This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON POWER SYSTEMS

http://dx.doi.org/10.1109/TPWRS.2017.2746379

Hierarchical Clustering to Find Representative
Operating Periods for Capacity-Expansion Modeling

Yixian Liu, Ramteen Sioshansi, Senior Member, IEEE, and Antonio J. Conejo, Fellow, IEEE

Abstract—Power system capacity-expansion models are typi-
cally intractable if every operating period is represented. This
issue is normally overcome by using a subset of representative
operating periods. For instance, representative operating hours
can be selected by discretizing the load-duration curve, which
captures the effect of load levels on system-operation costs. This
approach is inappropriate if system-operating costs depend on
parameters other than load (e.g., renewable-resource availability)
or if there are important intertemporal operating constraints
(e.g., generator-ramping limits).

This paper proposes the use of representative operating days,
which are selected using clustering, to surmount these issues.
We propose two hierarchical clustering techniques, which are
designed to capture the important statistical features of the
parameters (e.g., load and renewable-resource availability), in
selecting representative days. This includes temporal autocorre-
lations and correlations between different locations. A case study,
which is based on the Texan power system, is used to demonstrate
the techniques. We show that our proposed clustering techniques
result in investment decisions that closely match those made using
the full unclustered data set.

Index Terms—Power system planning, representative days, hi-
erarchical clustering, k-means clustering, dynamic time warping

NOMENCLATURE

A. Clustering Variables and Functions
[ number of points in a cluster or set.

C number of clusters.

ck cluster ¢ in iteration k of clustering algorithm.

C centroid of the cluster, C.

d(x,x’) distance between the points, x and x’.

f(“ac’f maximal distance between the point, x, and clus-

ter, C.

L(C,C")  minmax linkage between the clusters, C' and C".

n dimension of points.

r(C) minmax radius of the cluster, C.

S a time series.

Ui ; accumulated distance between element i of the
time series, S, and element j of the time series,
S’

X a point.

X a set of points.

A(S;, S ;) distance between element 7 of the time series, S,

and element j of the time series, S’.
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B. Operating-Period Data

Wy day-y operating-condition data.

wf day-y demand data.

w? day-y solar-insolation data.

w% day-y wind-speed data.

we%y h hour-h load in region e on day y [MW].

C. Capacity-Expansion Model Sets

g set of generation technologies.

H set of hours in each day.

& set of regions.

Y set of representative operating days.

D. Capacity-Expansion Model Parameters

By maximum capacity of generation technology g

that can be built in region e [MW].
gcfe operating cost of generation technology ¢ in re-

gion e [$/MWh].

K, ée, investment cost of transmission between regions e
and ¢’ [$/MW].

K? investment cost of storage in region e [$/MW].

KUY cost of unserved load [$/MWh].

K (Y . investment cost of generation technology g in
region e [$/MW].

Leyn region e’s hour-h load on day y [MW].

g ramping factor of generation technology ¢ [p.u.].

n energy capacity of storage [hours of storage].

¢ roundtrip efficiency of storage [p.u.].

Dg.ey.h hour-h capacity factor of generation technology g
in region e on day y [p.u.].

T, weight on day y [days].

E. Capacity-Expansion Model Variables

qecy h hour-h power charged into storage in region e on
day y [MW].

qe’f’% h hour-h power discharged from storage in region e
on day y [MW].

qge,y, h hour-h production from generation technology ¢
in region e on day y [MW].

qé e yih hour-h net power flow on link between regions e
and ¢’ on day y [MW].

qg vh hour-h ending state of charge of storage in re-
gion e on day y [MW].

qg% h hour-% unserved load in region e on day y [MW].

zge capacity of generation technology g built in re-

gion e [MW].
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zée, transmission capacity built between regions e
and ¢/ [MW].
25 storage capacity built in region e [MW].

F. Clustered and Unclustered Data

zTC:V investment in technology 7 using clustered data
when wind-investment costs are Y% below base-
line.

zTU ~ investment in technology 7 using unclustered
data when wind-investment costs are 7% below
baseline.

T set of cases with different wind-investment costs.

pg;W ith element of wind-duration curve in region e in
clustered data [p.u.].

pg;.W 1th element of wind-duration curve in region e in

unclustered data [p.u.].

I. INTRODUCTION

OUR-to-hour solar and wind availabilities and demand

are important uncertain and variable factors in power
system operations and capacity expansion. These factors ex-
hibit multiple important correlations. First, wind, solar, and
demand may generally be correlated. In many systems demand
is low during the night when wind speeds are high and solar
insolation is zero. Second, each variable is autocorrelated.
Considering autocorrelation helps with modeling intertemporal
operating constraints, such as generator-ramping limits. Third,
there are spatial correlations when multiple locations are
considered. For example, the wind speed may be low at one
location but simultaneously high elsewhere. Not capturing
spatial correlation may result in misrepresenting the impacts
of renewable generation.

Capacity-expansion models capture investment and oper-
ating decisions. Investment decisions are typically made at
coarse time intervals (e.g., yearly or decennially). Conversely,
operating decisions are made at finer time scales (e.g., hourly
or sub-hourly). Therefore, the operating period must be repre-
sented many more times than the investment period, resulting
in a computationally challenging problem. Several works sur-
mount this issue by using a reduced set of operating periods.

The pioneering work of Caramanis ef al. [1] accounts for
the impact of non-dispatchable resources on the system load
profile. They employ a stochastic approach to modify the
yearly load prior to selecting a number operating conditions
from the modified load. Short et al. [2] develop a deterministic
capacity-expansion model that captures seasonal and diurnal
variability in demand and resource profiles using 17 time-
slices. Each season is represented by one day, each of which
is represented by four time-slices. There is also one summer
super-peak time slice. This representation is mainly based
on demand patterns and its effectiveness in representing the
complete hourly data is not studied. Pina et al. [3] divide
a year into four seasons, each of which is represented by
three days that are modeled at hourly resolution. Baringo
and Conejo [4] propose two methods to find representative
hours. The first uses load- and wind-duration curves. This
technique cannot model spatial correlations, however, which
is overcome by their second method, which employs k-means
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clustering. However, their use of representative hours breaks
the chronological sequence of the operating stages and cannot
represent intertemporal operating constraints. Wogrin et al. [5]
take a markedly different approach, wherein they use system
states as opposed to load levels to characterize operating
conditions in a capacity-expansion model. They claim that
the system states that they define embody more operational
information than loads alone do. Poncelet et al. [6] develop
a metric to select representative days in expansion planning
exercises in systems with storage and illustrate the use of
their proposed metric. Alvarez et al. [7] provide a technique
to select representative operating conditions for transmission-
expansion planning. Their method focuses on critical network
conditions, as opposed to modeling ‘more common’ nominal
conditions. Ploussard et al. [8] use a snapshot selection tech-
nique to capture a suitable number of operating conditions for
transmission-expansion planning.

Using representative operating periods to reduce the com-
plexity of capacity-expansion models is desirable. However,
many techniques in the literature do not provide a sound basis
on which to select operating periods, as our results illustrate.
Instead, most select them in an ad hoc manner, such as select-
ing a fixed number of periods from each season. Moreover, the
techniques historically employed have difficulty in capturing
all of the relevant correlations in the data. Finally, most of
the techniques used break the chronological sequence of the
data, complicating the modeling of intertemporal operating
constraints.

In this paper, we propose using representative days (as
opposed to hours or time-slices) to represent operating deci-
sions in capacity-expansion models. Doing so allows modeling
intertemporal operating constraints. We study two clustering
techniques, which capture the relevant correlations, to select
representative days. The first employs hierarchical clustering
while the second consists of k-means clustering followed
by hierarchical clustering within each k-means cluster. We
demonstrate the effectiveness of our proposed techniques in
two ways using a case study based on the Texas power
system. First, we compare the properties of the clustered
and unclustered data sets in terms of capturing the range of
different renewable-resource and load conditions. Second, we
show that the optimized investments using the representative
days very closely match investments made using a full year’s
hourly data in the operating stage.

The clustering techniques that we employ are not, in and
of themselves, novel. Rather, the novelty of our work is in
developing a mixture of clustering methods, linkage criteria,
and distance metrics (c¢f. Section II-B for definitions of these
latter two terms) that provide good performance in efficiently
determining a set of representative operating periods for
capacity-expansion modeling. Our work focuses on selecting
representative days. This focus is motivated by the desire to
represent generator-ramping constraints and intraday energy
storage in capacity-expansion modeling. These features cannot
be represented properly without having a temporal sequence of
operating periods, as given by representative operating days.
Liu et al. [9] demonstrate the importance of representing
generator-ramping constraints in ensuring that a system’s
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generation mix has sufficient flexibility to deal with variability
in load and renewable production. Nevertheless, representative
operating weeks or longer-duration operating periods may be
more appropriate if, for instance, interday or seasonal energy
storage is an important feature of a capacity-expansion model.
The methods that we propose could be employed to select such
operating periods.

The remainder of this paper is organized as follows. Sec-
tion II discusses commonly used clustering methods and
details our two proposed methods. Section III gives the formu-
lation of the capacity-expansion model that is used in testing
our clustering methods. Sections IV and V summarize the
case study conducted and its results, respectively. Section VI
concludes.

II. CLUSTERING TECHNIQUES

The basic objective in cluster analysis is to discover natural
groupings of items based on either their similarities or dis-
similarities. k-means and hierarchical clustering are both very
popular clustering methods with strengths and weaknesses.
We begin in this section by first introducing some basic con-
cepts of k-means and hierarchical clustering in Sections II-A
and II-B, respectively. We assume throughout this discussion
that the different ‘items’ being clustered are represented as
vectors, which can specify the features of the items on mul-
tiple dimensions. We then detail our two proposed clustering
techniques in Section II-C.

A. k-Means Clustering

k-means clustering assigns each item within a data set to a
cluster that has its centroid closer to the item than the centroid
of any other cluster [10]. The primary benefit of k-means
clustering is that it performs relatively quickly compared
to other clustering methods. On the other hand, k-means
clustering requires some restrictive assumptions on the data
being clustered. Importantly, to be effective k-means clustering
requires that the data be in similarly sized hyperspherical
clusters [11]. Algorithm 1 summarizes the most commonly
used variant of the k-means clustering algorithm [12], which
takes two inputs—a set of points (or vectors) to be clustered
and the number of clusters to assign the points to. Step 2
initializes the algorithm by setting the iteration counter to 0
and then assigning each point to one of C starting clusters.
The final set of clusters obtained is generally dependent on
this initial assignment of points to clusters.

Steps 3—13 are the main iterative loop. Step 5 recomputes
the centroid of each cluster and Step 6 initializes each cluster
in the next iteration to be empty. Next, in Step 9, a cluster with
the nearest centroid to each point is determined and each point
is assigned to a cluster with the nearest centroid in Step 10.
Although any distance metric can be used, Euclidean distance:

(1)

is quite common. This iterative process repeats until no
reassignments are done between two successive iterations (cf.
Step 13).

Algorithm 1 k-Means Clustering

1: inputs: X,C

2: initialize: £ < 0; assign each point to starting clusters,
e9,....00

3: repeat

4 for i< 1,...,C do

e Ci = (Laecr x) /ICH

6: O

7 end for

8 for x € X do

9 14— ar min  d(x, Cy

& ety (%, C)
10: CH  CcFlux
11: end for

12: k< Ek+1
13: until CF = CF 1 Vvi=1,....C

B. Hierarchical Clustering

Hierarchical clustering builds a hierarchy of clusters using
either a ‘bottom-up’ or ‘top-down’ approach [13]. The former,
agglomerative, approach begins with each single point as its
own cluster. The algorithm proceeds by successively merging
clusters until attaining the desired number. The latter, divisive,
approach begins with all points in a single cluster, which are
successively divided. The result of both approaches can be
displayed as a dendrogram, which illustrates the successive
mergers or divisions.

Unlike k-means clustering, hierarchical clustering has the
benefit that it can be applied to data with clusters that are
not hyperspherical [11]. Moreover, the final set of clusters
obtained are not dependent on the initial allocation of points
to clusters. These benefits come at computational and data-
storage costs, because hierarchical clustering requires com-
puting and storing a matrix of distances between all sets
of clusters. As a result, k-means clustering can typically be
applied to much larger data sets compared to hierarchical
clustering [12].

Hierarchical clustering requires a measure of dissimilarity
between sets of observations, which are stored as a matrix of
distances, to determine mergers or divisions of clusters. Thus,
a linkage criterion and a distance metric must be specified.
We now discuss the linkage criterion and distance metric that
are used in our proposed clustering methods.

1) Linkage Criterion: The linkage criterion measures the
distance between two clusters. Commonly used linkage criteria
include single, complete, and average linkage. Single linkage
determines the distance between two clusters based on the
distance between the two elements (one in each cluster)
that are closest to one another. Complete linkage is based,
conversely, on the maximum distance between two elements of
the clusters. Average linkage is based on the average distance
between pairs of elements of two clusters.

Our proposed clustering techniques employ minmax linkage
[14], [15]. This linkage criterion determines a point, which is
referred to as the cluster prototype, which can be thought of
as a point within the cluster that is most representative of

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

it. Having cluster prototypes is beneficial, because they allow
each cluster to be represented by its prototype in modeling
system operations in the capacity-expansion model.

To compute the minmax linkage between two clusters, we
first define the maximal distance between any point, x, and
the cluster, C, as:

max — d !/ . 2

x,C ;I,lgé (Xa X ) ( )
In words, df(“ac’f is defined as the distance between x and the
point in C' that is furthest from x. We then define the minmax
radius of the cluster, C, as:

— s dmax'

r(C) = mind,’@ ®)
The point, x¢, that minimizes (3) is defined at the prototype
of the cluster, C'. The prototype has the property that it has
the minimal maximal distance to C. From these definitions,
we also know that a closed ball of radius, 7(C'), centered at
the prototype covers all of the points in C. We finally define
the minmax linkage between the clusters C' and C’ as:

L(C,C"y=r(CuC). @)

Minmax linkage defines the distance between two clusters
by the minmax radius of the union of the clusters. A larger
minmax radius means that a larger ball is needed to cover all
of the points in the union of the clusters.

2) Distance Metric: Both k-means and hierarchical clus-
tering require a measure of similarity (i.e., a distance metric).
Choosing a distance metric when clustering time-series data
adds a complication. This is because standard distance metrics
align the jth element in one time series with the jth element
of another. This is seen, for instance, in (1), which defines
Euclidean distance between x and x’. Thus, standard distance
metrics assume that the time-series data are aligned on the
time axis.

In practice, time series may not be perfectly aligned or
may have other shape properties, which could result in a poor
similarity measure. For instance, there is a one-hour offset in
load and other data between days during daylight-savings and
standard times. As another example, utilities and other entities
may use different practices in recording load and other data at
the beginning, middle, or end of the corresponding timestamp
[16]. As a final example, two days may have similar patterns
in terms of the magnitude of the peaks and troughs in load or
other data. However, the time at which the peaks and troughs
occur may differ. In these and other cases, a distance metric
that assumes that the time-series data are aligned on the time
scale, such as Euclidean distance, may give poor fits between
days that are actually similar.

Dynamic time warping (DTW) is a distance metric that
addresses this issue in measuring similarity of time series
[17]. DTW measures the similarity between two time series by
computing the optimal (least cumulative distance) alignment
between their elements. In doing so, DTW allows time series
with similar shapes to match even if they are out of phase in
the time axis. Thus, DTW produces a more suitable measure
of similarity for time series.
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To illustrate how DTW measures the distance between
two generic time series, let S = {S1,...,57} and S’ =
{S1,...,5%} be two time series, which can have different
lengths. We also let A(S;, S’;) denote a measure of distance
between element ¢ of S and element j of S’. One can use
A(S;,87) = |Si — S}, or a different distance measure.

Algorithm 2 summarizes the steps of a commonly used vari-
ant of the DTW algorithm [17], which takes two time series
as inputs. The ultimate output of the algorithm is a matrix,
U, with cumulative distances between different elements of
the two time series, taking into account the amount that the
time axes of the two series are warped. Steps 2—7 initialize
the U matrix by setting the cumulative distance equal to 400
if either time series index equals zero. The actual cumulative
distances are calculated in Step 10. The first term, A(.S;, S;-),
measures the distance between the ¢th and jth elements of the
two time series. The second term takes into account the added
cumulative distance (up to elements ¢ and j of the two time
series), depending on which (if either) of the two time axes are
warped [17]. The ‘warping’ of the time axes in represented by
the U;_1,; and U; j_1, which allow a ‘mismatch’ in the time
axes of the two time series. The distance between the two time
series is given by the final value of U; ;, which measures total
distance between the two time series (taking into account any
warping of the time axes), after the algorithm terminates.

Algorithm 2 Dynamic Time Warping Algorithm

1: inputs: S, S’

2: for i+ 1,...,1 do

3: Ui,O < +00

4: end for

5. for j«—1,...,J do

6: UO.,j — 400

7: end for

8: fort <« 1,...,1 do

9: for j < 1,...,J do
10: Ui,j — A(Si, S;-)—l—min{U-_Lj, Ui,j—l7 Ui—l,j—l}
11: end for

12: end for

C. Proposed Clustering Methods

Our proposed clustering methods are rooted in two re-
quirements. First, the method should generate representative
days that respect all of the important correlations in the data.
Second, the clustering method should be able to group large
data sets quickly. To meet the first requirement, we cluster
electricity demand and renewable-availability data for each
region or node that is represented in the capacity-expansion
model.

To illustrate our proposed clustering techniques, we first
define:

wf = (wf)’y,l, - ,wf)’y,24,w2[?y71, o ,w@|7y724) )
Vy = 1,...,365 as a vector of day-y demand data for all of
the hours and regions. We similarly define:

S _ S S S S
wy = (wl,y,lv---vwl,y,zzxv‘*’z,y,lv---v‘*’\€|,y,24) )
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Vy =1,...,365 and:

w;jv = (wm)l, e ,wm)24,w%71, e aw\%,y,m) , (D
Vy = 1,...,365 as vectors of day-y solar- and wind-
availability data, respectively. The load, solar, and wind obser-
vations in these three vectors are ordered first by hour of day
and then by location modeled. This is to ensure that temporal
sequence of observations is not lost. We also define:

Wy = (wf,wlf,wgv) ()
Vy =1,...,365 as a vector of day-y operating-condition data.

By definition, w, contains all of the pertinent data on which
to cluster (which in our case study are wind and solar condi-
tions and load) for each region represented in the capacity-
expansion model. As such, clustering on the collection of
points, wy, ..., wses, yields a set of days that capture a wide
variety of operating (i.e., wind, solar, and load) conditions
at the different regions modeled. These operating days fully
respect the intraday serial correlation in operating conditions,
because time seqeuence of operating data are maintained in
the final set of operating conditions. Interregional correlations
are also captured, because each representative day contains
contemperaneous operating-condition data for all of the re-
gions that are modeled. Although interday correlations are
not captured by the representative days, interday and seasonal
variability in operating conditions are. This is because clus-
tering on wy, . ..,wsgs will yield a set of representative days
that ‘different’ from one another in terms of their operating
conditions.

Our two proposed clustering methods differ in terms of
achieving the second design requirement. The first proposed
clustering method applies agglomerative hierarchical cluster-
ing with a minmax linkage criterion and DTW distance metric
to the full set of operating-condition data, wy, ..., wsgs. This
method, which we hereafter refer to as HC, has all of the
benefits of hierachical clustering in not requiring similarly
sized hyperspherical clusters. Moreover, the use DTW as a
distance metric helps to provide more robust clusters. For
instance, two days may have similar load and renewable-
availability conditions, but the exact patterns may be out of
time phase (e.g., due to daylight-savings time). DTW helps
with controlling for such time-phase issues. On the other hand,
the HC method may scale poorly (i.e., as more regions or
underlying operating-condition data are considered).

The second method first applies k-means clustering to the
full set of operating-condition data, wy, . ..,wsgs, to obtain a
starting set of clusters, C,...,Cc. We then apply the same
agglomerative hierarchical clustering technique used in HC
to the days within each k-means cluster, C1,...,C¢. The
benefit of this second method, which we hereafter refer to
as kMHC, is that it first uses the relatively fast k-means
clustering algorithm to obtain an initial set of clusters. Slower
hierarchical clustering is then applied within each k-means
cluster to obtain the final set of clusters, retaining some of the
benefits of the HC method.

In both methods, after the final set of clusters is obtained, the
days in each cluster are represented in the capacity-expansion

model by the cluster prototype. The weight placed on each
cluster prototype is equal to the number of days within the
corresponding cluster.

III. CAPACITY-EXPANSION MODEL

We use a capacity-expansion model to analyze how the
representative days that are selected by the proposed clustering
techniques affect investment decisions. The model that we
use is a simplification of the multistage, multiscale stochastic
capacity-expansion model that is proposed by Liu et al. [9].
Whereas the model of Liu ef al. is stochastic and has multiple
investment periods, the model that we employ is static, linear,
and deterministic. This is to simplify the model structure
and allow us to solve it with the full unclustered data for
purposes of comparing model results to using clustered data.
Nevertheless, the clustering methods that we propose could be
used to select representative operating days within a stochastic
capacity-expansion model [18].

The model that we use assumes that a single set of in-
vestment decisions is first made. These are then followed by
hourly operating decisions over twenty years. To simplify the
capacity-expansion model, all of the investments are assumed
to be continuous and unit commitment decisions are not
considered at the operating stage. The transmission network
is represented using a pipeline model. Moreover, we do not
include planning-reserve or other types of reliability-related
constraints.

The capacity-expansion model is formulated as:

minz ZK;/,eZnge‘f' Z Kée,zeL)e/—i—KeSzeS )

ec€ | geg e/ EE el e
D My | D KGeageyn + K,
yeY,heH geg
st. 0< 25, < Bye, Vg,e (10)
0< 2k, Vee #e (11)
0< zes, Ve (12)
Z qge,y,h + Z (qeLf,e,y,h - qeL,e/,y,h) (13)
9€g e/ EE e e
=+ qe[,)y,h - qu,h + qu,h =Leyn, Ve, y,h
0<qfeyn < bgeunzoe Vg€ h (14)
- 5.«1256 < qge,y,h - qge,y,h—l < &ngCfe, (15)
Vg,e,y,h
— zée, < qeL)e/)y)h < zée,, Ve,e' # ey, h (16)
qu,h = qiy,h—l - Qe[,)y,h + <qu,h7 (I7)
Ve,y,h > 2
Ge,00 9oy, 3 = %nzf, ve,y (18)
Oﬁqes_’y_’h Snzes, Ve,y, h (19)
0<qCyntiyn <2, Veyh (20)
0<qyn<Leyn Veuy,h. Q1
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Objective function (9) minimizes total cost, which consists
of generation-, transmission-, and storage-investment costs,
generator-operating cost, and the cost of unserved load. Invest-
ment costs can include the costs of constructing, maintaining,
and eventually retiring assets. Generator-operating costs can
include the costs of fuel and maintaining plants.

The model has two types of constraints. Constraints (10)—
(12) pertain to investments whereas constraints (13)—(21) con-
cern operations. Constraints (10) imposes limits on generation
technology investments, for instance due to land restrictions,
resource availability, or policy restrictions. Constraints (11)
and (12) impose non-negativity on transmission and storage
investments.

Constraints (13) impose load-balance in each hour. Con-
straints (14) and (15) impose capacity and ramping limits
on generators. The capacity limits are defined based on total
installed capacity available multiplied by a capacity factor. The
capacity factor captures hour-to-hour variability in wind, solar,
and other renewable availability, which is embedded in the
representative days selected by clustering. The ramping limit is
assumed to be a multiple of the installed capacity, with higher
values of d, denoting a more flexible generating technology.
Constraints (16) impose transmission-capacity limits.

Constraints (17)—(20) concern storage operations. Con-
straints (17) define the ending state of charge of storage in
each hour. Constraints (18) force each storage device to begin
and end each day with a 50% state of charge. This is a heuristic
approach to attaching carryover value to stored energy from
one day to the next [19]. Constraints (19) and (20) impose
energy and power limits on storage. The energy capacity of
storage is measured by the number of hours of full power
output [20]. We assume that the storage technology modeled
has no effective ramping limit. This is because many storage
technologies in use today have no effective ramping limit.

Constraints (21) limit the amount of unserved energy in each
operating period to be no greater than demand.

IV. CASE STUDY DATA

Our case study is based on the state of Texas, which is
represented as consisting of three regions in the capacity-
expansion model. Hourly solar-insolation, wind-speed, and
temperature data are generated for each region using a vector
autoregression model, which is calibrated to 16 years of hourly
weather observations [21]. Solar-insolation and wind-speed
data are input to models that estimate photovoltaic and wind-
turbine outputs. The temperature data are used to simulate
hourly residential, commercial, and industrial electricity de-
mand data [22], [23]. Historical weather data can also be used
in place of a regression model.

Total simulated demand for the state, assuming 2010 popu-
lation levels, peaks in July at about 69 GW. The historical peak
between 2006 and 2015 ranges between 62 GW and 70 GW
and occurs in July or August, showing that our models capture
load patterns well. The East region has higher demand than
the other two regions, which is in keeping with actual system
loads. Wind capacity factors are highest in the West region,
which is also consistent with actual weather patterns. Finally,
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solar insolation peaks in the summer. However, solar capacity
factors are not significantly higher in the summer compared to
the winter, because cell temperatures are higher in the summer,
reducing cell efficiency. Table I summarizes the mean values
of the three operating-condition parameters, which we use in
our cluster analysis, for the three regions.

TABLE I
AVERAGE SIMULATED DEMAND AND WIND AND SOLAR CAPACITY
FACTORS IN THREE REGIONS IN 2010

Region Demand [MWh]  Wind [p.u.]  Solar [p.u.]
East 20408 0.40 0.19
West 8102 0.50 0.23
South 12226 0.46 0.20

Load and renewable capacity factors are reported in dif-
ferent units. As such, they must be normalized so that the
calculated distance that is used in the clustering methods
places the same weight on the three data sets. We normalize
each of the load and renewable capacity-factor data for each
location to have mean zero and standard deviation 1. Although
we normalize load data for purposes of clustering, we report
load data throughout this paper in absolute terms (cf., for
instance, Table I). This is because while wind and solar
available are more naturally reported in p.u., load is not.

Our capacity-expansion model assumes a ‘greenfield’ sys-
tem, with no starting generation, storage, or transmission
capacity. This is because a brownfield system would see
relatively small incremental investments, which would make
it difficult to draw conclusions as to whether the clustering
techniques yield representative operating days that result in
good investment decisions. We consider five generic genera-
tion technologies: wind, solar, coal, natural gas, and nuclear.
The model can also build a generic storage technology, which
has n = 20 hours of storage capacity and a roundtrip efficiency
of ¢ = 0.8. Table II summarizes the baseline technology-
related parameters used in the model, which are obtained
from the United States Energy Information Administration’s
2014 Annual Energy Outlook [24] and other sources [25], [26].
Although these data sources are a few years old, they represent
credible data sources that have been used in numerous United
States Department of Energy technical studies. Moreover, we
do not expect that the performance of the different clustering
methods would be unduly affected by using different costs.
The cost of load curtailment is assumed to be $5000/MWh.

TABLE II
BASELINE PARAMETER VALUES OF CAPACITY-EXPANSION MODEL

Investment Operating Ramp Rate
Technology Cost [$/kW]  Cost [$/MWh]  [p.u.]
Wind 3737-3864 0 n/a
Solar 3164-3345 0 n/a
Coal 3037-3164 25-26 0.29
Natural Gas 837-964 44-45 0.43
Nuclear 6533-6562 9-10 0.16
Storage 2333-2362 n/a n/a
Transmission  503-806 n/a n/a
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V. CASE STUDY RESULTS

We compare the performance of our two proposed clustering
techniques in terms of selecting representative operating days
and the resulting investments made by the capacity-expansion
model. Our numerical testing suggests that a minimum of
30 representative days is needed to capture the range of
load, wind, and solar conditions in capacity-expansion mod-
eling [18]. For brevity we only present results for cases
using 30 representative days here. Using more days results
in higher-fidelity capacity-expansion modeling, but at higher
computational cost. We generate 30 representative days with
the kMHC technique by first applying k-means clustering to
obtain 10 initial clusters. We then apply HC within each of
those 10 clusters to find three subclusters. We also compare
our proposed clustering techniques to using k-means clustering
only to find 30 clusters.

A. Representative Days Selected

Fig. 1 summarizes the 30 days that are selected and the
weights that are placed on them by the HC and AMHC
techniques. The days selected are the prototypes of the clusters
and the associated weights are the number of days within the
clusters. The figure shows that both techniques select days in
a non-uniform manner. For instance, the HC method selects
eight days in the month of July but only two days in the first
three months of the year. Moreover, the first three months
of the year are only given 49 days of weight, which is less
than 14% of the total. These results suggest that capacity-
expansion models that apply uniform weights to each season
of the year [2], [3] are somewhat arbitrary in nature, as we
note in Section I.
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Fig. 1. Weights placed on 30 representative days by HC and kMHC methods.

Overall, the HC method selects days that are more non-
uniform across the year relative to KMHC. This is in part
because of the two-step clustering process underlying kMHC.
Among the 30 days that they select, nine are common to
both methods: days 134, 155, 171, 189, 209, 124, 126, 218,

and 267. Moreover, HC and kMHC assign total weights of 96
and 94, respectively, to these nine days (which is about 26%
of the total weight), showing further similarities between the
two methods.

The nine commonly chosen days are mostly during the
summer season, demonstrating the importance of the sum-
mer in capturing greater variability in different load and
renewable-availability conditions. Table III summarizes the
per-season standard deviation of load and wind and solar
capacity factors in the unclustered data. The table reveals two
interesting findings. First, it shows that there is considerably
more variability in load as opposed to in renewable availability,
when comparing across seasons. Secondly, the table shows
that the summer season tends to see greater variability in
operating conditions (compared to the other three seasons).
Taken together, these two observations explain more weight
being placed on the summer, as is shown in Fig. 1, and that
load variability has an outsize impact on the weighting toward
the summer.

TABLE III
PER-SEASON STANDARD DEVIATIONS OF LOAD AND WIND AND SOLAR
CAPACITY FACTORS IN UNCLUSTERED DATA

Winter  Spring  Summer  Fall
Load [GW]  5.46 8.02 10.50 7.90
Solar [p.u.]  0.74 0.74 0.76 0.76
Wind [p.u.] 0.74 0.74 0.72 0.73

Table IV shows the peak loads in the unclustered and
clustered data. The table shows that both the HC and kMHC
methods outperform k-means clustering in capturing the load
peaks. While HC and kMHC come within 97% of the overall
peak system load in the unclustered data, k-means clustering
comes within 94% of this peak. Moreover, both the HC and
kMHC methods outperform k-means clustering in capturing
zonal peak loads. The HC method also captures the peak in
two of the load zones.

TABLE IV
PEAK LOADS IN UNCLUSTERED AND CLUSTERED DATA [GW ]

Zone  Unclustered Data HC kMHC  k-Means Clustering
East 35.24 35.11 35.11 33.64
South  21.09 21.09 19.60 19.43
West  13.85 13.85 12.84 12.54
Total  69.29 66.77  66.77 65.52

We cannot show which days are selected if only k-means
clustering is used. This is because k-means clustering does
not provide a representative day (i.e., prototype) for each
cluster. Instead, we represent each cluster found by the k-
means algorithm by its centroid (cf. Step 5 of Algorithm 1).

Fig. 2 shows the wind-duration curve for the East region
using the unclustered and clustered data. The figure shows
mismatches, however the HC and KMHC methods outper-
form k-means clustering in representing the unclustered wind-
duration curve. k-means clustering gives a worse match to the
unclustered data because it ‘over-averages’ wind conditions.
This is seen in the tails of the wind-duration curve. The
representative days given by k-means clustering underestimate
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wind production during high-wind days and overestimate wind
production during low-wind days. This finding that k-means
clustering over-averages renewable availability carries over to
other resource/region combinations. We do not show other
wind- and solar-duration curves for sake of brevity. This issue
with k-means clustering can be overcome if more representa-
tive days are generated. However, this results in a larger and
more computationally challenging capacity-expansion model.
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Fig. 2. East-region wind-duration curve using unclustered and clustered data.

We can quantify the match between the wind profiles given
by the clustered and unclustered data using a normalized
root mean square deviation (RMSD). We define the RMSD
between the clustered and unclustered wind-duration curves
as:
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; (22)
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where the RMSD is normalized by the average wind capacity
factor. The same metric can also be applied to the clustered
and unclustered load- and solar-duration curves. In the case
of the wind-duration curves for the East region, the HC and
kMHC methods have RMSDs of 0.02 and 0.04, respectively,
whereas k-means clustering has an RMSD of 0.16.

Table V summarizes the average (over the three locations
modeled) RMSDs for the load-, solar-, and wind-duration
curves given by the HC, kMHC, and k-means clustering tech-
niques. HC and kK MHC tend to outperform k-means clustering,
which overly averages extreme conditions. This is especially
true for renewable-resource data, because the three techniques
perform the same in representing the load-duration curves. The
RMSDs for the load-duration curves that are obtained from
the three clustering techniques are nearly identical for two
reasons. First, loads display less variability as compared to
wind and solar availabilities. As such, the load-duration curves
from the three clustering techniques are very similar. Secondly,
load values are relatively large in magnitude. As such, what
differences there are in the load-duration curves are negligible
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when normalized by the average load. HC slightly outperforms
kMHC in terms of goodness-of-fit of wind-duration curves,
whereas kMHC outperforms HC in terms of solar-duration
curves. This suggests that the two methods are comparable in
terms of selecting reasonable operating days.

TABLE V
AVERAGE (AMONG THE THREE REGIONS) NORMALIZED RMSD FORrR
LOAD, SOLAR, AND WIND-DURATION CURVES GIVEN BY HC, kMHC,
AND k-MEANS CLUSTERING

Demand  Solar  Wind
HC 1.02 0.11  0.06
kMHC 1.02 0.08  0.07
k-Means Clustering  1.02 0.14  0.13

The clustering methods are implemented in R on a system
with a 3.10 GHz Intel Core i7-3770S processor and 8 GB
of memory. The HC and kA MHC methods take approximately
15 and two minutes of CPU time, respectively, to provide
30 clusters, while k-means clustering takes several seconds.
This shows a further benefit of KA MHC. The time difference
between the HC and kMHC is expected to increase if the data
sets being clustered grow in size. This could occur because
more locations are modeled, more operating-condition data are
used to select representative days, or the operating-condition
data are recorded at subhourly intervals.

B. Investment Decisions

We test the effectiveness of the representative days in
capacity-expansion modeling by examining cases in which
wind-investment costs are reduced relative to the baseline val-
ues that are given in Table II. The rationale behind this analysis
is that changes in the investment cost of wind will result in
differences in the generation mix installed. For instance, lower
wind-investment costs tends to increase wind investments. At
the same time, greater wind investments may also call for
changes in the mix of other generation resources, such as more
flexible generation with greater ramping capabilities.

Figs. 3-5 summarize the investments in coal- and natural
gas-fired generation and wind (aggregated across the three
regions) by the capacity-expansion model with different wind-
investment costs and representative operating days. There are
no investments in nuclear or solar technologies in any of the
cases that are examined. This is because of the high costs
of nuclear and solar and the relatively low capacity factor of
solar.

The figures show some trends in the investments, which
are observed when using unclustered and clustered data sets.
Reductions in wind-investment costs generally result in more
wind generation being built in place of coal- and natural gas-
fired capacity. This is because lower wind-investment costs
means that wind is a lower-cost source of energy.

The one exception to this is for relatively modest reduc-
tions in wind-investment costs (i.e., the case with a 30%
reduction relative to baseline). In this case, wind and natural
gas-fired capacities both increase, while coal-fired capacity
decreases. The reason for this is that the greater wind capacity
built requires more dispatchable and flexible natural gas-
fired capacity (natural gas-fired generation has a relatively
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Fig. 3. Coal-fired capacity that is built as a function of the reduction in wind-
investment cost relative to baseline using unclustered and clustered data.
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Fig. 4. Natural gas-fired capacity that is built as a function of the reduction
in wind-investment cost relative to baseline using unclustered and clustered
data.

high ramping capability). This observation is consistent with
other analyses of the potential impacts of high penetrations of
renewable energy [27]. Further reductions in wind-investment
costs beyond the 30% case allow the system to ‘overbuild’
wind, which reduces the need for flexible capacity. In essence,
the model builds sufficient wind capacity that even during
hours with low capacity factors, the wind can serve much of
the load. Some natural gas-fired generation and energy storage
are used to supplement wind production in these cases.
Overall, the representative days that are selected by the
three clustering techniques result in investment levels that
follow those given by the unclustered data. We can quantify
the extent to which the investments that are determined by
using clustered data match those that are determined by using
unclustered data, through the use of a normalized RMSD
metric. We define the normalized RMSD in investments in
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Fig. 5. Wind capacity that is built as a function of the reduction in wind-
investment cost relative to baseline using unclustered and clustered data.

technology 7 as:

(23)

Table VI reports the RMSDs for the five different technologies
that are built (note that solar and nuclear are not built, because
of their relatively high investment costs). The table shows that
the HC technique results in investments that are closest to
those that are given by the unclustered data. However, the
HC and kMHC techniques both perform better than k-means
clustering overall.

TABLE VI
NORMALIZED RMSD FOR INVESTMENTS GIVEN BY HC, kMHC, AND
k-MEANS CLUSTERING

HC kMHC  k-Means Clustering
Coal 0.07  0.48 0.18
Natural Gas 0.12 0.18 0.20
Wind 0.19 0.14 0.20
Storage 0.19 0.22 0.32
Transmission  0.11  0.15 0.25

VI. CONCLUSIONS

This paper proposes two hierarchical clustering methods to
select representative operating days for long-term capacity-
expansion models. The use of representative operating periods
reduces the computational cost of such models. Our methodol-
ogy allows intertemporal operating constraints, such as storage
state-of-charge-balance and generator ramping, to be captured
in the investment model. At the same time, the clustering
methods produce representative days that capture the important
statistical features of operating-condition data. This includes
temporal autocorrelations in the data and correlations between
the locations that are modeled. This is primarly demonstrated
by comparing the investment decisions that are made using the
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clustered data to those made using the full unclustered dataset.
We show that the HC and KMHC methods yield investment
decisions that are comparable to those that are obtained using
the full unclustered data.

Using a case study that is based on the Texan power
system, we test our proposed methodologies and compare
their performance to applying k-means clustering alone. We
show that the representative days that are selected by our
proposed methods capture the time dynamics in the load,
solar, and wind data. We also demonstrate that they result
in better overall investment decisions than applying k-means
clustering alone does. We do this by examining investment
levels with different wind-investment costs. Our own testing
[18] also examines the impacts of changing other investment-
model parameters (e.g., solar-investment costs and operating
costs of different technologies). This testing, which we do
not present here for sake of brevity, demonstrate the same
finding that the HC and KMHC methods yield investment
decisions that are comparable to those that are obtained from
using the full unclustered data. The K MHC technique reduces
the computational burden of selecting representative days
compared to HC, but this comes at some cost in terms of
quality of the investment decisions.

The relatively good performance of the kAMHC technique
compared to HC method may seem surprising in light of the
differences in the days that the two methods select (cf. Fig. 1).
This finding highlights an important nuance in the selection of
representative days. The goal is to find an ensemble of days
that represent the different feature of load, wind, and solar
patterns. Although there are some differences in the days that
are selected by the HC and kMHC methods, they ultimately
come up with ensembles with relatively similar patterns.

An important question underlying the use of our proposed
clustering techniques is how many representative days should
be selected. There is a clear tradeoff here. More representative
days allows for higher fidelity in modeling operating condi-
tions. Conversely, more days yields a larger and less tractable
capacity-expansion model. The capacity-expansion model that
we use in this paper is based on a more complex multistage,
multiscale stochastic investment model [9]. Even with the use
of the progressive hedging decomposition algorithm [28], that
more complex model can take over a week to solve with
30 representative days if a sufficient number of scenarios and
investment stages are included. Thus, judiciously selecting the
minimum number of representative days possible is important
from the perspective of maintaining a tractable capacity-
expansion model. Indeed, one may argue that the shortcomings
of applying k-means clustering alone can be overcome by
use of more representative days (with less computational time
involved than employing the HC or Kk MHC methods). This is a
naive view, however, because it neglects the cost of solving the
resulting capacity-expansion model. This further demonstrates
a contribution of our work, as the HC or Kk MHC methods do
a better job than k-means clustering in judiciously selecting a
small number of representative operating days for investment
modeling.

Our analysis focuses on using clustering to obtain represen-
tative operating days. One could naturally use our proposed
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methods to select operating hours, for instance if it is not
necessary to model intertemporal operating constraints. Con-
versely, the methods could also be used to select operating
weeks if, for instance, interday energy storage is an impor-
tant modeling feature. A benefit of our proposed clustering
methods relative to others proposed in the literature (even if
selecting representative operating hours) is that they do not
arbitrarily assign equal weights to different seasons of periods
of the year, as illustrated by Fig. 1.
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