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membrane-protein crystals performed at X-ray free-electron lasers (FELs)
have demonstrated that the collection of meaningful diffraction patterns, which
is not possible at synchrotrons because of radiation-damage issues, is feasible.
Here, the results obtained from the analysis of a thousand single-shot, room-
temperature X-ray FEL diffraction images from two-dimensional crystals of a
bacteriorhodopsin mutant are reported in detail. The high redundancy in the
measurements boosts the intensity signal-to-noise ratio, so that the values of the
diffracted intensities can be reliably determined down to the detector-edge
resolution of 4 A. The results show that two-dimensional serial crystallography
at X-ray FELs is a suitable method to study membrane proteins to near-atomic
length scales at ambient temperature. The method presented here can be
extended to pump-probe studies of optically triggered structural changes on
submillisecond timescales in two-dimensional crystals, which allow functionally
relevant large-scale motions that may be quenched in three-dimensional
crystals.

1. Introduction

X-ray diffraction is one of the most prominent methods used
to investigate the structure of biological molecules, as
witnessed by the huge number of structures deposited in open-
access databases in recent decades. Many of the challenges
have been related to the fight against radiation damage, which
limits the minimal size of the three-dimensional crystals that
can be measured. Continuous progress has now made it
possible to collect data from crystals as small as few micro-
metres at synchrotron sources. Recently, data collection
without cryogenic protection of the samples has been
demonstrated at synchrotrons (Botha et al., 2015; Nogly et al.,
2015; Martin-Garcia et al., 2017), which opens the way to time-
resolved studies on millisecond timescales that require
physiological temperature conditions.

R RS SO X-ray free-electron lasers (X-ray FELs; Emma et al., 2010;
a Pile, 2011) allow the extension of X-ray crystallography
OPEN ACCESS towards even smaller crystals, down to the submicrometre

IUCr) (2018). 5, 103—-117 https://doi.org/10.1107/52052252517017043 103


http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252517017043&domain=pdf&date_stamp=2018-01-01

research papers

range. Radiation damage is overcome via ultra-intense and
ultrashort X-ray pulses, with the data being collected in the
diffraction-before-destruction mode (Boutet et al., 2012). This
has made it possible to address very delicate, challenging
protein targets (Liu et al., 2013; Zhang et al., 2015, 2017) with
X-ray FELs. Room-temperature measurements are permitted,
and accessing the femtosecond time scale is possible via
pump-probe experiments, which are typically triggered by an
external laser source (Kern et al., 2013; Tenboer et al., 2014;
Pande et al., 2016; Young et al., 2016; Suga et al., 2017; Aquila
et al., 2012).

Even more challenging than three-dimensional nanocrystals
are two-dimensional crystals, which consist of a periodic
arrangement of molecules in a two-dimensional layer. This
state of aggregation is of interest, especially in the case of
membrane proteins, because it may better reproduce the
conditions that occur within the cell membrane (Fujiyoshi,
2011). Furthermore, the all-important structural changes
induced by external stimuli (Rosenbaum et al., 2009; Deupi et
al., 2012) are expected to follow the natural dynamics, being
less hindered by the steric contacts from molecules in the
neighbouring layers than in a three-dimensional crystal. The
X-ray diffraction power of two-dimensional protein crystals
is orders of magnitude smaller than that of their three-
dimensional counterparts because they consist of one (or a
few) molecule layers and because the signal is spread over
one-dimensional Bragg rods instead of being concentrated in
Bragg spots. Therefore, before the era of X-ray FELs, two-
dimensional membrane-protein crystals could only be studied
successfully at high resolution by electron microscopy or
diffraction (Unwin & Henderson,
1975a,b; Ceska & Henderson, 1990;
Kunji et al, 2000; Kiihlbrandt et al.,

383 um

unsuccessful attempts was to focus the beam down to several
hundred nanometres, tailored to the typical size of a two-
dimensional crystal. Thus, it was proven that the available
X-ray flux at CXI is sufficient to counteract the extremely
weak diffraction power (Frank et al., 2014). Later, in May
2013, better sample-preparation and delivery methods allowed
a dozen indexable diffraction images to be recorded from
single two-dimensional crystals of bacteriorhodpsin, exhi-
biting clear signals up to 7 A resolution (Pedrini et al., 2014).

In November 2013 a third CXI beamtime took place,
devoted to exhaustive investigations of two-dimensional
crystals of different proteins prepared on various supports and
following different protocols. The remarkable improvements
in the data-collection automation at CXI allowed larger data
sets to be recorded than previously possible in a few shifts of
beamtime, which was the key to boosting the quality of the
data-analysis outcome. We report here on the results obtained
from a data set of about 1000 images recorded from
two-dimensional crystals of a bacteriorhodopsin mutant
(bR-DY96N). The data set was collected in the ‘untilted’
configuration, meaning that the X-ray beam perpendicularly
hit the membrane on which the two-dimensional crystals were
deposited. We explain in detail the protocol used to identify
and index the diffraction patterns, as used in part in a previous
publication (Pedrini ef al., 2014) but since upgraded to handle
patterns containing multiple lattices. The huge redundancy in
the observation of each reflection was exploited by suitably
adding up images to enhance the Bragg peak signals and in
parallel obtain a much more homogeneous background. Thus,
peaks to a resolution of at least 4 A (corresponding to the
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1994; Schertler et al., 1993; Henderson et
al., 1990; Gonen et al., 2005). The benefit
of using electrons resides in the obser-
vation that the ratio between elastic
scattering and damaging absorption
events is substantially more favourable
compared with X-rays (Henderson,
1995).

With the advent of X-ray FELs,
dynamical studies with unprecedented
time resolution became possible using
three-dimensional  protein  crystals.
From this perspective, data collection
from two-dimensional crystals at X-ray
FELs in a serial femtosecond crystallo-
graphy (SFX) mode was explored.
During initial beamtime at the Coherent
Diffraction Imaging (CXI) endstation
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of the Linac Coherent Light Source
(LCLS) in May 2012 we collected, to
our knowledge, the first ever two-
dimensional crystal X-ray diffraction
patterns in transmission. The crucial
improvement with respect to previous

Figure 1

Sample support. (a) Sketch of the chip carrying the two-dimensional bR-D96N crystals (the
membrane thickness is not to scale). (b) Picture showing the two faces of the chip, with the face
encountered by the incoming X-ray beam on the right. (c¢) Picture of various chips fixed on the
metallic frame that was mounted on the translation stages inside the CXI vacuum chamber for
X-ray diffraction data collection. The chip carrying the two-dimensional bR-D96N crystals is
delimited by the dashed blue line.
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detector edge) are clearly visualized, and their intensity is
determined in a reliable manner with a signal-to-noise ratio of
above 7 in the highest resolution bin.

This represents a proof-of-principle study, in which we show
that the intrinsic limitation in the signal-to-noise ratio of
reflections from monolayers can be efficiently dealt with
thanks to the high redundancy of the data, and that this allows
the resolution limit of the experiment to be extended. In §4, we
briefly address the other key aspect of reconstructing the
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intensity in three-dimensional reciprocal space and demon-
strating that it encodes useful structural information, which
will be the subject of a future article.

2. Methods
2.1. Sample preparation

Purple membrane was isolated from Halobacterium
salinarum expressing the mutant gene for bR-D96N, and
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Figure 2

Data-analysis protocol. The flowchart shows an overview of the applied data-analysis protocol. The various steps are described in §2.3. The columns with
dotted-line borders correspond to one diffraction image, from which one or more lattices are identified.
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detergent-stabilized two-dimensional crystal solutions were
prepared using previously described procedures (Frank et al.,
2014; Pedrini et al., 2014). The two-dimensional crystals were
washed with water and suspended in 0.5%(w/v) glucose to a
final protein concentration of 0.5 mg ml~" just before appli-
cation onto the sample carrier for X-ray diffraction data
collection.

A silicon chip with an area of 25 x 25 mm and 200 pm
thickness, produced by Silson Inc., was used as a carrier. The
chip had a 44 x 44 array of 100 x 100 um windows made of a
20 nm thick SizN, membrane (Figs. 1a and 1b). A total of
about 30 pl of two-dimensional bR-D96N crystal suspension
was deposited onto the silicon chip and allowed to dry in air.
The resulting glucose layer served to protect the protein
sample from dehydration in the experimental chamber
vacuum.

2.2. Experimental setup and data collection

X-ray diffraction measurements were carried out at the CXI
experimental station (Liang et al., 2015) of the LCLS using the
0.1 um focus setup. The photon energy was set to 8.5 keV
(1.5 A) The beam size was estimated to be below 200 nm
FWHM. The pulse energy was ~2 mJ and the pulse length was
~35 fs.

The chip covered with two-dimensional bR-D96N crystals
was mounted, together with other sample supports, on a
metallic frame that was fixed to the sample stages inside the
experimental chamber (Fig. 1c¢). Data collection was
performed in a vacuum environment, whereby all of the chips
on the frame were measured within about 6 h. The sample
stages were scanned in steps, membrane by membrane and
row by row, with X-ray pulses initiated on-demand (LCLS
burst mode) at a rate of about 1.5 per second in order to hit the
SizN, windows. The silicon frame was kept perpendicular to
the X-ray beam, which we call the untilted data-collection
configuration. Diffraction patterns were recorded using the
Cornell-SLAC pixel-array detector (CSPAD) with 2.3 mega-
pixels of 110 pm in size, which was placed 235 mm down-
stream of the sample in the same vacuum chamber (Blaj et al.,
2015). The final data set discussed here consisted of 968
images. These were summed, and an initial detector geometry
and an overall approximate direct-beam position were deter-
mined from the powder rings obtained.

2.3. Data analysis

We denote the reciprocal-lattice basis vectors of the
two-dimensional crystal as a* and b*, and the unit vector
perpendicular to the plane spanned by a* and b* as z*. The
two-dimensional periodic arrangement in real space results in
reciprocal-space structure factors that are nonvanishing only
along the Bragg rods. These are lines labelled by two integer
indices (h, k) parametrized as q, ;, + ¢.2*; the continuous
parameter g, is the out-of-plane momentum transfer. The
in-plane momentum transfer associated with the rod is
Q0 = ha* + kb*, and we denote g = |q|. In a diffraction image,
the high-intensity spots, which we call Bragg peaks in analogy

to the nomenclature used in three-dimensional crystal-
lography, are observed in directions corresponding to the
intersection of the Ewald sphere, fixed by the direction and
photon energy of the incoming X-rays, with the Bragg rods
(Supplementary Fig. S1). A Bragg spot is labelled by
[, k, q.(h, k, ¢, n)], where g, depends on the tilt angle 1 and
the orientation angle ¢ of the crystal on the sample-support
plane. In the untilted data-collection configuration, however,
q. depends only on the two rod indices (%, k), so that for
simplicity we use these two indices to label a Bragg
peak.

The entire analysis of the collected diffraction images was
carried out under the assumption of p; symmetry of the two-
dimensional real-space lattice (plane group 13; Henderson et
al., 1990). Therefore, we have a = b, and the angle between
the two unit-cell vectors is 271/3. The data-analysis pipeline
consists of seven subsequent steps, schematized in Fig. 2 and
explained in more detail below. Unless specified differently,
the processing was performed using scripts written in the
Python 2.7 language. The procedure delivers a list of Bragg
reflection intensities up to the highest possible resolution, as
well as quality indicators for the intensities.

2.3.1. Step 1: lattice identification. The diffraction images
were processed with Cheetah (Barty et al., 2014) to convert the
data format from XTC to HDFS5, apply dark-current and gain-
calibration corrections, and produce a list of high-intensity
spot coordinates. These peaks were then arranged, if mean-
ingful, into groups compatible with diffraction patterns from
single two-dimensional crystals with lattice parameter
a=62.45 A, as known from previous studies (Henderson et al.,
1990), with the X-ray photon energy associated with that
measurement. We associated a preliminary lattice with each
group with at least 20 peaks, with the orientation in the sample
plane parametrized by the angle ¢. This method allowed
the identification of up to five independent lattices per
image.

2.3.2. Step 2: lattice refinement. The parametrization of
each lattice was then refined further, relying on the experi-
mental intensities in the corresponding CSPAD diffraction
pattern. For all of the peaks (4, k) up to 4 A in-plane reso-
lution, which corresponds to the detector edge, an image
sector consisting of 96 x 96 detector pixels centred at the
position predicted from the previously determined lattice
orientation was extracted. In each sector, the background area
was defined as the union of regions characterized by low
fluctuations in the intensity within the detector module to
which the predicted peak position belongs. The intensity in the
background area was fitted with a tilted plane, which was then
subtracted from the experimental intensities in the sector.
Afterwards, a connected region of high-intensity pixels was
searched, and if identified its centre-of-mass position was
defined as the experimental position of the peak. Lattices with
less than 28% of the peaks identified were discarded. The
experimental positions of the peaks served as the input for the
refinement routine. In addition to the mentioned parameters a
and ¢, it turned out to be convenient to also refine the co-
ordinates of the direct-beam position on the detector. The
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routine consisted of an iterative application of either
systematic grid searches or the Powell algorithm (Powell,
1964).

Once the four parameters of a lattice had been determined,
the position of each peak in its corresponding sector was
calculated and the peak area was defined as a circle of radius
five pixels centred at the peak position. If the area belonged
entirely to one detector module, then the intensity I(k, k) of

the peak was calculated by integration of the intensities over
the pixels in the circle.

2.3.3. Step 3: indexing-ambiguity solution. Lattice indexing
in space group p; is affected by ambiguity in the assignment of
indices. Indeed, the physical operations of reversing the face
of the crystal or rotating the crystal in plane by an angle w
around the axis perpendicular to the crystal plane do not
modify the peak positions, but modify the indices assigned to

A

A

(@)

(0
Figure 3

()

@)

Diffraction images. Examples of the different types of collected diffraction images. (a) Single lattice. (b) Few lattices. (c¢) Multiple lattices. (d) Powder-
like. The intensity scale is the same in all panels. Images of types (a) and (b) are indexable. In (d) the high-intensity ring labelled by the red arrow
corresponds to the (3, 4) reflection and is at 8.9 A in-plane resolution. The magenta cross represents the direct-beam position.
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each peak. In the untilted experimental configuration, the To resolve the indexing ambiguity, the problem is to associate
following operations have to be considered. with each lattice L one of the four transformations 7 that acts
(1) To: (h, k) — (h, k) (identity). on the measured reflection intensities as
(ii) Ty: (h, k) — (—h, —k) (in-plane 7 rotation). reind
(iii) T»: (h, k) — (—k, —h) (face reversal). I, k) = L[, (h, k)]
(iv) T5: (h, k) — (k, h) (in-plane 7 rotation followed by face in such a way that the correlation of the transformed inten-
reversal). sities of equivalent peaks in different lattices is maximal. Only

(© )
Figure 4
Lattice patterns. The four plots show examples of lattices obtained after step 2 of the data-analysis procedure, and are represented as circles that mark
the expected peak positions down to an in-plane resolution of 7 A, superimposed on the corresponding diffraction image. Red circles indicate the more
prominent peaks that were identified and used to establish the precise lattice orientation and its unit-cell size. (a) is the single lattice image of Fig. 3(a)
(violet triangle label). (b), (c) and (d) are the same multiple lattice image of Fig. 3(b) (cyan triangle label), from which three different lattices were
identified. The dashed blue rings correspond to 50, 10 and 7.0 A in-plane resolution. The magenta cross represents the direct-beam position.

108 cCecilia M. Casadei et al. « SFX of two-dimensional membrane-protein crystals IUCr) (2018). 5, 103—-117
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peaks up to 7 A in-plane resolution were considered. Two
alternative methods were used. The first, based on the
evaluation of intensity correlations from pairs of lattices, is
described in Appendix A. The second method uses the
expansion-maximization-compression (EMC) algorithm,
which was first proposed to orient weak diffraction patterns
from single molecules (Loh & Elser, 2009) and was later
applied to three-dimensional crystallography. Our imple-
mentation to two-dimensional crystallographic data is
described in Appendix B. The per-lattice transformations 7,
obtained from the two methods were compared to check for
self-consistency.

2.3.4. Step 4: lattice scaling. To compensate for variations
in the crystal area exposed to the X-rays and for fluctuations in
the X-ray pulse energy, a lattice-dependent scaling of the
intensities,

Izcind,SC(h’ k) =K, - ]zcind(h’ k), (1)

was determined for best matching of the equivalent reflection
intensities up to 7 A in-plane resolution in the data set, and
such that the average of all scaling factors K; is unity. The
procedure is explained in detail in Appendix C. Lattices that
could not be scaled were discarded.

2.3.5. Step 5: signal-to-noise enhancement by image sums.
Many of the diffraction peaks at higher than 7 A in-plane
resolution turned out to be very weak and almost hidden in
the noise. The signal-to-noise ratio of the reflection intensity is
enhanced by measuring the same peak many times. Two
conceptually equivalent methods are possible. In the first,
which is the standard in protein three-dimensional crystallo-
graphy both at synchrotrons and X-ray FELs, the intensity is
measured in each image separately and the final intensity of a

120 T T T T

T
a=(62.49 +0.05) A

100

80

Z 60
<
40
20
0
62.2 62.3 62.4 62.5 62.6 62.7 62.8
a(A)
Figure 5

Unit-cell sizes. Histogram of the distribution of the lattice constant a
refined for 586 lattices.

reflection is obtained as the average of the intensities of
equivalent peaks. In the second, the pixel intensities of
equivalent sectors of each image are summed, and the final
intensity of the reflection is extracted from the obtained image
sum. We followed the second path because of some key
advantages: the background subtraction turned out to be
remarkably more reliable, the integration area could be
defined consistently, and in parallel small errors in the
geometry of the outer detector modules could be identified
and corrected.

The intensity in an image region around a predicted posi-
tion of a peak in the p; reflection class {(h, k)} was first
rescaled with the lattice-specific scale factor of (1), and then
interpolated linearly on a 50 x 50 point grid centred at the
predicted position, with the x and y axes in radial and
azimuthal directions with respect to the direct-beam position,
respectively, and with a pitch corresponding to one detector
pixel. The intensity pattern Zy;, ), (x, y) associated with the
reflection {(h, k)} was then obtained as the per-pixel average
over the Ny, 4 equivalent observations, followed by a back-
ground-subtraction procedure analogous to that described
previously in §2.3.2. Because of the assumed p; symmetry, each
lattice can provide up to three equivalent observations of a
reflection.

2.3.6. Step 6: reflection-area determination. The intensity
array T, p,(x, y) in each reflection-image sum was fitted with
a two-dimensional Gaussian function

202 202

rad azi

G(X,y)ZAeXp|:—(x_xpk) _(y_ypk):|’ (2)
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Figure 6
Scale factors. Histogram of the distribution of the lattice-dependent
multiplicative scale factors K; calculated for 521 lattices and imposing an
average value of unity.
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with adjustable parameters A, X,x, Ypk, Oraq aNd Oy,

In a first attempt, the behaviour of the radial and azimuthal
widths 0,4 and o,, as a function of the in-plane momentum
transfer g exhibited a step-like feature at 7-6 A resolution
(Supplementary Fig. S2). Since the detector geometry was first
set based on the powder rings, the intensity of which drops
markedly at this resolution, we suspected that the origin of the
hump relied on small errors in the geometry of the outer
modules. We therefore optimized the detector geometry using
the procedure described in Appendix D.

After determination of the outer module geometry
corrections, the image-summing procedure and the subse-
quent peak-shape fitting were repeated. The step-like feature
in the widths o,,4 and o0,, disappeared, and their behaviour
could be modelled with the polynomial function

o(q) =a+ biq2 + ciq4 (i = rad, azi), (3)

which describes the spot shape as a function of the in-plane
momentum transfer. The reflection area was then defined as

an elliptical region &, ), centred at the predicted peak
position with semi-axes 2.50,a4(qnx) and 2.56,i(qn.x)-

2.3.7. Step 7: reflection-intensity determination. The final
reflection intensities were obtained by integration over the
ellipse area,

Yooy = 2 Ziny® ), 4

[EADIS

and correspond to the number of photons scattered on
average by a two-dimensional crystal into the Bragg peak
{(h, )}

2.3.8. Data-quality evaluation. As an initial data-quality
indicator, we considered the signal-to-noise ratio S/N, which
for each reflection is given by

|
S/Nygpy = bl 5
/ {(h,k)} V[I{(h,k)}] ( )

The noise was calculated according to the formula
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Merged peak intensities. Histograms of the peak intensities of the p; reflections {(1, 1)} (a, b) and {(3, 4)} (c, d) obtained in step 2 of the data-analysis
procedure before rescaling (left column) and after rescaling (right column). The red vertical line represents the average number of photons, and the two
dotted red vertical lines delimit the interval within the standard deviation. The in-plane resolution, number of observations, intensity average and
intensity standard deviation are reported.
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12

W) = o [ e D] ©)
The first term in the square root accounts for the intrinsic
Poisson noise, while the second accounts for noise effects in
the integration and in the determination of the background
level. The parameter r is the ratio between the elliptical
integration area and the area used to establish the back-
ground, 7 is the number of detector pixels in the elliptical
integration area and ogg is the variance of the intensity in the
background areas of single image sectors, averaged over all
sectors used to build the image sum Z. (6) was inverted to
estimate the number of observations required with the same
setup to achieve an S/N of unity,

1 1 —
Ny/nat = I [1 + ineu(” + 1)U§gi|' (M

As a second indicator, we used the split correlation coefficient
CC,y). For each reflection, the peak observations were split
into two sets, within which the image sums and the reflection
intensities were calculated in the same manner as for the non-
split data. The linear correlation between reflection intensities
in resolution bins of 22 reflections were calculated. The final
per-bin CC, ), values were then computed as the average of the
correlations obtained from ten different random splittings of
the peak observations.

3. Results

Of the 968 collected images, 410 contained indexable
diffraction patterns, either from a single lattice (Fig. 3a) or
from a few lattices (Fig. 3b). The other images contained many
patterns, were powder-like (Figs. 3¢ and 3d), contained no
signal arising from two-dimensional crystals or were blanks
(no X-ray pulse hit the sample).

In the indexable images, 711 lattices were identified and
indexed, based on the peak list from Cheetah (step 1 in Fig. 2),
and then refined after a search for the most prominent
diffraction spots in the diffraction images (step 2 in Fig. 2),
which are marked in red in the example diffraction image of
Fig. 4. This number was reduced to 586 lattices by applying a
28% threshold to the fraction of detected spots in the reso-
lution range down to 4 A. Fig. 5 reports the distribution of the
refined lattice constant, which shows a very small spread of
less than 0.5%.

The distribution of the number of lattices per image at this
point of the analysis was as follows: 21.3% of the images
delivered a single lattice (see the example in Fig. 4a), 12.3%
delivered two lattices, 4.3% delivered three lattices (see the
examples in Figs. 4b, 4c and 4d) and 0.4% delivered four
lattices.

The transformations to solve the indexing ambiguity (step 3
in Fig. 2) were successfully determined for all lattices except
one (585/586). There was full agreement between the outcome
of the two methods. 48.4% of the lattices were subjected to the
face-reversing transformations 7, and 73, which is compatible
with the expectation that the two-dimensional crystals are

deposited on the support with an equal probability of face
orientation. The scaling procedure (step 4 in Fig. 2) was
successful for 521 lattices out of 585 (88.9%). The distribution
of the scaling factors is shown in Fig. 6. Fig. 7 shows the
distribution of the measured peak intensities before and after
rescaling for two reflection classes, while Fig. 8 demonstrates
that the width of the distributions is clearly reduced by the
rescaling for reflections down to a resolution of 7 A.

For further evaluation, the 521 lattices and the corre-
sponding images were considered, which correspond to an
effective hit rate of 0.54 lattices per image (521/968). Fig. 9
exemplifies the results of the image-sum procedure (step 5
in Fig. 2) for the four reflections {(—2, —11)}, {(11, 2)},
{(=11, —2)} and {(2, 11)} at 446 A in-plane resolution.
Fig. 9(a) shows the same diffraction image as Figs. 3(a) and
4(a), with the predicted peak positions of the lattice marked
down to 4 A in-plane resolution. Figs. 9(b)-9(e) are magnifi-
cations at four predicted peak positions, each belonging to one
of the four reflection classes. Figs. 9(f)-9(i) show the corre-
sponding image sums, each resulting from approximately 1300
observations. The enhancement of the signal to noise is nicely
visualized, in particular for the reflections {(—2, —11)} and
{(11, 2)}, for which the peaks are barely visible in the
diffraction images.

From the per-reflection image sums, we determined the
azimuthal and radial widths o,,4 and o,, of the reflections
(step 6 in Fig. 2) by fitting the image sums with a Gaussian
peak function (2) (see Fig. 10). The widths are plotted in
Fig. 11. The step-like artifact at about 7-6 A in-plane resolu-
tion observed after a first iteration (Supplementary Fig. S2)
disappeared after correcting the geometry of the outer
modules, which allowed the widths to be modelled as a func-
tion of the in-plane resolution with the polynomial (3),
represented by the magenta curve in the figure.

The final reflection intensities were obtained by integration
on elliptical areas (step 7 in Fig. 2), shown by magenta
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Figure 8

Lattice-scaling effect. Ratio between the peak intensity distribution
widths 8(Zrese)/(Irese) and 8(Z)/(I) after and before scaling, respectively.
The ratios are shown as a function of the in-plane momentum transfer of
the reflection. Circles in magenta represent the average over resolution
bins.
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High-resolution data. (a) Extension to high resolution of the diffraction image in Figs. 3(a) and 4(a), in which a single lattice was identified. The circles
mark the predicted peak positions to 4 A in-plane resolution. Red circles are valid positions on the detector, while blue circles are invalid positions owing
to module gaps or masked pixels. The dashed blue circle corresponds to 7 A in-plane resolution. The magenta cross represents the direct-beam position.
(b)-(e) Magnifications at the peak positions labelled in (a) by an arrow of the corresponding colour. The four reflections are labelled by the indices of the
corresponding ps reflection {(A, k)} and have the same in-plane resolution of 4.46 A. (f)—(i) Image-sector sums of the four reflections. The number of
observations N is indicated.
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contours in the example in Fig. 10(a). Fig. 12 presents the
intensities of each reflection as a function of the reflection in-
plane resolution, as tabulated in Supplementary Table S1. We
observe that the typical reflection intensities range from about
ten photons per peak at 40 A resolution to one photon per
peak at 4 A resolution.

The per-reflection S/N values were calculated following (6)
and are shown in Fig. 13(a). The S/N decreases from 100 to the
order of 10 from low to 4 A in-plane resolution. The factor of
ten decrease, which is larger than the expected 10" from
Poisson noise, reflects the contributions from the image-sum
background that become more relevant at higher resolution.
We checked that the S/N scales as expected as 1/N'? by
evaluating reduced data sets with ten and 100 lattices
(Supplementary Fig. S3). Fig. 13(b) reports the number of
observations N that are necessary to achieve an S/N equal to
unity at a given resolution, calculated for each reflection
according to (7). The magenta dashed line in the figure
represents the overall trend modelled as an exponential. At

N W R N

I (No. of photons)

—_

S

() (©)

Figure 10

Reflection-peak intensity fit. (a) Enlargement of the reflection-image sum
{(2,11)} of Fig. 9(i). The dashed white lines are contour levels of the fitted
Gaussian peak function. The magenta ellipse is the integration area, with
the semi-axes defined after modelling the width behaviour. (b, c)
Horizontal and vertical sections through the red dotted lines in (a). The
blue points and cyan lines are the experimental data and the Gaussian fit.

4 A resolution the required number of observation is close to
200.

Fig. 14 shows the split correlation coefficient CC;, in
resolution bins as a function of resolution, calculated for the
full data set of 521 lattices, as well as for reduced data sets
consisting of 100 and ten randomly chosen lattices. With
increasing number of lattices, the correlation coefficient
approaches 1 in all resolution bins.

4. Discussion

To analyze the two-dimensional crystal diffraction patterns,
we mostly implemented concepts from serial single-shot
three-dimensional protein crystallography, such as lattice
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Figure 11
Reflection-peak widths. Widths in (a) the radial direction (o,,4) and (b)
the azimuthal direction (o0,,) of the reflections, shown as a function of the
in-plane momentum transfer g. Only the widths of the reflections with an
intensity larger than one photon are plotted. The magenta lines represent
the biquadratic models indicated in the two panels.
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Final reflection intensities. The intensities I of the reflections from
integration of the image sums, shown as a function of the in-plane
momentum transfer g. The large cyan circles are resolution-bin averages.
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identification, lattice-parameter refinement and indexing-
ambiguity solution. We relied on previous knowledge of the
two-dimensional space group; however, the protocol can easily
be extended by establishing the crystal symmetry using low-
resolution spots.

To fully exploit the available data to the highest possible
resolution, we implemented the non-conventional image-sum
method that enhances the signal-to-noise ratio of the
measured reflection intensities. This approach was crucial, in
particular for refining the detector geometry a posteriori. Our
quality indicators show that with the full data set the resolu-
tion corresponding to the 4 A limit given by the detector area
could be achieved. Similarly, our evaluations provide a
method to predict the number of reflection observations
necessary to achieve a certain resolution. For example, for
4 A in-plane resolution (3.95 A three-dimensional resolution)
the requirement is for about 200 observations. This number
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Figure 13

Signal to noise. (a) Signal-to-noise ratio S/N of the reflection intensity. (b)
Estimated number of observations of each reflection to achieve a signal-
to-noise value of unity (Ngn - 1), with the dashed magenta line
representing the best exponential fit. In both panels the values are shown
as a function of the in-plane momentum transfer of the reflection. The
large cyan dots are resolution-bin averages.

increases to about 500 at 3.5 A in-plane resolution, as
obtained by extrapolating from the experimental data.

The data discussed in this article were recorded at zero tilt
angle. In this configuration, for each Bragg rod (4, k) the value
of the diffraction intensity can only be measured at two
opposite reciprocal-space coordinates +¢q_(k, k) along the rod,
whereby the point with negative g, value is the Friedel mate of
a point of another rod with positive g, value. Because of the
curvature of the Ewald sphere, g.(h, k) is not vanishing,
therefore not even the reconstruction of a two-dimensional
density projection is possible. If the orientation of the two-
dimensional crystals on the sample support is random, then
recording data with a tilted sample chip allows the continuous
sampling of g, in a range along each rod, yielding a genuine
three-dimensional data set, which is however affected by a
missing data wedge, as in electron-microscopy and diffraction
approaches (Unwin & Henderson, 1975b). Most of the key
algorithms developed for the present analysis, such as lattice
identification, peak search, lattice-parameter refinement,
indexing-ambiguity solution and lattice scaling, are imple-
mented to treat tilted data. The procedure to reconstruct
intensities along Bragg lines in reciprocal space will be
detailed in a separate article, in which we analyze and merge a
few data sets collected at various tilt angles but with lower
redundancy and lower detector-edge resolution than the data
set in the present paper, and we address the key point of
showing that the three-dimensional intensity data set is
meaningful.

The single-layer assembly implies less steric hindrance in
general compared with three-dimensional crystals and opens
up the possibility of observing large-scale dynamics in a
pump-probe experiment, in which an optical pump triggers a
structural change that is probed, after a suitable time delay, by
a femtosecond X-ray pulse. In this respect, it becomes essen-
tial to optimize the methods for sample preservation in the
vacuum of the experimental chamber. A viable alternative to
sugar-embedding may be to ‘sandwich’ the sample within two
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Figure 14
Split correlation coefficient CC,,, obtained using the full data set of 586
lattices (blue), 100 lattices (magenta) and ten lattices (cyan). The values
are shown as a function of the in-plane momentum transfer g in the centre
of the resolution bin. Each resolution bin includes 22 reflections and each
point is the average over ten different random splittings of the data set.
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thin membranes, for example of silicon nitride, as we tested
preliminarily during the November 2013 beamtime, or
of graphene, as originally developed for use in electron
diffraction (Gyobu et al., 2004) and then modified for two-
dimensional SFX (Frank et al., 2014). Owing to loose crystal
packing and femtosecond time resolution, two-dimensional
SFX is complementary to three-dimensional SFX and to
electron-based methods, respectively, and has the potential to
provide information on dynamics in systems that allow crys-
tallization in two dimensions.

5. Conclusions

The results of the experiments demonstrate that the measured
two-dimensional bacteriorhodopsin crystals diffract to at least
4 A resolution and that the diffraction signal can be reliably
measured at this resolution from less than 100 images obtained
using the setup at the CXI beamline of the LCLS X-ray free-
electron laser. The very low signal intensities required the
implementation of analysis methods relying on image sums.
The resolution limit comes only from the experiment
geometry.

Ultimately, the overall outcome brings us towards near-
atomic resolution two-dimensional crystallography and to
pump-probe studies of the structural dynamics of membrane
proteins in a loose-packing environment, where large-scale
movements are allowed.

APPENDIX A
Indexing-ambiguity solution by linear correlation

We formulated the linear correlation method for solving the
indexing ambiguity in general terms in view of also processing
data with nonzero tilt angle. Linear correlations have already
been used in the three-dimensional SFX detwinning approach
to cluster patterns with the same indexing mode (Brehm &
Diederichs, 2014), as implemented in CrystFEL (White et al.,
2016). The method implemented here does not involve pattern
clustering, but rather a direct comparison of patterns in the
different indexing scenarios. The details are given below.

A1. Determination of the indices transformation

The transformation of indices 7's_; that is required to make
a lattice L in the data set compatible in indexing with a
randomly extracted reference lattice or ‘seed’ S was deter-
mined as follows. A linear correlation coefficient between
intensities from the seed and those from lattice L was calcu-
lated as described in §A2 in the assumption of each of the
possible transformations 7;:

(1) TO(h7 k, qz) = (h’ k, qZ)v

(11) Tl(h’ k’ qz)) = (_h’ _k’ C]Z),

(111) TZ(h’ k’ qz) = (k’ h? _QZ) = (_k’ _h’ qz),

(IV) T3(hv k? QZ) = (_k’ _h7 'QZ) = (kv h? LIZ)
The largest of these coefficients is that related to the most
likely transformation. The reliability of the determination of

Ts_; was assessed by randomly extracting a large number (e.g.
100) of lattices L/, for each of which the expression

TS*L : TL*L’ : TL’*S

was evaluated. When the three transformations involved are
correctly determined, this expression equals identity. We
considered the identification of T ; to be reliable if the
expression above was equal to identity for at least 70% of the
lattices L.

The procedure was repeated extracting different seeds S;
and the consistency of the results was checked. The transfor-
mation T g required to make the indexing of different seeds
compatible was determined and the transformation of all
lattices (for which a value of Ts_; had been reliably
determined) with respect to the same seed was calculated:
Ts,—p = TS;L ) Tskfs/»

A2. Calculation of the linear correlation coefficients

The linear correlation coefficient relating the intensities
from two lattices L; and L, was calculated as follows, with the
assumption of each of the transformations 7; defined in §A1.
For each indexed spot (4, k, q.) in Ly, a search was carried out
through L, looking for spots with indices Ty(k, k, g.). While
the four transformations formulated above leave the value of
q. unaltered, it was necessary to relax the condition g (L) =
q.(L,) in the search across L,, setting a nonzero upper limit
for the tolerated difference, since the method was written in a
general way to also treat data from tilted-stage measurements.

Both p3 lattice symmetry and Friedel symmetry were
considered in the search described above. This is important in
the case of nonzero tilt, where the number of pairs entering
the correlation calculation is relatively small. In practice, for
each transformation T}, (h, k, g.) in L; was matched to six
equivalent spots in L, (when measured),

100
(hk.G)r- |0 1 0
00 1
-1 10
(hk3)r-| -1 0 0
0 0 1
0 -1 0
(hkG)y -1 -1 0
0 0 1

and their Friedel mates. Here (&, k, 4,);, indicates the trans-
formed indices T(h, k, g,) and q, =~ q..

APPENDIX B
Indexing-ambiguity solution by the expansion—
maximization—compression algorithm

An alternative method for resolving the indexing ambiguity is
the use of the expansion—maximization—compression (EMC)
algorithm (Loh & Elser, 2009), which was originally devised
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for determining the orientation of single-particle diffraction
patterns. Less well known is that the same technique can be
modified and adapted for solving the ambiguity in the
indexing of serial crystallography (SX) data. The sparse
images are replaced with reflection intensities, the search
space of angles become the set of possible reindexing opera-
tors (defined in §2.3.2 in the case of plane group p3) and the
three-dimensional compressed model becomes the final set of
merged intensities. The Poisson probability operator can be
retained for use with very weak patterns consisting of single
photon counts (Philipp et al., 2012; Ayyer et al., 2015), while
for stronger patterns of varying intensity this can be replaced
with a cross-correlation metric, thereby obviating the need to
determine the relative scaling of each pattern. The modified
EMC algorithm becomes the following.

(i) Create an initial model for reflection intensities based on
either random start or on the average value of observations
merged according to the original (ambiguous) indexing.

(i) Compute the cross-correlation of each individual
pattern with the model for each operation that leaves
diffraction positions unaltered (reindexing operation). This
includes the point-group symmetry of the lattice and, for two-
dimensional crystals in p3, the possibility of an in-plane =
rotation, the face reversal of the crystal and their combination.

(iii) Assign the pattern-reindexing transformation to that
with the highest cross-correlation with the current model.

(iv) Merge all patterns in their newly assigned indexing,

update the current model and repeat from step (ii).
The known point-group symmetry of the crystal can be
applied at this stage, if it is known, to merge symmetry-
equivalent reflections. In practice, we found that assignments
were stable and nonchanging after less than ten iterations of
the loop. Observations are merged based on the final re-
indexing assignment obtaining the set of reflection intensities
used for structure determination. The same procedure works
very well for solving the indexing ambiguity in three-
dimensional SX data in addition to the two-dimensional SFX
case studied here.

APPENDIX C
Lattice-intensity rescaling

The multiplicative factor K; g required to scale the intensities
from a lattice L to those from a randomly extracted seed S was
calculated by linear least-squares fitting,

Is(h, k, qz) =K, g-I(hk, éz)”

where g, ~ q. and (h, k, q,)’ are the p3-transformed (h, k, q,)
and their Friedel mates.

To verify the reliability of this estimate of K; g we adopted
a method analogous to that described in §A1. A large number
(e.g. 100) of lattices L’ was extracted, for each of which the
expression

Ky s Ksp-Kpp

was evaluated. We considered the value of K;_ 5 to be
acceptable if a value close to 1 (between 0.75 and 1.25) in the

expression above was obtained with at least 70% of the lattices
L'. The procedure was repeated extracting different seeds and
the consistency of the results was checked. The average value
of scaled, equivalent reflections was used as a preliminary
indication of intensity.

APPENDIX D
Determination of translational corrections to detector-
module positions

Translational corrections ;" and ;' to the position of each
detector module m were determined as follows. For each
reflection class {(k, k)} with sufficient intensity, a partial sum
was calculated by summing image sectors belonging to module
m. The partial sum was fitted using a two-dimensional Gaus-
sian function and the distance between the refined centre
coordinates of the fitting function and the predicted spot
position was considered to be an estimate 1Yk and ¢}
of the translational error. Consistent results were found
repeating the procedure for all orbits {(k, k)} with spots on a
given module, and sufficient intensity to obtain a meaningful
fit. The translations for a module m were calculated as the
average on all reflection classes {(/, k)} of £k and 13 x))-
The pseudo-code describing this procedure is reported in the
Supporting Information.
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