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A B S T R A C T

Rising penetrations of variable renewable generation in electric power systems can raise operational challenges.

One is that renewables can increase the need for dispatchable generation with fast-ramping capabilities. This can

be costly, because in many instances flexible generators can be more expensive than baseload units that have

slower ramping capabilities. If ramping capacity is not available, renewable curtailment may be needed. An

alternate solution to this need for ramping is to use energy storage.

A question that this raises is how renewable and conventional generators and energy storage would interact in

a market environment, and whether certain asset-ownership structures would result in more efficient co-

ordination. To this end, this paper presents a multi-period market-equilibrium model of interactions between

these different types of market agents. The impacts on renewable integration of conventional generators having

limited ramping capabilities are studied through an illustrative case study. We also examine a variety of

structures for the participation of energy storage in the market. We find that co-ownership and co-operation of

renewable generators and energy storage brings about the best results from the perspective of alleviating market

inefficiencies. Having energy storage directly controlled by the market operator or participating as an in-

dependent profit-maximizing firm is less efficient.

1. Introduction

The rising penetration of variable renewable generation sources is

putting operational strains on electric power systems. As one example,

there is a growing need for flexible dispatchable generation with fast-

ramping capabilities to accommodate the variable and uncertain nature

of real-time renewable-energy availability. Otherwise, renewable gen-

eration may be curtailed. This can be a costly proposition, however,

because flexible generation units may have higher operating costs than

less-flexible baseload units.

The literature studies numerous ways of mitigating the cost of

ramping needs imposed by renewable generators. Three commonly

studied approaches are to better predict and manage the cost of gen-

erator ramping needs [1–4], use demand response to engender demand-

side flexibility [5–7], or use energy storage to meet ramping needs

[8–13].

Analyses of the first approach includes the work of Kubik et al. [2],

which examines the benefits of steps, such as fuel switching in con-

ventional generators, to improve a power system’s ramping capabilities

and accommodate more renewable generation. Edmunds et al. [3]

investigate the critical and growing role of natural gas-fired generation

units in providing ramping capability to the British power system with

increasing variable renewable generation. Zha et al. [4] propose a new

approach to predicting the ramping needs of wind generation.

Studies of demand response include the work of Heydarian-

Forushani et al. [5], which presents a stochastic network-constrained

unit commitment model with demand response. Their model schedules

both generating units and responsive loads in systems with high wind

penetrations. Salpakari et al. [6] study the optimal control of electric

heating systems as a source of flexible demand for renewable integra-

tion. Alahaivala et al. [7] also study flexible heating loads for wind

integration and ramp mitigation. Their work suggests that heating loads

could be utilized to reduce ramp rates, wind curtailment, and opera-

tional costs associated with severe ramps in wind availability.

Energy storage is a third option for increasing a power system’s

flexibility and ramping capability. There do remain, however, some

challenges in adopting energy storage and in accommodating them

within existing market designs. This reality has attracted studies fo-

cusing on the conflict between the technical benefits and the economic

challenges in compensating energy storage for their services under
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current market designs [8,14–16]. Despite this issue, a number of works

examine the benefits of energy storage in accommodating renewables.

O’Dwyer and Flynn [10] use a sub-hourly analysis to explore the role of

energy storage in reducing operating costs and enhancing system effi-

ciency and flexibility with high renewable penetrations. Khodayar

et al. [11] propose an approach to determine the multi-period ramping

capabilities of dispatchable generation resources. They further integrate

energy storage to serve the ramping requirements imposed in the day-

ahead electricity market by renewable generators. Heydarian-Forushani

et al. [9] develop a robust optimization framework to optimize unit

commitment decisions in systems with high penetrations of wind

power. Their model incorporates demand response and bulk energy

storage in co-optimized energy and reserve markets. Safaei et al. [17]

introduce a novel compressed-air energy storage (CAES) system,

wherein the waste heat of compression is reused for different heating

demands through distributed compressors. They also compare the

economics of their proposed distributed CAES to a traditional CAES

system in a restructured electricity market, in which storage co-oper-

ates with wind generators. This co-operation allows the joint wind and

CAES plants to participate like conventional dispatchable generators

[18]. Hittinger et al. [19] propose a model in which a gas turbine, a

wind generator, and fast-ramping energy storage are co-located and co-

operating with each other to provide near-constant baseload power.

Their proposed model is mostly suitable for isolated grids, due to the

high energy-supply cost of their proposed hybrid energy system. Their

method allows using significant amounts of wind generation, while

reducing supply fluctuations to a small deadband.

These works leave some unanswered questions regarding the role of

energy storage in mitigating ramping-related challenges surrounding

renewable integration. The first are the potential interactions between

strategic profit-maximizing behavior by renewable or conventional

generators and supply-side flexibility. The second is the role of energy

storage in mitigating flexibility issues. The third is the effect of market

and asset-ownership structure on market efficiency and the ability of

energy storage to mitigate ramping and flexibility issues. Answers to

these questions would allow policy makers, market designers, and

regulators to change market rules and structures to more efficiently

accommodate high penetrations of renewable energy into electric

power systems.

To this end, this paper presents a bi-level multi-period model of a

spot-market equilibrium, which includes conventional and renewable

generators and energy storage. The lower level of the problem re-

presents the spot market being cleared by a market operator (MO). The

MO’s problem includes ramping constraints, which reflect generator

flexibility. The upper level of the problem represents the decisions of

the profit-maximizing generator and energy-storage firms in offering

capacity to the market. The resulting bi-level problem is solved by first

replacing the lower-level problem with its necessary and sufficient

primal-dual optimality conditions. This gives a mathematical program

with equilibrium constraints (MPEC) for each profit-maximizing firm.

An equilibrium program with equilibrium constraints (EPEC) is ob-

tained by combining all of the firms’ MPECs. We employ a series of

linearization techniques to recast the EPEC as a mixed-integer linear

program (MILP). Solving this MILP gives candidate solutions that may

be market equilibria. We use a diagonalization technique to determine

which EPEC solutions are market equilibria, which are closely ana-

lyzed.

We demonstrate the proposed model using an illustrative case

study. The case study also allows us to examine market interactions

between conventional and renewable generators and energy storage

under different asset-ownership and market structures. Specifically, we

examine cases in which different firms behave as price-makers or price-

takers. A price-taking firm is one that does not account for the impact of

its offering behavior on market prices and dispatch levels. Thus, a price

taker behaves competitively. A price-making firm, conversely, does take

into account the impacts of its offers on market prices and dispatch.

Thus, a price maker may opt to offer its generation strategically at a

price that differs from marginal cost to impact its sales of energy or the

price at which it is paid. We show that with strategic price-making

firms, a market structure in which renewable generation and energy

storage are co-owned is the most efficient in terms of accommodating

renewable energy. Conversely, having energy storage directly con-

trolled by the MO or participating as an independent profit-maximizing

firm is less efficient.

This paper makes a number of contributions to the existing litera-

ture. First, we develop a multi-period bi-level market equilibrium

model that can fully capture generator-ramping constraints and energy

storage. Second, we convert the bi-level problem into an EPEC and

recast it as an MILP, which can be tractably solved. Finally, we de-

monstrate the value of our model in being able to examine market in-

teractions between conventional and renewable generation and energy

storage under different market and asset-ownership structures. Our

model can also examine different strategic behavior on the part of the

participating firms.

The remainder of this paper is organized as follows. Section 2 pro-

vides more background on market-equilibrium, MPEC, and EPEC

modeling. Section 3 provides an overview of our bi-level model. The

appendices provide details on the steps that are taken to convert the bi-

level model into a tractable MILP. Section 4 introduces our numerical

case study and Section 5 summarizes our case study results. Section 6

concludes.

2. Market-equilibrium, MPEC, and EPEC modeling

This paper takes a complementarity-based approach to study market

interactions between conventional and renewable generation and en-

ergy storage. Complementarity models are a powerful tool for modeling

market interactions. The power of complementarity modeling lays in its

ability to model the simultaneous optimization of multiple firms com-

peting in a market [20]. In doing so, complementarity models allow

computing market equilibria. For instance, Virasjoki et al. [12] use a

Nash-Cournot model to analyze the effects of energy storage on

ramping cost and congestion in a power system with renewable gen-

erators. Their analysis concludes that in a perfectly competitive market,

energy storage helps to reduce congestion and ramping costs while

potentially increasing greenhouse gas emissions from conventional

generators. Conversely, they find that energy storage is less effective in

mitigating congestion and ramping constraints in a market in which

firms behave strategically. On the other hand, energy storage does not

have the same negative impact on greenhouse gas emissions in a stra-

tegic setting.

An MPEC is an extension of a simple complementarity model that

contains complementarity conditions in its constraint set. As such, an

MPEC can represent more complex market interactions than a simple

complementarity model can. Nasrolahpour et al. [13] propose an MPEC

to make optimal operating decisions of price-making energy storage in

a market. Their model considers uncertain output from wind generators

and conventional generators that have limited ramping capabilities.

Wang et al. [21] also employ an MPEC for optimizing the offering

strategy of a merchant energy storage firm. Their analysis considers a

ramp-constrained power system with high penetrations of renewable

energy. Their model includes an additional day beyond the operating

period being optimized, which attaches carryover value to energy

stored at the end of the day [22,23]. Because MPECs can model leader-

follower games with only a single leader, the analyses of Nasrolahpour

et al. [13] Wang et al. [21] assume that only energy storage behaves as

a strategic profit-maximizer.

EPECs are a further and more complex extension of MPECs that are

able to model leader-follower games with multiple leaders that are si-

multaneously behaving strategically (e.g., maximizing profit). For ex-

ample, Yaghooti et al. [24] use an EPEC to analyze the impacts of

ramping limits on the strategic profit-maximizing behavior of multiple
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conventional-generator firms in an oligopolistic electricity market. Be-

cause the resulting EPECs are non-convex and non-linear equilibrium

problems, Yaghooti et al. [24] employ a heuristic algorithm to solve the

model. Moreover, their analysis does not consider renewable genera-

tion or energy storage. Moiseeva et al. [1] model the effects of ramping

limits on strategic behavior in a market with wind generation. Their

work employs a bi-level optimization problem, in which the ramp-

constrained economic dispatch is the lower-level problem and the

strategic generators’ profit-maximizations are the upper-level problems.

This yields an EPEC. Their work does not consider the impacts of energy

storage, however.

A question raised in analyzing electricity markets is whether a

model that captures strategic behavior is necessary. If an electricity

market is relatively competitive, it is typically much easier from mod-

eling and computational perspectives to assume perfect competition.

Although electricity markets are subject to some oversight and miti-

gation, a number of empirical studies suggest that firms are able to

behave strategically and exercise market power to varying degrees.

Borenstein et al. [25] examine wholesale electricity price data from the

early years of the California market. They show that over half of the

increase in the cost of wholesale energy between the summers of 1999

and 2000 is attributable to the exercise of market power by generating

firms. Sioshansi and Oren [26] and Hortaçsu and Puller [27] analyze

the behavior of generating firms in the Texas market. They find evi-

dence of strategic behavior whereby firms submit generation offers that

are above cost to increase prices and profits. Willems et al. [28] con-

duct a similar analysis of the German wholesale electricity market,

demonstrating the exercise of market power. In light of these and other

findings, a modeling framework that captures strategic firm behavior is

reasonable in analyzing market outcomes. Nevertheless, as discussed in

Section 3.4, we examine a bounding range of market equilibria that

vary between being highly competitive and highly uncompetitive. In

doing so, we are able to show the extent to which the exercise of market

power impacts the efficient use of energy storage in a market en-

vironment.

3. Modeling and formulation of market-equilibrium problem

Our model supposes that the market consists of a collection of firms,

each of which may own some combination of conventional and re-

newable generators and energy storage. These firms may also behave

strategically, whereby they simultaneously and independently optimize

their offers into the market to maximize their profits. These offers are

then used by the MO to determine the dispatch of the various units and

market prices. The MO uses a multi-period market model, which cap-

tures intertemporal storage and generator-ramping constraints. A Nash

equilibrium consists of a set of offers, and resulting prices and dispatch

levels, from which no firm has a profitable unilateral deviation.

To maintain a tractable model we use a deterministic model that

does not include transmission constraints. Linearized dc load-flow

constraints could, however, be incorporated into our model, because

they maintain linearity of the lower-level market model. Doing so

would entail a computational cost, however.

We proceed in this section by first introducing model notation in

Section 3.1. We then formulate the lower-level market model and the

bi-level profit-maximization of the competing firms in Sections 3.2 and

3.3, respectively. We then discuss, in Section 3.4, the Nash equilibrium

concept that is used in our analysis of market equilibria.

We defer all of the technical details of how the market-equilibrium

problem is formulated and solved to the appendices. More specifically,

Appendix A discusses the steps that are taken to convert each firm’s bi-

level profit-maximization problem into an MPEC. Appendices B and C

show the steps that are taken to combine the MPECs of all of the firms

to obtain an EPEC, which can be used to find candidate Nash equilibria.

Appendix D details the steps that we take to linearize the EPEC. Finally,

Appendix E discusses how we verify whether an EPEC solution is indeed

a Nash equilibrium.

3.1. Nomenclature

The notation that is used in the proposed model is as follows:

3.1.1. Sets and indices

B number of blocks for demand, generation, and storage bids

and offers

P set of firms

T number of hours in model horizon

Δp
G set of conventional units that are owned by firm p

Δp
S set of storage units that are owned by firm p

Δp
W set of renewable units that are owned by firm p

3.1.2. Parameters

Cx b, marginal cost of generation block b of conventional unit x

Dt b, hour-t maximum demand in demand block b

Ex maximum storage capacity of storage unit x

Gx b, capacity of generation block b of conventional unit x

Rx
U ramp-up limit of conventional unit x

Rx
D ramp-down limit of conventional unit x

Sx b
C
, charging capacity of block b of storage unit x

Sx b
H
, discharging capacity of block b of storage unit x

Ut b, marginal utility of demand block b in hour t

Wt x b, , hour-t available generation from block b of renewable unit x

ηx
C charging efficiency of storage unit x

ηx
H discharging efficiency of storage unit x

3.1.3. Lower-level variables

Dt b, hour-t demand of demand block b that is satisfied

Et x, ending hour-t storage level of storage unit x

Gt x b, , hour-t dispatch of block b of conventional unit x

St x b
C
, , hour-t energy charged in block b of storage unit x

St x b
H
, , hour-t energy discharged from block b of storage unit x

Wt x b, , hour-t dispatch of block b of renewable unit x

3.1.4. Upper-level variables

Ot x b
C
, , hour-t bid price for charging block b of storage unit x

Ot x b
H
, , hour-t offer price for discharging block b of storage unit x

Ot x b
G
, , hour-t offer price for block b of conventional unit x

Ot x b
W
, , hour-t offer price for block b of renewable unit x

3.2. Market operator’s market model

The MO’s market model takes the offers of the firms as fixed and

determines how to dispatch the various units to maximize social wel-

fare (the model is formulated as a minimization problem, thus the ob-

jective function is negative social welfare). In the course of solving the

market model, the MO determines both dispatch levels and market

prices.

The MO’s problem is formulated as:

∑

∑

+ + −

−

O G O W O S O S

U D

min ( )
t x b

t x b
G

t x b t x b
W

t x b t x b
H

t x b
H

t x b
C

t x b
C

t b

t b t b

, ,
, , , , , , , , , , , , , , , ,

,

, ,

(1)

∑ ∑+ + − = ∀G W S S D t ψs.t. ( ) , ( )
x b

t x b t x b t x b
H

t x b
C

b

t b t

,

, , , , , , , , ,

(2)

⩽ ⩽ ∀ − +G G t x b θ θ0 , , , ( , )t x b x b t x b
G

t x b
G

, , , , ,
,

, ,
,

(3)

⩽ ⩽ ∀ − +W W t x b θ θ0 , , , ( , )t x b t x b t x b
W

t x b
W

, , , , , ,
,

, ,
,

(4)

⩽ ⩽ ∀ − +D D t b θ θ0 , , ( , )t b t b t b
D

t b
D

, , ,
,

,
,

(5)
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∑− ⩽ − ⩽ ∀−
− +R G G R t x θ θ( ) , , ( , )x

D

b

t x b t x b x
U

t x
R

t x
R

, , 1, , ,
,

,
,

(6)

⩽ ⩽ ∀ − +S S t x b θ θ0 , , , ( , )t x b
C

x b
C

t x b
C

t x b
C

, , , , ,
,

, ,
,

(7)

⩽ ⩽ ∀ − +S S t x b θ θ0 , , , ( , )t x b
H

x b
H

t x b
H

t x b
H

, , , , ,
,

, ,
,

(8)

⩽ ⩽ ∀ − +E E t x θ θ0 , , ( , )t x x t x
E

t x
E

, ,
,

,
,

(9)

∑= + − ∀−E E η S S η t x θ( / ) , , ( )t x t x

b
x
C

t x b
C

t x b
H

x
H

t x
E

, 1, , , , , ,
(10)

= ∀E E x θ, ( )T x x x
E

, 0,
,0

(11)

where the dual variable associated with each constraint appears in

parentheses to its right. The decision variables of the MO’s problems are

all of the dispatch-related variables—G W S S E, , , ,t x b t x b t x b
H

t x b
C

t x, , , , , , , , , , and Dt b, .

Objective function (1) of the lower-level problem maximizes social

welfare (as noted before, the MO problem is formulated as a mini-

mization, thus the objective function measures negative social welfare).

Constraints (2) impose hourly balance between supply and demand.

The dual variables, ψt, associated with these constraints give hourly

market-clearing prices for energy. Constraints (3) and (4) limit the

dispatched output from each block of each conventional and renewable

generator, respectively. Likewise, constraints (5) limit the cleared de-

mand in each block based on maximum demand. Constraints (6) impose

ramping limits on conventional generators.

Constraints (7)–(9) enforce limits on charging power, discharging

power, and state of charge, respectively, of storage units. Constraints

(10) impose state-of-charge balance for the storage units. Constraints

(11) require storage units to have the same level of stored energy at the

end of the operating horizon as they begin with. Without such con-

straints, each storage unit would be left fully discharged at the end of

the operating horizon. Thus, these constraints ascribe carryover value

to energy that is left in storage at the end of the operating horizon

[22,23].

3.3. Firm profit-maximization bi-level problem

Each firm, which may own some combination of conventional and

renewable generation and energy storage, determines its offers (i.e.,

values of O O O, ,t x b
C

t x b
H

t x b
G

, , , , , , , and Ot x b
W
, , for the assets that it owns) to max-

imize its profits. This profit maximization is formulated as a bi-level

problem, because it includes the MO’s market model as a lower-level

problem. The profit-maximization problem of firm p is formulated as:

∑ ∑

∑

− −

− −
∈ ∈

∈

C ψ G ψ W

ψ S S

min ( )

·( )

t x b

x b t t x b

t x b
t t x b

t x b
t t x b

H
t x b
C

, Δ ,

, , ,

, Δ ,

, ,

, Δ ,

, , , ,

p
G

p
W

p
S

(12)

⩾ ∀ ∈ >−O O t x bs.t. , , Δ , 1 (Φ )t x b
G

t x b
G

p
G

p t x b
G

, , , , 1 , , , (13)

⩾ ∀ ∈ >−O O t x b, , Δ , 1 (Φ )t x b
W

t x b
W

p
W

p t x b
W

, , , , 1 , , , (14)

⩾ ∀ ∈ >−O O t x b, , Δ , 1 (Φ )t x b
C

t x b
C

p
S

p t x b
C

, , , , 1 , , , (15)

⩾ ∀ ∈ >−O O t x b, , Δ , 1 (Φ )t x b
H

t x b
H

p
S

p t x b
H

, , , , 1 , , , (16)

(1)-(11), (17)

where the Lagrange multiplier associated with each constraint appears

in parentheses to its right.

Objective function (12) maximizes firm p’s profits (as with the MO’s

problem, the objective is given in minimization form). Firm revenues

are defined as the product of net energy sales (taking into account

energy charged into and discharged from energy storage) and the

wholesale energy price. As noted in Section 3.2, the hour-t wholesale

energy price is given by the dual variable, ψt . For sake of simplicity,

renewable generation and energy storage are both assumed to have

zero marginal operating costs.

Constraints (13)–(16) impose monotonicity on the offers, which is a

typical market rule. Constraint (17) embeds the MO’s market model as

the lower-level problem. This constraint is needed to determine the

effect of firm p’s offers on its dispatch (i.e., the values of G W S, ,t x b t x b t x b
H

, , , , , , ,

and St x b
C
, , ) and energy prices, ψt . This constraint results in the profit-

maximization problem being bi-level.

3.4. Market equilibrium

Fig. 1 illustrates the bilevel nature of our proposed model. The

bottom of the figure represents the MO’s market-clearing problem. This

problem takes as inputs supply offers from the firms and determines

how each firm’s generation and storage units are dispatched. The MO

also determines market-clearing prices for energy in each hour. At the

upper level, each firm solves a profit-maximization problem to

Firm |P| s Problem

Firm 2's Problem

Firm 1's Problem

Objective Function:

         max Firm 1's Profit

s.t.: Offering / Bidding 

         Constraints of 

         Different Units of

Firm 1  

Conventional 

Units
Wind Units Storage Units

U
p

p
er-L

ev
el P

ro
b

lem
s

Market Operator s Problem: Market Clearing

Objective Function: max Social Welfare

s.t.: 

Load Balance

Capacity Constraints of Generation and Demand Blocks

Ramp Rate Constraints of Conventional Units

Charge, Discharge, and Energy Limits of Storage Units

State-of-Charge and Energy-Balance Constraints of Storage Units

Price-

Responsive 

Demand 

Blocks

L
o

w
er-L

ev
el P

ro
b

lem

Bilevel 

Problems

Price/Quantity 

Offers

Price/Quantity 

Offers

Price/Quantity 

Bids and Offers

Marginal 

Utilities

Market-Clearing 

Quantities and Prices

,

,

Fig. 1. Schematic of bilevel model structure and market equilibrium.

A. Shahmohammadi et al. Energy Conversion and Management 162 (2018) 307–320

310



determine how to offer the units that it owns to maximize its individual

profit.

The market equilibrium comes about because the firms simulta-

neously solve these profit maximization problems. Thus, each firm

takes into account the profit-maximizing behavior of its rival firms and

the impacts of these offer decisions (i.e., its own and those of its rivals)

on the dispatch levels and prices that are determined by the lower-level

market model. We analyze the market by examining Nash equilibria. A

Nash equilibrium is a set of offer decisions for the firms and dispatch

levels and market-clearing prices that are simultaneously optimal in

each firm’s profit-maximization problem and the MO’s market model.

That is, no firm should have a profitable unilateral deviation from its

strategies that are prescribed by the Nash equilibrium [29].

One difficulty in examining strategic games, such as the one that we

propose, is that there may be multiple (or an infinite number of) Nash

equilibria. We overcome this issue by examining a bounding range of

Nash equilibria. These equilibria are obtained by imposing different

objective functions on the EPEC that is used to find Nash equilibria. The

first objective function:

∑ − + + −C G ψ G W S Smin [ ·( )],
t x b

x b t x b t t x b t x b t x b
H

t x b
C

, ,

, , , , , , , , , , ,

maximizes total firm profits (keeping with the other model formula-

tions, the objective function is written in minimization form). This

objective function yields highly non-competitive equilibria, which we

herein term ‘collusive equilibria.’ Although we term such equilibria

‘collusive,’ they do not represent truly collusive outcomes. A collusive

outcome is typically not a Nash equilibrium, because players typically

have incentives to unilaterally deviate from the set of strategies which

maximize the joint profits of all of the firms.

The second objective function:

∑ ∑−C G U Dmin ,
t x b

x b t x b

t b

t b t b

, ,

, , ,

,

, ,

which is also written in minimization form, maximizes social welfare.

This objective function yields highly competitive equilibria, which we

herein refer to as ‘quasi-competitive equilibria.’ By using these two

objective functions, we are able to examine extreme opposite cases in

which the market outcome is highly competitive or non-competitive.

Equilibria that occur in practice will likely lie between these two ex-

tremes. Thus, our analysis can be seen as illustrating the worst- and

best-case scenarios, from a market-efficiency perspective.

Further details on how the market-equilibrium model is converted

into a computationally tractable MILP are given in the appendices.

4. Case-study data

We demonstrate the use of our proposed model with an illustrative

case study. The case study assumes a system with up to one wind

generator, one storage device, and two conventional units. The wind

and conventional generators are assumed to be owned by three in-

dependent profit-maximizing firms that compete with one another in

the market. We examine cases in which storage is owned by an in-

dependent price-taking firm, an independent profit-maximizing firm,

and the wind-generation firm.

To manage the computational complexity of the resulting EPEC, we

consider eight operating hours in the case study. This is mainly because

our analysis considers a number of cases with different asset-ownership

and market structures. Given the volume of cases that we examine,

having a case study with relatively short computational times is im-

portant. The eight-hours cases that we examine require up to 15 h to

solve. For purposes of comparison, we examine a small subset of 24-h

cases studies. In some instances, these cases require up to 70 h of

computation time. This testing shows that 24-h case studies could be

employed, however with some computational cost. Indeed, if one is

examining the efficiency impacts of energy storage in a particular

market setting, a more detailed analysis using a 24-h case study may be

prudent. On the other hand, our examination of 24-h case studies reveal

that the ‘qualitative’ properties of the market equilibria that we derive

from the eight-hour cases all carry over to the 24-h case studies. This

suggests that our case-study results are robust to the duration of the

operating period. It also suggests that additional insights may not be

gleaned from 24-h case studies. It is, finally, worth noting that use of a

high-performance computing environment (to which we do not have

access) would easily accommodate a larger model size. We, conversely,

conduct our simulations using a laptop with limited memory and pro-

cessing power.

Table 1 summarizes the characteristics of the two conventional

units, each of which is assumed to have two generation blocks with

different marginal costs. Generating unit 1 is relatively low-cost

(compared to unit 2), but has a low ramping limit. As such, this gen-

erator represents an inflexible baseload unit. Conversely, generating

unit 2 is relatively high-cost but has a high ramping limit, representing

a flexible peaking plant. The storage unit is assumed to have 100MW

and 100 MWh power and energy capacities, respectively, an 85%

round-trip efficiency, and an initial storage level of 50 MWh (which, per

constraint (11), must also be the ending storage level).

Fig. 2 summarizes demand-related data. As the figure shows, the

demand is assumed to be bid in three blocks. The bars in the figure

represent the prices at which the three blocks are bid. The first block is

offered at a relatively high price (meaning that this load is almost al-

ways served), while the other blocks have comparably lower bid prices.

The hour-t maximum potential demand is defined as:

∑ D .
b

t b,

The figure shows that the maximum potential demand follows a cycle

that would normally be observed over the course of several hours, with

off- and on-peak periods. The prices of the demand blocks are positively

associated with maximum potential demand, reflecting the reality that

willingness-to-pay for energy is typically higher during on-peak periods.

Fig. 3 summarizes wind availability in each hour. With a peak

availability of 120MW, wind penetration is relatively high in this

Table 1

Conventional-generator characteristics.

Unit Gx,1 Gx,2 Rx
D Rx

U Cx,1 Cx,2 G x0,

1 150MW 150MW 40MW/h 50MW/h $20/

MWh

$30/

MWh

170MW

2 75MW 75MW 80MW/h 100MW/h $50/

MWh

$60/

MWh

70MW
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system when contrasted with the load data that are shown in Fig. 2.

Wind availability varies considerably from hour to hour, meaning that

system flexibility is needed to maintain real-time balance between de-

mand and supply. Moreover, wind availability is negatively correlated

with demand, which is common in many power systems.

Table 2 summarizes the 18 cases that we examine. The cases differ

in terms of how wind, energy storage, and conventional generators

participate in the market. Case 1 assumes that there is no wind gen-

eration, while Cases 2–5 and 6–9 assume that there is a price-taking and

price-making wind-generation firm, respectively. In the price-taking

cases the generator offers its capacity into the market at its true mar-

ginal cost, which is assumed to be zero for the wind generator. In the

price-making cases the wind generator can offer its supply at a different

price than its true marginal cost (with the aim of maximizing its

profits).

Cases 1, 2, and 6 assume that there is no energy storage in the

system. Cases 3 and 7 assume that there is a standalone price-taking

firm that owns the energy storage. In these cases, the energy storage is

offered into the market with zero charging and discharging costs. As a

result, the MO operates the storage to minimize system operation costs.

Cases 4 and 8 assume that there is a standalone price-making firm that

owns the energy storage. In these cases, the energy-storage firm can

offer at non-zero prices to maximize firm profits. The remaining two

cases assume that the energy storage is co-owned and -operated by the

wind-generation firm to maximize joint profits from wind and energy

storage.

Conventional generation is assumed to be price-making in all of the

cases. The cases that have an ‘-NR’ suffix relax the ramping constraints

on the conventional generators, whereas the cases that have an ‘-R’

suffix enforce the constraints.

By contrasting results between the cases that are listed in Table 2,

we are able to examine all interactions and impacts of different tech-

nologies and market structures. We analyze the impacts that the ex-

ercise of market power can have by comparing price-taking and

-making cases. We can also examine interactions between technologies

by comparing cases with and without wind and energy storage. Finally,

comparing cases with the ramping constraints of conventional gen-

erators enforced and relaxed allows us to understand the impacts of

these constraints on system operations.

5. Case-study results

Table 3 summarizes the results of the quasi-competitive market

equilibria that are found in the 18 cases that are listed in Table 2. These

equilibria are found by having the objective function of the EPEC

maximize social welfare. Case 1-R, which has only two ramp-con-

strained conventional generators competing with one another, sees all

of the load served by conventional unit 1, which is the lower-cost but

less flexible generator. Case 2-R, in which the wind generator is added

to the system as a price taker but there is no energy storage, has 5% of

available wind energy and 2.5% of potential demand curtailed. More-

over, conventional unit 2, which is the higher-cost and more flexible

generator, is dispatched. These changes are due to the limited ramping

capability of conventional unit 1 and the greater variability in the net-

load profile (i.e., the profile given by the difference between load and

available wind production). We demonstrate this impact of the limited

ramping capability of conventional unit 1 by examining Case 2-NR, in

which the ramping constraints are relaxed. There are no load or wind

curtailments nor is conventional unit 2 dispatched in Case 2-NR. Hence,

the combination of variable wind availability and limited ramping

capabilities of conventional units results in higher-cost generation

being dispatched, as well as wind and load curtailments.

Cases 3–5 examine the benefits of energy storage in mitigating the

inefficiencies caused by limited ramping capabilities of the conven-

tional generation units. Contrasting these cases with Case 2 shows that

energy storage is able to alleviate wind and demand curtailment and

the need to dispatch conventional unit 2, regardless of how the energy

storage participates in the market (i.e., as a price-taker, price-maker, or

co-owned by the wind generator). This demonstrates the value of en-

ergy storage in allowing for more efficient wind integration when faced

with generator-ramping constraints.

Among the cases in which the wind generator behaves as a price-

maker (i.e., Cases 6–9), only Case 6 has different results compared to

the corresponding cases in which the wind generator behaves as a price-

taker. In Case 6-R the wind generator’s exercise of market power in-

creases wind curtailment from 5% in Case 2-R to 8.3%. Consequently,

the average energy price increases from about $43/MWh in Case 2-R to

about $49/MWh in Case 6-R. There are corresponding increases in

overall firm profits resulting from this wind curtailment. However,

conventional unit 2 sees lower profits in Case 6-R compared to Case 2-

R. Interestingly, the wind generator is unable to exercise market power

in Cases 7–9, due to the presence of the energy storage. Hence, there are

no wind or load curtailments in these cases and the equilibria are

identical to the corresponding cases in which the wind generator be-

haves as a price-taker (i.e., Cases 3–5).

As one might expect, the wind generator benefits overall from co-

owning the energy storage (compared to cases in which storage is op-

erated by an independent firm). Having energy storage co-owned by the

wind generator also results in maximized total profits across all of the

firms. We can also contrast equilibria in which the ramping constraints
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Fig. 3. Wind generation available in each hour.

Table 2

Cases examined.

Case Wind Storage Generator-ramping constraints

1-NR None None Relaxed

1-R None None Enforced

2-NR Price-Taking None Relaxed

2-R Price-Taking None Enforced

3-NR Price-Taking Price-Taking Relaxed

3-R Price-Taking Price-Taking Enforced

4-NR Price-Taking Price-Making Relaxed

4-R Price-Taking Price-Making Enforced

5-NR Price-Taking Wind-Operated Relaxed

5-R Price-Taking Wind-Operated Enforced

6-NR Price-Making None Relaxed

6-R Price-Making None Enforced

7-NR Price-Making Price-Taking Relaxed

7-R Price-Making Price-Taking Enforced

8-NR Price-Making Price-Making Relaxed

8-R Price-Making Price-Making Enforced

9-NR Price-Making Wind-Operated Relaxed

9-R Price-Making Wind-Operated Enforced
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are relaxed and enforced. As expected, relaxing the ramping constraints

increases social welfare, eliminates wind and load curtailments, and

alleviates the need to dispatch conventional unit 2. Relaxing the

ramping constraints also increases the profits of the wind generator.

Table 4 summarizes the results of the collusive market equilibria,

which are obtained by maximizing total firm profits in the EPEC. As

expected, these equilibria are not as competitive as those that are

summarized in Table 3 are. The collusive equilibria see lower social

welfare and higher firm profits compared to the quasi-competitive ones.

For instance, in Case 1-R, which has only two ramp-constrained con-

ventional units, only 73.4% of demand is served. Moreover, some of this

load is served by conventional unit 2, as a result of conventional unit 1

withholding capacity to increase market prices. As such, the average

energy price increases from about $50/MWh in the quasi-competitive

equilibrium in Case 1-R to about $73/MWh in the collusive equili-

brium. In Case 2-R, in which a price-taking wind generator is added, 5%

of potential wind generation is curtailed, 81.8% of load served, and

conventional unit 2 is further dispatched (compared to Case 1-R) be-

cause of the limited ramping capability of conventional unit 1.

Contrasting Case 2 to Cases 3–5 shows that in collusive equilibria

energy storage has the same types of benefits as in quasi-competitive

equilibria. This includes alleviating wind curtailment and reducing the

dispatch of conventional unit 2. Although conventional unit 2 is dis-

patched if storage is price-taking, this unit is not dispatched if storage is

price-making or co-owned by the wind generator.

Case 6-R sees higher wind curtailment rates compared to Case 2-R,

as a result of the price-making wind generator exercising market power.

As a result, the average energy price increases from $63/MWh in Case 2-

R to $70/MWh in Case 6-R. Firm profits increase and social welfare

decrease in Case 6-R (relative to Case 2-R). Interestingly, conventional

unit 2 is not dispatched in Case 6-R, as a result of the wind generator’s

withholding of generation and the resulting reduced variability in the

net-load profile. Among the three cases with energy storage and a price-

making wind generator, the case in which storage is co-owned by the

wind generator results in no wind curtailment and conventional unit 2

not being dispatched. Moreover, social welfare and the wind gen-

erator’s profits are also maximized in Case 9-R, in which energy storage

is co-owned by the wind generator.

Contrasting cases in which the ramping constraints are relaxed to

those in which they are enforced shows that enforcing the ramping

constraints results in lower overall profits for the firms. Moreover, there

is no wind curtailment and conventional unit 2 is not dispatched in any

Table 3

Results of quasi-competitive market equilibria.

Case Social welfare [$] Demand met [%] Wind spillage [%]

Firm profits [$]

Conventional unit 1 Conventional unit 2 Wind Storage

1-NR 100,220 100.0 n/a 51,510 0 n/a n/a

1-R 100,220 100.0 n/a 51,510 0 n/a n/a

2-NR 117,420 100.0 0.0 36,740 0 24,950 n/a

2-R 114,650 98.5 5.0 30,720 1,120 21,760 n/a

3-NR 117,860 100.0 0.0 34,648 0 25,423 1,000

3-R 117,772 100.0 0.0 28,862 0 23,009 700

4-NR 117,860 100.0 0.0 30,274 0 23,671 700

4-R 117,772 100.0 0.0 30,062 0 23,489 700

5-NR 117,860 100.0 0.0 34,602 0 26,720 98

5-R 117,772 100.0 0.0 32,987 0 25,707 93

6-NR 117,420 100.0 0.0 35,520 0 26,190 n/a

6-R 114,650 98.5 8.3 38,560 780 24,800 n/a

7-NR 117,860 100.0 0.0 34,648 0 25,423 1,000

7-R 117,772 100.0 0.0 28,862 0 23,009 700

8-NR 117,860 100.0 0.0 30,274 0 23,671 700

8-R 117,772 100.0 0.0 30,062 0 23,489 700

9-NR 117,860 100.0 0.0 34,602 0 26,720 98

9-R 117,772 100.0 0.0 32,987 0 25,707 93

Table 4

Results of collusive market equilibria.

Case Social welfare [$] Demand met [%] Wind spillage [%]

Firm Profits [$]

Conventional unit 1 Conventional unit 2 Wind Storage

1-NR 87,710 75.9 n/a 80,160 0 n/a n/a

1-R 83,160 73.4 n/a 71,720 1,850 n/a n/a

2-NR 102,610 75.9 0.0 52,020 0 43,040 n/a

2-R 101,440 81.8 5.0 40,665 4,145 33,860 n/a

3-NR 102,595 75.4 0.0 49,837 0 42,682 2,041

3-R 101,445 79.4 0.0 43,905 1,275 38,300 3,335

4-NR 102,155 74.4 0.0 50,244 0 43,040 1,321

4-R 102,945 77.9 0.0 49,184 0 38,568 2,045

5-NR 100,972 73.7 0.0 50,850 0 43,040 −468
5-R 102,082 77.2 0.0 49,620 0 38,840 972

6-NR 102,610 75.9 0.0 52,020 0 43,040 n/a

6-R 100,040 78.3 21.7 56,780 0 30,610 n/a

7-NR 102,595 75.4 0.0 49,837 0 42,682 2,041

7-R 100,431 77.5 5.0 46,711 850 36,710 3,335

8-NR 102,155 74.4 0.0 50,950 0 43,040 615

8-R 98,722 73.0 13.5 53,410 0 37,205 556

9-NR 100,972 73.7 0.0 50,850 0 43,040 −468
9-R 102,625 77.0 0.0 48,860 0 38,840 2,275
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of the cases in which ramping constraints are relaxed. This indicates

that without ramping constraints, the wind generator is not able to

profitably withhold supply from the market. Fig. 4 further demonstrates

the benefits of energy storage in reducing average energy-generation

costs. The figure shows that the cases in which energy storage is co-

owned by the wind generator (i.e., Cases 5-R and 9-R) also have the

lowest average energy-generation cost among all of the cases that are

examined. Thus, co-ownership of wind and energy storage is beneficial

in alleviating wind-integration and flexibility-related issues.

All of the cases are formulated using GAMS version 24.2.1 and solved

with Gurobi version 5.6.2 on a computer with a 2.26 GHz Intel Core 2

Duo processor and 2 GB of memory. The solution times of the quasi-

competitive EPECs range between one and 63min. The collusive EPECs

take between one and 927min to solve. The diagonalization process,

which is used to verify that a given solution is indeed a Nash equili-

brium (cf. Appendix E) also takes an additional one to five minutes of

computing time.

6. Conclusion

This paper provides a framework to analyze market inefficiencies

due to the integration of renewable generation in an electric power

system. Our analysis specifically focuses on the impacts of ramping

limits of conventional generators and the variability of wind

production. We examine the use of energy storage as a means to address

these inefficiencies. Importantly, the proposed model allows us to ex-

amine the interactions between these technologies within a market

framework, and the potential for inefficiencies created by the exercise

of market power or other strategic behavior on the part of generation or

storage firms. The proposed model is an EPEC in which all firms can

behave strategically to maximize their profits. The EPEC model is lin-

earized (cf. the appendices), which yields a computationally tractable

MILP.

We demonstrate the use of the proposed model with a simple il-

lustrative case study. Within this case study we examine a variety of

asset-ownership and market-participation structures. We also analyze in

detail the effects of generator-ramping constraints on market outcomes.

Our results show that variability in wind availability leads to system

inefficiencies, including the dispatch of more expensive generation and

load and wind curtailments. Energy storage is able to mitigate these

inefficiencies, under a variety of asset-ownership structures. Our results

show that co-ownership and -operation of energy storage by the wind

generator yields the best results in terms of minimizing generation

costs, maximizing wind-generation profits, minimizing wind curtail-

ment, and minimizing the use of the high-cost peaking generator. This

result may seem counter-intuitive, because one would assume that a

price-taking energy storage firm would maximize market efficiency.

However, this finding is consistent with other analyses of the welfare

impacts of energy storage under imperfect competition [30,31].

Our analysis does not consider the capital costs of energy storage

devices and only examines short-run operational impacts. Comparing

the capital costs of energy storage to the types of benefits that are ex-

amined in our work is an important consideration in long-run capacity

planning. However, our proposed model is useful for understanding

how conventional and renewable generators and energy storage in-

teract and compete with one another under different market structures.

For this reason, our proposed model is an important tool for policy

makers, market designers, and regulators to examine market rules and

structures. Our model can be employed to refine market designs with

the aim of maximizing the efficient use of wind resources.
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Appendix A. Converting firm profit-maximization bi-level problem into a mathematical program with equilibrium constraints

We can convert bi-level profit-maximization problem (12)–(17) into an MPEC. We do this by noting that the offer variables (i.e., O O O, ,t x b
C

t x b
H

t x b
G

, , , , , , ,

andOt x b
W
, , ) are parameters in the lower-level market model. Moreover, the market model is linear, continuous, and convex. Hence, an optimal solution

to the lower-level problem can be characterized by its primal/dual optimality conditions [32,33], which are:
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where the Lagrange multiplier associated with each constraint appears in parentheses to its right.

Conditions (A.1)–(A.10) are the primal constraints of the MO’s problem, i.e., they are the same as constraints (2)–(11). Conditions (A.11)–(A.25)

are the constraints of the dual problem to the market model. Finally, (A.26) is the strong-duality condition, which ensures that the primal and dual

objective functions are equal.

Thus, we convert firm p’s bi-level profit-maximization problem into an MPEC by minimizing objective function (12) subject to constraints

(13)–(16) and (A.1)–(A.26). That is, we replace the lower-level market model with its primal/dual optimality conditions.

Appendix B. Multi-firm Nash equilibrium

Our goal is to find Nash equilibrium offers for the firms, which satisfy the property that no firm has a profitable unilateral deviation. Another way

of characterizing the no-unilateral-deviation property is that the offers must be simultaneously optimal in each firm’s MPEC, which is given by

(12)–(16) and (A.1)–(A.26). Thus, one way of finding Nash equilibria is by simultaneously solving the firms’ MPECs. Because simultaneously solving

these MPECs is intractable, we instead characterize potential optimal solutions to each firm’s profit-maximization problem using the Karush-Kuhn-

Tucker (KKT) conditions for the firm’s MPEC. We can then find potential Nash equilibria by simultaneously solving the KKT conditions of all of the

firms’ MPECs.

The KKT conditions of firm p’s MPEC are:
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where ‘⊥’ denotes complementary slackness between an inequality constraint in firm p’s MPEC and the non-negativity constraint on the corre-

sponding Lagrange multiplier.

Conditions (B.1)–(B.44) are derived from the stationarity conditions for firm p’s MPEC. These stationarity conditions involve both firm p’s upper-

level offer variables, as well as all primal and dual variables of the lower-level market model. Condition (B.45) is the strong-duality equality from

firm p’s MPEC. Conditions (B.46)–(B.77) impose the inequality constraints and complementary-slackness conditions for firm p’s MPEC.

Combining conditions (B.1)–(B.77) for all of the firms yields an EPEC.

Appendix C. Objective function of EPEC

Under relatively mild conditions, non-co-operative games, such as the one that we study, are guaranteed to have at least one Nash equilibrium.

Indeed, one difficulty in game theory is that a non-co-operative game may have multiple or an infinite number of equilibria. We address this issue by

using two different objective functions in the EPEC. These objective functions allow us to obtain a ‘bounding range’ of equilibria [32].

The first objective function:

∑ − + + −C G ψ G W S Smin [ ·( )],
t x b
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(C.1)

maximizes total profits of the competing firms (keeping with the other model formulations, the objective function is written in minimization form).

This objective function yields highly non-competitive equilibria, which we herein term ‘collusive equilibria.’ The second objective function (also

written in minimization form):

∑ ∑−C G U Dmin ,
t x b

x b t x b

t b

t b t b

, ,

, , ,

,

, ,

maximizes social welfare. This objective function yields highly competitive equilibria, which we herein refer to as ‘quasi-competitive equilibria.’

By using these two objective functions, we are able to examine extreme opposite cases in which the market outcome is highly competitive or non-

competitive. Equilibria that occur in practice will likely lie between these two extremes. Thus, our analysis can be thought of as illustrating the worst-

and best-case scenarios, from a market-efficiency perspective.

Appendix D. Linearizing the EPEC

Constraints (B.1)–(B.77) of the EPEC include a number of non-linearities, which complicate its solution. Moreover, objective function (C.1) is also

non-linear in the variables of the EPEC. Thus, we take the following steps, which are outlined in this section, to linearize these non-linearities. By

doing so, we obtain a tractable EPEC.

D.1. Bilinear terms with Ωp
SD

A number of bilinear terms appear in constraints (B.1)–(B.8) and (B.10)–(B.19) in which the dual variable,Ωp
SD, is multiplied by a primal dispatch

or offer variable. Because the variable, Ωp
SD, is common in all of these terms, we parameterize the EPEC by fixing the values of Ωp

SD to different

quantities. We then vary the value ofΩp
SD until obtaining solutions to the EPEC, which are guaranteed to be Nash equilibria (cf. Appendix E for details

on how we verify that a EPEC solution is a Nash equilibrium). This approach to linearizing a non-linearity of this type is common practice [32–34].

D.2. Bilinear terms in strong-duality equality

Strong-duality equality (A.26), which appears in constraint (B.45) of the EPEC, has the bilinear terms,O G O W O S, ,t x b
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We linearize these by noting that because the MO’s problem is linear, the strong-duality equality is equivalent to the complementary-slackness

conditions of the lower-level problem [32,35]. Thus, condition (A.26) can be removed from constraint (B.45) and replaced with the following

equivalent complementary-slackness conditions:
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b

t x b t x b x
D

t x
R

, , 1, , ,
,

(D.5)

∑⩽ − − ⊥ ⩾ ∀−
+R G G θ t x0 ( ) 0 , ,x

U

b

t x b t x b t x
R

, , 1, , ,
,

(D.6)

⩽ ⊥ ⩾ ∀−W θ t x b0 0 , , ,t x b t x b
W

, , , ,
,

(D.7)

⩽ − ⊥ ⩾ ∀+W W θ t x b0 0 , , ,t x b t x b t x b
W

, , , , , ,
,

(D.8)

⩽ ⊥ ⩾ ∀−S θ t x b0 0 , , ,t x b
C

t x b
C

, , , ,
,

(D.9)

⩽ − ⊥ ⩾ ∀+S S θ t x b0 0 , , ,x b
C

t x b
C

t x b
C

, , , , ,
,

(D.10)

⩽ ⊥ ⩾ ∀−S θ t x b0 0 , , ,t x b
H

t x b
H

, , , ,
,

(D.11)

⩽ − ⊥ ⩾ ∀+S S θ t x b0 0 , , ,x b
H

t x b
H

t x b
H

, , , , ,
,

(D.12)

⩽ ⊥ ⩾ ∀−E θ t x0 0 , ,t x t x
E

, ,
,

(D.13)

⩽ − ⊥ ⩾ ∀+E E θ t x0 0. ,x t x t x
E

, ,
,

(D.14)

D.3. Complementary-slackness conditions

Complementary-slackness conditions (B.46)–(B.77) and (D.1)–(D.14) are nonlinear because a complementarity constraint of the form:

⩽ ⊥ ⩾f z ζ0 ( ) 0, (D.15)

can be equivalently written as:

⩽
⩾

=

f z

ζ

f z ζ

0 ( )

0

( ) 0.

Complementary-slackness condition (D.15) can be linearized using the so-called Fortuny-Amat method [36]. This method introduces a binary

variable (one for each complementary-slackness condition), which we denote as π , and a sufficiently large constant, which we denote as M.

Condition (D.15) is then replaced with the constraints:

⩽ ⩽
⩽ ⩽ −
∈

f z Mπ

ζ M π

π

0 ( )

0 ·(1 )

{0,1}.

All of the aforementioned complementary-slackness conditions are linearized using this method.

D.4. Bilinear terms in objective function (C.1)

Objective function (C.1) has the bilinear terms, ψ G ψ W ψ S, ,t t x b t t x b t t x b
H

, , , , , , , and ψ St t x b
C
, , . We approximate these terms using the so-called binary ex-

pansion method [37]. To do this, objective function (C.1), can be rewritten as:

∑ ∑−C G ψ νmin ,
t x b

x b t x b

t

t t

, ,

, , ,

where the auxiliary variable, νt , denotes total hour-t net generation and is defined as:

∑= + + −ν G W S S( ).t

x b

t x b t x b t x b
H

t x b
C

,

, , , , , , , ,

After rewriting the objective function, we approximate νt as taking on one of a fixed set of values, which we denote as …ν ν, ,t t,1 ,Ξ. We assume that

these values are equally spaced, meaning that − = ⋯= − =−ν ν ν ν νt t t t t,2 ,1 ,Ξ ,Ξ 1
Δ. We then introduce a set of continuous and binary variables, which we

denote as …γ γ, ,t t,1 ,Ξ and …χ χ, ,t t,1 ,Ξ, respectively. Finally, objective function (C.1) is replaced with:

∑ ∑−C G γ νmin ,
t x b

x b t x b

t ξ

t ξ t ξ

, ,

, , ,

,

, ,

and the following constraints:

∑

∑

= + + − ∀

− ⩽ ⩽ ∀

ν G W S S t

ν ν ν χ ν t

( ) ,

,

t

x b

t x b t x b t x b
H

t x b
C

t t

ξ

t ξ t ξ t

,

, , , , , , , ,

Δ
, ,

(D.16)

∑ = ∀χ t1 ,
ξ

t ξ,

(D.17)
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⩽ − ⩽ − ∀ψ γ M χ t ξ0 ·(1 ) , ,t t ξ t ξ, , (D.18)

⩽ ⩽ ∀γ M χ t ξ0 · , ,t ξ t ξ, , (D.19)

∈ ∀χ t ξ{0,1} , ,t ξ, (D.20)

are added to the EPEC.

Constraints (D.16), (D.17), and (D.20) force the variable χt ξ, that has a corresponding value of νt ξ, that is closest to νt to equal 1, while the other

χt ξ, ’s are forced equal to 0. Constraints (D.18) force the value of γt ξ, corresponding to the χt ξ, that is equal to 1 to equal ψt, while constraints (D.19)

force the other γt ξ, ’s to equal zero. Thus:

∑ γ ν ,
t ξ

t ξ t ξ

,

, ,

represents the product between ψt and the value of νt ξ, that is closest to νt .

Appendix E. Verifying Nash equilibria

Linearizing the EPEC using the techniques that are mentioned in Appendix D yields an MILP. As noted before, a solution to this MILP is a solution

to the original EPEC. However, there is no guarantee that an EPEC solution is a Nash equilibrium [32,33]. Thus, we verify whether an EPEC solution

is in fact a Nash equilibrium by using diagonalization [33,34]. Diagonalization involves solving each firm’s MPEC, while holding the decision

variables of all of that firm’s rivals fixed equal to the values that are obtained from the EPEC solution. If the EPEC solution is optimal in each firm’s

MPEC, that means the EPEC solution satisfies the no-unilateral-deviation property and is indeed a Nash equilibrium. Otherwise, if the EPEC solution

is not optimal in the MPEC of one or more firms, the EPEC solution does not constitute a Nash equilibrium and is discarded from further con-

sideration.
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