the performance of the
inference worsens as we collect more data: the number of
data points increases.

An example of a gene expression time series for a
few genes is shown in Figure 1b. It is clear that as the
number of time points increases, the system is moving into
an equilibrium with very little change in gene expression
values. This induces a distribution on any X, (¢) which looks
more and more like a deterministic distribution.

In such a case, an information measure such as CMI
which depends on the “input” distribution pg,;_1) will
converge to zero and thus its performance will deteriorate as
the number of samples increases. However a measure that
depends on the conditional distribution p, ¢4, (t—1),», need
not deteriorate with increasing number of samples. Thus
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gCMI is more appropriate in this context (see Sec. IV-C
for performance of qCMI on this problem).

Related work: In the case that there is a pair of random
variables X, Y, recent work [14] explored conditional de-
pendence measures which depend only on py | x. Again in
the two-variable case, a measure that had weak dependence
on px was studied in [15]. The proposal there was to use the
strong data processing constant and hypercontractivity [16],
[17] to infer causal strength; this has strong relationships to
information bottleneck [18]. In this paper, we extend [19] to
conditional independence (rather than independence studied
there). In a related but different direction, Shannon capacity,
which is a potential dependence metric, was proposed in [20]
to infer causality from observational data [21].

Main Contributions: In this paper, we make the following
main contributions:

1) We propose potential conditional mutual information
as a way of quantifying conditional independence, but
depending only on the conditional distribution py|x, 7.

2) We propose new estimators in the real-valued case that
combine ideas from importance sampling, a coupling
trick and k-nearest neighbors estimation to estimate
potential CMI.

3) We prove that the proposed estimator is consistent for
a fixed k, which does not depend on the number of
samples N.

4) We demonstrate by simulation studies that the proposed
estimator has excellent performance when there are a
finite number of samples, as well as an application in
gene network inference, where we show that qCMI can
solve the non-monotonicity problem.

II. ESTIMATOR

In most real settings, we do not have access to either
the joint distribution px y,z or the conditional distribution
Py |x,z» but need to estimate the requisite information func-
tionals from observed samples. We are given /N independent
identically distributied samples {(z;,v;, #i)i=1,2,...n} from
px,v,z. In the case of qCMI, the estimator is also given as
input the modified distribution ¢gx z. The estimator needs to
estimate qCMI from samples.

In the case of discrete valued distributions, it is possible to
empirically estimate px y,z from samples and calculate the
qCMI from this distribution. We focus our attention here on
the case of continuous valued alphabet, where each variable
takes on values in a bounded subset of R?. We assume
that X, Y, Z are of dimensions d,,d,, d. respectively, and
let fx,y,z denote the joint density of the three variables
(we assume that it exists). In such a case, it is possible to
estimate fx y,z using kernel density estimators [22], [23]
and then warp the estimate using the potential measure
gx,z. However, it is known that k-nearest neighbors based

estimators perform better even in the simpler case of mutual
information estimation and are widely used in practice
[24], [25]. Therefore in this work, we develop KNN based
estimators for qCMI estimation.

A. Entropy estimation

Consider first the estimation of the differential entropy of
a random variable X with density fx and observed samples
ZT1,...,TN.. A simple method to estimate the differential
entropy is to use the re-substitution estimator, where we
calculate h(X) := %Zﬁillog(fx(xi)), where fx is an
estimate of the density of X. We can estimate the density
using a KNN based estimator. To do so, we fix k a-priori,
and for each sample x;, find the distance py, ; to the nearest

neighbor. P
N ®)

This estimator is not consistent when & is fixed, and it was
shown in a remarkable result by Kozhachenko and Loenenko
[26] that the bias is independent of the distribution and
can be computed apriori. Thus the following estimator was
shown in [26] to be consistent for differential entropy.

Fx(@i)eapt; ~

. N Npé c
uX) = Dtos =5 gk - vk

While it is possible to have estimators which fix an €
apriori and then find the number of nearest neighbors to
plug into the formula, such estimators do not adapt to the
density (some regions will have many more points inside an
e neighborhood than others) and do not have a consistency
proof as well. We mention this as fixed e estimators are used
for a sub-problem in our estimator.

B. Coupling trick

The conditional mutual information can be written as a
sum of 4 differential entropies, and one can estimate these
differential entropies independently using KNN estimators
and sum them.

I(X;Y|Z) = —h(X,Y,Z) — h(Z) + WX, Z) + h(Y, Z).

However, even in the case of mutual information, the estima-
tion can be improved by an inspired coupling trick, in what
is called the KSG estimator [24]. We note that the original
KSG estimator did not have a proof of consistency and its
consistency and convergence rates were analyzed in a recent
paper [27]. Also of interest is the fact that the coupling
trick has been shown to be quite useful in problems where
X, Y or both have a mixture of discrete and continuous
distributions or components [28].

This trick was applied in the context of conditional mutual
information estimation in [29]. However, we note that this
estimator of CMI does not have a proof of consistency to the

1230



Algorithm 1: qCMI algorithm

Data: Data Samples (z;,v;,2;) fori=1,...,N and ¢x z
Result: gC' M1 an estimate of qC' M T

Step 1: Calculate weights w;
fori=1,...,N do

Estimate fx z(x;,2;) using a Kernel density estimator [23], [22].

axz(Ti,zi
fxz(xizi)’

W; ‘=

end

Step 2: Calculate information samples I;
for:=1,...,N do

pk.i := Distance of k-th nearest neighbor of (z;,y;, 2;).
Nyz,i = Zﬁéi:”(%z{)_(%7Zj)|‘<pk,i 1, the number of neighbors of (z;, z;)

Moy 5= D5 (ye,2)— (o2 | <o
Mzi *= 2 ijstic)|zi—zl|<pr,

I :== (k) — log(ng.,;) — log(ny i) +log(n, ;).
end

Cdg+d, Cdy+ds
Cdg+dy+d; Cd;

Return qCM T = = 5N I, + log (

the importance sampling estimate of sample .

within distance py, ;.

w;, the weighted number of neighbors of (y;, z;) within distance py, ;.
_ wi, the weighted number of neighbors of z; within distance py ;.

best of our knowledge. The CMI estimator essentially fixes
a k for the (X,Y, Z) vector and calculates for each sample
(x4, Yi, 2;), the distance pg; to the k-th nearest neighbor.
The estimator fixes this py ; as the distance and calculates
the number of nearest neighbors within py, ; in the Z, (X, Z)
and (Y, Z) dimensions as 7 ;, Ny i, Ny ; respectively. The
CMI estimator is then given by,

1
N <

=1

CdT dzcd d.,
4 o(k) + log (++
Cdy+dy+d. Cd.

N
QCMI (— IOg(nzz,i) - 10g(nyz’i) + IOg(nz,i>)

C. qCMI estimator

Here, we adapt this estimator to calculate the qCMI for
a given potential distribution gx z. The major difference is
the utilization of an importance sampling estimator to get
the importance of each sample ¢ estimated as follows,

(6)

o qxz(wi, 2;)
Wy i=m .
Ixz(xi,2:)
However, importance sampling based reweighting alone
is insufficient to handle qCMI estimation, since there is
a logarithm term which depends on the density also. We
handle this effect by appropriately re-weighting the number
of nearest neighbors for the (y,z) and z terms carefully
using the importance sampling estimators. The estimation
algorithm is described in detail in Algorithm 1.

(N

III. PROPERTIES

Our main technical result is the consistency of the pro-
posed potential conditional mutual information estimator.
This proof requires combining several elements from impor-
tance sampling, and accounting for the correlation induced
by the coupling trick, in addition to handling the fact that
the k is fixed and hence introduces a bias into estimation.

Assumption 1. We make the following assumptions.

a) [ fxvz(z,y,z) (og fxyz(z,y,2))° dedydz < oc.

b) All the probability density functions (PDF) are ab-
solutely integrable, i.e. for all A/B C {X,Y,Z},
J1faip(alb)lda < oo and [ |f}p(alb)|da < oo.

¢) There exists a finite constant C such that the hessian
matrices of fxyz and f% , exist and it’s true that
max{[|h(fxyz)ll2, 1h(fiy )2} < C almost every-
where.

d) All the PDFs are upper-bounded, i.e. there exists a pos-
itive constant C' such that for all A;B C {X,Y,Z},
fap < C" and fZHB < C" almost everywhere.

e) fxz is upper and lower-bounded, i.e. there exist pos-
itive constants C1 and C2 such that Ciqx z(z,z) <
fxz(z,z) < Cagxz(x, 2) almost everywhere.

f) There bandwidth hy of kernel density estimator is
chosen as hy = %N‘”deﬁdﬁ@,

g) The k for the KNN estimator is chosen satisfying k >

dy  detdy dy+d.
max{ da“‘l‘dy i dz ) dy }
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Fig. 2: The qCMI values calculated for »"(0, 1) distributions for X and Z, and uniform noise: (a) N=1000 samples and

(b) N =20000 samples. (c) Degree n = 5.

Theorem 1. Under the Assumption 1, the qCMI estimator
expressed in Algorithm I converges to the true value gCMI.

qCMI % qCMI (8)
Proof: Please see [30] for the proof. [ ]

IV. SIMULATION STUDY

In this section, we describe some simulated experiments
we did to test the qCMI algorithm. The reader should notice
that all the tests we have done are taking ¢x as uxyz, i.e.
all the tests are done for the special case of uCMI. So by
exploiting the qCMI notations we mean uCMI everywhere.

A. qCMI consistency

The first numerical experiment we do is to test the consis-
tency of our qCMI estimation algorithm. We set up a system
of three variables X, Y and Z. The variables X and Z are
independent taken from v (0, 1) distribution, i.e. X and Z
are taken form a uniform distribution and then raised to a
power of n. When n = 1, the variables X and Z are already
uniform. When n is large, the »™(0,1) distribution skews
more towards 0. For simplicity we apply identical n for both
X and Z here. Then Y is generated as Y = (X + Z + W)
mod 1 in which the noise term W is sampled from «(0, 0.2).
From elementary information theory calculation, we can
deduce that I(X;Y|Z) = log (%) = 1.609 if n = 1. Thus
I9(X;Y|Z) = 1.609 for all n. We plot the estimated value
against the ground truth.

As the first part of the experiment, we keep the number
of samples constant at 1000 and 20000, and change the
degree n from 1 to 10. We compare the results of our KSG-
based method with the simple partitioning method, and the
theoretical value of qCMI. For the partitioning method, the
number of partitions at each dimension is determined by

V100N, so that we observe on average 100 samples inside
each quantization bin.

The results are shown in Figure 2a and Figure 2b. Our
expectation is that qCMI remains constant as n (degree
of distribution) changes. We see that with relatively high
number of samples, the accuracy of proposed qCMI is
satisfactorily high.

As the second part of the experiment, we do the same
experiment as the first part, but this time we keep n = 5 and
change the number of samples. The result is shown in Figure
2c. We can see convergence of KSG-based qCMI estimator
to the true value and how it outperforms the partitioning-
based qCMI method.

As the third part of the experiment, we repeated the pro-
cess for the first part, but replaced the «"(0, 1) distributions
with 3(1.5,1.5) and the noise distribution with N (0, o) and
repeated the experiment for o = 0.3, 1.0. For this part we
kept the number of partitions at 25 for each dimension. The
results of calculated qCMI values are shown in Figure 3a
and Figure 3b.

B. Dealing with discrete components

As we discussed before, the qCMI algorithm replaces the
observed distribution fxy distribution with a distribution
gxz. This property comes in handy when we want to
remove the bias caused by repeated samples. For example,
as discussed earlier, suppose that we want to measure the
mutual information of two coupled variables in a dynamical
system evolving through time. Such systems usually start
from an initial state, go through a transient state and
eventually reach a steady state. If one takes samples of the
system’s state at a constant rate to study the interaction of
two variables, they might end up taking too many samples
from the initial and steady states while the transient phase
which usually happens in a relatively short time might be
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Fig. 3: The qCMI values calculated for a system with beta distribution for X and Z and Gaussian additive noise: (a)
o =10.3, and (b) 0 = 1.0. (¢c) The qCMI and CMI values versus the number of zeros added.

more informative. The conditional mutual information is not
able to deal with this undesirable bias caused by the initial
and steady states, while qCMI inherently deals with the
effect by compensating for the samples which are less likely
to happen.

To better observe the effect, we repeat the first experiment
of the previous section, but this time we generate 1000
samples from the scenario, and then add zeros to the X, Y
and Z to create a high probability of occurrence at (0,0, 0).
The proof of consistency of the estimator holds only when
there is a joint density, i.e., the joint measure is absolutely
continuous with respect to the Lebesgue measure, and hence
does not directly apply to this case. We refer the reader to
[28] for an analysis of a similar coupled KNN estimator for
mutual information in the discrete-continuous mixture case.

Changing the number of zero points added from 0 to
20000, we apply the conditional MI and qCMI to the
data generated and compare the results. As we can see in
figure 3c, with the number of zeros increasing, the value
of conditional MI falls down to zero, unable to capture
the inter-dependence of X and Y given Z, while qCMI
value remains unchanged, properly discovering the inter-
dependence from the transient values.

C. Non-linear Neuron Cells’ Development Process

In this section, we apply the RDI and uRDI algorithms
to neuron cells’ development process simulated based on a
model from [13] which can be modeled as a dynamical sys-
tem. A dynamical System is described as a set of variables
shown by a vector of z which evolve through time starting
from an initial state z(0). The evolution can be described as
a vector function g(.) such that z(t) = g (z(t — 1)). Note
that ¢ can be a stochastic function in general, i.e. it may
include random coefficients, additive noise and so on.

The dynamical system here describes the evolution of

13 genes through the development process. The non-linear
equations governing the development process approximate a
continuous development process, in which z(t) = g(x(t —
1)). In other words, z(t) = z(t—1)+dt.g (x(t — 1)) +n(t)
in which n are independent Gaussian noises ~ N (0, 02).

For this system, we want to infer the true network
of causal inferences. In a dynamical system, we say z;
causes x; if x;(t) is a function of z;(t — 1). For this
purpose, we first apply the RDI algorithm [12] to extract
the pairwise directed causality between the variables by
calculating I (z;(t —1),z;(t)|z;(t —1)). Then we apply
the uRDI algorithm, in which the conditional mutual in-
formation I(X;Y|Z) in RDI is replaced with qCMI as
I1(X;Y|Z) using qx,z as a uniform distribution.

This system is a good example of a system in which
the genes undergo a rather short transient state compared
to the initial and steady states, and hence we expect an
improvement in the performance of causal inference by
applying uRDI (see Figure 1b for an example run of the
system). The details of the dynamical system are given in
[13].

We simulated the system for discretization dt = 0.1 and
o = .001, and changed the number of steps until which
the system continues developing, and then applied the RDI
and uRDI algorithms to evaluate the performance of each
of the algorithms in terms of the area-under-the-ROC-Curve
(AUC). The results are shown in Figure 4a. As we can see,
with the number of steps increasing implying the number
of samples captured in the steady state are increased, the
uRDI algorithm outperforms RDI. In another test scenario,
we fixed the number of steps at 200, but concatenated several
runs of the same process. The results and the improvement
of performance by uRDI can be seen in the Figure 4b.
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D. Decaying Linear Dynamical System

In this section, we simulate a linear decaying dynamical
system. A dynamical system in the simple case of a deter-
ministic linear system can be described as:

z(t) = Az(t - 1)

In which A is a square matrix.

)

Here we simulate a system of 13 variables, all of them
initialized from a u(0.5, 2) distribution. The first 6 variables

V. FUTURE DIRECTIONS

In this section, we will describe some promising direc-
tions for further investigation.

Y

2)

(21,...,x¢) are evolved through a linear deterministic pro-
cess as in (9) in which A is a square 6 x 6 matrix initialized
as: _ _
all O 0 0 a1y O
azr azp 0 0 0 ag
o 0 a3 ass 0 0 0
A o 0 a42 0 aqq 0 0 (]O)
0 0 as3 0Aar4 Q55 0
1d61 62 0 0 0 a66 |

In which every non-zero a;; is randomly taken from a
distribution %(0.75,1.25). Then the matrix A is divided by
5 % Amax(A) in which A\p.x(A) is the greatest eigenvalue
of A. It’s done to make sure that all the variables decay
exponentially to 0. After initialization, the matrix A is kept
constant throughout the development process, i.e. it doesn’t
change with time ¢.

The other 7 variables (z7, ..
dent Gaussian variables.

In this experiment, we simulate the system described
above for various numbers of time-steps, keeping the stan-
dard deviation of the Gaussian variables at o = 0.1, and
applied both RDI and uRDI algorithms to infer the true
causal inferences. Then we calculate the AUC values, the
results are shown in Figure 4c. As we can see, the uRDI
algorithm outperforms RDI by a margin of 0.1 in terms of
AUC.

.,x13) are random indepen-

3)

4)

1234

Quantifying causal strength: As pointed out earlier,
potential conditional mutual information can be used as
a metric for quantifying causal strength when the graph
is a simple three node network (shown in Figure 1a).
However, further work is needed in order to generalize
the definition to deduce the causal strength of an edge
or a set of edges in an arbitrary graph, akin to the
formulation in [2] and to study the relative advantages
and disadvantages of such a formulation.

Discrete gCMI estimators: It has been shown in recent
work that such estimators are not optimal even for
determining mutual information in the discrete alphabet
case [31], [32], [33]. A very interesting question is how
such minimax-rate optimal estimators can be developed
in the potential measures problem.

maxCMI estimation: While we have developed effi-
cient estimators for qCMI, in maxCMI, there is a
further maximization over potential distributions g,
which leads to some interesting interactions between
estimation and optimization. Recent work has studied
estimation of Shannon capacity on continuous alpha-
bets, however, the formulation is not convex leading to
possible local minima [14]. Further work is needed in
order to find provably optimal estimators for maxCMI
in the continuous case.

Other conditional measures: Recent work [15] has
used strong data processing constants as a way for
quantifying dependence between two variables, with
relationships to information bottleneck. These measures
depend partially on the factual measure px, and are
implicitly regularized. One direction of future work is



5)

0)

to develop multi-variable versions of such estimators to
estimate the strength of conditional independence, for
example.

Multivariable measures: Develop estimators that can
handle more general multi-variable information mea-
sures including total correlation [34] and multi-variate
mutual information [35].

Ensemble estimation: Another approach exploiting k-
nearest-neighbors for mutual information is the so-
called ensemble estimation approach, where estimators
for different k£ are combined together to get a stronger
estimator, with fast convergence [36]. An interesting
direction of research is to obtain ensemble estimators
for potential measures.
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