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Abstract

Metabolomics is the newest addition to the “omics” disciplines and has shown
rapid growth in its application to human health research because of
fundamental advancements in measurement and analysis techniques.
Metabolomics has unique and proven advantages in systems biology and
biomarker discovery. The next generation of analysis techniques promises
even richer and more complete analysis capabilities that will enable earlier
clinical diagnosis, drug refinement, and personalized medicine. A review of
current advancements in methodologies and statistical analysis that are
enhancing and improving the performance of metabolomics is presented along
with highlights of some recent successful applications.
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Introduction

Metabolomics is a rapidly growing field of study that endeavors
to measure the complete set of metabolites (generally considered
to be the intermediates and products of cellular metabolism less
than 1 kDa in size) within a biological sample (that is, the metabo-
lome) in order to achieve a global view of the state of the system'.
Typically, metabolomics is focused only on characterizing the
water-soluble metabolites, whereas lipidomics is a specialized
discipline that investigates only lipids’. Water-soluble metabolites
are part of a mobile, open biological system and as a result can
readily interact and communicate with the environment, including
the microbiome”’. This is also true for some lipids but to a much
lesser extent. Consequently, metabolomics has become an essential
resource for systems biology because of its unique perspective rela-
tive to genomics and proteomics. Numerous studies have measured
the relative upregulation or downregulation of genes or proteins to
infer changes in biological function. However, it has been shown
that even for common metabolic processes, such as glycolysis, a
change in the cellular concentration of an enzyme does not nec-
essarily lead to a proportional change in metabolic flux’. Thus,
whereas genomics and proteomics identify what might happen,
metabolomics identifies what is actually happening in the system.
This realization demands a different perspective and requires the
measurement of transcriptional, proteomic, and metabolomic data
in order to obtain a complete picture of the system’s response to
environmental or genetic stress.

As another illustration, a “silent mutation” does not produce an
observable change in phenotype despite an alteration in a gene or
protein product. Therefore, metabolomics profiling can be used
to decode the function of silent mutations, such as the Pfk26 and
Pfk27 genes in Saccharomyces cerevisiae that both encode the
glycolytic/gluconeogenesis regulator phosphofructokinase 2°. Via
co-response and cluster analysis, these genes were observed to
exhibit similar metabolite profiles which differed from other genes
impacting energy metabolism. For these reasons, methods to
directly measure metabolite concentrations within cells, tissues,
organs, or other biological samples are crucial for fully under-
standing a system when traditional omics studies (for example,
genomics, proteomics, and transcriptomics) are deemed insuf-
ficient. To date, nuclear magnetic resonance (NMR)° and mass
spectrometry (MS)’ have been the primary analytical techniques
used to characterize a metabolome. NMR and MS are typically
combined with univariate and multivariate statistical methods
to identify major metabolite changes and to identify potential
biomarkers®. Nevertheless, despite the tremendous growth in the
field, critical protocols and techniques are still under develop-
ment. Herein, we present recent advances in methodologies and
statistical analysis that are enhancing and improving the perform-
ance of metabolomics while extending the applications in which
metabolomics can play a significant role.

Essential components of a metabolomics study

Conceptually, an untargeted metabolomics study is quite simple.
Biological samples are obtained from two or more experimental
groups to be compared (healthy versus diseased, wild-type versus
gene knockout, and so on) and the metabolites are extracted. These
metabolic extracts then are measured by using numerous instru-
mental techniques, of which NMR and liquid chromatography
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(LC)-MS are the most common. The resulting spectra then are
subjected to statistical analysis techniques such as principal
component analysis (PCA) and orthogonal projection onto latent
structures (OPLS) to determine the most significant spectral fea-
tures that define each group™'’. Finally, these spectral features
then can be assigned to distinct metabolites and metabolic path-
ways by using spectral libraries of known metabolites''"”. In this
manner, untargeted metabolomics is discovery-based since it reveals
previously unknown information about how a system responds to
environmental or genetic stress. Conversely, targeted metabolomics
focuses on analyzing a specific set of metabolites on the basis
of some prior knowledge about the system. As a result, targeted
metabolomics studies tend to be more sensitive and quantitative and
have a higher reproducibility and a lower false-positive rate relative
to untargeted metabolomics.

Protocols for obtaining and extracting the metabolome have been
well developed and exhaustively reviewed for a wide range of
biological samples, including cell cultures, urine, blood/serum,
and both animal- and plant-derived tissues'*~'°. Although these
protocols are readily available, the variable stability of metabo-
lites means that even minor changes in procedure can have a
major impact on the observed metabolome. The fast turnover rate
of enzymes and the variable temperature and chemical stability of
metabolites require that metabolomics samples be collected quickly
and handled uniformly and that all enzymatic activity be rapidly
quenched in order to minimize biologically irrelevant deviations
between samples that may result from the processing protocol '
Thus, the optimization of the sample preparation protocol is essen-
tial to a successful metabolomics study. Conversely, the most likely
source of bias is improper handling of the metabolomics samples.
An important consideration is that the complete metabolome cannot
be captured in a single extraction protocol. This is in stark contrast
to modern genomics, which can reliably cover the entire genome
of an organism. A metabolomics extraction protocol will usually
focus on only a subset of metabolites (for example, water-soluble
metabolites or lipids). Furthermore, an extraction protocol may
focus on either a highly reproducible and quantitative extraction
of a restricted set of metabolites (that is, targeted metabolomics) or
the global collection of all possible metabolites (that is, untargeted
metabolomics) with a possible reduction in precision. In general,
200 to 500 metabolites may be observed by targeted metabolomics,
whereas upwards of 1,500 metabolites have been detected in
untargeted metabolomics studies'®.

Following extraction and subsequent data collection, the final and
perhaps most crucial step is metabolite assignment, which typically
is accomplished by a comparison with spectral libraries of known
metabolites. This is not a trivial task since the number of possible
metabolites can be prohibitively large, and a large segment of the
metabolome is either unknown or lacking a reference spectrum. For
example, the human metabolome is estimated to contain around
150,000 metabolites'®, but the Human Metabolome Database'' con-
tains only around 74,000 metabolites (as of 1 June 2017). Thus,
there are still many unknown metabolites and a true estimate of the
size of the human metabolome is challenging'’. Another complicat-
ing factor is that different organisms may have completely unique
metabolomes. For instance, plants have over 45,000 known sec-
ondary metabolites”. Finally, there may be ambiguities in making
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a metabolite assignment because of chemical shift overlap or iden-
tical masses (for example, isomers). As a result, the assignment of
metabolites to spectral features may be as low as 4 to 5%”'.

A tale of two methods: mass spectrometry or nuclear
magnetic resonance?

Perhaps the most important choice that can be made in a metabo-
lomics study is which instrumental platform is used. Although a
wide range of instruments have been used for metabolomics,
including capillary electrophoresis, infrared spectroscopy, and
Raman spectroscopy, only NMR and MS are routinely used for
metabolomics. NMR and MS are often applied in metabolomics
investigations because of their inherent complementarity, which
results from their distinct advantages and disadvantages”. NMR is
highly reproducible and quantitative, has simple sample preparation
protocols, and is able to measure analytes over a wide range of sol-
vent conditions”. Despite these advantages, the main limitation of
NMR is its low sensitivity, which restricts its application to meas-
uring the most abundant metabolites in the sample (micromolar to
millimolar range). This has been noted as a significant hurdle that
has slowed the widespread adoption of NMR by the metabolomics
community”>**. Conversely, the high sensitivity and low detection
limits of MS enable the detection of subtle metabolic changes that
are invisible by NMR. With this increase in sensitivity, the detection
of thousands of peaks is relatively common®, but untargeted MS
metabolomics studies often are not quantitative in nature. Since MS
detectors rely on ionization processes, MS is restricted to detect-
ing metabolites that readily ionize. Correspondingly, a significant
reduction in observable metabolites may occur depending on the
specifics of the sample being considered”. For a detailed overview
of the utility of various MS detectors to metabolomics, see the
review article by Dunn et al.”” (2005).

MS also suffers from reproducibility problems since contaminants
within the sample can change the ionization efficiency of
metabolites”. Specifically, quantitation is challenging in untargeted
MS since peak intensity is dependent on ionization efficiency,
which varies between metabolites and also is strongly depend-
ent on experimental conditions that may result in varying ion
suppression’. One issue of particular relevance to MS is the
relatively narrow nominal mass and mass defect distribution of the
metabolome which results in significant peak overlap®. This can
be resolved by coupling MS to a chromatographic method, most
commonly LC or gas chromatography (GC), to resolve overlapping
peaks and to aid in the metabolite identification based on retention
time and the properties of the stationary phase.

GC was the first separation technique applied to the analysis of
metabolic mixtures; for example, GC-MS was used to identify
biomarkers for diagnosing phenylketonuria in 1970*. GC-MS
is particularly beneficial for the analysis of volatile metabolite
mixtures since minimal sample preparation is required; in some
cases, samples can be directly analyzed. Furthermore, a number
of applications of GC-MS uniquely involve detecting volatile
metabolites; two examples are the measurement of exhaled breath
condensates for diagnosing lung cancer’' and the monitoring of
volatile paper degradation products from historic books”. An
obvious disadvantage of GC-MS is its reliance on analyte
volatility, where metabolites of low volatility or low temperature

F1000Research 2017, 6(F1000 Faculty Rev):1148 Last updated: 19 JUL 2017

stability may be modified or destroyed'’. Limited metabolite vola-
tility can be overcome through the use of derivatization schemes,
but derivatization is time-consuming. More importantly, differences
in the efficiency of the derivatization™ and differences in the sta-
bility of the derivatized metabolites'’” may dramatically perturb the
apparent concentrations of the metabolites, possibly leading to an
erroneous biological conclusion.

LC was not widely used for metabolomics until the 1980s*" and
this was due to technical limitations with interfacing LC and mass
spectrometers. A main advantage of LC over GC is that most
metabolites can be detected intact and without modification from a
deravitizing agent. Additionally, LC provides an accurate analysis
of thermally unstable or reactive metabolites since the separation
typically occurs at room temperature. However, the introduction
of a liquid phase does introduce a higher variability in retention
times™, an increase in ion suppression due to matrix effects®, and a
lower resolution relative to GC.

NMR and MS tend to observe a distinct set of metabolites from
the same metabolomics sample. Consequently, there is a grow-
ing trend in metabolomics to perform tandem studies in which the
same sample is analyzed by both NMR and MS*. In this
manner, the coverage of the metabolome is significantly increased
by taking advantage of the strengths of both methods. NMR identi-
fies trends in metabolic alteration along core metabolic pathways
and provides a context for the interpretation of the low-abundance
metabolites identified by MS. Of course, the combined use of NMR
and MS leads to a proportional increase in data set size with the
added complexity of the simultaneous processing, analysis, and
interpretation of two dissimilar data types.

Data processing and interpretation

Metabolomics experiments generate large data sets that require spe-
cialized tools for analysis. Numerous software packages for data
pre-processing and statistical analysis are available and have been
reviewed elsewhere’*!. Unfortunately, no single software exists
that can simultaneously perform all of the critical steps needed for
an analysis of a combined NMR and MS data set. Although the sta-
tistical techniques applied to NMR and MS data sets are largely the
same, each technique requires a unique set of pre-processing tools
and algorithms prior to modelling. For example, an NMR spectrum
has to be Fourier-transformed and phased, whereas centroiding
and de-isotoping are required in MS. Owing largely to these data
type—specific processing requirements, newly developed software
is almost exclusively restricted to one method or the other. Con-
versely, there has been minimal effort in developing tools capable
of working with both NMR and MS data sets*’.

There are two general approaches to integrating NMR and MS data
sets into a single coherent study. The first involves samples simply
being independently analyzed by each method. The separate data
sets then are compared in order to identify consistencies in the met-
abolic alterations observed by each technique. The main advantage
of the approach is simplicity since it does not require any significant
protocol changes. Also, the confidence of a metabolite assignment
may be significantly increased if it is identified by both methods.
Furthermore, a measure of internal consistency may be achieved
if metabolite concentrations can be estimated by both methods.
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However, significant information can be lost during this process
since, for example, ambiguity in peak assignments sometimes can
be resolved by information from the other method. There is also a
lack of statistical correlation since the data sets are independently
analyzed. Although the manual curation of independent data sets
is the dominant method currently used by metabolomics investiga-
tors, it also suffers from reproducibility problems due to potential
biases in data interpretation (for example, metabolite assignment
methods) among other issues.

The second approach to combining NMR and MS data sets is to
simultaneously integrate each data set into a single statistical
model using a multiblock analysis. Multiblock analysis encom-
passes a variety of methods that combine multiple data sets prior
to conventional multivariate analysis. In addition to combining
multiple instrumental data sources*, multiblock analysis has been
successfully employed to combine data sets from different omics
disciplines”. Multiblock methods are preferable to independent
analysis since the relative contributions of each data set still can
be quantified, but importantly the larger combined data set is likely
to result in models with greater predictive ability and resolving
power than either method alone*. However, the software tools to
perform multiblock analyses are crude and often rely on custom
sets of pre-processing routines using multiple software packages.
The lack of integrated analysis tools and software is a major road-
block in metabolomics, especially in light of the growing interest in
combining NMR and MS data sets.

Recent advances in metabolomics

Dynamic nuclear polarization

NMR metabolomics investigations, especially those concerned with
achieving a high confidence in metabolite identification, require
two-dimensional NMR methods to resolve the overlap present in
one-dimensional spectra. In general, this requires isotopic label-
ling with NMR-active nuclei like *C and N because of their low
natural abundance. In the last few years, dynamic nuclear polariza-
tion (DNP) has evolved from a structural biology tool in the area
of solid-state NMR to have potential applications in solution-state
metabolomics®™. In DNP, a solid, frozen metabolomics sample at
about 1.5 K is polarized in the presence of microwave-irradiated
free-radicals, which induces a temporary hyperpolarization in spin-
active nuclei through a transfer of polarization from electrons to
nuclei. The sample then needs to be rapidly melted and transferred
to an NMR spectrometer to take advantage of the greatly enhanced
sensitivity (>10,000-fold)*. The dramatic increase in sensitivity
avoids the need for isotopic labelling, especially for in vivo sam-
ples, and may permit the detection of low-abundance metabolites.
Nevertheless, DNP experiments are limited by T, relaxation rates,
resulting in a short measurement window of the dynamically polar-
ized samples. DNP also requires substantial hardware modifications
and accessories (for example, microwave generator) to rapidly thaw
and shuttle samples back and forth from the NMR spectrometer.
DNP has also been applied to '*C-labeled metabolites that then are
used as a tracer compound for in vivo imaging*’. This requires close
proximity of the polarizer and magnetic resonance imaging spec-
trometer to allow for rapid transfer, dissolution, and injection of
the *C-labeled metabolite given the relatively short T, of 30 to 40
seconds for a '*C-labeled carboxyl group. Despite these technical
obstacles, DNP has been successfully used to monitor a single
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metabolite (for example, pyruvate) in living tissue (for example,
heart) by magnetic resonance imaging*‘. Besides the short meas-
urement time, another challenge with the application of DNP to
in vivo imaging is the limited number of *C-labeled metabolites
that can be polarized and tolerated at the concentrations needed for
imaging (25 to 80 mM) and that are also a useful biological probe.
In addition to pyruvate, bicarbonate, fumarate, urea, glutamine, and
dehydroascorbate have been used for in vivo imaging*’. Despite
fundamental issues of reproducibility and limitations in sample
preparation, DNP protocols and technology are rapidly advancing
and one day could become a routine tool for metabolomics™.

Disease profiling and personalized medicine

Metabolomics can be used to profile an individual’s responses to
a drug treatment or other medical therapy by monitoring metab-
olite changes in readily obtainable biofluids (for example, blood
and urine). A unique advantage of metabolites as biomarkers is the
likely occurrence of observing a set of multiple metabolites with
distinctly different concentration changes that are correlated with
a disease state or treatment response. Correspondingly, multiple
metabolites, instead of a single biomarker, are expected to yield a
higher sensitivity and selectivity. For example, plasma baseline lev-
els of xanthine, 2-hydroxyvaleric acid, succinic acid, stearic acid,
and fructose prior to simvastatin treatment were observed to reliably
predict a good or poor response in reducing low-density lipoprotein
cholesterol’’. The OPLS model yielded a 70% sensitivity and 79%
specificity with a corresponding area under the receiver operating
characteristic curve of 0.84. Thus, metabolomics can be used to pre-
dict whether a patient will respond to a drug in addition to being
used as a semi-quantitative prognosis of disease progression.

For example, in a recent study of patients with tuberculosis (TB),
urine samples that were collected over the course of a 6-month
period became more similar to those of a non-TB control group dur-
ing the course of first-line anti-TB therapy (for example, isoniazid,
ethambutol, or pyrazinamide). Metabolomics has also been success-
fully employed to identify serum metabolic alterations associated
with psoriasis’'. Importantly, the metabolomics results were con-
sistent with trends previously observed in genomics and proteomics
studies. The metabolome changes were observed to reverse follow-
ing successful corticosteroid treatment™. Interestingly, the authors
identified an increased demand for glutamine, which had not been
previously reported in psoriasis’>*. Glutamine demand is directly
associated with diseases characterized by increased cellular prolif-
eration, such as in cancers. A significant alteration in B-isosterol,
which is a commonly employed herbal remedy, was also observed.
Thus, metabolomics may also be used to identify a patient’s use of
alternative treatments outside of his or her physician’s knowledge or
recommendation. In this manner, metabolomics may assist in deter-
mining whether co-administration of a complementary treatment
was beneficial or detrimental to a patient’s therapeutic outcome.

New trends in data analysis

Much of the data analysis approach in metabolomics has been
largely borrowed from the field of chemometrics, which pio-
neered the application of PCA and PLS to chemical systems™.
Although these are powerful statistical tools, the current trend in
metabolomics data analysis is evaluating the efficacy of new
algorithms and statistical methods to improve group separation and
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metabolite identification. PCA, PLS, and OPLS are all commonly
employed by metabolomics investigators, but newer approaches,
including support vector machine (SVM)>, random forest (RF),
and self-organizing map (SOM)”’ algorithms, have all been recently
applied to metabolomics data sets.

Despite having been formalized since 1992, SVM has been used
extensively only in the analysis of gene microarray data, particularly
due to its performance on data sets characterized by a large number
of variables and few samples™ . SVM is also able to identify non-
linear relationships that violate the linearity assumptions of PCA
and OPLS, making it easily generalizable. SVM has been recently
applied in biomarker discovery for ovarian cancer, and a model
using serum-derived LC-MS spectra was able to predict disease
onset with higher accuracy than the currently accepted method of
CA-125 serum monitoring®’. A major caveat of SVM is its restric-
tion to binary classification problems: it is able to discriminate
between only two experimental groups. Simply, spectra belong-
ing to two experimental groups are represented as points in
n-dimensional space, where n corresponds to the number of observed
metabolites. A hyperplane then is calculated that best separates
the points from the two groups. The coefficients of the calculated
hyperplane are used to determine which metabolites are most
important for discriminating between the two groups. Although
methods have been proposed to extend SVM to multi-class
problems, they are often done by breaking down the data set into
an ensemble of binary groups that oversimplifies the problem and
leads to uninformative models®.

The RF algorithm is a decision tree—based method that uses ran-
dom subsets of the data to construct multiple models, which then
are combined to create an average model in a process known as
bootstrap aggregation. In the decision tree method, samples are
mapped to a target value (that is, which experimental class the
sample belongs to) using a set of variable-based decision rules that
separate the samples into groups corresponding to the target value.
These newly formed groups can be further subdivided according
to new variables, and each “branch” of separation is repeated until
the samples can be fully differentiated. The major advantage of the
decision tree is its imperviousness to scaling and variable normali-
zation, an extremely common problem in metabolomics data®. The
disadvantages include an extreme propensity for overfitting and
having extremely poor generalizability that severely limits its util-
ity. RF addresses this limitation by creating an ensemble of partial
decision trees that, when combined into an overall model, reduces
variance and overfitting™. In particular, the RF algorithm, being rel-
atively unaffected by scaling and normalization and easily handling
both large data sets and missing values, is highly adaptable to the
realities of real-world data sets. A major disadvantage of RF is that
the method requires extensive “tuning” of default parameters by
the investigator in order to obtain the best model. Also, the result-
ing decision tree can be hard to visualize for large data sets®. RFs
have shown clinical value: they have been used to determine a set
of serum protein and metabolic biomarkers in prostate cancer with
higher predictive accuracy than the current prostate-specific antigen
biomarker®>®’. See Gromski et al. (2015) for an excellent review of
the SVM and RF algorithms that also includes comparisons with
other mainstream techniques®.
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SOM is an approach similar to PCA that reduces multi-dimensional
problems to a more easily interpretable low-dimensional grid to
visualize natural clustering trends and groupings within a data
set. SOM can be applied to the same tasks as PCA but without the
biases toward high-variance metabolites. SOMs, like SVM, have
the ability to detect non-linear relationships between detected
metabolites”®. SOMs have been successfully applied to develop
biomarkers for early-stage renal cell carcinoma as well as to predict
patient response to surgical intervention with a predictive accuracy
of 94.74%". In comparison with the other statistical methods, SOM
has been severely limited in metabolomics because of a computa-
tionally intensive algorithm and the lack of a pre-packaged soft-
ware, which has significantly diminished its accessibility to the
wider research community”’. Nevertheless, the usage of SOMs
in metabolomics is steadily rising, and comparative analyses are
beginning to demonstrate that SOMs are an acceptable alternative
to more traditional clustering algorithms’'.

In addition to statistical methods applied directly to spectral pro-
files, identified metabolites can be used with pathway analysis’ to
understand metabolite interactions with known pathways or to
discover mechanisms of action in pharmaceutical natural product
research’’. Metabolomics data sets can generate an overwhelming
and seemingly disjointed list of metabolites, which pathway anal-
ysis aims to place into a broader biological context by assigning
metabolites to relevant metabolic pathways. This is done through a
number of software tools that integrate putatively identified
metabolites with pathway information from various databases.
For example, MetaboAnalyst 3.0 is a suite of metabolomics tools
(http://www.metaboanalyst.ca), which includes modules for metab-
olite enrichment analysis (MSEA), metabolite pathway analy-
sis (MetPA), and an integrated pathway analysis. The user input
is typically a list of metabolites (with or without concentrations)
or genes or both. MSEA provides a ranked list of potentially key
metabolic pathways based on the observed number of metabolites
associated with that pathway (that is, metabolite set enrichment)””.
MetPA combines MSEA with a pathway topology analysis to pro-
vide an overall pathway analysis to identify the metabolic pathways
primarily impacted in the study’”. The integrated pathway analysis
combines both metabolomics and genomics data with enrichment
analysis and topology analysis to again identify the pathways (in rank
order) that were primarily impacted in the study’””. MetaboSignal
(https://bioconductor.org/) is an alternative approach to pathway
analysis which employs directed graphs with network topology
approaches to compute centrality measures to correlate gene-
metabolite relationships through shortest-path distances™. Thus,
unlike the MetaboAnalyst 3.0 tools, the output of MetaboSignal
is a network map of gene-metabolite connectivities. Cytoscape
(http://www.cytoscape.org/) is a generalized network interac-
tion and visualization tool that works with a variety of data
sets, including metabolomics data. Cytoscape combined with
MetScape 3 (http://metscape.ncibi.org/)”” can generate network
maps similar to those of MetaboSignal from metabolomics or
genomics data or both”. MetScape uses known pathways from
Kyoto Encyclopedia of Genes and Genomes (KEGG)” and
Edinburgh Human Metabolic Network (EHMN)*" databases and
gene set enrichment analysis to generate these networks in order
to visualize the impacted metabolic pathways. In essence, there is
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some significant overlap in the capabilities of MetaboAnalyst 3.0,
MetaboSignal, and Cytoscape/MetScape 3. Importantly, pathway
analysis provides an interaction network that may identify central-
ized hubs where metabolic pathways coincide or where bottlenecks
may occur.

The limited connectivity or altered flow through specific metabolic
nodes (that is, change in metabolic flux) may identify functionally
essential biological processes®. These essential pathways then can
be selectively targeted. By genetically or chemically restricting a
potentially essential metabolic pathway, it is possible to ascertain
the relevance of the pathway to a systems response to an envi-
ronmental stress (that is, drug resistance) and potentially reverse or
negate the response™.

Pathway analysis also allows for the integration of multi-modal
omics data, such as combining gene-expression and metabo-
lomics data to uncover gene and protein functions. For example,
metabolite profiles were integrated with genome-wide screen-
ing of single-nucleotide polymorphisms (SNPs) to identify the
molecular mechanism of the NATS and PYROXD?2 genes. Briefly,
SNPs were ranked according to the strength of an association with
observed metabolites. The regions where these SNPs occur on
the chromosomes then were screened to determine at what posi-
tion in the genome the gene/protein product responsible for the
mediation is stored. With this approach, it was suggested that the
NAT8 and PYROXD2 genes were responsible for mediation of
serum diethylamine levels*’, a novel insight for these previously
under-annotated genes.

As another illustration, transcriptomic and metabolomic data from
Arabidopsis thaliana were integrated to characterize the biologi-
cal response resulting from the over-expression of PAPI, a gene
known to cause profound accumulation of anthocyanins and to
encode a MYB transcription factor regulating flavonoid biosynthe-
sis. The authors were able to correlate the biosynthesis of cyanidin
and quercetin derivatives with a specific set of upregulated genes
that enabled them to identify the function of two uncharacterized
proteins: a flavonoid 3-O-glucosyltransferase and anthocyanin
5-O-glucosyltransferase®. Numerous tools are now available for
pathway analysis of metabolomics data’”**, which will signifi-
cantly improve data interpretation and simplify our understanding
of biological relevance. Thus, pathway analysis is becoming a
routine component of a detailed metabolomics analysis.

Conclusions: What does the future hold?

The recent advancements in metabolomics outlined herein have
been shown to enhance its utility in systems biology research and
to have a beneficial impact on medical research and personalized
medicine. The measurement of metabolomics profiles has been
shown to be useful for monitoring treatment efficacies from both
pharmaceutical and surgical interventions. As our understand-
ing of the relationship between disease state and the chemical
profile of biofluids grows, metabolomics is expected to become a
routine approach for monitoring disease development and progres-
sion, as a tool for disease diagnosis, and for understanding the
underlying molecular mechanisms of drug resistance. Metabolite
profiles could be obtained at regular intervals and screened for
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changes over a patient’s lifetime as a diagnostic tool and a means
to monitor a patient’s overall health status. Some of this work
has already begun; an ongoing Alphabet (parent company of
Google) “moon-shot project” is a baseline study attempting to
determine the inherent level of variability in human medical data
that is not associated with a disease. Though still in its infancy,
a similar approach using metabolomic profiles may be used to
determine the inherent variability in biofluid profiles for healthy
individuals. In this manner, metabolic profiles associated with
disease onset and progression can be easily distinguished from
the known variance in healthy individuals.

Some of the biggest challenges remaining in the field of metabo-
lomics involve fundamental limits in experimental methodology.
Metabolomics requires relatively high-cost instrumentation
and complex data analysis and still suffers from issues of
sample-to-sample variability. Although great strides in each of these
areas have been made, there is still more work to be done before
metabolomics can become a key and routine part of a clinical
practice. Nevertheless, metabolomics continues to make important
contributions to both medical research and general systems biology
studies. In fact, the ability to directly measure metabolite concen-
tration changes by using a targeted NMR or MS approach would
greatly benefit investigations into a range of research areas that
often are overlooked by other methods. In this manner, a metab-
olomics assay that targets a select and specific set of metabolites
can be used to develop a highly reproducible and quantifiable assay
that can be translated into a validated clinical assay.
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