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We present the first high-performance computing implementation of the meso-scale phase field dislocation
dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes ad-
vantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device
architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within
the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The
package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to
CUDA functions are replaced with the OPENACC data regions for a host central processing unit (CPU) and device
(GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the
Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one
exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation
is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently
applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu-Ni) inter-
face. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X
speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4

@ 2.20 GHz version of the code.

1. Introduction

The study of the mechanical behavior of polycrystalline materials
with a grain size of typically less than 0.1 pm has been the focus of
materials researchers for several decades [1-9] In polycrystalline ma-
terials, dislocations are line defects whose motion carries plastic de-
formation. The atomic core structure of a dislocation deviates from the
perfect atomic structure of the crystal. Understanding the deformation
mechanisms of moving dislocations and their interplay with interfaces
and grain boundaries is crucial in understanding polycrystalline plas-
ticity.

In order to investigate the multiscale nature of plasticity in metals,
several modeling approaches encompassing different length scales have
been developed. Molecular dynamics (MD) and density functional
theory (DFT) are powerful techniques to capture the motion and con-
figuration of dislocations at an atomistic level. While MD and DFT si-
mulations are promising tools for capturing dislocation motion and
interactions, they are computationally expensive due to the need to
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resolve the entire atomic structure limiting the time and length scales
that can be achieved in simulations. In MD, for instance, the grain size
limitation is approximately 100 nm [10]. To relax the computational
speed concerns, MD models have already been implemented on gra-
phics processing unit (GPU) hardware [11,12]. Nevertheless, a me-
soscale technique is desirable to connect length and time scales that are
more consistent with experimental scales. Generally, in order to study
the dislocation motion and configuration in length scales beyond order
of microns, mesoscale methods are implemented. Discrete dislocation
dynamics (DDD) and phase field methods are two major categories for
such studies, both of which resolve individual dislocations rather than
the atomic structure of a material. DDD simulations model individual
dislocations by dividing each dislocation line into a series of line seg-
ments connected with nodes. The dislocation structure is then evolved
through the calculation of elastic forces on each dislocation line seg-
ment and then by solving the equation of motions. The forces on each
dislocation are determined as the summation of stress magnitudes over
all of the dislocation line segments. In most cases, isotropic elasticity
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theory is assumed [13-18].

On the other hand, a phase field formulation is a modeling approach
that operates on a similar length as DDD; however, each individual
dislocation is resolved using order parameters or phase field variables.
Each order parameter is a scalar valued variable that tracks areas
slipped by dislocations and for every point counts how many disloca-
tions have traversed. Order parameters (and hence the dislocation
structure) are evolved through minimization of the total system energy.
One of the energy terms, the strain energy, relies on the calculation of a
complex interaction matrix, which will be described shortly. Through
transformation to Fourier space, the calculation of this matrix is greatly
simplified, but it must then utilize periodic boundary conditions and
fast Fourier transforms (FFT) computations. In this work, we have
chosen to focus on a phase field code called phase field dislocation
dynamics (PFDD) [19].

Despite the fact that the PFDD model accounts for larger scales in
comparison to MD simulations, study of a large problem size including
massive number of FFT voxels can still result in computationally ex-
pensive simulations. For example, in a face-centered cubic (fcc) system,
a PFDD simulation can have up to 12 active order parameters due to the
existence of 12 slip systems resulting from the crystal symmetry and the
atomically close-packed planes. In order to fully evolve the plasticity,
these 12 slip systems can be taken into count with 12 phase field
variables. More than that, for a bicrystal interface system we must also
evolve the virtual strains due to the second phase, resulting ina 3 x 3
system of equations that adds an additional 9 order parameters, one for
each component of the virtual strain. The total energy of the system
must be minimized with respect to each active order parameter. In an
fcc material, this can translate into up to 12 coupled integro-differential
equations that must be solved. Furthermore, as more complex physics
are incorporated into the PFDD model, computing complexity also in-
creases. Recently, the PFDD model was extended to account for bi-
phase interfaces [20]. In this case, there is an additional strain tensor
(the virtual strain) incorporated to account of material in-
homogeneities. This strain field is dependent upon the current dis-
location configuration, and hence must also be evolved through mini-
mization of the total system energy. This adds an additional nine
equations to those done for the order parameters that must be solved in
order to determine the equilibrium state of the system. The additional
computation time required for a PFDD simulation involving multi-dis-
location-interface set-ups makes such simulations impractical to exe-
cute at a reasonable wall clock time using a serial framework. Conse-
quently, a critical need arises to accelerate the PFDD simulations.

The total number of cores used in a single central processing unit
(CPU) is limited by the CPU hardware. While modern CPUs utilize more
cores and wider single instruction multiple data (SIMD) units, high
performance super computers made up of merely CPUs can be highly
expensive to operate. On the other hand, with the advent of graphics
processing units (GPUs), running large-scale simulations have become
more feasible than ever before. GPUs are accelerators, originally de-
veloped for 3D visualizations and optimized for parallel processing of
millions of polygons with very large datasets [21]. GPUs are con-
siderably faster in comparison to CPUs for processing large datasets. For
example, the memory bandwidth on Nvidia's Tesla K80 GPU is up to
480 GB/sec, while it is no more than 68 GB/sec for systems with PC3-
17000 DDR3 modules and quad-channel architecture. In terms of
computational power, Tesla K80 is capable of achieving up to 2.91 and
8.74 TFLOPS for double precision and single precision, respectively,
while it is no more than 900 GFLOPS for an Intel Xeon CPU E5-2699 v4
@ 2.20 GHz with 22 cores, when using AVX2 and FMA3 instructions
with the turbo boost enabled [22]. Furthermore, GPUs are much
cheaper than CPUs, and a decent GPU can turn a simple desktop into a
high performance cluster running thousands of concurrent GPU
threads. Last but not least, GPU-ported applications are growing very
fast to address industrial and academic demands for massively parallel
metal forming simulations. Examples include finite element software
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packages [23,24] and polycrystal plasticity models [25-29].

In this work, we present the first parallel implementation of the
PFDD model on GPUs, which we will refer to as ACCPFDD. The
ACCPFDD implementation takes advantage of the OPENACC standard
directive pragmas and the compute unified device architecture (CUDA)
FFT library (CUFFT) and is thus termed ACCPFDD-CUFFT along with
OPENACC-CUDA interoperability for efficient acceleration on a single
Tesla K80 GPU. The implementation offers scalability of a 27.6X
speedup compared to the serial PFDD code and a 5X speedup compared
to running a simulation on a 22-Multicore Intel Xeon E5 2699v4 CPU.
This speedup is obtained for a problem size of 524,288 FFT points and
can improve further with increasing domain size (i.e. total FFT sam-
pling points). The combination of OpenACC with CUDA using the cut-
ting-edge interoperability has been performed over several levels
throughout the whole code (i.e. intensive energy computations and FFT
calculations) in order to accelerate the computations, while main-
taining the GPU program “performance portable” for future studies.

This paper is organized as follows: Section 2 summarizes the main
PFDD governing equations for a bi-phase interface, and validation and
application case studies are described in Section 3. Section 4 in-
vestigates the PFDD hotspots and parallelization steps on GPU. In
Section 5, a comprehensive study of potential standard FFT solvers is
introduced and discussed in detail. Section 6 explains the final
CUPFDD-CUFFT implementation using the OPENACC-CUDA inter-
operability. Conclusions are presented in Section 7.

2. Summary of basic equations in phase field dislocation dynamics

In phase field algorithms, the physical behavior of a quantity of
interest is predicted by tracking and evolving one or more scalar order
parameters. These order parameters could be representative of a wide
range of phenomena depending on the system of interest such as dif-
ferent crystal structures during phase transformations, fractured regions
for crack growth, and different orientations in grain growth models
[30]. As mentioned briefly in the introduction, in PFDD the order
parameter represents line defects in the crystal lattice called disloca-
tions. The order parameters track the sign and number of glide dis-
locations on each active slip system in the family {111} < 110>, which
are atomically closed packed directions in fcc metals. Plasticity in these
metals is mediated through the motion and interaction of dislocations.
Hence, in PFDD the plastic strain, € is defined as a function of the
active order parameters and the Schmid tensor for all slip systems (in
our notation, tensors are denoted by bold letters, while tensor compo-
nents and scalars are shown in italics),

N
1
gP(x, 1) = 3 Z b, (x, )6, (m*n® + mn),

a=1

@

where &, is the order parameter (phase field variable) on slip system a,
N is the total number of active slip systems, b is the magnitude of
Burgers vector, m® and n® are the slip direction and slip plane normal,
respectively, and 8, denotes the Dirac delta function.

As mentioned earlier, the order parameters are evolved through the
minimization of the total system energy. In the case of bi-phase inter-
faces, the total energy is comprised of three key terms [20]

Etutal - Estrain + Ecore 4 Eres’ (2)

where, EST@ E° and E™ represent the strain energy of the system,
dislocation core energy, and the energy to form a residual dislocation in
the interface following a slip transmission event, respectively.

In the remainder of this section, we review key equations for the
formulation of PFDD for bi-phase interfaces. A more detailed discussion
of the formulation can be found in [20,31]. In addition, PFDD has also
been used to study perfect and partial dislocation motion in nano-sized
grains in fcc metals without the presence of interfaces. Details of this
formulation can be found in [19,31,32].
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2.1. The strain energy for bi-phase materials

The strain energy accounts for both short-range and long-range in-
ternal interactions between dislocations themselves in addition to the
interaction with the external applied stress. Additionally, composites,
polycrystalline metals, materials with voids and cracks, bi-phase ma-
terial interfaces and nano-layers introduce a type of heterogeneity due
to differences in the elastic moduli resulting in the presences of image
forces or Koehler forces that can affect dislocation behavior at inter-
faces and grain boundaries. The formulation of the strain energy for a
bi-phase material in PFDD is based on the Eshelby inclusion method
[33]. The system is described as a homogeneous matrix medium con-
taining inclusions or inhomogeneities. The solution is then obtained by
replacing the inclusions in the matrix with eigen (virtual) strains due to
the presence of the inhomogeneities. In the case of slip transmission
through a bi-phase material, the second or recipient material stands for
the inhomogeneity relative to the first or donor material, which is both
where the dislocation originates and the homogenous matrix.

For the bi-phase copper-nickel (Cu-Ni) system we have strains due
to both plasticity and the difference in elastic moduli mismatch be-
tween phases 1 and 2, which we denote as a virtual strain. The virtual
strain is formulated based on the concept of an Eshelby inhomogeneity
[34] by treating material one as the matrix and material two as an
inhomogeneity due to its differing elastic modulus. This together leads
to the following definition of the strain measure:

ef(x) X € phase 1
g)(x) =
eP(x) + €j(x) X € phase 2. 3)

The strain energy in the system can then be formulated as the
summation of an equivalent strain energy of the homogeneous system
which is entirely comprised of the matrix material, and a deviation
related to the virtual strains (i.e. differences between the
homogeneous and homogeneous systems) [31]:

in-

Eslraln

1
= E“+ AE = Ef Ci™® (5(x) — €2%(x))(e(x) — €% (x))dV
1
- E -/;hasez (Cijmn(l)ASmnpq (X) Cqul(l) + Cijkl(l))sijv(x)sklv(x)dva

4

where g;(x) represents the total strain. In the above equation, the first
part of integration is taken over all the phases while the second integral
is performed only in the second phase since in the case of bi-metal in-
terfaces this is the only region with a non-zero virtual strain.

Material stiffness in phase 1 and phase 2 are defined with super-
scripts (1) and (2):
@

Crnnpq X € phase 1

Cmnpq (x) =
Cunpg® X € phase 2.

5)
Having the above definition, the fourth-order compliance tensor

ASpnpg(x), which is used only for the second phase, can be written as

follows

ASpnpg(X) = (Crunpg %) = Cornpg™) ™" (6)
Finally, the total strain for the bi-phase material can be expressed

with the following relation

d*k

gj(x) = &% + f ajk(k)kiklc(l)klmneomn(k)eikxm + SO 0P, o

where, & = 5 S e%®)dV is the volume average stress-free strain.
Substituting Eqs. (3), (6) and (7) into Eq. (4), the strain energy for a bi-
phase material can be written as [19,20]
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Estrain = Fed + AE = % ‘/A\mnuv (k)(é\vmn(k) + epmn(k))(é\v*uv(k)

v d*
HE00)

|4
= S Voy ot — et [ (@50 + ey(x0)dv

1

2 ‘/p‘hasez (C(l)ijmnASmnpq(X)C(l)qul + C(l)ijkl) Evij(x)svkl(x)dv»

(8)

where Ay (K) = CO iy — CD 1, CD i, G (K k. The last term
in Eq. (8) represents the elastic strain energy resulting from the in-
homogeneity (i.e. differences in elastic moduli) of phase 2 relative to
phase 1.

In a bi-material, the lattice parameters of each material, a”’ and a*®
are not equal in general and such a difference causes a misfit strain in
order to maintain coherency at the interface. For the PFDD formulation
to account for the misfit strain, the total strain in Eq. (7) is extended to
include the misfit strain. Here we limit our study to cube-on-cube, co-
herent or semi-coherent (with wide spacing between misfit disloca-
tions) interfaces. For this type of interface, we can assume plane stress
in the plane of interface. With these assumptions, the misfit strain in a
local interface coordinate system (see Fig. 1 for illustration) for phase 1
and phase 2 can be defined as following [35]

g 0 0
o dx)
gl = 0 &® 0 (1 -0 ), x € phase 1
0 0 833(1)
811(2) 0 0
. d(x)
gmslex) =] 0 £® 0 (1 - S0 ) X€ phase 2,
0 0 833(2) (9)

where d(x) is the normal distance from the interface to any point in
either material, and d'¥, d® are the cutoff values of d(x)in materials 1
and 2, respectively. Fig. 1 illustrates this configuration. The misfit strain

components sij(l), e,»j(z) can be written as [35-37]
o o Cg]f(Z)(a(Z) — a“)) ] N _21,(1)8“(1)
e® = ep® = ;e = ————
CpDa® + Cpy@a® 1 -0
C.rD(a® — g@ —2y@¢ .
0@ = 5,0 = Cel ¢ ) o= 2%

CopMa® + Cyp@a®’ 1-0 10)

where Coy = %, and E, v are the Young's modulus and Poisson’s ratio,
respectively. Variables €1,, €55 are in-plane normal strain components in
X1, Xo direction and e33 is the out-of-plane normal strain component
perpendicular to the interface plane and in x3 direction.

In order to incorporate the misfit strain into the PFDD formulation,
a transformation from the local interface frame to the global frame must

be performed
5™ (x) = Qy Quex™SM-1ovl (x), a1

where Q; denotes the transformation matrix from the local interface

Phase 1

Phase 2

Fig. 1. Bi-phase interface system showing phases, misfit strain region, and the interface
coordinate frame.
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coordinate system (x;, X, X3) to the global coordinate system (x, y, 2).
Adding the misfit strain into the total strain in Eq. (7), we have [20]

g;(x) = &% + f ij(k)kiklc(])klmné\omn(k)elk)c% + SO o P!

+ g™ (x), (12

Then by incorporation of Eq. (12) into Eq. (4), the new form of the
strain energy is derived for a bi-phase material for which the interface
misfit strain is accounted [20]

Estrain — 4 + AE = % fA\mnuv (k)(é\vmn(k) + é\pmn(k))(ev*uv(k)

a3k

AD*

+ & k) —=
€ wk)) any

1 . .
i C(l),_ £__mzsﬂt x)¢e misfit x)dV
5 f ik €I (X) £ ™ (x)
= COy [ @) + (X)) e (x)dV
%4
_ Esijkl(l)qzjapplak]appl _ Gijapplf (Svij(x) + Epij(X))dV

+ f S(l)ijkl O-l_japplsklmlsﬁt(x)dv

1
- E -/p:haseZ (C(l)ijmnAsmnpq(x)c(l)qul + C(l)ijkl) 8vij(x)svkl(x)dv- (13)
Additional terms in Eq. (13) comparing to Eq. (8) are the misfit
strain energy terms.

2.2. Energy to form a residual dislocation in the interface

As described in the previous section, the lattice parameters in the
two materials are generally not equal. Hence, the Burgers vectors for
gliding dislocations are also not equal. When a dislocation passes from
material 1 to material 2, the Burgers vectors must be conserved in order
to maintain conservation of mass. Because the Burgers vectors are not
equal in the two materials, a residual Burgers vector is left in the in-
terface defined as b” = b® — b after the dislocation has passed from
material 1 to material 2. The energy required to form this residual
Burgers vector in the interface region is included as its own term in the
total system energy, as shown in Eq. (2) as E™.

In PFDD, since we are only considering cube-on-cube interfaces,
there is only one active order parameter required to model the trans-
mission of a single dislocation through the bi-phase interface. This is
because the slip direction and slip plane normal does not change across
the interface for cube-on-cube alignment. Furthermore, after the dis-
location has transmitted through the interface, the order parameter will
equal one in both materials indicating that a dislocation has traversed
both materials passing through the interface. Within the interface re-
gion, defined by two bounding planes: one contributed from material 1
and one contributed from material 2, the order parameter will be non-
zero and non-integer to account for the residual dislocation, which is
not a full dislocation belonging to a slip system in either material 1 or
material 2. In order to calculate the displacement across the interface
due to the presence of the residual dislocation, we introduce the no-
tation where x are the subset of points that make up the interface
plane contributed by material 1, and similarly x%® are the subset of
points that make up the interface plane contributed by material 2. Then
the displacement across the interface due to the residual dislocation can
be defined as:

u, = EDpO — EOpO), 14

where ¢0 and £ is shortened notation for £(x") and £x“?), re-
spectively. The displacement defined in Eq. (14) will induce tractions in
both materials near the interface. In this region the energy required for
a residual dislocation can be defined as [20]:
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Eres = j; [7@.1,@ — 7W.q,®) ds, (15)

where 7P and 7® are the tractions in materials 1 and 2, respectively.
These tractions can be calculated using the stiffness tensors in each
material, the slip direction, slip plane normal, and order parameter
values. Details can be found in [20].

2.3. Core energy

The core energy in Eq. (2) accounts for the energy required to move
a dislocation line (or core) through the crystal lattice by breaking and
reforming atomic bonds. For perfect dislocations, this can be modeled
using a Fourier sine series since its sinusoidal nature mimics the peri-
odic nature of the regular atomic lattice in a cubic material [19,38,39]:

N
EoeE) =Y f Bsin(nz £, (x, t) ) 8,dV,
a=1 (1 6)
where B defines the energy barrier magnitude which is overcome to
activate the slip. B is calculated using the model from [40] and is de-
pendent on material parameters such as the stiffness tensor, slip plane
normal, and inter-planar distance between slip planes.

We highlight that due to the physical understanding we have of this
energy term, there is no dependence on the virtual strain terms. In
addition, we note that this formulation and the subsequent study are
restricted to perfect dislocation motion in the interest of simplicity.
Partial dislocation behavior has been included in the PFDD formulation,
and depends upon energy surfaces calculated using atomistic methods.
More details on this formulation can be found in [19,41].

2.4. Minimization using the Ginzburg-Landau equation

In the PFDD formulation, the system evolution is carried out
through the minimization of total energy. The equations used for such
minimizations are the time-dependent Ginzburg-Landau (TDGL) ki-
netic equations, in which the phase field variable is related to the total
system energy as [32,38,42]

9, (x, t) B
a

I SE(©) ’
8, (x, t)

17

where L is a kinetic coefficient controlling the simulation time scale.
Eq. (17) presents a set of coupled integro-differential equations, which
describe the dislocation dynamics of the entire system. The location of
each and every dislocation is determined by solving this set of equations
through the entire system evolution. The virtual strain components
evolve in a similar manner using the following equation:

Jg"(x, 1) - SE (€, &%)
ot Og;"(x, )’

in phase 2 18)

where K is a material constant related to heterogeneity of phase 2.

3. Validation and application case studies
3.1. Validation benchmark: stress field around an edge dislocation

In order to validate the newly developed ACCPFDD code, a case
study has been performed, in which the stress field around an infinitely
long edge dislocation has been calculated and compared to the analy-
tical solution. The following equations define the stress field equations
around an infinitely long edge dislocation [43]
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2048*h

2048*h

X

Fig. 2. Initial configuration of the simulation setup to validate ACCPFDD implementation
by comparison of the stress field around an infinite edge dislocation. The positive and
negative dislocation symbols show the actual location of the positive and negative dis-
locations comprising a dislocation dipole.

Table 1
Copper parameters for study of stress field around an infinite edge dislocation [20].

Material constant Value
C11(GPa) 168.4
C12(GPa) 121.4
C44(GPa) 235
1 (GPa) 23.5
b (nm) 0.256
a (nm) 0.361
v 0.41891
ub  y(Gx*+y?)
O = —
2r(1 —v) (x% + y?)?
_ wb y(x*=yH)
Iy = 2 2)2
27 (1 —v) (x* + y?)
b 2 _ 42
oy = 2 x(x* = y%)

27 (1 —v) (x* +y?)? (19)
where 0, |, b, and v represent the stress tensor, shear modulus, value
of the Burgers vector, and Poisson's ratio, respectively. Fig. 2 depicts the
initial configuration for the corresponding simulation in the ACCPFDD
code. We set the material in both phases to be copper with the material
parameters provided in Table 1 [20]. In order to satisfy periodic

PFDD

Analytical

(MPa)
5771

2885

il

e

-2885

-5771

Hirth, John Price.
"Theory of dislocations." (1968)
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boundary conditions, a dislocation dipole has been used for the initial
conditions in the ACCPFDD simulation so that the net Burgers vector in
the cell is zero. Indeed, the plus and minus signs in Fig. 2 represent the
actual locations of the initial dislocations with opposite signs. Fig. 3
depicts the comparison of contours between the ACCPFDD simulation
and the analytical solution. Qualitatively, contour shapes are in good
agreement; however, in order to make the comparison quantitative, we
discretize the analytical solution data points in MATLAB and then post
process the output in PARAVIEW to make a consistent comparison with
ACCPFDD stress field output. Figs. 4, 5, and 6 represent the stress
variation along a horizontal line extended from one side to the other
side of the cell and positioned 10b and 50b above the centerline.

Quantitative results show good agreement between ACCPFDD and
the analytical solution. It is notable that, at the origin (i.e., dislocation
line position), due to the singularity in the stress field in Eq. (19),
perturbations and fluctuations are observed in ACCPFDD code that are
unavoidable due to the numerical nature of the solver. Moreover, with
careful examination of Figs. 6i-6iii, we see that far away from the
dislocation position the ACCPFDD and analytical solution trends are the
same but the curves are not on top of each other. This is more evident
when the extracted data line is farther from the centerline of the dis-
location (e.g., 50b comparing to 10b). These differences may be present
for two main reasons. First, there can be an effect from the stress fields
of the dislocations in the surrounding periodic cells. Such an interaction
could potentially cause large variations in the stress field if the simu-
lation cell is small enough. We have attempted to mitigate this effect by
choosing a large simulation cell size. For these simulations, the simu-
lation cell size is set to 2048b x 2b x 2048b, where the dislocations are
placed 1024b far apart. This results in very large arrays with a size of
approximately 55 billion elements. So far, due to the memory limita-
tions (both CPU and GPU), we are not able to go beyond this size. We
also note that due to the periodic boundary conditions, stress fields
from neighboring dislocations will always be present necessitating large
cell sizes that will be much easier to achieve with the enhanced com-
putational efficiency of the ACCPFDD code.

The second and more likely cause for the deviations present in
Figs. 6i-6iii is the interaction between the stress fields of a dislocation
dipole that is present in the ACCPFDD simulation but not the analytical
solution, which treats a single isolated dislocation. Hence, in the AC-
CPFDD simulation the stress field surrounding the dislocation mono-
poles will be slightly perturbed due to elastic interactions between the
two dislocations. As we move on a horizontal line away from the dis-
location core region, these perturbations become more visible since the
stress fields are lower in magnitude (see y-axes in Fig. 6). In order to
resolve this issue completely, a larger domain may help because the two
dislocation monopoles will be farther apart and therefore interact less.
However, since we are comparing the stress field around one disloca-
tion that is a part of a dipole in our code with a single dislocation in the
analytical solution, regardless of the domain size there will some small
differences due to the presence of the additional dislocation in the

Fig. 3. Cauchy stress field around an infinite edge dislocation: ACCPFDD contours vs. analytical solution [43]. The plus and minus signs indicate the sign of the stress orbitals.
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Fig. 4. Stress field around an infinite edge dislocation based on the analytical solution.

numerical simulations. Nevertheless, the ACCPFDD and the analytical dislocations with periodic boundary conditions provided by Hirth [43]

solutions while not in exact agreement, are still in very good agreement. and Srolovitz and Lomdahl [44]. The analytical solution of stress field
In order to ensure the comparisons made here are accurate and around an infinite array of dislocations spaced by a distance D from

consistent, we take a further step and compare the ACCPFDD data with each other can be written as follows:

the analytical solution of stress fields around an infinite array of edge
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Fig. 5. Stress field around an infinite edge dislocation calculated using ACCPFDD.
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Fig. 6i. Comparison of stress field around an infinite edge dislocation
200 calculated using ACCPFDD and analytically for the domain size of
2048b x 2b x 2048b: (a) 10b above the center line and (b) 50b above the
0+ - center line, where b is the magnitude of Burgers vector.
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O = —0p27X (cosh 27rX cos2zY — 1) respectively, for different problems sizes of 16b x 2b X 16b,
. 32b x 2b x 32b, 64b X 2b x 64b, and 128b x 2b x 128b after
O = —0p[2sinh 27X (cosh 27X — cos 27Y) reaching a minimized state of total system energy through solving the
— 27X (cosh 27X cos2zY — 1)] TDGL set of Eq. (17). Results confirm the identical response for different
Gy = opsin2aY (cosh2nX — cos2rY — 27X sinh 27X) versions of the code (i.e., s.erlal, multllcore paralle} oq 22 CPU cores, and
ACCPFDD). For the remainder of this study, this bi-metal benchmark
o ub problem will be used in all performance comparison simulations.
0

" 2D — v)(cosh 27X — cos27Y)? (20)
where, X and Y represent the dimensionless coordinates normalized by
the spacing D. Fig. 7 represents the stress field and related quantifica-
tion curves around two edge dislocations placed in an infinitely peri-
odic domain with a size of 2048b x 2b x 2048b representing the same
arrangement of dipoles we presented in Fig. 2. Good agreement is ob-
served between the ACCPFDD and analytical results for the infinite
periodic edge dislocation setup as well.

3.2. Application benchmark: a bi-phase Cu—Ni interface case study

After validation of the ACCPFDD code with the analytical results,
we performed a case study in which a bi-phase copper-nickel (Cu-Ni)
material interface was investigated using the three PFDD versions:
ACCPFDD, multicore PFDD, and the original serial PFDD. We empha-
size that sole PFDD notation will always refer to the serial version of the
code with FOURN FFT subroutine from Numerical Recipes [45]. Fig. 8
illustrates the initial problem setup. The material properties for copper
were provided previously in Table 1. The material properties for nickel
are provided in Table 2.

In this case study, the bi-phase material is given an applied stress of
0.4 GPa along [112] direction. The misfit strains are set according to the
Egs. (9)-(10). The problem was then simulated with the serial, multi-
core and ACCPFDD version of the code. Figs. 9 and 10 compare the
stress and strain field in the Cu-Ni bi-crystal interface system,

4. PFDD GPU implementation
4.1. Profiling the serial PFDD algorithm

In order to accelerate any code whether on CPU or GPU, the first
step to take is to determine the hotspots (i.e., most time consuming
routines) within the algorithm. In order to profile the PFDD code, the
PGI performance profiler (PGPROF) 2016 v16.10 was used [46]. Fig. 11
illustrates the percentage of computational time involved in PFDD
solver for different problem sizes (i.e. number of FFT voxels). We found
that the energy calculation routine defined in Eq. (13) takes more than
90% of the simulation runtime. More specifically, the calculation of the
first term in Eq. (13) encompasses most of the computation time. This
term accounts for elastic interaction including dislocation-dislocation
interactions (such as attraction and repulsion) and interactions between
the plastic and virtual strains. This term also includes the interaction
matrix (A, defined following Eq. (8)). The interaction matrix scales
not only with the size of the simulation cell, but also with the number of
active slip systems for both the plastic component (up to 12 for fcc
metals) and virtual component (9 active components) of the strain in
Eq. (13). The interaction matrix is the largest calculation done in the
algorithm, hence it is not unexpected to find that it dominates the
computation time. With respect to other terms in Eq. (13), we note that
the second, third, and sixth terms are calculating effects due to the
presence of misfit strains at the interface. As can be seen in Fig. 1, the
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Fig. 6ii. Comparison of stress field around an infinite

200 1 edge dislocation calculated using ACCPFDD and
analytically for the domain size of
0 1024b x 2b x 1024b: (a) 10b above the center line
and (b) 50b above the center line, where b is the
magnitude of Burgers vector.
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misfit strains are only non-zero in a localized region surrounding the
interface.

Fig. 11 also shows that with increasing domain size, the percentage
of computational time required for calculation of the first term in Eq. 13
decreases from 94% to 92% and 90% for problem sizes of 2048, 8192,
and 32,768 FFT points, respectively. For convenience, we will refer to
this term as the A — term. This implies that there are some other rou-
tines, which become more computationally dominant while increasing
the problem size. We will elaborate on this point later in the text.
Nevertheless, it is clear from the profiling that this subroutine is a
hotspot within the PFDD algorithm. We next determine if it can be
addressed by porting to GPUs.

The ”-Minfo = ccff ” flag was enabled to take the advantage of
common compiler feedback format (CCFF). When CCFF is enabled, the
compiler is fortified with more detailed information output about the
optimization and performance diagnostics. Fig. 12 shows a schematic of
detailed PGI linker together with PGI performance profiler while the
CCFF flag is enabled.

One of the advantages of common compiler feedback is the loop
intensity information it provides. Computational intensity defines the
ratio of computation (i.e. execution on GPU) to the data movement (i.e.
data transfer between CPU and GPU). If the loop intensity magnitude is
less than 1, porting the loop to the GPU is not efficient due to the large
amount of time being spent on data movement rather than computation
itself. On the other hand, a loop intensity greater than 4.0 is favorable
for GPU parallelism. Appendix A presents the loop intensity information
provided with CCFF information enabled in PGPROF for the nested
loops within the subroutine identified as a hotspot (i.e. where the first
term in Eq. (13) is calculated). The three outermost loops for the
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calculation of the interaction matrix, Ay, (A), possess intensities of
385.34, 380.49, and 375.61, respectively, for the problem size of 2048
FFT voxels. Additionally, the innermost loop intensity is 4.00, which
satisfies the minimum requirement of loop intensity (i.e. loop in-
tensity > 1.0) for efficient GPU implementation. A thorough evaluation
of the interaction matrix calculation indicates that it consists of 11
nested loops of which the 3 outermost are tightly nested. This loop
structure makes it a potential candidate for GPU parallelism, because of
the highly floating point intense operations performed within those
three outermost loops.

4.2. OPENACC implementation of PFDD — ACCPFDD

OPENACC, originally developed by three major vendors CAPS [47],
CRAY [48], and PGI [49], is a high level programming model based on
directives that are added to annotate the code. The main reason behind
using OPENACC is to maintain performance portability of a given code.
With only few modifications applied to the existing code, added
OPENACC directives result in a high performance GPU code, which can
be compiled for various architectures including both GPUs and multi-
core CPUs. Schematically, Fig. 13 illustrates how both the serial blocks
of a code, and the OPENACC parallel loops are executed on CPU and
GPU, respectively. Starting with OPENACC 2.0, one is able to run an
OPENACC code on the GPU and multicore CPUs (i.e. similar to
OPENMP standard for CPU parallelism) at the same time without ad-
ditional modification to the code. To this end, ”-ta = tesla” flag is
changed to ”-ta = multicore” to change the PGI compiler target from
GPU to multicore CPUs (i.e. multi-threaded application). Moreover, it
has been seen that in some cases, OPENACC can result in a better
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Fig. 6iii. Comparison of stress field around an

200 infinite edge dislocation calculated using
ACCPFDD and analytically for the domain size of
512b x 2b x 512b: (a) 10b above the center line

0 - and (b) 50b above the center line, where b is the
magnitude of Burgers vector.
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efficiency comparing to its peers CUDA and OPENCL [50,51] due to the
high level of available optimizations provided with OPENACC. For in-
stance, the flag ”-ta = tesla:fastmath” which was used in compiling our
code, allows the PGI compiler to take advantage of hardware ac-
celerated math routines with an emphasis on performance over accu-
racy in number of floating points, which under proper circumstances
results in a better efficiency while maintaining accuracy.

Given the above information, the subroutine calculating the first
term in Eq. (13) including the interaction matrix was ported to GPU
using OPENACC directive pragmas. Appendix B describes how we
ported the loops inside this subroutine using OPENACC kernel and data
pragmas. Readers are encouraged to refer to [51] for detailed in-
formation about OPENACC and how to implement it efficiently for
porting a code to run on GPU.

In order to keep the data resident on the GPU as much as possible,
more loops were ported to run on the GPU using OPENACC. This al-
lowed us to minimize the data transfer specifically for temporary arrays
calculated at one loop and used for the subsequent loop. At each and
every step of porting loops to GPU, the whole code was profiled care-
fully to see how removing the data transfer incrementally affects the
resulting efficiency. Moreover, we used the OPENACC “collapse” fea-
ture to unite tightly nested loops. This increased the parallelism for the
GPU. Once nested loops are united (i.e., combined together), a larger
amount of parallelism is exposed to thousands of GPU threads. The
NVIDIA GPU architecture is built on multithreaded streaming multi-
processors (SM). When an OPENACC or CUDA program runs, grid
blocks are distributed to multiprocessors. Threads of a thread block
execute concurrently on the multiprocessor. A multiprocessor is

187.5

250

designed to execute hundreds of threads concurrently. A GPU circuit
consists of grids of blocks of threads. Threads are executed in groups of
32 parallel threads that are called warps. The total number of threads
and blocks that are used to run a loop on a GPU affect the performance
efficiency depending on the size and structure of the ported loop.
NVIDIA GPUs exploit a unique architecture called SIMT (single in-
struction multiple thread) to manage large amount of threads running
in groups of warps. In order to tune the loop level parallelism using
OPENACC, the “gang” and “vector” features are used to control the total
number of blocks and threads per block used. It is also worth men-
tioning that “gang” and “vector” directive clauses in OPENACC re-
semble the ”“blockIdx” and “threadldx” features available in CUDA, re-
spectively.

Fig. 14 represents the speed up of the major part of the energy
calculation routine (the A — term) after running parallel on one TESLA
K80 GPU for problem sizes of 2048, 8192, and 32,768, respectively.
Please also note that when the problem size is mentioned here, cell size
is the quantity of interest. The domain is three dimensional having two
layers in thickness (i.e. N X 2 X N; where N = 32, 64, 128, etc.);
however, the real data size and loop counts in the hotspot subroutine is
much bigger than the physical cell size (i.e. N X 2 X N x 81 x 81;
where N = 32, 64, 128,...) because of the 11 nested loops within the
subroutine. For instance, in the case of a cell size of 512 FFT voxels,
“3,439,853,568” total loop iterations times the operations included (i.e.
total number of additions, subtractions, multiplications and divisions)
results in the total number of loop floating point operations (FLOPS)
completed within the subroutine. Fig. 14 shows that the calculation of
the first term in Eq. (13) is up to 56 times faster in the ACCPFDD code,
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Fig. 7. Comparison of stress field around peri-
odic infinite edge dislocation calculated using
¥ ACCPFDD and analytically from Eq. (20) for the
domain size of 2048b x 2b x 2048b on 10b
above the center line (a) ACCPFDD (b) Analy-
tical.
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in comparison to the serial version running on single Intel Xeon CPU. As it was noted previously in the text, the OPENACC code can be

Also, after a problem size of 8192 (i.e.64 X 2 X 64), speedup does not compiled with the ”-ta = multicore” flag to run on multicore CPUs.

increase any further. Fig. 15 represents the PFDD speedup when the hotspot subroutine is run

4 [111]

Phase 1: Cu

Fig. 8. Initial copper-nickel bi-phase material interface system under applied stress for screw dislocation.
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Table 2
Nickel parameters for study of stress field around an infinite edge dislocation [20].

Material constant Value
C11(GPa) 246.5
C12(GPa) 147.3
C44(GPa) 49.6

u (GPa) 49.6

b (nm) 0.249
a (nm) 0.352
v 0.374

on 22 Intel Xeon CPU E5-2699 v4 cores. After 16 CPUs, no more
speedup is obtained which is due to the memory bound behavior while
running a shared-memory-threaded program with OPENMP or
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OPENACC multicore parallelism.

After the comparison for the hotspot is done, we measure the total
speedup for the whole code. In order to make a comparison between
GPU and multicore CPU performance, we compared the total speedup
of the PFDD code running the hotspot subroutine on one GPU and the
22-core CPU in Fig. 16. Running the hotspot subroutine on a single
Tesla GPU is up to 4 times faster than running it on the 22 cores of the
Intel Xeon CPU clocked at 2.20 GHz (scaling up to 3.60 GHz when
turbo-boost enabled). The superiority of GPU over CPU computation is
appreciated at this point.

It is widely accepted that increasing the problems size should result in
an improvement in efficiency for simulations run in parallel on GPUs. The
fact that the GPU architecture is designed for massive parallelism (i.e.,
GPUs are designed to include thousands of built-in CUDA cores) justifies
the statement. While we managed to obtain up to 12 times faster

Fig. 9. Stress field around the interface region of a
Cu-Ni interface: (a) serial PFDD (b) multicore PFDD
(c) ACCPFDD. The results are presented as a function
of resolution: (1) 16 X 2 X 16, (2) 32 X 2 X 32, (3)
64 X 2 X 64, and (4) 128 x 2 x 128 FFT voxels.
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Fig. 10. Strain field around the interface region of a
Cu-Ni interface: (a) serial PFDD (b) multicore PFDD
(c) ACCPFDD. The results are presented as a function
of resolution (1) 16 X 2 x 16, (2) 32 x 2 x 32, (3)
64 X 2 X 64, and (4) 128 X 2 x 128 FFT voxels.
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Fig. 12. A schematic of PGI compiler and performance profiler linking flow when
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Fig. 11. Percentage of computational time involved in PFDD solver as a function of problem sizes. The A — term from the energy Eq. (13) takes more than 90% of the code.
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Fig. 14. Speedup achieved in evaluating the A — term in Eq. (13) on a single Tesla K80
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Fig. 13. Schematic of parallel GPU execu-
tion using OPENACC loop directive
pragmas. The left blue box shows the serial
region which runs on a CPU with multiple
cores and the left green box represents the
GPU section running on thousand GPU
cores. The “acc parallel loop” directive
pragmas around the nested loop port them
to run on GPU. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article.)
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computation times on the GPU, Fig. 16 shows that the GPU performance
decreases with increasing problem size. Note that the FOURN subroutine
was used for the FFT calculations. In order to address this problem, we
profiled the ACCPFDD algorithm, which already has the hotspot sub-
routine running on the GPU. This is viable with PGPROF 16.0 and later
because PGI has merged recently the NVIDIA visual profiler tool (i.e.
NVIDIA CUDA profiler package) with PGPROF to enable profiling both the
GPU and CPU parts of the code at the same time.

We can predict the expected theoretical speedup of a code using the
Amdabhl's Law [52]. If a fraction of code fis accelerated p times, then the
net speed up of the whole code can be expressed as following:

.t
)

According to Amdahl's law, even if we infinitely speed up the

S =
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Fig. 15. Speedup of the calculation involved in evaluating the A — term in
Eq. (13) as a function of CPUs in Intel Xeon CPU E5-2699 v4 clocked at
2.20 GHz for the problem size of 32 x 2 x 32 voxels This is notable that
this speedup will be decreased for larger problem sizes due to memory
bound and shared memory access limitation. The slight decrease from 16

to 22 CPUs is due to the same reason.
14.3

A — term for the problem size of 32b X 2b X 32b, considering the fact
that A — term takes 94% of the code (i.e. according to Fig. 11), the ideal
speed up is 16.66x. After careful examination of the profiler results, we
noticed that while we were able to minimize the time required to calculate
the interaction matrix and the first term in Eq. (13) using the GPU, the FFT
routines called in six different places throughout the code at each time step
were now the new hotspot in the code. More importantly, FFT computa-
tion time was growing with increasing problem size. This explains the
observation made previously in Fig. 11, where the percentage of time
designated for calculation of the first term in Eq. (13) decreased from 94%
to 90% with increasing domain size. Fig. 17 depicts the FFT runtime
distribution variation with problem size in the ACCPFDD code.
Consequently, we decided to minimize the time spent on FFT routines
by first considering available alternatives. Although the ultimate goal is to
run the FFT on the GPU, in the next section we perform a study in which
the default FFT routine used originally in the code (i.e. the standard

3.5+

3.2

0.5

0.0 -

2048 8192

(b)

32768

Fig. 16. Speedup: (a) ACCPFDD compared to the serial PFDD code and (b) ACCPFDD compared to the parallel PFDD code run on 22 Intel Xeon E5 cores (CPUs). Note that the FOURN

subroutine was used for the FFT calculations.
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65.35%
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32768

Fig. 17. Distribution of calculations for different problem sizes after porting the hotspot subroutine onto a GPU, which is the ACCPFDD code. As the legend shows, the FOURN subroutine

was used for the FFT calculations.

FOURN routine from “Numerical Recipes in C” [45]), the FFTW library
[53], and the CUFFT library (i.e. GPU version of FFT library running on
CUDA) have been compared for their efficiency within ACCPFDD.

5. Performance comparison for FFT calculations: FOURN vs. FFTW
vs. CUFFT

One common FFT solver used in many scientific codes is the FOURN
routine that has been taken from Numerical Recipes in FORTRAN/C
[45,54]. Although this routine is fast, recently more advanced libraries
have been developed to perform FFTs in the most efficient way. Among
them, FFTW [55-59] and CUFFT [60-62] are efficient FFT libraries
running on CPU/Multicore CPUs and GPUs, respectively. FFTW is an
efficient C FFT library developed at MIT for computation of discrete
Fourier transforms (DFT) in 1D, 2D, and 3D space and uses O (N log N)
algorithms to perform FFT calculations. It supports both real and
complex data as raw input with arbitrary size transformations. In the
presented research, we used FFTW 3.3.6 (FFTW3), which is the latest
release of FFTW. FFTW3 supports all the SSE/SSE2/AVX/ARM in-
structions [63].

CUFFT is the NVIDIA CUDA FFT library, which was developed after
FFTW. This library is able to speed up the FFT computations up to 10X
on the thousand cores of a GPU in comparison to FFT computations run
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Fig. 18. Speedup of standalone FFTW3 and CUFFT over the FOURN routine for different
number of FFT points (i.e. various problem sizes).
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on CPUs. CUFFT is also able to perform transformations in all dimen-
sions (i.e. 1D, 2D, and 3D) with both real and complex data types and
large data sizes of up to 128 million elements. CUFFT is included as a
part of the NVIDIA CUDA toolkit [64]. We used CUDA toolkit 7.5 for
our simulations. Appendix C represents the FFTW and CUFFT structure
and the way these libraries are called in the scientific codes to perform
fast Fourier transforms.

In order to benchmark the performance of these FFT solvers, we
performed a study comparing standalone FFTs with a complex data type
input. Fig. 18 illustrates this benchmark comparison for different pro-
blem sizes for 3D transformations. From this figure, we can understand
that for all problem sizes, the FFTW library outperforms the default
FOURN routine taken from Numerical Recipes. Moreover, starting from
the problem size of 256 cubed (i.e. 256 X 256 X 256 FFT points), the
CUFFT library outperforms the FFTW library, which is expected due to
the fact that the GPU performs much better than the CPUs on large data
sets and with massively parallel tasks. It is also worth mentioning that
the most of time of the CUFFT calls are spent on data transfer from main
memory to GPU memory. If we eliminate the amount data transfer by
keeping data resident on the GPU, a significant performance gain would
be obtained. This is more feasible when using OPENACC instead of
CUDA to perform the data transfer (i.e. CUDA Memcpy) and the reason
is that data management using OpenACC directive pragmas gives us
more options while more intuitive to implement (e.g. unstructured
“enter/extit data” introduced in OpenaACC 2.0 [51]). We will elaborate
on such data interoperability in detail in the next section.

In order to maintain performance portability, we decided to make
the code interoperable with all FFT options. This will enable us to run
the code using FFTW on CPUs in the case there is no access to a GPU on
a given machine/workstation, and if FFTW is not available, it can fall
back to the included FOURN from Numerical Recipes. To this end, the C
preprocessor ’ #ifdef ’ statements are used to switch the FFT library
from CUFFT to FFTW or FOURN at compile time as needed. Fig. 19
illustrates the comparison of ACCPFDD (i.e. PFDD with the hotspot
subroutine running on the GPU using OPENACC) using the three dif-
ferent types of FFT algorithms (i.e. FOURN, FFTW, and CUFFT). We use
the terminology ACCPFDD-CUFFT to designate the PFDD code that
utilizes the CUDA FFT library running on a GPU coupled with the
hotspot subroutine also running on a GPU using OPENACC. Similarly,
ACCPFDD-FOURN and ACCPFDD-FFTW utilize the GPU only for the
hotspot subroutine, and the FFT is completed with FOURN (serial
computation) or FFTW (parallel FFT computation on CPUs), respec-
tively. Having these options allows us to run the smaller problem sizes
using FFTW (i.e. because according to the Fig. 18, for smaller problem
sizes, FFTW is more efficient than CUFFT) and in the case of having no
access to FFTW libraries on a workstation, using FOURN. For the large
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enough domains, the code switches to CUFFT to take the advantage of
much more efficient FFT calculations for massive data sets. Fig. 19 tells
us that the ACCPFDD-CUFFT is the fastest code in comparison to AC-
CPFDD-FOURN or ACCPFDD-FFTW, for the problem sizes of 8192
(64 x 2 x 64) and larger. With increasing domain size, the difference
between ACCPFDD-CUFFT and ACCPFDD-FFTW becomes more sig-
nificant due to the massively parallel potential of the large dataset and
computations favored by the GPU architecture. It is also notable that we
should not directly compare Fig. 19 with Fig. 18. In Fig. 19 we are
reporting the total efficiency of PFDD code, which includes 6 calls to
the FFT routine (4 forward and 2 backward transformations) each
iteration in the code. Conversely, Fig. 18 shows the comparison for the
standalone FFT routines with a given input to perform a single forward
transformation.

27.67

2048 32768

()

131072

524288

8192

Speed up: ACCPFDD-CUFFT over serial PFDD-FOURN
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Fig. 19. Performance gain for ACCPFDD-FFTW3 and ACCPFDD-CUFFT
versus ACCPFDD-FOURN for different problem sizes.

—
.
[0

524288
6. OPENACC-CUDA interoperability

When CUDA libraries (e.g. CUFFT, CUBLAS, etc.) are called in a
code, the CUDA data transfer (i.e. CUDA Memcpy) is inherited by de-
fault from the CUDA language. This fact conflicts with our ACCPFDD
code running on OPENACC in two ways. Our goal is to maintain per-
formance portability as much as possible; hence, having one part of the
algorithm (i.e. the hotspot subroutine) using OPENACC and the other
parts (i.e. FFT routines) using CUDA functions requires special attention
to maintain consistency. Additionally, CUDA built-in functions ne-
cessitate including the “cuda.h” library header that works only with the
PGI C+ + (i.e. pgc+ +) compiler. Currently, the PFDD code is written
in C, hence it would need to be fully converted to C+ + would not be
an inefficient use of time. Rather, with the advent of OPENACC-CUDA
interoperability [65], calling CUDA functions in OPENACC data regions

4.91

32768
(b)

2048 131072

8192

Speed up: ACCPEFDD-CUFET over multicore PEDD-FOURN (22 CPUs)

Fig. 20. Speedup: (a) ACCPFDD-CUFFT versus serial PFDD-FOURN and (b) ACCPFDD-CUFFT versus parallel PFDD-FOURN (22 CPUs) as a function of problem sizes.
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i. Initialize: set material parameters, assign interface
geometry, initialize the simulation set-up, other
preprocessing routines.

¥

Iy

1.

Begin time evolution

¥

m

. Perform FFT

¥ |

iii. Perform FFT

v |
iii. Perform FFT
¥ ¥

iv. Calculate variation of interaction matrix for strain E

¥

v. Perform FFT-!

v 1

v. Perform FFT-!

i

\ A8 J

\4

v. Perform FFT-!

‘ Yy

vi. Calculate the
strain energy, Eq. (13)

vi. Calculate the
strain energy, Eq. (13)

vi. Calculate the
strain energy, Eq. (13)
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vii. Evolve virtual strains GL Eq. (18)
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Fig. 21. Schematic of the different PFDD solvers: serial PFDD, multicore PFDD (22 CPU Intel Xeon E5), and ACCPFDD used with three different FFT calculation options FOURN, FFTW3,
and CUFFT. The OPENACC region (ACCPFDD) and the CUFFT, both run on NVidia Tesla K80 GPU.

is viable. Appendix D presents the OPENACC-CUDA interoperability
used for calling the CUFFT library in ACCPFDD code. The OPENACC
construct “host_data use_device (array)”, makes the address of device
(i.e. GPU) data present on the host (i.e. CPU) and enables it to pass the
data to the functions that use CUDA device pointers. After reading the
“use_device” pragma, the compiler can use the device version of the
array instead of the host copy. Indeed, while this is a CPU entry point
(i.e. which is called in the CPU region of the code without any

OPENACC pragmas or CUDA kernels), it invokes GPU kernels that act
directly on the GPU memory.

Using the OPENACC-CUDA interoperability, we are able to use
OPENACC data directive pragmas for CPU-GPU data management with
much more flexibility because the OPENACC data regions are easier and
far more flexible to control comparing to the CUDA Memcopy func-
tions. This becomes obvious when using unstructured OPENACC data
regions [51] in which, “ACC enter/exit data” as a heterogeneous data
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structures can be implemented anywhere in the code.

By incorporating the OPENACC-CUDA interoperability for calling
the CUFFT library in the ACCPFDD code, a final version of ACCPFDD-
CUFFT was developed. Fig. 20 illustrates the final speed up comparing
the ACCPFDD-CUFFT running on a single Tesla K80 GPU to both serial
and multicore versions of the code using the original FOURN routine
running on Intel Xeon CPU E5-2995 v4 @ 2.20 GHz with 22 cores.

With a careful evaluation of Fig. 20, we see that the issue of de-
creasing GPU efficiency with increasing problem size addressed earlier
in Fig. 16 has now has been resolved. After minimizing the FFT routines
on the GPU using the CUFFT library together with the OPENACC_CUDA
interoperability, we gained up to 27.67x speed up comparing to the
serial version and 5x speed up relative to the multicore code running on
22 cores. The increasing trend in scalability asserts the efficient im-
plementation of GPU for acceleration of the PFDD code. It is also no-
table that not only does the scalability grow with problem size, the ratio
of speedup for two subsequent problem sizes is also being increased.
This justifies the computational efficiency of the developed ACCPFDD-
CUFFT code as a promising accelerated tool to run massively parallel
dislocation dynamics simulations on graphics hardware units.

To provide an overall understanding, the flow chart in Fig. 21 de-
scribes the flowchart for serial PFDD, parallel CPU version, and the
ACCPFDD code all having the options to run with different FFT solvers
FOURN, FFTW3, and CUFFT. The highlighted region in the schematic
shows the hotspot regions of the code ported to GPU.

7. Conclusion

The first implementation of the phase field dislocation dynamics
(PFDD) algorithm on a GPU has been presented here. The OPENACC
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standard together with CUFFT library and OPENACC-CUDA interoper-
ability have been exploited to accelerate the PFDD OPENACC-CUFFT
(ACCPFDD-CUFFT) code on a single Tesla K80 up to 27.6x in comparison
to the serial version and up to 5x in comparison to the 22 core Intel Xeon
CPU E5-2699 v4 @ 2.20 GHz. Moreover, a comprehensive study has been
conducted comparing the performance benchmark of available standard
FFT routines and libraries including FOURN, FFTW, and CUFFT as a CUDA
FFT library. Growing rate of ACCPFDD-CUFFT simulation speedup on a
larger problem size justifies the efficient implementation of the code on
GPU. The ACCPFDD-CUFFT code has been validated using the analytical
solution available for the stress field around an infinite edge dislocation.
Moreover, a Cu-Ni bi-crystal interface system has been simulated and the
results are compared using serial/multicore/GPU version of the code to
assure identical results are produced. The GPU accelerated PFDD code,
provides insight to solve a wide variety of computationally intensive
problems in which dislocation motion and configurations are determining
factors in the material response. In future work, we plan to port the
ACCPFDD-CUFFT on multiple GPUs using the MPI (Massage passing in-
terface) standard in order to achieve even higher speedup for the phase
field dislocation dynamics solver.
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Appendix A. (Loop intensities in the energy calculation routine as the PFDD hotspot)

for (k1=0;k1<N1;kl++)
{
for (k2=0; k2<N2; k2++)
{
for (k3=0;k3<N3;k3++)
{
Calculate frequencies
for (m=0; m<ND; m++)
{
for (n=0; n<ND; n++)
{
for (u=0; u<ND; u++)
{
for (v=0; v<ND; v++)
{
for (i=0; i<ND; i++) {
for (j=0; J<ND; j++) {
for (k=0; k<ND; k++) {
for (1=0; 1<ND; 1++) {
Calculate the energy terms
}
}
}
}
}
}
}
}
}
}
}
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Appendix B. (Energy_Calc hotspots on GPU using OPENACC)

Part A:

#pragma acc enter data
copyin (£x[0:N1*N2*N3],fy[0:N1*N2*N3],£fz[0:N1*N2*N3]) create(A)
create(E_real)

#pragma acc kernels

{

#pragma acc loop collapse (3) gang (512)
private(kl,k2,k3,m,n,u,v,i,3j,k,1,fk,nfreq,fk4,G)

for (k1=0;k1<N1;k1l++)

for (k3=0;k3<N3; k3++)
{
for (k2=0; k2<N2; k2++)
{

Calculate frequencies
#pragma acc loop vector private(G) collapse (4)
for (m=0; m<ND; m++) {

for (n=0; n<ND; n++) {
for (u=0; u<ND; u++) {
for (v=0; v<ND; v++) {

#pragma acc loop private(G) collapse (3)
for (i=0; i<ND; i++) {
for (j=0; Jj<ND; j++) {
for (k=0; k<ND; k++) {

for (1=0; 1<ND; 1++4) {

Calculate the energy terms

}

Part B:

#pragma acc kernels
{
#pragma acc loop gang collapse(3)
for (k1=0; k1<N1; kl++) {
for (k3=0;k3<N3;k3++) {
for (k2=0;k2<N2;k2++) {

#pragma acc loop vector collapse (%)
for (u=0; u<ND; u++) {
for (v=0; v<ND; v++) {
for (m=0; m<ND; m++) {
for (n=0; n<ND; n++) {

Calculate the energy terms
}
}

}
}

} //#pragma acc kernels
#pragma acc kernels
{
en = ;
#pragma acc loop collapse(3)
for (i=0; i<N1l; i++) {
for (k=0; k<N3; k++) {
for (j=0; j<N2; j++) {

Calculate the energy terms

}

}//#pragma acc kernels
#pragma acc exit data delete(fx[0:N1*N2*N3],fy[0:N1*N2*N3],fz[0:N1*N2*N3])
delete(A) delete (E_real)
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Appendix C. (FFTW and CUFFT library calls)

Advances in Engineering Software 115 (2018) 248-267

FFTW

1 static fftw complex signal [NUM POINTS];

2 static fftw complex result[NUM POINTS];

E fftw plan plan = fftw plan dft 1d(NUM POINTS, /*Create plan*/
4 signal,

result,

6 FFTW FORWARD,

7 FFTW ESTIMATE) ;

acquire from somewhere (signal) ; /*Input data*/

fftw execute(plan); /*Perform FFT*/

) do something with(result); /*Ouput data*/

11 fftw destroy plan(plan); /*Free memory*/
CUFFT

1 cufftHandle plan;
2 cufftComplex *datal, *dataZ2;
cudaMalloc ((void**) &datal, sizeof (cufftComplex) *NX*NY*NZ) ;
4 cudaMalloc ((void**) &data2, sizeof (cufftComplex) *NX*NY*NZ) ;
/* Create a 3D FFT plan*/
5 cufftbPlan3d(&plan, NX, NY, Nz, CUFFT C2C);
/* Transform the first signal in place*/
cufftExecC2C(plan, datal, datal, CUFFT_ FORWARD) ;
/* Transform the second signal using the same plan*/
7 cufftExecC2C(plan, data2, data2, CUFFT FORWARD) ;
/* Destroy the cuFFT plan. */
cufftDestroy(plan) ;
) cudaFree(datal); cudaFree(data2);

Appendix D. (OPENACC-CUDA interoperability in calling the CUFFT CUDA library)

CUDA in CUFFT

typedef float fftw complex[”];
2 fftw _complex *vx = new fftw_complex[NX*NY*NZ];
: float *d vx;
cudaMalloc (&d_vx, NX*NY*NZ*sizeof (fftw complex));
cudaMemcpy (d_vx, vx, NX*NY*NZ*sizeof (fftw complex),
cudaMemcpyHostToDev1ce)
cufftHandle planc2c;
cufftPlan3d(&planc2c, NzZ,NY, NX, CUFFT C2C);
cufftSetCompatibilityMode (planc2c, CUFFT COMPATIBILITY NATIVE) ;
cufftExecC2C(planc2c, (cufftComplex *)d vx, (cufftComplex *)d vx,
CUFFTiFORWARD);
) cudaMemcpy (vx, d vx, NX*NY*NZ*sizeof (fftw complex),
cudaMemcpyDeviceToHost) ;

OPENACC-CUDA interoperability in CUFFT

1 typedef float fftw complex[2];
: fftw complex *vx = new fftw complex[NX*NY*NZ];
#pragma acc data copy (vx[0:NX*NY*NZ][0:1])
4 }
5 cufftHandle planc2c;
cufftPlan3d(&planc2c, NzZ,NY, NX, CUFFT C2C);
cufftSetCompatibilityMode (planc2c, CUFFT COMPATIBILITY NATIVE) ;
#pragma acc host data use device(vx)
cufftExecCZC(planc2c, (cufftComplex *)d vx, (cufftComplex *)d vx,
CUFFT FORWARD)
0 { /*end pragam acc data*/
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