
Potential Conditional Mutual Information:

Estimators and Properties

Arman Rahimzamani and Sreeram Kannan

Department of Electrical Engineering, University of Washington, Seattle, WA

Email: {armanrz, ksreeram}@uw.edu

Abstract—The conditional mutual information I(X;Y |Z)
measures the average information that X and Y contain
about each other given Z. This is an important primitive in
many learning problems including conditional independence
testing, graphical model inference, causal strength estimation
and time-series problems. In several applications, it is desirable
to have a functional purely of the conditional distribution
pY |X,Z rather than of the joint distribution pX,Y,Z . We
define the potential conditional mutual information as the
conditional mutual information calculated with a modified joint
distribution pY |X,ZqX,Z , where qX,Z is a potential distribution,
fixed airport. We develop K nearest neighbor based estimators
for this functional, employing importance sampling, and a
coupling trick, and prove the finite k consistency of such an
estimator. We demonstrate that the estimator has excellent
practical performance and show an application in dynamical
system inference.

I. INTRODUCTION

Given three random variables X,Y, Z, the conditional

mutual information I(X;Y |Z) (CMI) is the expected value

of the mutual information between X and Y given Z, and

can be expressed as follows [1]:

CMIX↔Y |Z(pX,Y,Z) := I(X;Y |Z) (1)

= D(pX,Y,Z ||pZpX|ZpY |Z)

Thus CMI is a functional of the joint distribution pX,Y,Z .

A basic property of CMI, and a key application, is the

following: I(X;Y |Z) = 0 iff X is independent of Y given

Z. This measure depends on the joint distribution between

the three variables pX,Y,Z . There are certain circumstances

where such a dependence on the entire joint distribution

is not favorable, and a measure that depends purely on

the conditional distribution pY |X,Z is more useful. This is

because, in a way, conditional independence can be well

defined purely in terms of the conditional distribution and

the measure pX,Z is extraneous. This motivates the direction

that we explore in this paper: we define potential conditional

mutual information as a function purely of pY |X,Z evaluated

with a distribution qX,Z that is fixed a-priori.

An Example: Consider the following causal graph where

X → Y , Z → X and Z → Y shown in Figure 1a. Let

us say pY |X,Z has a strong dependence on both X and Z,

say defined by the structural equation Y = X + Z. We

would like to measure the strength of the edge X → Y

in this causal graphical model. One natural measure in this

context is I(X;Y |Z). However, if we use I(X;Y |Z) as

the strength, the strength goes to zero when Z ≈ X and

this is undesirable. In such a case, Janzing et al [2] pointed

out that a better strength of causal influence is given by the

following:

C(X → Y ) := D(pX,Y,Z ||pZpXpY |Z). (2)

This causal measure satisfies certain axioms laid out in that

paper and is nonzero in the aforesaid example. However, in

the case that the distribution pX approaches a deterministic

distribution (X is approximately a constant), this measure

becomes zero, irrespective of the fact that the relationship

from X and Z to Y remains unaltered. We would like to

define a potential dependence measure that is dependent

purely on pY |X,Z and which has no dependence on the

observed pX,Z . We note that such a measure should give

a (strong) non-zero result if Y = X + Z.

The Measure: We define potential conditional information

measure as the conditional mutual information evaluated

under a predefined distribution qX,Z , and denote it as

qCMI(X ↔ Y |Z), and express it as follows.

qCMIX↔Y |Z(pY |X,Z) := CMIX↔Y |Z(qX,ZpY |X,Z). (3)

A Simple Property: The main question here is how to

choose qX,Z . A simple property that maybe of interest is

the following, which can be easily stated in case that all

three variables X,Y, Z are discrete. In such a case, it will

be useful if we can have that qCMIX↔Y |Z(pY |X,Z) = 0
if and only if pY |X,Z depends purely only on Z. Such a

property will be true for qCMI as long as qX,Z is non-zero

for every value of X,Z. In case that all three variables are

real valued, a similar statement can be asserted when qX,Z

is a positive everywhere density, under the assumption that

pX,Y,Z induces a joint density.
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Instantiations: We will propose some instantiations of the

potential CMI by giving examples of the distribution qX,Z .

• CMI: qX,Z = pX,Z . Here the qX,Z is the factual

measure and hence qCMI devolves to pure CMI.

• uCMI: qX,Z = uX,Z , where uX,Z is the product

uniform distribution on X,Z. This is well defined

when X,Z is either discrete or has a joint density

with a bounded support.

• nCMI: qX,Z = nX,Z , where nX,Z is the i.i.d. Gaussian

distribution on X,Z. This is well defined when X,Z

are real-valued (whether scalar or vector).

• maxCMI = maxqXZ
CMI(qX,ZpY |X,Z) is defined as

an analog of the Shannon capacity in the conditional

case, where we maximize the CMI over all possible

distributions on X,Z. This is akin to tuning the input

distribution to maximize the signal in the graph. Note

that uCMI or nCMI is not invariant to invertible

functional transformations on X,Z, whereas maxCMI

is indeed invariant to such functional transformations.

• iCMI: qX,Z = pXpZ is the CMI evaluated not under

the true joint distribution of X,Z but under the

product distribution on X,Z. This measure is related

to the causal strength measure proposed in [2], though

not identical.

Note that uCMI, nCMI, maxCMI all satisfy the property

that they are zero if and only if pY |X,Z has no dependence

on X , whereas CMI and iCMI do not.

Applications: A key application of the potential infor-

mation measures is in testing graphical models, where

conditional independence tests are the basic primitive by

which models are built [3], [4], [5]. To give a concrete

example of the setting, which motivated us to pursue this line

of study, consider the following problem, which can model

gene regulatory network inference from time-series data. We

observe a set of n time series, Xi(t) for t = 1, 2, ...T with

i = 1, 2, ..n and wish to infer the graph of the dynamical

system. The underlying model assumption is that �X is a

markov chain with Xi(t) depending only on Xj(t− 1) for

j ∈ Pa(i) and the goal is to determine Pa(i), the set of

parents of a given node. This was originally studied in the

setting when the variables are jointly Gaussian and hence

the dependence is linear (see [6] for the original treatment,

and [7], [8] for versions with latent variables). This problem

was generalized to the setting with arbitrary probability

distributions and temporal dependences in [9] and studied

further in [10], for one-step markov chains in [11] and

deterministic relationships in [12]. From these works, under

(a)

(b)

Fig. 1: (a): A causal graph, where the interest is in deter-

mining the strength of X to Y . (b) A gene expression trace

as a function of time for a few example genes.

some technical condition, we can assert that the following

method is guaranteed to be consistent,

xi → xj ⇐⇒ I{Xi(t− 1);Xj(t)|Xic(t− 1)} > 0. (4)

Thus to solve this problem, we estimate the CMI between

the aforesaid variables. However, we observed while ex-

perimenting with gene regulatory network data (from [13]),

that there is a strange phenomenon; the performance of the

inference worsens as we collect more data: the number of

data points increases.

An example of a gene expression time series for a

few genes is shown in Figure 1b. It is clear that as the

number of time points increases, the system is moving into

an equilibrium with very little change in gene expression

values. This induces a distribution on any Xi(t) which looks

more and more like a deterministic distribution.

In such a case, an information measure such as CMI

which depends on the “input” distribution pxi(t−1) will

converge to zero and thus its performance will deteriorate as

the number of samples increases. However a measure that

depends on the conditional distribution pxjt|xi(t−1),xi
need

not deteriorate with increasing number of samples. Thus
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qCMI is more appropriate in this context (see Sec. IV-C

for performance of qCMI on this problem).

Related work: In the case that there is a pair of random

variables X,Y , recent work [14] explored conditional de-

pendence measures which depend only on pY |X . Again in

the two-variable case, a measure that had weak dependence

on pX was studied in [15]. The proposal there was to use the

strong data processing constant and hypercontractivity [16],

[17] to infer causal strength; this has strong relationships to

information bottleneck [18]. In this paper, we extend [19] to

conditional independence (rather than independence studied

there). In a related but different direction, Shannon capacity,

which is a potential dependence metric, was proposed in [20]

to infer causality from observational data [21].

Main Contributions: In this paper, we make the following

main contributions:

1) We propose potential conditional mutual information

as a way of quantifying conditional independence, but

depending only on the conditional distribution pY |X,Z .

2) We propose new estimators in the real-valued case that

combine ideas from importance sampling, a coupling

trick and k-nearest neighbors estimation to estimate

potential CMI.

3) We prove that the proposed estimator is consistent for

a fixed k, which does not depend on the number of

samples N .

4) We demonstrate by simulation studies that the proposed

estimator has excellent performance when there are a

finite number of samples, as well as an application in

gene network inference, where we show that qCMI can

solve the non-monotonicity problem.

II. ESTIMATOR

In most real settings, we do not have access to either

the joint distribution pX,Y,Z or the conditional distribution

pY |X,Z , but need to estimate the requisite information func-

tionals from observed samples. We are given N independent

identically distributied samples {(xi, yi, zi)i=1,2,..,N} from

pX,Y,Z . In the case of qCMI, the estimator is also given as

input the modified distribution qX,Z . The estimator needs to

estimate qCMI from samples.

In the case of discrete valued distributions, it is possible to

empirically estimate pX,Y,Z from samples and calculate the

qCMI from this distribution. We focus our attention here on

the case of continuous valued alphabet, where each variable

takes on values in a bounded subset of R
d. We assume

that X,Y, Z are of dimensions dx, dy, dz respectively, and

let fX,Y,Z denote the joint density of the three variables

(we assume that it exists). In such a case, it is possible to

estimate fX,Y,Z using kernel density estimators [22], [23]

and then warp the estimate using the potential measure

qX,Z . However, it is known that k-nearest neighbors based

estimators perform better even in the simpler case of mutual

information estimation and are widely used in practice

[24], [25]. Therefore in this work, we develop KNN based

estimators for qCMI estimation.

A. Entropy estimation

Consider first the estimation of the differential entropy of

a random variable X with density fX and observed samples

x1, ..., xN .. A simple method to estimate the differential

entropy is to use the re-substitution estimator, where we

calculate ĥ(X) := 1
N

∑N
i=1 log(f̂X(xi)), where f̂X is an

estimate of the density of X . We can estimate the density

using a KNN based estimator. To do so, we fix k a-priori,

and for each sample xi, find the distance ρk,i to the nearest

neighbor.

f̂X(xi)cdρ
d
k,i ≈

k

N
. (5)

This estimator is not consistent when k is fixed, and it was

shown in a remarkable result by Kozhachenko and Loenenko

[26] that the bias is independent of the distribution and

can be computed apriori. Thus the following estimator was

shown in [26] to be consistent for differential entropy.

ĥKL(X) =
1

N

N
∑

i=1

log
Nρdk,icd

k
+ log k − ψ(k).

While it is possible to have estimators which fix an ε

apriori and then find the number of nearest neighbors to

plug into the formula, such estimators do not adapt to the

density (some regions will have many more points inside an

ε neighborhood than others) and do not have a consistency

proof as well. We mention this as fixed ε estimators are used

for a sub-problem in our estimator.

B. Coupling trick

The conditional mutual information can be written as a

sum of 4 differential entropies, and one can estimate these

differential entropies independently using KNN estimators

and sum them.

I(X;Y |Z) = −h(X,Y, Z)− h(Z) + h(X,Z) + h(Y, Z).

However, even in the case of mutual information, the estima-

tion can be improved by an inspired coupling trick, in what

is called the KSG estimator [24]. We note that the original

KSG estimator did not have a proof of consistency and its

consistency and convergence rates were analyzed in a recent

paper [27]. Also of interest is the fact that the coupling

trick has been shown to be quite useful in problems where

X , Y or both have a mixture of discrete and continuous

distributions or components [28].

This trick was applied in the context of conditional mutual

information estimation in [29]. However, we note that this

estimator of CMI does not have a proof of consistency to the
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Algorithm 1: qCMI algorithm

Data: Data Samples (xi, yi, zi) for i = 1, . . . , N and qX,Z

Result: ˆqCMI an estimate of qCMI

Step 1: Calculate weights ωi

for i = 1, . . . , N do

Estimate f̂XZ(xi, zi) using a Kernel density estimator [23], [22].

ωi :=
qXZ(xi,zi)

f̂XZ(xi,zi)
, the importance sampling estimate of sample i.

end

Step 2: Calculate information samples Ii
for i = 1, . . . , N do

ρk,i := Distance of k-th nearest neighbor of (xi, yi, zi).
nxz,i :=

∑

j �=i:‖(xi,zi)−(xj ,zj)‖<ρk,i
1, the number of neighbors of (xi, zi) within distance ρk,i.

nyz,i :=
∑N

j �=i:‖(yi,zi)−(yj ,zj)‖<ρk,i
ωj , the weighted number of neighbors of (yi, zi) within distance ρk,i.

nz,i :=
∑

j �=i:‖zi−zj‖<ρk,i
ωi, the weighted number of neighbors of zi within distance ρk,i.

Ii := ψ(k)− log(nxz,i)− log(nyz,i) + log(nz,i).
end

Return ˆqCMI = 1
N

∑N
i=1 Ii + log

(

cdx+dz cdy+dz

cdx+dy+dz cdz

)

.

best of our knowledge. The CMI estimator essentially fixes

a k for the (X,Y, Z) vector and calculates for each sample

(xi, yi, zi), the distance ρk,i to the k-th nearest neighbor.

The estimator fixes this ρk,i as the distance and calculates

the number of nearest neighbors within ρk,i in the Z, (X,Z)
and (Y, Z) dimensions as nz,i, nxz,i, nyz,i respectively. The

CMI estimator is then given by,

ˆqCMI :=
1

N

N
∑

i=1

(− log(nxz,i)− log(nyz,i) + log(nz,i))

+ ψ(k) + log

(

cdx+dz
cdy+dz

cdx+dy+dz
cdz

)

(6)

C. qCMI estimator

Here, we adapt this estimator to calculate the qCMI for

a given potential distribution qX,Z . The major difference is

the utilization of an importance sampling estimator to get

the importance of each sample i estimated as follows,

ωi :=
qXZ(xi, zi)

f̂XZ(xi, zi)
. (7)

However, importance sampling based reweighting alone

is insufficient to handle qCMI estimation, since there is

a logarithm term which depends on the density also. We

handle this effect by appropriately re-weighting the number

of nearest neighbors for the (y, z) and z terms carefully

using the importance sampling estimators. The estimation

algorithm is described in detail in Algorithm 1.

III. PROPERTIES

Our main technical result is the consistency of the pro-

posed potential conditional mutual information estimator.

This proof requires combining several elements from impor-

tance sampling, and accounting for the correlation induced

by the coupling trick, in addition to handling the fact that

the k is fixed and hence introduces a bias into estimation.

Assumption 1. We make the following assumptions.

a)
∫

fXY Z(x, y, z) (log fXY Z(x, y, z))
2
dxdydz < ∞.

b) All the probability density functions (PDF) are ab-

solutely integrable, i.e. for all A,B ⊂ {X,Y, Z},
∫

|fA|B(a|b)|da < ∞ and
∫

|fq
A|B(a|b)|da < ∞.

c) There exists a finite constant C such that the hessian

matrices of fXY Z and f
q
XY Z exist and it’s true that

max{‖h(fXY Z)‖2, ‖h(fq
XY Z)‖2} < C almost every-

where.

d) All the PDFs are upper-bounded, i.e. there exists a pos-

itive constant C ′ such that for all A,B ⊂ {X,Y, Z},

fA|B < C ′ and f
q
A|B < C ′ almost everywhere.

e) fXZ is upper and lower-bounded, i.e. there exist pos-

itive constants C1 and C2 such that C1qXZ(x, z) <

fXZ(x, z) < C2qXZ(x, z) almost everywhere.

f) There bandwidth hN of kernel density estimator is

chosen as hN = 1
2N

−1/(2dx+2dz+3).

g) The k for the KNN estimator is chosen satisfying k >

max{ dz

dx+dy
,
dx+dy

dz
, dx+dz

dy
}
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(a) (b) (c)

Fig. 2: The qCMI values calculated for un(0, 1) distributions for X and Z, and uniform noise: (a) N=1000 samples and

(b) N =20000 samples. (c) Degree n = 5.

Theorem 1. Under the Assumption 1, the qCMI estimator

expressed in Algorithm 1 converges to the true value qCMI.

ˆqCMI
p→ qCMI (8)

Proof: Please see [30] for the proof.

IV. SIMULATION STUDY

In this section, we describe some simulated experiments

we did to test the qCMI algorithm. The reader should notice

that all the tests we have done are taking qXZ as uXZ , i.e.

all the tests are done for the special case of uCMI. So by

exploiting the qCMI notations we mean uCMI everywhere.

A. qCMI consistency

The first numerical experiment we do is to test the consis-

tency of our qCMI estimation algorithm. We set up a system

of three variables X , Y and Z. The variables X and Z are

independent taken from un(0, 1) distribution, i.e. X and Z

are taken form a uniform distribution and then raised to a

power of n. When n = 1, the variables X and Z are already

uniform. When n is large, the un(0, 1) distribution skews

more towards 0. For simplicity we apply identical n for both

X and Z here. Then Y is generated as Y = (X +Z +W )
mod 1 in which the noise term W is sampled from u(0, 0.2).
From elementary information theory calculation, we can

deduce that I(X;Y |Z) = log
(

1
.2

)

= 1.609 if n = 1. Thus

Iq(X;Y |Z) = 1.609 for all n. We plot the estimated value

against the ground truth.

As the first part of the experiment, we keep the number

of samples constant at 1000 and 20000, and change the

degree n from 1 to 10. We compare the results of our KSG-

based method with the simple partitioning method, and the

theoretical value of qCMI. For the partitioning method, the

number of partitions at each dimension is determined by

3
√
100N , so that we observe on average 100 samples inside

each quantization bin.

The results are shown in Figure 2a and Figure 2b. Our

expectation is that qCMI remains constant as n (degree

of distribution) changes. We see that with relatively high

number of samples, the accuracy of proposed qCMI is

satisfactorily high.

As the second part of the experiment, we do the same

experiment as the first part, but this time we keep n = 5 and

change the number of samples. The result is shown in Figure

2c. We can see convergence of KSG-based qCMI estimator

to the true value and how it outperforms the partitioning-

based qCMI method.

As the third part of the experiment, we repeated the pro-

cess for the first part, but replaced the un(0, 1) distributions

with β(1.5, 1.5) and the noise distribution with N(0, σ2) and

repeated the experiment for σ = 0.3, 1.0. For this part we

kept the number of partitions at 25 for each dimension. The

results of calculated qCMI values are shown in Figure 3a

and Figure 3b.

B. Dealing with discrete components

As we discussed before, the qCMI algorithm replaces the

observed distribution fXZ distribution with a distribution

qXZ . This property comes in handy when we want to

remove the bias caused by repeated samples. For example,

as discussed earlier, suppose that we want to measure the

mutual information of two coupled variables in a dynamical

system evolving through time. Such systems usually start

from an initial state, go through a transient state and

eventually reach a steady state. If one takes samples of the

system’s state at a constant rate to study the interaction of

two variables, they might end up taking too many samples

from the initial and steady states while the transient phase

which usually happens in a relatively short time might be
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(a) (b) (c)

Fig. 3: The qCMI values calculated for a system with beta distribution for X and Z and Gaussian additive noise: (a)

σ = 0.3, and (b) σ = 1.0. (c) The qCMI and CMI values versus the number of zeros added.

more informative. The conditional mutual information is not

able to deal with this undesirable bias caused by the initial

and steady states, while qCMI inherently deals with the

effect by compensating for the samples which are less likely

to happen.

To better observe the effect, we repeat the first experiment

of the previous section, but this time we generate 1000
samples from the scenario, and then add zeros to the X , Y

and Z to create a high probability of occurrence at (0, 0, 0).
The proof of consistency of the estimator holds only when

there is a joint density, i.e., the joint measure is absolutely

continuous with respect to the Lebesgue measure, and hence

does not directly apply to this case. We refer the reader to

[28] for an analysis of a similar coupled KNN estimator for

mutual information in the discrete-continuous mixture case.

Changing the number of zero points added from 0 to

20000, we apply the conditional MI and qCMI to the

data generated and compare the results. As we can see in

figure 3c, with the number of zeros increasing, the value

of conditional MI falls down to zero, unable to capture

the inter-dependence of X and Y given Z, while qCMI

value remains unchanged, properly discovering the inter-

dependence from the transient values.

C. Non-linear Neuron Cells’ Development Process

In this section, we apply the RDI and uRDI algorithms

to neuron cells’ development process simulated based on a

model from [13] which can be modeled as a dynamical sys-

tem. A dynamical System is described as a set of variables

shown by a vector of x which evolve through time starting

from an initial state x(0). The evolution can be described as

a vector function g(.) such that x(t) = g (x(t− 1)). Note

that g can be a stochastic function in general, i.e. it may

include random coefficients, additive noise and so on.

The dynamical system here describes the evolution of

13 genes through the development process. The non-linear

equations governing the development process approximate a

continuous development process, in which ẋ(t) = g(x(t −
1)). In other words, x(t) = x(t−1)+dt.g (x(t− 1))+n(t)
in which n are independent Gaussian noises ∼ N(0, σ2).

For this system, we want to infer the true network

of causal inferences. In a dynamical system, we say xi

causes xj if xj(t) is a function of xi(t − 1). For this

purpose, we first apply the RDI algorithm [12] to extract

the pairwise directed causality between the variables by

calculating I (xi(t− 1), xj(t)|xj(t− 1)). Then we apply

the uRDI algorithm, in which the conditional mutual in-

formation I(X;Y |Z) in RDI is replaced with qCMI as

Iq(X;Y |Z) using qX,Z as a uniform distribution.

This system is a good example of a system in which

the genes undergo a rather short transient state compared

to the initial and steady states, and hence we expect an

improvement in the performance of causal inference by

applying uRDI (see Figure 1b for an example run of the

system). The details of the dynamical system are given in

[13].

We simulated the system for discretization dt = 0.1 and

σ = .001, and changed the number of steps until which

the system continues developing, and then applied the RDI

and uRDI algorithms to evaluate the performance of each

of the algorithms in terms of the area-under-the-ROC-Curve

(AUC). The results are shown in Figure 4a. As we can see,

with the number of steps increasing implying the number

of samples captured in the steady state are increased, the

uRDI algorithm outperforms RDI. In another test scenario,

we fixed the number of steps at 200, but concatenated several

runs of the same process. The results and the improvement

of performance by uRDI can be seen in the Figure 4b.

1233



(a) (b) (c)

Fig. 4: AUC values for the neuron cells’ development process: a) versus the number of steps. b) versus the number of

runs. (c) for the decaying linear system

D. Decaying Linear Dynamical System

In this section, we simulate a linear decaying dynamical

system. A dynamical system in the simple case of a deter-

ministic linear system can be described as:

x(t) = Ax(t− 1) (9)

In which A is a square matrix.

Here we simulate a system of 13 variables, all of them

initialized from a u(0.5, 2) distribution. The first 6 variables

(x1, . . . , x6) are evolved through a linear deterministic pro-

cess as in (9) in which A is a square 6×6 matrix initialized

as:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a11 0 0 0 a15 0
a21 a22 0 0 0 a26
0 a32 a33 0 0 0
0 a42 0 a44 0 0
0 0 a53 a54 a55 0
a61 a62 0 0 0 a66

⎤

⎥

⎥

⎥

⎥

⎥

⎥



(10)

In which every non-zero aij is randomly taken from a

distribution u(0.75, 1.25). Then the matrix A is divided by

5 ∗ λmax(A) in which λmax(A) is the greatest eigenvalue

of A. It’s done to make sure that all the variables decay

exponentially to 0. After initialization, the matrix A is kept

constant throughout the development process, i.e. it doesn’t

change with time t.

The other 7 variables (x7, . . . , x13) are random indepen-

dent Gaussian variables.

In this experiment, we simulate the system described

above for various numbers of time-steps, keeping the stan-

dard deviation of the Gaussian variables at σ = 0.1, and

applied both RDI and uRDI algorithms to infer the true

causal inferences. Then we calculate the AUC values, the

results are shown in Figure 4c. As we can see, the uRDI

algorithm outperforms RDI by a margin of 0.1 in terms of

AUC.

V. FUTURE DIRECTIONS

In this section, we will describe some promising direc-

tions for further investigation.

1) Quantifying causal strength: As pointed out earlier,

potential conditional mutual information can be used as

a metric for quantifying causal strength when the graph

is a simple three node network (shown in Figure 1a).

However, further work is needed in order to generalize

the definition to deduce the causal strength of an edge

or a set of edges in an arbitrary graph, akin to the

formulation in [2] and to study the relative advantages

and disadvantages of such a formulation.

2) Discrete qCMI estimators: It has been shown in recent

work that such estimators are not optimal even for

determining mutual information in the discrete alphabet

case [31], [32], [33]. A very interesting question is how

such minimax-rate optimal estimators can be developed

in the potential measures problem.

3) maxCMI estimation: While we have developed effi-

cient estimators for qCMI, in maxCMI, there is a

further maximization over potential distributions q,

which leads to some interesting interactions between

estimation and optimization. Recent work has studied

estimation of Shannon capacity on continuous alpha-

bets, however, the formulation is not convex leading to

possible local minima [14]. Further work is needed in

order to find provably optimal estimators for maxCMI

in the continuous case.

4) Other conditional measures: Recent work [15] has

used strong data processing constants as a way for

quantifying dependence between two variables, with

relationships to information bottleneck. These measures

depend partially on the factual measure pX , and are

implicitly regularized. One direction of future work is
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to develop multi-variable versions of such estimators to

estimate the strength of conditional independence, for

example.

5) Multivariable measures: Develop estimators that can

handle more general multi-variable information mea-

sures including total correlation [34] and multi-variate

mutual information [35].

6) Ensemble estimation: Another approach exploiting k-

nearest-neighbors for mutual information is the so-

called ensemble estimation approach, where estimators

for different k are combined together to get a stronger

estimator, with fast convergence [36]. An interesting

direction of research is to obtain ensemble estimators

for potential measures.
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