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Crystal plasticity paper extends a recently developed dislocation-based hardening law within the elasto-plastic self-
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consistent polycrystal plasticity model to incorporate the latent hardening effects for predicting
anisotropic response of polycrystalline face-centered cubic metals. In doing so, a new approach to
overcome singularities associated with the self-consistent Eshelby solution procedure is pro-
posed. The new approach is validated using a regularized Schmid law, where the singularity in
Eshelby tensor calculation is intrinsically suppressed. Moreover, the solution procedure for single
crystal stress increment is advanced to be based on a methodology involving the singular value
decomposition to solve for shear increments. It is found that modeling crystallographic texture
evolution and latent hardening successfully captures the anisotropic behavior of polycrystalline
AA6022-T4 alloy. The model is subsequently successfully applied to predict large strain cyclic
deformation of the same material. The implementation and insights from these predictions are
presented and discussed in this paper.

1. Introduction

Anisotropy in flow stress of Al and Al alloys has been thoroughly studied, and several possible sources of anisotropy have been
identified in the literature, including an initial texture and texture evolution, precipitate shape and orientation, dislocation cell
structure formation, and latent hardening. Experimental observations suggested that the anisotropic hardening behavior could result
mostly from crystallographic texture evolution. For instance, a study on anisotropy exhibited by commercially pure Al (AA1050-0O)
suggested that initial texture and texture evolution was the main reason for anisotropy (Lopes et al., 2003).The shape and direction of
precipitates was related to plastic anisotropy in Al-Si-Mg alloys (Anjabin et al., 2014) and in Al-Cu alloys (Sehitoglu et al., 2005).
These alloys contain precipitates that are larger in size meaning that they are not shearable. Therefore, their effect was analyzed by
assuming that they are inclusions inside the matrix (Lyttle and Wert, 1999). The backstress in matrix was defined based on the stress
in the precipitates, since the volume average of backstress over matrix and precipitates vanishes. However, the effect of precipitates
on anisotropy in the AA6022-T4 is not expected to be high because these precipitates are small in size and shearable by mobile
dislocations. Studies on pure Al (Juul Jensen and Hansen, 1990) as well as on the alloys with very small shearable precipitates
showed that texture alone is not enough to explain the anisotropy. Predictions based on texture sensitive crystal plasticity models
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Fig. 1. Schematic showing hardening of the secondary slip system s = 10 due to shearing on the primary slip system s = 4 according to the elastic limit theory of
yielding 72 and the back-extrapolated theory of yielding 729, Shear strain and resolved shear stress are plotted on the x-axis and the y-axis, respectively. The slip

systems are labeled according to commonly used notation for FCC metals from (Schmid and Boas, 1950).

often over predict hardening anisotropy compared to experimental measurements (Zhang et al., 2015). Another study revealed that
the formation of dislocation cell structures was a major source of anisotropic hardening in AA1050-0O, particularly during strain path
change deformation (Rauch et al., 2002). While AA1050-O was found to develop a well-defined dislocation microstructure during
deformation, predominantly dislocation walls on the {111} planes, the AA6022-T4 alloy develops primarily uniform dislocation
distribution displaying some walls, which are very faint (Yoon et al., 2005). Thus, the effect of substructure on anisotropy of AA6022-
T4 was suggested to be minimal. The effect of latent hardening and dislocation interactions on plastic anisotropy evolution using
crystal plasticity was investigated in (Khadyko et al., 2016), where a solid solution strengthened alloy without precipitates is ex-
amined. The general trends were successfully explained by latent hardening.

Slip system hardening behavior of a given slip system is complex because it is influenced more by shearing on another slip system,
known as latent hardening, than by shearing on itself, known as self-hardening (Franciosi et al., 1980). Additionally, the slip re-
sistance increases not only on the active but also on the inactive slip systems. The latent hardening was documented first for single
crystals in (Taylor and Elam, 1923). The single crystal latent hardening experiments can be conducted as follows: first, a single crystal
is deformed to activate a single slip system, termed as the primary slip system. Next, the loading is changed with respect to the initial
crystal orientation to activate another slip system, termed as the secondary slip system. The evolution of slip resistances on primary
and secondary slip systems can be inferred from the stress strain measurements (Bassani and Wu, 1991b; Franciosi et al., 1980; Kocks
and Brown, 1966). Two theories of latent hardening can be found in the literature (Cuitino and Ortiz, 1993). These theories are
schematically presented in Fig. 1. Accordingly, yielding of secondary slip system is defined by: the back-extrapolated yield stress
(Anand and Kothari, 1996; Franciosi et al., 1980; Peirce et al., 1982) (hereafter referred to as “theory 1”) and the elastic limit (Bassani
and Wu, 1991a; Cuitino and Ortiz, 1993; Wu et al., 1991a) (hereafter referred to as “theory 2”). The former is obtained by back-
extrapolation using the initial hardening slope, 6, of the stress-strain curve recorded during the activation of secondary slip system, to
the end of the stress-strain curve of the primary slip system (Kocks and Brown, 1966). Theory 1 view on latent hardening is grossly
predominant in the literature and is supported with a large body of studies performed since 1960s, hence it is termed as theory 1,
while the more recently proposed theory of Bassani and Wu in 1991a,b is termed as theory 2.

In theory 1 the shear strain on a given slip system leads to an increase in slip resistance of all slip systems, which can be
mathematically expressed as:

N
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where 7}, is the slip resistance based on the back-extrapolated yield stress and the matrix of partial derivatives of slip resistance with
.o, . . . . . - -
respect to shear strain, %, is hardening matrix. Entries of the hardening matrix are also referred to as the hardening moduli or

instantaneous moduli. Wye note that according to theory 1, hardening matrix is predicted to have off diagonal terms. The added
advantage of theory 1 is that it is possible to define a law for the evolution of slip resistance and then derive the corresponding
hardening matrix. Therefore, the focus in theory 1 is on slip resistance, while the hardening matrix is defined by partial derivatives
with respect to shear strain.

Experimental data presented in (Wu et al., 1991a) formed basis for the development of theory 2 (Bassani and Wu, 1991b). In this
theory, the rate of hardening h* (y!, ¥, y3, ..yN) of a given slip system s depends on shearing on itself F(y*) and shearing on all the
other slip systems G(¥*; s’ = 1..N, s’ # s), i.e. the rate of hardening is the product of F and G (h* = FG). However, the slip resistance
of a given slip system s increases primarily due to shear strain (activity) on that slip system because the hardening matrix is diagonal
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or diagonal dominant i.e., h* > h*'. Neglecting the small off-diagonal terms for the case of diagonal dominant hardening matrix,
theory 2 can be mathematically expressed as:

dTeS — hssdys; hss :f(}’l, yz’ ---}’N); hss’ =0 2)

where 7, and y* are slip resistance based on the elastic limit, shear strain on sth slip system, and N is the total number of slip systems.
In Eq. (2), there is no implied summation over repeated indeces. The focus is on the hardening rate. Intrinsic to this theory is that it
evolves hardening rate while keeping the slip resistance constant until the activation happens, when the hardening takes place to
increase the slip resistance.

The response of a polycrystal depends on the constituent single crystals, whose response is affected by latent hardening. The
response of single crystals undergoes homogenization to represent the overall behavior of a polycrystalline metal. Homogenization
schemes such as upper bound Taylor-type (Fromm et al., 2009; Knezevic et al., 2008, 2009; Savage and Knezevic, 2015; Shaffer et al.,
2010; Taylor, 1938), mean-field self-consistent (SC) (Lebensohn and Tomé, 1993; Lebensohn et al., 2016; Zecevic et al., 2017b), full-
field finite element (Ardeljan et al., 2014, 2017; Ardeljan et al., 2015a, 2015b, 2016a, 2016b; Beaudoin et al., 1994; Knezevic et al.,
2013b, 2013c; Maudlin and Schiferl, 1996), and Green's function-based fast Fourier transforms (Eghtesad et al., 2017; Lebensohn,
2001) are most widely used. The SC homogenization approach is the most widely used because it provides the best compromise
between computational speed and accuracy.

A number of polycrystal plasticity models consider both self and latent hardening (Kalidindi et al., 1992; Knezevic et al., 20164,
2013b, 2013d; Peirce et al., 1982; Tabourot et al., 1997). Both self and latent hardening are included in the strength interaction
matrix, which is also called the interaction matrix. The matrix describes the relative strength of various dislocation interactions.
These interactions can be similar for a wide range of alloys with the same crystal structure. The latent hardening coefficients are most
often calibrated to fit multiple stress-strain curves of a studied material. The values in the matrix can also be measured experimentally
(Franciosi et al., 1980; Jackson and Basinski, 1967; Kocks and Brown, 1966; Wu et al., 1991b) or calculated using dislocation
dynamics (Devincre et al., 2008; Kubin et al., 2008b; Madec et al., 2003).

Numerical issues with the incorporation of latent hardening in crystal plasticity models have been observed in literature (Ortiz
and Repetto, 1999; Peirce et al., 1982). Specifically, the incorporation of the theory 1 of latent hardening in the elasto-plastic self-
consistent (EPSC) formulation (Turner and Tomé, 1994) of interest in the present work requires the development of a new approach
due to the singularities arising from the SC Eshelby solution procedure. Moreover, the solution procedure for single crystal stress
increment needs to be advanced. The objectives of the present paper are to: (1) enable a crystallographic hardening law within EPSC
homogenization (Zecevic and Knezevic, 2015; Zecevic et al., 2016a) to consider the physics of latent hardening, (2) reveal the origin
of plastic anisotropy in AA6022-T4 by modeling the effects of latent hardening, and (3) predict the characteristics of large strain
cyclic deformation for the material.

2. Material

This study is carried out on AA6022-T4 alloy, which is an important age-hardenable aluminum alloy exhibiting an excellent
combination of strength and ductility (Alcoa). The typical chemical composition of the alloy in wt. % is 1.21 Si, 0.56 Mg, 0.12 Fe,
0.08 Mn, and 0.05 Cu, balanced with Al. The AA6022 alloy can have a certain amount of precipitates, depending on the aging
treatment (Anjabin et al., 2014; Gupta et al., 2001; Miao and Laughlin, 1999). The precipitates, together with solutes, impede
dislocation motion (Rauch et al., 2002). Since AA6022-T4 does not undergo artificial aging, the content of precipitates is small. The
response is measured in simple tension along the rolling direction (RD), at 45° with respect to RD, and the transverse direction (TD)
(Tian et al., 2016; Zecevic et al., 2016b). Several tests were carried out per test direction and the recorded curves were within a
spread of 2%. The alloy exhibits a classic decreasing hardening rate, which is similar to many materials deforming by crystallographic
slip. Evidently, the plastic anisotropy evolves with plastic strain. The r-ratio, defined as the ratio between the in-plane plastic strain in
the direction perpendicular to the loading direction and the plastic strain in the through-thickness normal direction (ND), is plotted as
a function of plastic strain in the loading direction in Fig. 2b.

The initial crystallographic texture of the alloy was measured using electron backscattered diffraction (EBSD) over a large area
and is shown in Fig. 2c using the pole figures visualization. It predominantly contains a cube texture component spread of moderate
intensity. The average grain size in the material is estimated from EBSD scans to be approximately 44 pm.

The alloy was also tested under the cycle tension-compression along the RD to four levels of true strain: 0.01, 0.05, 0.1 and 0.15
(Fig. 2d), as reported in (Barrett et al., 2017). The testing setup for acquiring such data was explained in our earlier work (Zecevic
et al., 2016a). The macroscopic characteristic of the alloy behavior upon unloading is the existence of a very short initial linear
portion followed by a larger non-linear unloading portion, which is further followed by a drop in yield stress relative to that reached
at the end of forward straining. The phenomenon is known as the Bauschinger effect (BE) (Bauschinger, 1886). Subsequently, the
hardening rate in compression is different from the hardening rate during forward tension. As a result, the alloy exhibits what is
known as the permanent softening behavior (Hasegawa et al., 1975), which is governed by the annihilation of dislocations during
compression in the reverse direction.

3. Elasto-plastic self-consistent formulation
The modeling framework presented in this work is intended for understanding material behavior and simulations of metal
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Fig. 2. Mechanical response and initial texture of AA6022-T4 alloy: (a) true stress-true strain response in simple tension along RD, TD, and at 45° with respect to RD,
(b) evolution of r-ratio with plastic strain during simple tension along RD, TD, and at 45° with respect to RD, (c) pole figures showing the initial texture, and (d) large
strain cyclic tension-compression response measured along the RD.

forming, which subject metals to large plastic strains developing highly non-uniform stress-strain fields (Al-Harbi et al., 2010;
Hosford and Caddell, 2011; Jahedi et al., 2014, 2015b; Wagoner et al., 2013; Zecevic et al., 2015b, c; Zecevic et al., 2016b). These
fields are intra- and inter-granular heterogeneities and play a significant role during strain-path changes and unloading (Bauschinger,
1886; Knezevic et al., 2013a; Pavlina et al., 2015). The EPSC model was originally developed in (Neil et al., 2010; Turner and Tomé,
1994; Wollmershauser et al., 2012). Below, we provide a summary of the EPSC model.

In the description that follows, “” will represent a dot product, “®” will represent a tensor product, and a will be used to denote a
family of slip systems while s will denote individual slip systems belonging to the family. The self-consistent scheme is based on an
equivalent inclusion method where each grain is treated as an ellipsoidal inclusion inside the homogeneous equivalent medium
(HEM) i.e. the polycrystalline matrix. The mechanics of the inclusion is solved using a Green's function approach. Since individual
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grains interact only with HEM, the overall model is referred to as a one-site model. Each grain comprising a polycrystal has a crystal
lattice orientation, an ellipsoidal shape, and a volume fraction. The former two evolve with plastic strain. The matrix has unknown
tangent stiffness which is to be determined by enforcing the macroscopic stress and strain rate to be volume averages of the cor-
responding single crystal quantities:

6 =<6%; &= <>, 3)
In Eq. (3), the polycrystal Jaumann stress rate and strain rate are expressed as the volume average of the corresponding grain, c,
quantities. These macroscopic quantities are linked using:

& = Lg, “4)
where L is the unknown instantaneous elasto-plastic stiffness four-rank tensor calculated iteratively using the SC procedure (Eshelby,
1957; Turner and Tomé, 1994). The Cauchy stress rate is related to the Jaumann stress rate using (Zecevic et al., 2017a):

6=6+ <W%> — <6°W*> = L + <W%°"> — <c*W*>, (5)

where W€ is an elastic spin per grain, ¢, which will be defined shortly. Equation (5) is integrated over straining time explicitly for
obtaining the macroscopic Cauchy stress. The local strain rate per crystal, c, and the overall strain rate are related using a localization
tensor:

& = At ©)
The localization tensor for a given instantaneous local elasto-plastic stiffness L is
A= (1 + 1) (E + L), 1G]

where, = L((S°)~! — 1) is the effective stiffness from the interaction equation: (6¢ — &) = —L"*(é" — £). §¢ is the symmetric portion
of the Eshelby tensor while I is a fourth rank identity. Finally, the above relations result in an implicit equation for macroscopic
(matrix) tangent stiffness:

L = <IfA®> <A°>, ®

At the grain/local level, the constitutive relation is:

6¢ = Cf[é:” — Z m“'s;'/"’s] — otr (£°),

s

9

where C¢ is the fourth rank elastic stiffness tensor, ), m“*y** is the plastic strain rate made up of slip system shearing rates, y*, and
m“* = 0.5(b° ® n“* + n° @ b"), where b"* and n“* are the slip system direction and plane normal, respectively.

To activate a slip system s, a resolved shear stress on it lowered by backstress, 7;;° , must reach its slip resistance, 7.*°, i.e.
m*g¢ — 75;° = 7{* and the stress has to remain on the evolving crystal yield surface i.e., m*5-6¢ — 7;°* = ¢, The slip resistance
defines single crystal yield surface. The addition of the backstress term introduces kinematic hardening effects at a slip system level.
Therefore, single crystal yield surface expands with deformation as defined with the slip resistance term, 7., and moves as defined
with the backstress term, 7;;°. Note that slip systems are doubled because the two opposite shearing senses are counted separately.

The slip resistance and backstress evolve with the shearing rates using:

fcc,s — Z hss’yc,s” (10)

s
i = Y,
s 1n

where h*" and b are the hardening matrix and the backstress matrix, respectively, whose expressions depend on the adopted
hardening and backstress evolution laws. The h** and h®’ need to be pre-determined in order to solve the elasto-plastic self-consistent
problem. They can either be constant or defined as a function of state variables. For our purpose, we consider h* and h® to be
functions of accumulated shear strain on slip systems, y*. The expressions for h* and h;¥’ are defined in the following sections. Finally,
the crystal constitutive law is:

&¢ = IsgC, (12)
where L is:

I = C¢ — C z m* ® (Z (Xss’)—lmC,s’(Cc ot ® i)) -6 ®i,
s

g
s

13)
with:
X¥ =01 + by + Com® @ m. (14)

Note that indices s and s’ in Egs. (13) and (14) go only over active slip systems. Therefore, while full hardening and backstress
matrices are used for updating slip resistance and backstress, only a portion of them is used for the calculation of tangent stiffness.
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The grain spin tensor necessary for texture evolution, W¢, is:
W¢ = W 4 [I¢ — WP, (15)

where W% is the applied spin, II° is the spin calculated from an applied macroscopic strain rate to the polycrystal and the anti-
symmetric part of the Eshelby tensor for grain c¢ (Lebensohn and Tomé, 1993), and WP is the plastic spin. The plastic spin is:

WP = Z qc,syc,s’
s (16)

where g% = 0.5(b ® n® — n°* @ bes).

3.1. Dislocation-based hardening law incorporating latent hardening

We use the notation which distinguishes between arbitrarily chosen positive s+ and negative s-directions of slip systems, while
the index s refers to both directions. Dislocation-based strain rate and temperature sensitive hardening law is used to evolve slip
resistance (Beyerlein and Tomé, 2008; Jahedi et al., 2015a; Knezevic et al., 2012, 2014a, 2014b, 2015). The dislocation-based
hardening law was implemented within EPSC first in (Zecevic et al., 2015a) and used in several other studies (Lentz et al., 2015;
Nugmanov et al., 2018; Risse et al., 2017). The slip resistance is defined as:

s _ -« s a
=T + Tforest + Tdebriss (17)

where:

s - baxﬂa\/z Lsx’ps’
forest
> tot (18)

1
7"g‘ebris = kdebl'tab“\/pdeb lOg (—)
b fPaen (19)

where 7§ is an initial slip resistance including: the Peierls stress, solid solution contribution, precipitation contribution, and the Hall-
Petch-like effect, 7}, is a forest term arising from statistically stored dislocations, ;s is a debris term coming from dislocations
stored as debris. b* = 2.86 107 m is the Burgers vector, y = 0.9 is an interaction constant, g}, is the total forest dislocation density
for sth slip system (s € ) and L** is a latent hardening matrix aka a strength interaction matrix (Franciosi and Zaoui, 1982; Khadyko
et al., 2016). Magnitude of off-diagonal entries in the strength interaction matrix, L*, controls the magnitude of the off-diagonal
entries in the hardening matrix, 1. In Eq. (19), kg, = 0.086 is a material independent constant and g, is the debris dislocation
density (Madec et al., 2003).

Equation (18) is a modified Taylor relationship for the evolution of slip resistance accounting for dislocation densities on different
slip systems and their interactions through the strength interaction matrix. Thus, the evolution of slip resistance depends on the
accumulation of immobile dislocations and dislocation interactions. Both increase in dislocation density and dislocation interactions
between some slip systems lead to a decrease of the mean free path. Previous study on anisotropy in AA6060 showed that the general
trends of anisotropy in flow stress can be captured using latent hardening (Khadyko et al., 2016), where several different interaction
matrices from the literature have been tested. A stronger latent hardening than the self-hardening is what all these interaction
matrices have in common. However, the current EPSC formulation (for convenience, we will refer to this formulation as the standard
EPSC) is unable to converge for such strength interaction matrices, due to the loss of ellipticity of the macroscopic tangent modulus.
The issue is resolved in the present paper by proposing diagonalization of the hardening matrix, which will be described shortly.

The strength interaction matrix, L**, has in general 24 x 24 elements, since each slip system within {111}<110> family of 12 slip
systems has positive, s, and negative, s, direction, which are treated independently. Components of the strength interaction matrix
describe different dislocation interactions, which will be described later. The coefficients of the strength interaction matrix can be
evaluated experimentally or by use of dislocation dynamics and atomistic simulations (Franciosi et al., 1980; Madec et al., 2003). The
strength interaction matrix is constant and does not evolve with deformation.

Thus far, slip resistance has been defined in terms of the total forest and debris dislocation densities. Next, an evolution law for
dislocation densities in terms of shear strain on slip systems is defined. The evolution of total forest dislocation density during
reversed loading takes a different form than the one during forward loading. The origin of altered evolution law during reversal is the
annihilation of portion of stored dislocations. The evolution laws for dislocation densities, which take into account annihilation of
stored dislocations during load reversal, have been developed in (Kitayama et al., 2013; Rauch et al., 2007). The dislocation evolution
laws from (Kitayama et al., 2013) have been implemented into EPSC hardening law in our previous works (Zecevic and Knezevic,
2015). The total dislocation density is written as:

.
Prot = Ppor + Pry T Pray> (20)

where p;w is the forward dislocation density and prse: and prse; are the reversible dislocation densities associated with the s™ and s
directions, respectively. The three dislocation densities are evolved as functions of shear strain and shearing direction (Khadyko et al.,
2016; Kitayama et al., 2013; Kocks and Mecking, 1981):
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ifdys >0
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with the following initial conditions:
+ -
P (' =0)=10"m™2, pf (y*=0)=0 andpl,(y'=0)=0, 24)

where k{* is a coefficient controlling the rate of generation of statistically stored dislocations, k5 is a rate-sensitive coefficient for
dynamic recovery (Beyerlein and Tomé, 2008), p is a reversibility parameter having a value between 0 and 1, and g* is another
interaction matrix, which defines the strength of dislocation interaction governing solely the accumulation of forest dislocations on
slip system s depending on the dislocation density on system s’. Analogy between L% for slip resistance to g* for the rate of
dislocation evolution is evident. The interaction matrix for dislocation storage is a constant matrix and is inspired by the previous
works (Khadyko et al., 2016; Kocks et al., 1991; Teodosiu and Raphanel, 1991). The g“' is a constant matrix not expected to evolve
with deformation. The effect of entries of g“/ matrix on mechanical response is discussed in results section. Note that g“' does not
create off-diagonal terms in hardening matrix, h**'. The reversibility parameter controls the fraction of total dislocation density that
evolves as reversible dislocation density. In Egs. (22b) and (23a), m is a parameter accounting for the rate of dislocation re-
combination having value of 0.5 (Wen et al., 2015) and p; is the total dislocation density at the moment of shear reversal on the sth
slip system (Kitayama et al., 2013).
The rate-sensitive coefficient for dynamic recovery, k5, is:

k_g_)(b"‘ 1——kBT In £

ki g* Dby \&)) (25)
where, kg, &, g% and D* are the Boltzmann constant, a reference strain rate taken to be 107 s~ !, an effective activation enthalpy
and a drag stress, respectively. The evolution law for debris dislocation density is:

Psep

oys = q“b“\/pdeb k3 (& Ty,

(26)
where g* is a dislocation recovery rate constant that extracts a fraction of a-type dislocations that do not annihilate but become debris
from those that do annihilate. Initial content of debris dislocation density is taken to be 0.1 m=2.

3.2. Backstress evolution law

To also aid in capturing the effect of strain path reversal, the slip system backstress evolution is considered, using an empirical
law. The implementation of a backstress law in EPSC was first presented in (Wollmershauser et al., 2012). Here we consider an
evolution law for backstress per slip system based on the work presented in (Beyerlein and Tomé, 2007; Zecevic et al., 2016a). In the
empirical formulation employed here, we first define slip system sources of backstress which evolve with shear strain. All sources of
backstresses on individual slip systems are superimposed to form the backstress tensor as proposed in (Harder, 1999). The backstress
tensor is then projected on individual slip systems to arrive to the final expression of backstress. The final expression for backstress on
a slip system 1z, is:

147



M. Zecevic, M. Knezevic International Journal of Plasticity 105 (2018) 141-163

S c S S’ S,
Thy = MG = T g + 2 E m’m’ Ty g,
s (27)

with

s P
s Tbs,sys lf Tbs,sys >0

Tl;s,sys* = S
0 if Thgs <O (28)

where of; is backstress tensor formed by superimposing slip system sources of backstress, j i, and the sum over s’ spans over all slip

systems and s’ # s. We adopt following functions for the evolution of 7, with shear strain:
(if dy*" > 0 and 73 oy > 0)

sat

(1 - exp(—vy“)), (29)

+

Tlfs,sys
s st

Tps,sys = _ATbs,sys’ (30)
. + +

(ifdy® > 0and g g < 0)

o= —(A + DT ex _r sat
bs,sys — bs p ¥, + Ths

b (31

1 .+

T’F - N
bs,sys A bs,sys (32)

where 73" is a saturation value for backstresses, A is a parameter for asymmetric evolution of backstress on a slip system in two

different directions s+ and s-, y, and v are material parameters. The shear strain y* is recorded from the point of local load reversal.
3.3. Analytical description of the hardening matrix, h*', and the backstress matrix hy®
To complete the set of relations pertaining to the EPSC formulation, the hardening matrix h*’, and the backstress matrix, hg,

remain to be defined. Assuming that the functions defining the evolution of slip resistance and backstress with shear strain exist, from
Egs. (10) and (11) it follows that entries of the hardening and backstress matrices are the following partial derivatives:

i s , ot
O N )
oy dy (33)

The expressions for and h® are provided in appendix A for the evolution laws used in the present study.
3.4. Solution procedure for single crystal stress increment after introducing effects of latent hardening

The latent hardening is introduced in the model through the use of the strength interaction matrix, I*, in Eq (18). The strength
interaction matrix affects the hardening matrix, h* (appendix A). More specifically, it affects the ratio between elements on the
diagonal to the off-diagonal elements in k* for active slip systems. The positive definiteness of the hardening matrix is a necessary
condition for the determination of shear rates on active slip system in rate independent formulation (Hill, 1966). However, the
positive definiteness of #* is not expected when latent hardening is stronger than self-hardening, since the largest elements of the
matrix are not on the diagonal (Golub and Loan, 1996).

The realistic (experimentally measured) latent hardening constants as presented in the literature for Al and Al alloys (Franciosi
et al., 1980; Khadyko et al., 2016; Kocks and Brown, 1966) result in larger latent hardening than self-hardening. As a result, com-
putational issues arise both at single crystal and polycrystalline levels. In this section, the single crystal issues are treated, while in the
next section we treat issues at polycrystal level.

The single crystal solution procedure involves the determination of a set of active slip systems and shear increments on active slip
systems given an imposed single crystal increment in strain. The procedure begins by determining a set of potentially active slip
systems fulfilling the loading condition m®-¢¢ — 75, = 7. Next, shear increments are determined for all potentially active slip systems
by enforcing the consistency condition, m’-6¢ — %5, = 77, producing the system of linear equations:

z (h”' + hbSSS' + Cm* ® ms/)AyS, =m’(C° — o¢ @ i)AcC.
s 34

Evidently, the matrix, XSS,, defined in Eq. (14) needs to be inverted in order to solve for shear increments, Aysl, on potentially
active slip systems. If any of the resulting shear increments is negative, then that slip system is removed from the set of potentially
active slip systems and shear increments are recalculated. Slip systems are eliminated from the initial set of potentially active slip
systems until all active slip systems have positive shear increments. In addition, inactive slip systems must satisfy m*-¢¢ — 7, < 7/, i.e.
stress cannot get out of the single crystal yield surface. The final set of active slip systems is used in calculating the tangent stiffness of
single crystals (Eq. (13)).
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Two possible issues can arise in the above presented procedure. The first issue is singularity of the matrix X*. The problem has
been treated in literature (Anand and Kothari, 1996; Ben Bettaieb et al., 2012; Knockaert et al., 2000; Manik and Holmedal, 2014;
Schroder and Miehe, 1997). We adopt the approach of (Anand and Kothari, 1996), where a singular value decomposition procedure
of X* is proposed:

X = UwvT (35)

where U and V are orthogonal matrices, while W is a diagonal matrix with singular values of X positioned along the diagonal. The
pseudo inverse of matrix X* is then:

Xt = vw+u” (36)
where W+ is diagonal matrix given with:

Wy = {1/WSS if WS/maxW* > le — 12
0 if WS/maxW* < le - 12 (37)
The second issue that rarely occurs is inability to find a set of active slip systems satisfying all constraints for an arbitrary
hardening law. We observe that in some cases the elimination of slip systems with negative shear increments violates the condition
m’.c¢ — 75, < 7¥ for some of the eliminated slip systems at the end of the applied increment. A couple of percent of all active slip
systems can exhibit this problem with introduction of latent hardening more pronounced than self-hardening. The percent of slip
systems where stress exits the single crystal yield surface is dependent on adopted interaction matrix for dislocation density evo-
lution, g*, and strength interaction matrix, L**". If stress exits the yield surface on some slip systems, the slip resistance is corrected so
that stress remains on the single crystal yield surface i.e. slip resistance is enforced to be 77 = m*.c¢ — 1.

3.5. Singularity in the Eshelby tensor calculation upon introducing effects of latent hardening

Using the methods presented in the previous section, solution to single crystals can be found for a given hardening law. However,
issues are also encountered within the homogenization procedure, i.e. in the Eshelby tensor calculation.

The general symmetric Eshelby tensor, defining the strain rate inside the inclusion, can be calculated in terms of the Green's
function (Lebensohn et al., 1998). The Green's function in Fourier space is calculated using:

Gy, = (o0 Lyn) ™Y, (38)

where Gy, is the Green's function in Fourier space and k is a point vector of the Fourier space with magnitude k and in direction of a
unit vector a = (sin 6 cos ¢, sin 6 sin ¢, cos 6) (i.e. k = ka).

The possible issue in the Eshelby tensor calculation is singularity of the 2nd rank tensor a;a;L;;, for certain values of the angles 6
and ¢, over which integration is performed to define the Eshelby tensor in real space. This condition can be expressed as:

det(a;a; L) = 0, (39)

which is referred to as the loss of elipticity of the tangent stiffness and can be related to bifurcation and/or shear band formation
(Franz et al., 2009). In contrast, the strong elipticity of tangent stiffness is desirable and defined as:

Lymx:iy;xny; = Lyjmyjy)XiXn = QunXiXy > 0, (40)

where Q;, is the acoustic tensor (Merodio and Ogden, 2003) and x; and y; are arbitrary unit vectors. For Ly, to be strongly elliptical,
the acoustic tensor needs to be positive definite, which implies that det Q;, # 0 (Merodio and Ogden, 2003). The strong ellipticity of
the tangent stiffness is a necessary condition for solvability of the equivalent inclusion problem for an ellipsoidal inhomogeneity
(Freidin and Kucher, 2015). If the differential equations of equilibrium are elliptic, the condition of strong ellipticity is satisfied.

We notice that tangent stiffness loses ellipticity when the latent hardening is more pronounced than the self-hardening. This
implies that the use of the theory 1 of latent hardening leads to loss of ellipticity, while the use of the theory 2 of latent hardening
does not cause the loss of elipticity because the matrix is diagonal. The same effect of the theory 1 latent hardening on the loss of
ellipticity of governing equations for single crystals was noted in (Peirce et al., 1982). Similar issues are encountered in the case of
simulating softening in materials (Nguyen, 2005). Problems with the loss of ellipticity can be avoided by introducing the rate-
dependence i.e. visco-plasticity (Needleman, 1988; Peirce et al., 1983). Introducing strain rate sensitivity in the rate-independent
framework of EPSC is left for future developments.

The loss of strong ellipticity condition for overall tangent stiffness of a polycrystal appears to be related to the loss of ellipticity of
single crystals tangent stiffness tensors constituting the polycrystal. Therefore, before investigating the overall tangent stiffness
tensor, we investigate the behavior of tangent stiffness tensors of single crystals in function of the ratio between diagonal and off-
diagonal terms in their respective hardening matrices.

A crystal with Bunge-Euler angles (23, 12, 308) is arbitrarily chosen for the analysis. Four slip systems with the highest Schmid
factor under tension along the direction 1 are assumed to be active in constructing the tangent stiffness, If, according to Egs. (13) and
(14). The hardening matrix to facilitate the analysis is arbitrarily set to give a reasonable hardening rate as follows:
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Fig. 3. Maximum condition number of acoustic tensor as a function of the ratio between diagonal and off-diagonal terms in the hardening matrix.

b 1000 if s=5'
h,1000 if s #s" (41)

where h, defines the off-diagonal entries and s and s’ go over active slip systems. The single crystal stress in Eq. (13) is assumed to be
zero, while the single crystal elastic stiffness, C¢, is based on the single crystal elastic constants for Al (Meyers and Chawla, 2009). We
calculate the acoustic tensor of the single crystal tangent stiffness and its maximum condition number (cyax). By definition, the
condition number is the ratio between the largest and the smallest singular value of a matrix (Press et al., 1992). To achieve the
maximum of the ratio, the vectors y, and y, in Eq. (40) are varied using the function ‘fminunc’ in Matlab to perform unconstrained
optimization. Fig. 3 shows a plot of the condition number vs. h,. Evidently, the acoustic tensor becomes near singular for h, > 1. A
similar conclusion for the behavior of single crystals was presented in (Peirce et al., 1982).

Next, we sample 200 crystals from the ODF shown in Fig. 2c and apply the hardening law given by Eq. (41). We set h, to 1.5, the
initial value of slip resistance to 50 MPa, and simulate simple tension of the polycrystal using EPSC. Fig. 4 shows the simulation
results. The true stress-true strain curve (Fig. 4a) is plotted up to the strain level at which the EPSC is no longer able to solve for
homogenized tangent stiffness. The fraction of grains having the max condition number of acoustic tensor greater than 1e8 is shown
in Fig. 4b indicating that the number of grains losing ellipticity is increasing with strain. Our analysis shows that the macroscopic
tangent stiffness has nearly lost ellipticity and therefore, the solution procedure in EPSC is breaking down. With further straining
more grains would lose ellipticity and the overall tangent stiffness would lose ellipticity when nearly all grains lose their ellipticity
(Franz et al., 2009).

From the above presented analysis, we conclude that the theory 1 description of latent hardening with experimentally evaluated

(a) (b)
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=
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Fig. 4. (a) True stress-true strain curve calculated in simple tension for a polycrystal of 200 grains with a linear hardening law. (b) Evolution of % grains having the
maximum condition number of acoustic tensor greater than 1e8 with strain.
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latent hardening coefficients leads to the loss of ellipticity of the overall tangent stiffness.

3.6. Overcoming the loss of ellipticity

This section presents two methods used to suppress the loss of ellipticity, one proposed here and another available from the
literature originally proposed to resolve the issue of non-uniqueness in the choice of active slip systems. The methods are based on
opposing concepts in terms of the dependence of slip systems, as will become clear from the description below. Both methods have
been compared against the latent hardening in the standard EPSC formulation for a case study in which the standard formulation
converges. Results of the comparison suggest that the novel method proposed here is well suited for predicting the effect of latent
hardening on plastic anisotropy of AA6022-T4.

3.6.1. Diagonalization of the hardening matrix procedure

In order to perform the homogenization procedure, the single crystal tangent stiffness needs to be elliptical. The ellipticity of
tangent stiffness of single crystal is a function of relative size of diagonal and off-diagonal elements of the hardening matrix, as shown
in Fig. 3. As stated earlier, the hardening matrix must be a positive definite. To resolve the problem we propose a replacement of the
hardening matrix that enters the single crystal tangent stiffness calculation with a hardening matrix that is guaranteed to be positive
definite. This matrix is referred to as the diagonalized hardening matrix.

Note that while the single crystal solution procedure involving a given hardening matrix remains as described in section 3.4, the
diagonalized hardening matrix is inserted in Egs. (14) and (13) for the calculation of single crystal tangent stiffness, L.

The definition of new hardening matrix comes from assuming that both hardening matrices relate to the same hardening law,
meaning that increments in slip resistance produced by both matrices should be the same:

Z hrss’Ays’ - Z hss’AYs'
s s

where b is the diagonalized hardening matrix. The indices s and s’ in equation (42) go over active slip systems. The diagonalized
matrix is written as:

(42)

hrSS( = hgsl + rh(ffj",’ 43)

where h{ is the unknown matrix with off-diagonal elements equal to zero, hgf} is a matrix formed from h* by setting the matrix
entries along the diagonal to zero and r is a diagonalization parameter set to a value between 0 and 1. The indices s and s’ in equation
(43) go over all slip systems. Replacing equation (43) in (42) allows determination of unknown elements along the diagonal of matrix
hy:

hEAYS + Y thig Ay = D YAy - i = A (Z h Ay =y, h;ffAyS).
S s

7 7

s s

(44)

where indices s and s’ go over active slip systems. The diagonalization parameter, r, defines weight of the diagonal elements
compared to off-diagonal elements. For instance, when r = 1 the matrix h,“/ becomes #* i.e. off-diagonal elements are dominant,
while when r = 0 the matrix " becomes h® i.e. the matrix is diagonal.

Reducing hardening matrix to its diagonal form can be interpreted as “breaking the dependence” between slip systems in terms of
slip resistance. The dependence of slip resistance is introduced by the concept of latent hardening theory 1, where slip resistance is
dependent on shear on all slip systems and the hardening matrix is full.

While the proposed approach does not change the single crystal response, it affects the overall homogenized tangent stiffness.
Therefore, the polycrystal response can be slightly altered. To evaluate the effect, we compare the results from this procedure with
the results based on the regularized Schmid law (Gambin, 1992). The latter approach is summarized next.

3.6.2. Regularized Schmid law procedure

The regularized Schmid law for the rate-independent crystal plasticity was proposed in (Gambin, 1992). The formulation allows
predictions of forming limit diagrams using the bifurcation analysis as presented in (Yoshida and Kuroda, 2012). Here we closely
follow derivations from (Yoshida et al., 2009), while enforcing the normal to yield surface to have a norm of unity (Simo and Taylor,
1985). The rotation of single crystals is neglected for simplicity when deriving the equations and performing the integration. The
single crystal yield function is:

1
.S 2N\oN
f=[2(2’“’s)] “1<0
-\ T+ T (45)

where N is an integer parameter controlling the radius of single crystal yield surface corners. With known yield function, the normal
to yield surface is:
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The plastic strain rate is:

s

(46)

ePl = AR, 47)

where A is the plastic multiplier. Using the expression for plastic strain rate in terms of shear rates, ¢! = Y} y*m’, together with Egs.
(46) and (47) we can express the shear rate as:

}',s — Aﬂs’ (48)

) 2N-1
1 ( om’ 1
s+

7S =
€. mS 2N-1 1 s \TCS + Tlfs
s\ e+ e
T Ths T Ths (49

The semi-implicit integration procedure is applied to define the constitutive relation (Dunne and Petrinic, 2005). Details of the
integration procedure are given in appendix B. The linearized form of single crystal constitutive law consistent with the integration
procedure is:

C C
OAT" e 1 pger = 9A9 (A — Aec).

Ag® = =
° OA€® OAe® (50)

where A’ is calculated by replacing Ac¢ = C¢(Ae® — AAR) in Eq. (50):

gt R

The homogenization procedure for the linearized response of non-linear constituents is known as the affine formulation with step-
wise reference to a linear comparison medium with an eigenstrain, for each grain and for the overall behavior (Masson et al., 2000).
The details are presented in appendix C.

The idea behind regularized Schmid law is the introduction of the dependence between slip systems, controlled with the exponent
N. Therefore, all slip systems are always active and shear rates between slip systems are connected i.e. shear rate and appearance of
slip depends on shear stress on all slip systems. The introduced concept is different from the standard Schmid law which assumes
independence between slip systems. In this sense the idea of regularized Schmid law is opposite to the one of diagonalization
procedure i.e. regularized Schmid law introduces the dependence between slip systems, while diagonalization procedure is removing
the dependence between slip systems.

To validate the single crystal integration procedure, a number of strain increments (Ag; =le — 5, Ag, = —0.5¢ — 5,
Agz = —0.5e — 5, Ag, = Agz = Ag; = 0) are applied to an arbitrary crystal of the following crystal orientation (23,12,308). It is worth
mentioning that the amount of strain per increment needs to be sufficiently small to avoid any numerical issues, since the semi-
implicit algorithm is employed and the equations can be very stiff if N is large (Knezevic et al., 2016b). The initial slip resistance is set
to 50 MPa and the hardening is defined using Eq. (41) with h, = 0. Fig. 5 compares predictions from the regularized Schmid law and

A" = Ag® —

2001

True stress [MPa]
) @
o o

[
o
T

Schmid law
——=-Reg. Schmid law ( N=50)
———-Reg. Schmid law ( N=100)

0 0.01 0.02 0.03 0.04 0.05
True strain

Fig. 5. Comparison of mechanical response for a single crystal deformed by imposing strain increments (Ag; = le — 5, Agy = —0.5e — 5, Agz = —0.5¢ — 5,
Agy = Agz = Agz = 0) for Schmid law and the regularized Schmid law. Two different values of the power-law parameters N are used, which controls the sharpness of
the corners of single crystal yield surfaces.
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the usual Schmid law. Evidently, the predictions are identical, validating the implementation of the regularized Schmid law pro-
cedure. In addition, the regularized Schmid law predictions with both N = 50 and N = 100 give similar results. Increasing the
exponent N improves the accuracy at the yield surface corners but also increases the computational time.

3.6.3. A case study comparing the procedures for overcoming the singularity in the Eshelby tensor calculation: simple tension of AA6022-T4

In this section, a comparison is made between the standard EPSC and two approaches for overcoming the numerical loss of
ellipticity: (1) diagonalization of the hardening matrix procedure and (2) regularized Schmid law procedure. The goals are to quantify
their deviation from the standard EPSC by comparing predicted mechanical responses and to choose a more suitable method for
predicting the anisotropy of AA6022-T4. The comparison is performed on the same set of 200 grains sampled from the ODF in Fig. 2c.
For simplicity, texture evolution is turned off for the simulations presented in this section, while texture evolution is enabled in all
other simulations presented in the following sections. The constant hardening matrix used for theory 1 formulation is:

b = he ifs=s
T 1095 x he ifs#s" (52)

where hc = 150 MPa is the chosen hardening rate. Simple tension along the RD is simulated. The same simulation is also performed
while using the diagonalization of the hardening matrix and the regularized Schmid law procedures. Since these schemes alter the
mechanical response for a given hardening matrix, Eq. (52), the constant hardening rate, hc, was adjusted such that the three
simulations provide approximately the same true stress-true strain response in tension: 126 MPa when r = 0, 141.5 MPa when r = 0.95
, and 122 MPa for the regularized Schimd law simulations. We remind that for r = 1, the standard EPSC formulation is retrieved. The
initial slip resistance was kept at 50 MPa for simulations with the diagonalization of hardening matrix and standard EPSC, while it
was set to 47 MPa for the simulation with the regularized Schmid law. Fig. 6a shows the comparison of simulation results, indicating
that the mechanical response of all simulations is essentially identical. Fig. 6b shows that the predictions of r-ratio are also similar for
all simulations. Fig. 6¢, d, and e show the deviation of microscopic from macroscopic quantities. The compared quantities are tangent
stiffness, strain, and stress rates. In the first case, the difference between single crystal tangent stiffness tensors and the overall
macroscopic stiffness is calculated for each crystal using d*(L, I¥) = 2:;5 and the volume average is then calculated. It can be seen
that methods for overcoming the loss of ellipticity result in a lower mean deviation relative to the standard EPSC, meaning that single
crystal tangent stiffness tensors are more similar among different crystal orientations. The deviation of single crystal strain rate and

&= 1l and " NCE-DOIl

stress rate is calculated using T i and plotted in Fig. 6d and e, respectively, after performing volume averaging.
The plot shows that single crystal strain rate varies less from the macroscopic strain rate for the methods introduced to overcome the
loss of ellipticity than that for the standard EPSC. However, the regularized Schmid law predicts the most similar strain rates amongst
grains, resembling the Taylor iso-strain homogenization assumption, which was also noted in (Yoshida et al., 2009). The stress rate
deviation behaves in the opposite manner to strain rate deviation. As expected, the diagonalization of hardening matrix with the
diagonalization parameter of r = 0.95 predicts the response which is the closest to the standard EPSC.

From the analysis presented in this section we conclude that the diagonalization of hardening matrix gives results more similar to
the standard EPSC than the regularization of Schmid law. The regularized Schmid law procedure served as a reference for comparing
the developed hardening matrix diagonalization procedure, but in itself is very computationally involved, especially for N > 50,
since it has the semi-implicit integration algorithm. The new procedure developed herein for overcoming the loss of ellipticity
enabled the use of experimentally determined latent hardening constants. It should be noted that the diagonalization of hardening
with r = 0 matrix procedure gives diagonal hardening matrix for active slip systems, conforming to theory 2 latent hardening
(Bassani and Wu, 1991a; Cuitino and Ortiz, 1993; Wu et al., 1991a). The developed procedure with EPSC is used in the subsequent
sections for predicting the anisotropy of AA6022-T4 alloy.

4. Results and discussion
4.1. Predictions using the standard EPSC model

We begin by presenting the predictions using the model without the modifications pertaining to the hardening (Zecevic and
Knezevic, 2015). Hardening along with latent hardening and backstress parameters are calibrated towards the data in Fig. 2. We
emphasize that the crystallographic texture is mainly governing the anisotropy in this case.

The simple tension simulations are performed by enforcing increments in strain in a given direction of tension, while keeping the
lateral stresses and shear strains at zero. The three measured stress-strain curves were used for fitting the hardening law parameters,
while simulation results for r-ratio are considered as predictions. Table 1 shows the best fit parameters established for AA6022-T4.
Theory 1 of latent hardening was used with the self-hardening coefficients set to unity (L** = 1) and the latent hardening coefficients
set to 0.99 (L* = 0.99 with s # s"), since the magnitude for the latter coefficients of 1 or greater causes loss of ellipticity for single
crystals. As discussed, the use of more realistic (experimentally established) latent hardening coefficients is not possible within the
standard EPSC implementation due to convergence issues. The starting measured texture shown in Fig. 2b was used to generate an
input orientation distribution function (ODF) with MTEX matlab tool box (Bachmann et al., 2010), where 2000 weighted orientations
were appropriately sampled and used as the starting texture for simulations. The invariant single crystal elastic constants for Al are:
Ci; = 108.2 GPa, Cj, = 61.3 GPa, and Cyy = 28.5 GPa (Meyers and Chawla, 2009).

Fig. 7 shows the predictions in terms of true stress-true strain response and r-ratio. Evidently, the anisotropy in the mechanical
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Fig. 6. Comparison of: (a) true stress-true strain curves, (b) r-ratio, (c) volume average of the difference between single crystal and macroscopic tangent stiffness, (d)
the volume average difference between single crystal strain rate and applied strain rate and (e) the volume average difference between single crystal stress rate and
applied stress rate, calculated by models indicated in the legend.

Table 1a
Constitutive parameters for the evolution of slip resistance for {111}<110> slip mode in AA6022-T4.

79 [MPa] ki [m™1] g D[MPa] q

60 1.4 x 10® 0.0784 100 16
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Table 1b
Parameters for the evolution of slip system kinematic backstress in AA6022-T4.
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Fig. 7. Comparison of predictions using the standard EPSC and measurements for AA6022-T4: (a) true stress-true strain response and (b) r-ratio.

response is not well predicted. Note that lateral strain components (those in 22 and 33 directions if the loading is in 11 direction),
which determine the r-ratio, are calculated from a system of linear equations given with Eq. (12). The system is solved using known
values of strain rate and Jaumann stress rate, which are based on imposed boundary conditions. The solution for the system of linear
equations in terms of the unknown strain rates in the directions 22 and 33 is in function of Ly;, Ly, L,3, L3, L3; and L33 components
of the polycrystal tangent stiffness tensor of HEM. The homogenous effective medium is a fictitious homogenous material that
behaves in the same way as the heterogeneous polycrystal. The tangent stiffness of the HEM is dependent on the selected homo-
genization approach, single crystal tangent stiffness, and texture. The single crystal tangent stiffness depends on the adopted
hardening law. Therefore, the hardening law integrating the latent hardening and texture evolution govern the r-ratio evolution
within the self-consistent homogenization approach used here. Thus, in our model, the predicted r-ratio is a direct consequence of the
evolution of the polycrystal tangent stiffness, originating in the hardening rate and texture.

Next, we present results in terms of predicted plastic anisotropy of AA6022-T4 using EPSC formulation with the diagonalization of
the hardening matrix procedure and the singular value decomposition for solving for single crystal stress increment. Predictions of
mechanical response will allow us to discuss the origin of plastic anisotropy in the material.

4.2. Predictions based on the strength interaction matrix L*

The strength interaction matrix in Eq. (18) is defined to contain six independent coefficients aimed at describing six types of
dislocation interactions. The possible dislocation interactions are: (1) self-interaction between dislocations belonging to the same slip
system, (2) coplanar-interaction between dislocations on the same slip plane, (3) interaction resulting in Hirth lock, (4) collinear
interaction between dislocations on cross slip planes, (5) interaction resulting in sessile Lomer-Cottrell locks, and (6) glissile lock.
However, a recent study involving latent hardening models utilizing up to six interaction coefficients revealed that the simplified
strength interaction matrix of two entries were sufficiently general to predict anisotropy in FCC metals (Khadyko et al., 2016). Here,
we assumed the self-hardening and the coplanar interactions as unity, while the other interactions were set to 1.4 consistent with the
measurements performed on Al single crystals in (Kocks and Brown, 1966). Thus, the interaction matrix is reduced to two in-
dependent coefficients, governing the self and latent hardening. Several earlier studies made the same assumption (Anand and
Kothari, 1996; Asaro and Needleman, 1985; Peirce et al., 1982). The fitted hardening law parameters are given in Table 2. The
interaction matrix used in the evolution law for dislocation density (Egs. (21)-(23)) is g* =1 and g“/ = 0 with s # s’. The fitted
parameters for backstress are given in Table 1b.

Table 2
Constitutive parameters for the evolution of slip resistance for {111}<110> slip mode in AA6022-T4.

7o[MPa] ki[m™1 g D[MPa] q

56 1.3 x 108 0.0618 100 8
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Fig. 8. Comparison of the predictions and measurements for AA6022-T4: (a) true stress-true strain response and (b) r-ratio.

The results are shown in Fig. 8. The simulated stress-strain curves to larger plastic strains follow the same trend as measured
curves. However, the 45 direction stress is slightly over-predicted, while the TD direction stress is slightly under-predicted. The
predictions of r-ratio follow similar trends as measurements, while the actual values are not matching very well needing further
investigation. We note that the r-ratio predictions are not affected by the strength interaction matrices. Nevertheless, with the
diagonalization of hardening matrix procedure, we no longer observe the decreasing r-ratio with plastic strain, which is a significant
improvement.

To highlight the effect of latent hardening on plastic anisotropy in the flow curves of AA6022-T4, several simulations were run
with the self-hardening (L*) set to 1.0, while the latent hardening (L* with s # s") was varied between 0 and 2. In all these
simulation cases, the diagonalization of the hardening matrix r = 0 method was used. Additionally, the predictions of the standard
EPSC are also presented for the purpose of comparison. The dislocation-based hardening law parameters were slightly adjusted for
each simulation case. The parameters are given in Table 3. The backstress parameters were kept the same, as presented in Table 1b.
Fig. 9 compares the experimental and simulated ratio of the true stress in tensile direction for the three studied directions to the true
stress in tension along the RD sample at a true strain of 0.18. It can be seen that the flow stress ratio for 45° and TD is decreasing with
the latent hardening coefficients. Anisotropy in flaw stress follows the experimental trend (cgxp > 05 > orp) better when the latent
hardening coefficient is > 1. In addition, Fig. 9 shows the effect of diagonalization of hardening matrix on anisotropy. The effect can
be appreciated by focusing on the predictions from the standard EPSC and the predictions from the diagonalization of the hardening
matrix for constants L= 0.99 and L = 1. The comparison reveals that even with similar latent hardening, the diagonalization of
hardening matrix produces the desired trend in the flow stress anisotropy. Evidently, the experimental values adopted from (Kocks
and Brown, 1966) further improve the predictions.

4.3. Improved predictions using the interaction matrix g*

The predictions presented thus far considered g% as diagonal matrix populated with the values of unity on the diagonal. The rate
of dislocation generation per slip system is dependent on dislocation density in itself and other slip systems in a complex manner
(Kubin et al., 2008a). In the dislocation evolution law, the interdependence between slip systems in terms of generation of dis-
locations can be implemented by increasing the off-diagonal terms in g% The g% controls the dislocation evolution rate in the same
way the L** controls the slip resistance. The hardening rate of a slip system, defined with entries of hardening matrix in appendix A, is
proportional to dislocation evolution rate. Therefore, the rate of hardening of all slip systems due to shearing on an active slip system
is controlled in part by g* interaction matrix. The strength interaction matrix, L*, remained the same, i.e. the self-hardening and the
coplanar interactions are unity while all the remaining terms are 1.4. The effect of increasing off-diagonal terms in matrix g% on
anisotropy in flow stress is shown in Fig. 10a. The predictions improve with increasing the magnitude of the g* off-diagonal entries
but then saturate. No appreciable improvements are obtained after a value of 1 for the off-diagonal entries. The empirical backstress

Table 3
Constitutive parameters for the evolution of slip resistance for {111}<110> slip mode in AA6022-T4.

L s g% g 79[MPa] km™1 g D[MPa] q
1 0 1 0 60 3.0 x 108 0.1176 100 8
1 0.5 1 0 60 1.6 x 10® 0.0866 100 8
1 1 1 0 58 1.3 x 108 0.0706 100 8
1 2 1 0 56 1.1 x 108 0.0523 100 8
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Fig. 9. True stress at a true strain of 0.18 predicted in tension along the three directions as indicated on the x-axis normalized by the tensile true stress in RD. The
corresponding experimental results are presented to facilitate the comparison.
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Fig. 10. (a) True stress at a true strain of 0.18 predicted in tension along the three directions as indicated on the x-axis normalized by the tensile true stress in RD. The
corresponding experimental results are presented to facilitate the comparison. (a) Comparison of simulated and measured true stress-true strain curves and (b)
simulated and measured r-ratio for AA6022-T4.

law is still used with the parameters given in Table 1b. As always, the hardening law parameters were adjusted to obtain the best fit to
the measured data and are given in Table 4. The fits to true stress-true strain curves and the predictions of r-ratio are given in Fig. 10b
and c, respectively. Evidently, the model successfully captures the evolution of anisotropy. We regard the predicted trends as good.
We note that introducing the off-diagonal terms in the matrix ¢* within the standard EPSC can have some positive effect on the flow
stress anisotropy, while the r-ratio predictions become worse.

In summary, the simulation results reveal that the strength interaction matrix, L, and the interaction matrix defining the rate of
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Table 4
Constitutive parameters for the evolution of slip resistance for {111}<110> slip mode in AA6022-T4. The (Kocks and Brown, 1966) refers to setting self and coplanar
interactions between slip systems to 1.0, while all other interactions are defined to be 1.4.

L® s g% ¢ 70 [MPa] ke [m™1] g D[MPa] q
(Kocks and Brown, 1966) 1 0 56 1.3 x 10 0.0618 100 8
1 1 56 0.65 x 108 0.0294 100 8
(Kocks and Brown, 1966) 56 0.65 x 10° 0.0244 100 8
1 2 56 0.5 x 10® 0.022 100 8

5001
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«
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0.01 strain exp.
—0.05 strain exp.
—0.1 strain exp.
——0.15 strain exp.

0.01 strain sim.
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—==-0.15 strain sim.

True stress [MPa]
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-250 1
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Fig. 11. Comparison of measured (solid lines) and predicted (dashed lines) large strain cyclic tension-compression response along RD. The predictions are based on the
new EPSC model with diagonalization of hardening matrix.

dislocation generation, g*, for the given crystallographic texture and its evolution have a significant effect on the observed aniso-
tropy in stress-strain response of AA6022-T4.

4.4. Large strain cyclic plasticity predictions for AA6022-T4

Finally, the predictive characteristics of the model are evaluated on the large strain cyclic data for the material. The presented
dislocation density-based hardening along with the empirical backstress model with the parameters given in Tables 4 and 1b has been
utilized in the EPSC model with the diagonalization of the hardening matrix procedure for these calculations. The reversibility
parameter was set to p = 0.2 (Egs. (21)-(23)). Fig. 11 shows the predictions. It can be seen that the model using the single set of
parameters is capable of predicting the non-linear unloading, the BE, and the hardening rates upon loading in the reverse direction of
the material with reasonable accuracy. Therefore, the EPSC integrating the diagonalization of the hardening matrix is able to produce
similar predictions of the cyclic response to those of the standard EPSC (Zecevic and Knezevic, 2015).

5. Conclusions

This paper extends a recently developed dislocation-based hardening law within the EPSC homogenization (Zecevic and Knezevic,
2015; Zecevic et al., 2016a) to incorporate the latent hardening effects for the prediction of plastic anisotropy of polycrystalline
metals. The new implementation overcomes an issue in the self-consistent formulation with latent hardening arising when experi-
mentally measured latent hardening constants are used. The main issue is identified to be the loss of ellipticity of macroscopic tangent
modulus caused by the loss of ellipticity of single crystal tangent modulus. The new method takes the advantage of a new solution
procedure for single crystal stress increment relying on the singular value decomposition to solve for shear increments. The method,
termed the diagonalization of hardening matrix, is compared with the regularized Schmid law method, which does not have the issue
with the loss of ellipticity. The comparison shows that the new implementation is closer in terms of stress-strain predictions to the
original EPSC formulation than the regularized Schmid law, leading to more accurate predictions. Moreover, the new method is much
more computationally efficient.

Effect of latent hardening on plastic anisotropy in the mechanical response of AA6022-T4 is studied using the developed crys-
tallographic modeling framework. The proposed method for overcoming the loss of ellipticity, which facilitates the use of the ex-
perimentally determined latent hardening coefficients for aluminum reported in (Kocks and Brown, 1966), predicts the correct
anisotropy in the stress-strain response of the studied material. Thus, the latent hardening, along with crystallographic texture
evolution, are found to control plastic anisotropy in AA6022-T4. Moreover, the model improves the predictions of r-ratio evolution
with plastic strain. Finally, the proposed model is able to predict the large strain cyclic plasticity behavior of the material.

158



M. Zecevic, M. Knezevic International Journal of Plasticity 105 (2018) 141-163

Acknowledgments

This work is based upon projects supported by the US National Science Foundation under grants CMMI-1301081 and CMMI-
1650641.

Appendix A
Entries of the hardening matrix are partial derivatives of slip resistance given with relation (17) with respect to shear strain on slip
systems:
(o _ O OThew | Ot

=== 4 :
oy’ ay* oy’ ay* (A1)

The index s’ goes over all active slip systems. Since the initial slip resistance, 7§, is a constant its derivative vanish, while derivatives
of the forest and debris contributions to slip resistance are:

’—
N

) s +
a;;o::‘m — an{O’:‘?Sf aptf)f — bax“o( —1 - Lssv apfl),f + aprsev/ + aprev{ ,
s oy’ s ay* ay* ov°
! %o 0E L Y v 4 (A2)
aTdolebris aTdolebris apdeb 1 alodeb

= = —kaepp“b* (log (0% [0gep) + 1)

o 004er Oy 2 By (A3)

The derivatives of forward, reversible, and debris dislocation densities with respect to shear strain are provided with Egs. (21a-23b,
26) respectively.

Similarly, entries of the backstress matrix are partial derivatives of backstress given with relation (27) with respect to shear strain
on slip systems:

arlfx Sys . ’
— ifs=s
hss' _ aTst _ o f
bs — s o8
dy 2mim’ 22 f g o
o (A4
9Ty s
where s’ goes over set of active slip systems. Using the relation (28) the derivative Liy” is:
%
’ oS . . ’
afbss,sys* _ ;;j’ys lf TbSS,SyS >0
a S’ . ’
4 0 lf Tlfx,sys <0 (A5)
0T s s . . .
Next we define the derivative of slip system backstress sources, % In the case of shearing in s* direction, dys" > 0, with r,f: > 0:
+
arlfs sys +
= 5%y exp(—vy*),
ot (=) (A6)
— +
arlfs,sys _ args,sys
oy or" (A7)
The derivative of slip system backstress source in case of shearing in s* direction, dys* > 0, with rlf: o5 < 0 is:
+
s _ (A + Dt e - P ]
ays" % 143 (A8)
s~ st
aTbs,sys _ _l aTbs,sys
dy* A oy (A9)
Appendix B

The purpose of integration algorithm is to find an increment in plastic multiplier AA, for a given increment in a crystal strain, Ae°.
In the semi-implicit integration procedure (Dunne and Petrinic, 2005) the normal to yield surface is evaluated at the beginning of the
time increment by calculating:
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¢ s 2N-1
L 1 o, m; 1 s
n, = - N_1 Z S o S+Smt.
Z ( of - m§ ) 1 s s Te,t Ths,t Tet Ths,t
t
s

S S
Te,t + Thst

S S
Te,t F Thst

(B1)

All variables having subscript t are written at instant t and are known. Therefore, in Eq. (B1), all variables on the right hand side are
known, and i, can simply be calculated. The yield function is written at the end of the time increment:

1
2N\3N
c s 2N
_ OrparMy _1=o0
Jrear = S =0,

N
Tetrar T Thserae

s (B2)
with:
ofa = O; + Ao = of + C°(Ae¢ — AARy), (B3)
Torenr = Tog + Z hl”/AyS, =1, +AA Z h[Sslﬂ,s,,
s s (B4)
Ths,r4ar = Thss + Z b AYS = Ty, + AA Z hps, e
= = (B5)

where AA is the increment in plastic multiplier. (B2) is a non-linear equation with AA as unknown. Newton method is used to solve
for AA. Next, increments in shear strain on slip systems, slip resistance, plastic strain, and stress can be calculated and total variables
updated.The consistent tangent operator is:

dAc*® 9 . . _ 0AA
= C¢(Ae — AAR)| =C°-Cn ® s
OAs®  OAeC e d OAe® (B6)
gi/‘c can be calculated by taking the derivative of relation (B2):
£
1
2N\on 1 2N-1
1 Oiparm; N Z Oiparm; 1 9(ayarm;)
2N Torear + Thsrear ~ \Torrar + Tosrear Torear T Thorear  OAE
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(@rvar + Thsrrar) OAe* (B7)
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JAg OAe® (B9)
From (B7), giﬁ can be expressed as:
0AA
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Appendix C
Constitutive relations in presence of eigenstrain for single crystal and polycrystal, respectively, are:
Aot = If(Aef — Ag*), (cn
Ac = L(A¢ — Ag¥), (C2)
where I = ‘;i:f is consistent tangent operator. Interaction equation for inhomogeneity inside the matrix is:
Ac® — Ao = —L(As® — Ag), (C3)

with I = L((S)™! — I). Replacing constitutive relation inside the interaction equation gives:
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If(Ag® — Ae*) — L(Ae — Ag*) = —L¥(Ac® — Ag). (C4)
From relation (C4) increment in strain can be expressed as:

Agt = AN + ac, (C5)
with

A= (I + I)Y(L + I, (C6)

a’ = (I + L) 1(IfAg* — LAg¥), (C7)

where Ag’¥ is the unknown reference increment in strain (Lebensohn et al., 1996). Using the condition that the volume average of
single crystal increments in strain is equal to the macroscopic increment in strain gives the expression for reference strain increment:

Ag = <Ae®> = <A> Ag™ + <a®> » AgY = <ASTAs — <ATl<al>. (C8®)
In a similar manner, the volume average of single crystal increments in stress is equal to the macroscopic increment in stress:
Ao = <AG®> = <IFA> <A°>1Ag — <ISA><ASS1<a®> + <If(a® — Ag*©)>. (C9)

By comparing relation (C9) with (C2) we can identify macroscopic tangent stiffness and eigenstrain:

L = <ISA®> <A1 (C10)
Ag* = <a®> — L' <If(a® — Ag*©)>. (C11)
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