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a  b  s  t  r  a  c  t

All animals  with  large  brains  must  have  molecular  mechanisms  to regulate  neuronal  process  outgrowth
and  prevent  neurite  self-entanglement.  In vertebrates,  two  major  gene  families  implicated  in these  mech-
anisms  are  the clustered  protocadherins  and  the  atypical  cadherins.  However,  the  molecular  mechanisms
utilized  in complex  invertebrate  brains,  such  as  those  of  the cephalopods,  remain  largely  unknown.
Recently,  we  identified  protocadherins  and atypical  cadherins  in  the  octopus.  The  octopus  protocadherin
expansion  shares  features  with  the  mammalian  clustered  protocadherins,  including  enrichment  in  neu-
rins
herins

 evolution

ral  tissues,  clustered  head-to-tail  orientations  in the  genome,  and  a large  first exon  encoding  all  cadherin
domains.  Other  octopus  cadherins,  including  a  newly-identified  cadherin  with  77  extracellular  cadherin
domains,  are  elevated  in  the  suckers,  a striking  cephalopod  novelty.  Future  study  of  these  octopus  genes
may  yield  insights  into  the  general  functions  of  protocadherins  in neural  wiring  and cadherin-related
proteins  in  complex  morphogenesis.

©  2017  Elsevier  Ltd. All  rights  reserved.
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tion of brains & the octopus nervous system

us systems are circuits of cells dedicated to organizing ani-
viors. Though all bilaterian animals have nervous systems,
laterians have brains. Brains arose independently in bila-

 least four times in evolutionary history, in arthropods,
 molluscs, and chordates (Fig. 1) [1]. Other bilaterians,

novel molecular mechanisms to facilitate the correct formation of
functional neural units.

Soft-bodied  or coleoid cephalopods (cuttlefish, squid, and octo-
pus) present a particularly interesting group for comparative
molecular research due to their complex behaviors and large
brains. Cephalopods belong to the phylum Mollusca, an ancient
and successful group that also includes the bivalves (oysters, mus-
st, feature nervous systems of decentralized nerve nets
e rings (sea stars, roundworms) or discrete ganglia (gas-
olluscs) [1]. The evolution of bilaterian nervous systems
ient nerve nets into complex brains must have required
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s) and gastropods (slugs, snails, limpets) (Fig. 1) [2].
ods diverged from bivalves and gastropods ∼540 mil-
s ago (mya), at the edge of the Ediacaran and Cambrian
3,4]. Early cephalopods were extremely prolific: the fos-

 reveals over ∼4000 genera occupying marine habitats
e [4]. The coleoids diverged from the hard-shelled nau-
16 mya  [5], and subsequently developed many striking

gical features, including their large nervous systems (see

).
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Fig. 1. Simplified Phylogeny of Extant Metazoans. A great diversity of neural char-
acters exists in metazoans (a), but brains are found only in bilaterians (b). Both
deuterostomes  (c) and protostomes (d) include lineages with brains. Chordate,
ecdysozoan  (e), and lophotrochozoan (f) brains arose independently from one
another. Octopuses belong to the phylum Mollusca. Circle represents last common
ancestor  of
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Fig. 2. Octo
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(3). Octopu
Copyrighte
 deuterostomes (such as humans) and protostomes (such as octopuses).

phalopod body plan, as illustrated for the octopus (Fig. 2a),
3 major parts: the mantle, the head, and the foot. In the
he foot makes up the eponymous eight arms [2]. Each arm
ular hydrostat lined with one or two rows of suckers (see
). The head of the octopus contains its large brain (Fig. 2b),
y the two camera-like eyes. The mantle is a muscular cav-

ith the internal organs of the octopus, including two  gills,
rts, the ink sac, digestive tract, and gonads.
ntral nervous system of octopuses consists of a central
s situated around the esophagus, a pair of optic lobes, and
erve cord running down the length of each arm (Fig. 2b).

pus nervous system represents a dramatic enlargement
cestral nautiloid nervous system: for example, the com-
pus, Octopus vulgaris, has over half a billion neurons. Only
e third of these neurons reside in the central brain and
es; the remaining neurons are located in the axial nerve
he eight arms [6]. The central brain above the esophagus
aesophageal mass) contains lobes for higher motor con-
ll as multiple lobes forming two largely separate learning
ory systems. The lobes of the subesophageal mass serve
l important functions such as adaptive coloration and reg-

 vasomotor tone. The optic lobes contain more than twice
er of neurons found in the central brain, reflecting the

t role that vision plays in these marine predators. In typical
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The  ve
servation
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pus Body (a) and Brain (b) Anatomy. Molluscan body plans are made up of three parts: 

 octopus. The head contains the optic lobes (1) and the central brain mass, which is di
s arms are lined with suckers (s), a novel morphological innovation specific to coleoid c
d image used with permission of MICRO, The Smallest Mollusk Museum: www.smallestm
al Biology 69 (2017) 151–157

xtraordinarily elaborate octopus nervous system stands
g invertebrates for both its absolute and relative size.
brain-to-body ratio exceeds that of many fishes and
ns [7]. Given the great evolutionary distance between ver-

and octopuses (Fig. 1), the two brains show an incredible
 convergent evolution [8]. For example, the vertical lobes,
ing and memory centers of the octopus brain, possess
ut-fan-in neural organization characteristic of vertebrate
m [9,10]. The cephalopod lineage demonstrates the great
ty that nervous systems gained independently in bilate-
ution.

nges to building a complex brain

h vertebrate and invertebrate nervous systems have dif-
orphologies, brains of the different evolutionary lineages
lar developmental challenges. Developing neurons must
heir own processes from those of other neurons and

 target their synaptic partners. One solution to this chal-
o generate unique molecular identities at the cell surface
nt neurons can recognize self from non-self, partner
-partner before establishing stable connections [11,12].
a and mouse brains have found variations on a very sim-
cular scheme to address this problem of self-recognition
er synapse formation: arthropods generate many protein

 of one gene through alternative splicing while chordates
iple genes within a single superfamily to yield multiple
on proteins [13–16].
rthropod Drosophila melanogaster utilizes Dscam1, the

 of human Down Syndrome cell adhesion molecule, to pro-
rons with exclusive identities [17]. Dscam1 is unique for
lternatively spliced exons, which have 12, 33, 48, and 2
respectively [18,19]. By splicing together variant exons

t of constant exons, flies can generate tens of thousands of
rotein isoforms with distinct complements of extracellu-

omains from a single Dscam1 gene [17,20]. The majority
1 protein isoforms form homodimers in trans, which then
pulsion between cell surfaces [12]. Recent molecular and
ork has revealed that different Dscam1 isoform subsets
ssed in a probabilistic fashion in different neurons, thus

 a molecular mechanism whereby processes of the same
an grow away from each other after touching, and remain
rtebrate DSCAM protein shows remarkable sequence con-
 with Drosophila Dscam1 [21]. However, instead of using
oforms, vertebrates employ alternative splicing of the

the mantle (m), the head (h), and the foot (f), which corresponds to the
vided by the esophagus into the supra- (2) and subesophageal masses
ephalopods. An axial nerve cord (4) runs down the length of each arm.
ollusk.com.
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 duplicated clustered protocadherin (PCDH) genes to gen-
-surface identity that mediates self-avoidance between
[14,22]. The PCDHs form the largest subfamily of verte-
herins; the human and mouse genomes encode 53 and 58

 PCDHs, respectively, each with a distinct complement of
ellular cadherin (calcium-dependent adhesion) domains
H proteins form multimeric complexes in cis that bind
lically in trans, and even a single PCDH isoform mismatch
pt homophilic binding [15,24,25]. Through alternate pro-
ice and heteromeric assembly, the 53 human PCDH genes
duce hundreds of thousands of unique molecular signa-

mophilic binding is thought to facilitate cellular avoidance
ddition, PCDHs serve as crucial mediators of circuit for-
nd dendritic patterning in the vertebrate nervous system

].
t nothing is known about what molecular mechanisms
these functions in the annelid and molluscan brains.
he Annelida and Mollusca are in the superphylum
chozoa, and evolutionarily well removed from arthro-
dysozoa superphylum) and chordates (Deuterostomia
lum; Fig. 1). However, the recent sequencing of the Octo-
culoides genome, yielding discovery of octopus clustered

ggests the surprising possibility that cephalopods may
 major chordate molecular strategy for correct wiring of
cuits.

us PCDHs

assive size and complex organization of the octopus brain
tes a molecular solution for the proper establishment of
cuits. The octopus genome revealed candidate gene fam-
uch functions, including, most notably, an expansion of
es. We  found 168 octopus PCDHs by baiting the octopus
nd tissue transcriptomes with available bilaterian PCDH
s [3]. This was the first report of a PCDH expansion in any
ate species. This expansion of PCDHs in octopus is inde-
from those described in vertebrate genomes, however,
esemble the mammalian PCDHs in many key ways.

alian PCDHs are enriched in the nervous system, where
ssential for circuit formation [14,29]. Octopus PCDHs are
ominantly expressed in the nervous tissues and appear

 to nervous system function. Some octopus PCDHs are
levated throughout the nervous system, while others

tricted expression to specific neural tissues. In particu-
tic lobes and the axial nerve cord present an impressive

nt in PCDHs [3]. These structures will likely be central to
dy of cephalopod PCDH function.

us PCDHs cluster together on the genome [3] mirroring the
ganization of mammalian clustered PCDHs in which the �,
lusters are arrayed next to each other along the same chro-
[14]. Individual exons of the � and � clusters are arranged
cribed in the same direction. Genes of the � cluster, which
nly a single exon, are also all transcribed in the same direc-
three largest octopus clusters identified have 31, 17, and
, respectively [3]. At least 25 other scaffolds contain two  or
Hs. The clustered octopus PCDH genes are also arranged in
ail fashion, indicating uniform, unidirectional transcrip-
ese genes. Future experimental studies will reveal the
l implications of these shared genomic structures, such
ample, whether the CTCF-mediated mechanism of chro-
ping, exon transcription, and stochastic expression is a
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 (>2400 nt). Other cadherins, by contrast, have a more typ-
-intron organization, in which several short exons make
adherin domain (Fig. 3a) [32,33]. Octopus clustered PCDHs
de six extracellular cadherin domains along with con-
ansmembrane domains [3], all of which are present on
rst exon (Fig. 3b). The conservation of exon-to-protein
orrespondence, coupled with the tandem arrangement of
sters, provide evidence that the fundamental evolution-
f both human and octopus clustered PCDH genes is a large
.
tebrates, there are twelve non-clustered protocadherins,
e collectively called �-PCDHs [34]. �-PCDHs have 6 or 7
lar cadherin domains. In addition, ten of the �-PCDHs
tifs in their intracellular domains (CM1 and CM2, and

es CM3), which frequently appear as alternatively spliced
34,35]. We  searched for evidence of these motifs among
us clustered and non-clustered PCDH genes. A motif only

 related to CM1  was identified in the predicted cytoplasmic
f four alternatively spliced octopus PCDHs. We  conclude
ough some unclustered octopus PCDH genes predict 7
lar cadherin domains, the �-PCDH designation is not par-

informative for octopus PCDH categorization.
rther study of octopus PCDHs is seriously impeded by
ce of crucial experimental techniques, the most critical

 will be gene manipulation and cell culture, and by the
f any other sequenced cephalopod genomes. This latter

 will surely be overcome soon as multiple cephalopod
rojects are currently underway [36]. Indeed, initial sur-

ssembled transcriptomes reveal a substantial expansion
enes in the longfin inshore squid and the cuttlefish Sepia

 but not in nautilus, which lacks the elaborated coleoid
system [3,37]. Strikingly, the octopus and squid PCDHs
cantly enriched in RNA editing sites, but nautilus PCDHs

37]. With few exceptions, the octopus and squid PCDH
s group separately on the phylogenetic tree. This lineage-
hylogenetic pattern has also been documented for PCDHs
nt vertebrate lineages and may  be the result of “concerted
” [38]. Only extensive RNAseq data and genome assem-
oth closely and distantly related cephalopods can fully
e relative contributions of intracluster gene conversion,
ent PCDH expansions and contractions, and possibly other
ms to this striking concerted evolution that is shared
the vertebrate and cephalopod clustered gene families.

trochozoan PCDHs

ent years, several PCDHs have been identified in many
ate species. The genome of the starlet sea anemone
ella vectensis, a cnidarian with a diffuse nerve net, was
contain a single PCDH gene [39]. By contrast, in the poly-
nelid worms  Capitella teleta and Platynereis dumerilii, we

 and 29 PCDHs, respectively [3]. The gastropod mollusc
alifornica, the California sea hare, has 12 PCDHs [3], at

 of which has been verified independently [39,40]. The
et Lottia gigantea, another gastropod mollusc, and Pacific
assostrea gigas, a bivalve mollusc, were found to have

 each [3]. Importantly, these newly identified molluscan
ow various degrees of genomic clustering. For example,
tea, 14 PCDHs group together on one scaffold while the C.
Hs are arranged in two  clusters of four and three doublets
resence of PCDHs in cnidarian, annelid, molluscan, and
 lineages indicates an ancient origin for these proteins.
etic analyses of all bilaterian PCDHs show that they seg-

 lineage: the annelid, molluscan, and mammalian PCDHs
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Fig. 3. Conserved Exon-to-Domain Correspondence in Octopus Cadherins. The cadherin family of genes in octopus and humans share exon-intron structure. Coding exons
of  octopus genes represented in purple. S, signal sequence; ECs, extracellular cadherin domains; T, transmembrane domain; E, EGF-like domain; L, laminin G domain; G,
GPCR  autoproteolysis inducing (GAIN) domain; P, GPCR proteolysis site. Yellow represents regions with no identified protein domain structure. a. The octopus homolog to
Drosophila  Cadherin87a, like the human classical cadherins, has a highly fractionated genomic structure in which many small exons code for the cadherin domains. b. Octopus
clustered protocadherins contain a large first coding exon that accounts for all of the cadherin domains and the transmembrane domain, and a variable number of exons
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growth and branching in cortical pyramidal neurons, but
hich is central for neuronal motility and axonal devel-

opposes these actions [47,49,50]. These behaviors depend
le amino acid difference in the first loop of the transmem-
ion: CELSR3 has a histidine residue conserved across the

type GPCRs, but CELSR2 has an arginine substitution [47].
pus CELSR, which shares gene organization with human
ig. 3d), also shows the arginine substitution [33]. This illus-
 great importance of developing cell culture techniques in
od molluscs to examine the functional role of octopus cad-
cluding protocadherins, CELSR, and other octopus atypical
s (see below).
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rins and coleoid innovations
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 is an extraordinarily large member of the cadherin gene family and is
ved motif (CM-X, Conserved Motif of CDHX). Obi, Octopus bimaculoides;

me has revealed that these invertebrates show remarkable
nt evolution with vertebrates on both the anatomical and
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cadherins, has been discovered in the octopus genome.
bly, the brain and suckers, which are morphological nov-
he soft-bodied cephalopods, show the highest enrichment
in expression, including a novel gene, CDHX, with 77 extra-
adherin domains. As of now, these data reside almost
ly in the realm of genomics and transcriptomics. The
ent of molecular and genetic techniques in cephalopods,

s the availability of other cephalopod genomes, promises
 the rich history that PCDHs and cadherins play in the

 of bilaterian brains and morphological novelty.

ds: The lophotrochozoan PCDHs and cadherins described
xt, including all members of the octopus cadherin super-
ere identified according to methods previously detailed
n et al. [3]. In short, we searched the octopus genome and
tome assemblies using BLASTP and TBLASTN with anno-
uences from human, mouse, and D. melanogaster. Genes

 in the octopus genome were confirmed and extended
 transcriptomes. Multiple gene models that matched the
script were combined. We  used BLASTP and TBLASTX to

r cadherins and PCDHs in deposited genome and tran-
e databases of other lophotrochozoan species. Candidate
d cadherins were verified with BLAST, PFAM, and NCBI
yses [59–61]. There currently exists no biochemical evi-
at the octopus PCDHs bind calcium. Consequently, all
cadherin domains mentioned in this paper were recog-
ough these computational methods. All octopus genome
criptome sequence reads are deposited in the SRA as Bio-
RJNA270931 and PRJNA285380.

udy exon-to-domain correspondences of the octopus
 examined the intron-exon boundaries predicted in v2.1
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