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Large meta-analysis of genome-wide association
studies identifies five locifor lean body mass
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Lean body mass,consisting mostly ofskeletalmuscle,is important for healthy aging.We

performed a genome-wide association study forwhole body (20 cohorts ofEuropean

ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330)

measured using dualenergy X-ray absorptiometry orbioelectricalimpedance analysis,

adjusted for sex,age,height,and fatmass.Twenty-one single-nucleotide polymorphisms

were significantly associated with lean body mass eithergenome wide (p < 5 × 10−8) or

suggestively genome wide (p < 2.3 × 10−6). Replication in 63,475 (47,227 ofEuropean

ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360

of European ancestry) subjects from 25 cohorts for appendicular lean body mass was suc-

cessfulfor five single-nucleotide polymorphisms in/near HSD17B11,VCAN,ADAMTSL3,IRS1,

and FTO for totallean body mass and for three single-nucleotide polymorphisms in/near

VCAN,ADAMTSL3,and IRS1for appendicularlean body mass.Our findings provide new

insight into the genetics of lean body mass.
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Lean body massconsistsprimarily ofskeletalmuscle,is
an importantcontributorto physicalstrength,mobility,
stamina, and balance1–3, and has been a very recent focus of

an effort to define “sarcopenia” (loss of muscle tissue) for clinical
care and drug development4. The determinants of adult skeletal
muscle mass have not been wellcharacterized.It is known,for
example,thatexercise produces increases in muscle mass,and
there is some evidence that protein intake is directly associated
with lean mass5. Heavier people have increased muscle mass6,
which may be due to the loading effect of increased fat mass or
may reflect a common genetic background between muscle and
adipose tissue7. With aging,there is a progressive loss of skeletal
muscle mass,and a concurrent increase in fatty infiltration and
fibrosis of muscle.This loss of muscle mass may reach a critical
pointat which time functionalimpairmentand even disability
occurs8. In fact,the annualhealthcare costs of sarcopenia in the
United States are estimated to be in excess of 18 billion dollars9.

As estimated from family and twin studies,lean massis a
highly heritablephenotypewith heritabilityestimatesof
0.52–0.6010,11. While there have been previous studies related to
the genetic background ofBMI and fatmass,few studies have
searched for genes associated with lean mass12–15,16,17. To date,
no single-nucleotide polymorphisms (SNPs) have been found to
be associated at a genome-wide significance level with lean mass
(p-values < 5 × 10−8)18,19. A copy number variation located in
the GREM1 genewas reported tobe associated with lean
body mass in a genome-wide association study (GWAS) of 1627
Chinese20. Guo et al.19identified in 1627 Chinese and replicated
in 2286 European ancestry individuals,a locus near CNTF and
GLYAT genesat 11q12.1 in a bivariate GWAS forbone-size
phenotypes and appendicular lean mass. Most recently in a study
of Japanesewomen,the PRDM16 genewassuggested to be
associated with lean mass21.

With the advent ofrelatively simple,inexpensive methods of
measuring the fat and lean compartments of the body using dual
energy X-ray absorptiometry (DXA) and bioelectrical impedance
analysis(BIA), multiplecohort studieshave accumulated
phenotypic information on body composition that permits large-
scaleGWAS to be performed.While wholebody lean mass
incorporates allof the non-fat soft tissue including the internal

organs, appendicular lean mass, estimated by DXA and BIA, may
be a better reflection ofskeletalmuscle mass22–24. To identify
genetic lociassociated with whole body and appendicular lean
mass,we performed a large-scale GWAS meta-analysis in over
100,000 participants from 53 studies yielding sufficient power to
identify common variants with smallto moderate effect sizes.

Results
GWAS meta-analysesfor discovery and replication.
Descriptionsand characteristicsof the studypopulationsin
the discoverystageand the replication stageare shown in
Supplementary Tables 4 and 5 and Supplementary Note 2.8.The
age of the participants ranged from 18 to 100 years. In the GWAS
discovery set,comprising 38,292 participantsfor wholebody
lean mass and 28,330 participants for appendicular lean mass,
a substantialexcessof low p-valuescompared tothe null
distribution wasobserved aftergenomiccontroladjustment
of the individualstudies prior to meta-analysis:λGC= 1.076 and
λGC= 1.075,for whole body and appendicularlean mass,
respectively (Supplementary Fig.1)

Meta-analyseswereconducted usingthe METAL package
(www.sph.umich.edu/csg/abecasis/metal/).We used the inverse
variance weighting and fixed-effectmodel approach.
SupplementaryTable 1 showsthe genome-widesignificant
(GWS) and suggestive(sGWS)resultsin the discoveryset.
For whole body lean mass,we observed one GWS result in/near
HSD17B11 and 12 sGWS results (in/near VCAN,ADAMTSL3,
IRS1,FTO (two SNPs),MOV10,HMCN1,RHOC,FRK,AKR1B1,
CALCR,and KLF12).For appendicular lean mass,one result was
GWS (intronic SNP in PKIB)and seven were sGWS (in/near
VCAN, ADAMTSL3, HSD17B11, IRS1, FRK, TXN, and CTNNA3).

We selected 21 associations (13 for whole body lean mass and 8
for appendicular lean mass;a totalof 16 discovery SNPs with 5
SNPs overlapping between the two phenotypes) (Supplementary
Table 1) to conducta replication study in a setof 33 cohorts
comprising up to 48,125 participants ofEuropean descentfor
whole body lean mass and 43,258 participants for appendicular
lean mass.Both in silico replication and de novo genotyping for
replicationwas conducted.Table 1 showsthe resultsfor
successfully replicated SNPs in participants of European ancestry,

Table 1 Results for the successfully replicated SNPs in discovery,replication and combined sample

SNP ID Chrom Position Closest
gene

Allele ½ EAF Discovery (n = 38,292)Replication EU
(n = 47,227)

Combined EU
(n = 85,519)

Beta SE p-value Beta SE p-value Beta SE p-value

Whole body lean mass
rs2943656 2 226830162IRSI A/G 0.38 −0.17 0.03 2.5 × 10−7 −0.13 0.03 8.0 × 10−6 −0.14 0.02 1.5 × 10−11

rs9991501 4 88477507 HSD17B11 T/C 0.04 −0.61 0.01 2.9 × 10−8 −0.26 0.08 1.9 × 10−3 −0.39 0.07 5.8 × 10−9

rs2287926 5 82851164 VCAN A/G 0.12 0.24 0.05 8.6 × 10−7 0.15 0.04 8.5 × 10−4 0.19 0.03 7.5 × 10−9

rs4842924 15 82378611 ADAMTSL3 T/C 0.52 −0.17 0.03 1.4 × 10−7 −0.08 0.03 3.9 × 10−3 −0.12 0.02 1.4 × 10−8

rs9936385 16 52376670 FTO T/C 0.61 −0.17 0.03 1.1 × 10−6 −0.11 0.03 1.6 × 10−4 −0.14 0.02 1.4 × 10−9

SNP ID Chrom Position Closest geneAllele ½ EAF Discovery (n = 28,330)Replication EU
(n = 42,360)

Combined EU
(n = 70,690)

Beta SE p-value Beta SE p-value Beta SE p-value

Appendicular lean mass
rs2943656 2 226830162IRS1 A/G 0.38 −0.10 0.02 1.1 × 10−6 −0.06 0.01 2.2 × 10−5 −0.07 0.01 2.9 × 10−10

rs2287926 5 82851164 VCAN A/G 0.13 0.14 0.03 8.1 × 10−7 0.08 0.02 3.5 × 10−4 0.10 0.02 4.5 × 10−9

rs4842924 15 82378611 ADAMTSL3 T/C 0.52 −0.09 0.02 1.2 × 10−6 −0.05 0.02 1.6 × 10−3 −0.06 0.01 5.0 × 10−8

All results reflect analyses in participants of European ancestry
No significant heterogeneity was observed at α = 0.00625 (0.05/8)
Only mild heterogeneity was indicated in two associations for whole body lean mass when using an uncorrected threshold of α = 0.05, FTO/rs9936385 (p = 0.018, I2= 34%) and HSD17B11/ rs9991501
(p = 0.04,I2= 31%)
All results were adjusted for the following covariates:sex,age,height and fat mass (kg)
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includingthe discoveryphase,replicationphase,and the
combined results.

For wholebody lean mass,joint analysisof thediscovery
and replication cohorts successfully replicated five SNPs in/near
HSD17B11,VCAN, ADAMTSL3, IRS1, and FTO (p-values
between 1.4 × 10−8 and 1.5 × 10−11and lowerthan discovery
p-values).Threeof thesefive SNPs (located in/nearVCAN,
ADAMTSL3, and IRS1) were also successfully replicated (p-values
between 5 × 10−8and 2.9 × 10−10) for appendicularlean mass.
None of the eight replicated associations (five for whole body and
three appendicular lean mass)had significantheterogeneity at
α = 0.00625 (0.05/8,Bonferroni-corrected for eighttests).Only
mild heterogeneitywas indicatedin two wholebody lean
massSNPswhen using an uncorrected threshold ofα = 0.05:
FTO (p = 0.018,I2= 34%) and HSD17B11 (p = 0.04,I2= 31%).
For appendicularlean mass,p-valuesfor heterogeneity were
>0.05 for allthree replicated SNPs.

Supplementary Table 1 shows the results for allparticipants
including those ofnon-European descentas well.Results were
similarshowinglow heterogeneityusing“transethnicmeta-
analysis” (MANTRA)25for inclusion of both cohorts of European
ancestryand replicationcohortswith Asians or African
Americans.Heterogeneity probability values were below 0.5 for
all replicated SNPs both for whole body and appendicular lean
mass.Furthermore,in this combined analysis,exceptfor the
VCAN locus,log10 Bayes’factors were >6.0 and p-values were
smaller than those found in European-only ancestry analysis.

Additionalanalysesstratifiedby sex failed to identify
significant sex-specific associations or evidence of an interaction
between SNPs and sex (Supplementary Table 2 and Supplemen-
tary Note 1). Similarly,we also found no evidencefor
heterogeneity between measurementtechniques(BIA vs DXA;
Supplementary Table 3 and Supplementary Note 2).Finally,we
failed to replicate previously reported candidate genes for lean
mass (Supplementary Note 2.4)

Association with other anthropometric phenotypes.We looked
for associations between the lead SNPs in the five replicated loci
and other reported anthropometric phenotypes from the GIANT
Consortium (Supplementary Table 10)26–29. There were no sig-
nificantassociations (p < 0.05) between the SNP in HSD17B11
and any reportedphenotypes.The allele associatedwith
greater lean mass was associated with lower values ofvarious

anthropometric traits for the IRS1 (hip circumference (HC), waist
circumference (WC)),VCAN (hip ratio,WC adjusted for BMI,
waist to hip ratio adjusted for BMI),and the ADAMTSL3 locus
(height,hip,and WC with the association becoming more sig-
nificant for hip and waist adjusted for BMI).The replicated FTO
SNP was very significantly associated with BMI (p = 2.7 × 10−144)
and significantly associated with HC (p = 9.3 × 10−81) and WC
(p = 1.3 × 10−96) in the same direction as the lean mass associa-
tion (i.e.,the higher lean mass allele was associated with higher
values of anthropometric traits).

Annotation and enrichmentanalysis ofregulatory elements.
Among five replicated SNPs,rs9991501 (HSD17B11 locus) and
rs2287926 (VCAN locus)are missenseSNPs. rs2287926 was
predicted as possibly damaging to the protein structure and/or
function by PolyPhen-230. Sincethe remaining GWAS SNPs
are non-coding,to estimate whether these SNPs are located in
regulatoryelementsin specifichuman tissue/celltypes,
we performed a tissue-specificregulatory-elementenrichment
analysis using experimental epigenetic evidence including DNAse
hypersensitivesites,histonemodifications,and transcription
factor-binding sitesin human celllinesand tissuesfrom the
ENCODE Project and the Epigenetic Roadmap Project. As shown
in Table 2,86 SNPs were in high LD (r2≥ 0.8) with the GWAS
lead SNP rs2943656 at the IRS1 locus. The SNPs in this locus that
werein high LD were enriched in enhancersestimated by
ChromHMM31 (permutation p-values <0.05;after multiple test-
ing corrections),especially enriched in fat and brain tissues,but
not in skeletal muscle,smooth muscle,blood and gastrointestinal
tract tissues in the ENCODE and Roadmap projects. Although the
IRS1 locus was not specifically enriched with skeletal muscle tissue
enhancers,the lead SNP rs2943656 itselfat the IRS1 locus was
actually located within a histone mark-identified promoter in an
adult skeletalmusclesampleand a histonemark-identified
enhancerin severalmusclesamples(such asmusclesatellite
cultured cells, fetal skeletal muscle, skeletal muscle myoblasts, and
skeletalmuscle myotubes (Supplementary Figs.6 and 7)).Based
on the position weight matrices (PWMs) score from Chip-seq and
other sequencing resources, rs2943656 was found to possibly alter
regulatory motifs,including Irf,Foxo,Sox,and Zfp105 in skeletal
muscle tissues with a PWM score p-value <4−7(≈6.1 × 10−5)32.

For the ADAMTSL3 locus, the GWAS lead SNP rs4842924 was
located in a histone mark-identified enhancer in smooth muscle

Table 2 Tissue-specific regulatory-element enrichment analyses of the GWAS loci (GWAS SNPs and SNPs in LD with the GWAS
SNPs)

SNP ID In/near
gene

SNP functional
role

Coding variant
function by
Polyphen2

Number of
SNPs in LDa

p-valueb of tissue-specific regulatory element enrichment analysesc

in five tissuesd

Skeletal
muscle

Smooth
muscle

Fat Brain Blood Gastrointestinal
tract

rs2943656 IRS1 Intergenic 86 0.14 0.38 1 × 10−7 0.04 0.82 1
rs9991501 HSD17B11 Exonic missenseBenign

(Arg283Gln)
1 NAe NA NA NA NA NA

rs2287926 VCAN Exonic missensePossibly damaging
(Gly428Asp)

5 1 × 10−7 1 × 10−7 1 × 10−7 1 × 10−7 1 0.98

rs4842924 ADAMTSL3 Intronic 87 1 × 10−7 1 × 10−7 1 × 10−7 1 × 10−7 1 0.23
rs9936385 FTO Intronic 91 0.78 0.38 0.49 0.45 1 0.51

aSNPs in LD:number of SNPs in LD (r2≥ 0.8 and MAF ≥ 1%,based on CEU samples in the 1000 Genome Project) with the lead GWAS SNP in each locus
bMinimum p-value permutation tests: this analysis included all SNPs in LD with the GWS lead SNPs. Multiple testing correction was done by the minimum p-value permutation test. Permutation p-values
<0.05 are considered as statistically significant.
cEnhancers and promoters (regulatory elements) in 25 chromatin states (retrieved from HaploReg4 database):SNPs are located within active regulatory elements,including promoter upstream TSS,
promoter downstream TSS 1,promoter downstream TSS 2,transcribed and regulatory (prom/enh),transcribed 5ʹpreferentialand enh,transcribed 3ʹpreferentialand enh,transcribed and weak
enhancer,active enhancer 1,active enhancer 2,active enhancer flank,weak enhancer 1,weak enhancer 2,primary H3K27ac possible enhancer,poised promoter,and bivalent promoter
dSee Supplementary Note 2.6 for description of human primary cells and tissues that were included in each tissue group
eWe did not perform enrichment analysis on rs9991501 because rs9991501 has no other SNPs in LD to obtain overlapping regulatory elements
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tissues (Supplementary Figs.11 and 12).The promoter/enhancer
enrichment analysis in the ADAMTSL3 locus showed significant
enrichmentsin skeletalmuscle,smooth muscle,fat and brain
tissues,but not in blood and gastrointestinal tract tissues.At the
FTO locus,a few SNPs in high LD with the GWAS lead SNP,
rs2287926,were located within a group ofenhancers thatare
not muscle tissue-specific (Supplementary Fig.13);therefore,no
significant enrichment was found in any tissues listed in Table 2.

Expression quantitativetrait loci. We queried existingcis-
expression quantitative traitloci (eQTLS)analyses on the five
replicatedGWAS SNPs rs2943656,rs9991501,rs2287926,
rs4842924,and rs9936385 with transcripts within 2 Mb ofthe
SNP position in skeletal muscle tissues as well as in subcutaneous
adipose,omentaladipose,liver tissue,lymphocytes,and primary
osteoblasts(obtainedfrom bone biopsies).Rs9936385was
associated with FTO expression in skeletalmuscle tissues in the
FUSION samples(p = 4.4 × 10−11) (Supplementary Table10).
However, in sequential conditional analysis, upon addition of the
lead FTO eQTL SNP (rs11649091,association p-value with FTO
geneexpression = 5.1 × 10−15), rs9936385was no longersig-
nificantlyassociated (p = 0.16),whereasrs11649091 remained
significantly associated with FTO gene expression (p = 1.9 × 10−5).
SNP rs11649091 could notbe imputed usingour HapMap
imputation references;thus,we did not have association results
between rs11649091 and lean massin the presentstudy.The
T allele ofrs9936385,associated with reduced lean mass in the
present study,was significantly associated with lower FTO gene
expression levels in the GTEx project(Supplementary Table 9
and Supplementary Fig.14).For rs9936385,we also examined
IRX3 and IRX5 expression in skeletalmuscle tissues,as recent
reports have implicated GWAS SNPs associated with obesity in
intron 2 of the FTO gene as being associated with IRX3 and IRX5
gene expression in brain33and adipose tissue34. SNP rs9936385
was not significantlyassociated with IRX3and IRX5 gene
expression in skeletal muscle tissues. For missense SNP rs9991501
in the HSD17B11 locus,a significant association with HSD17B11
gene expression was found in skeletalmuscle from the GTEx
project (p = 1.4 × 10−4). There were no significant GWAS SNPs in
strong LD with thisone;thusconditionalanalyseswere not
performed.

As shown in Supplementary Table 10,for GWAS lead SNP
rs2943656 in the IRS1 locus, significant eQTLs with the IRS1 gene
expression in omental (p = 4 × 10−7) and subcutaneous fat tissue
(p = 6.44 × 10−6) were found.

Finally we found no evidence fordifferentialexpression of
our five replicated genesin young vs old musclebiopsies
(Supplementary Note 2.7 for methods and results).

Discussion
In this first large-scale GWA meta-analysis study for lean mass
thatincluded mostof the cohortsworldwide with lean mass
phenotypes,we identified and successfully replicated five GWS
loci (in/nearHSD17B11,VCAN, ADAMTSL3,IRS1,and FTO
genes)for whole body lean massand three ofthese (in/near
VCAN, IRS1, and ADAMTSL3 genes) for appendicular lean mass,
both important for sarcopenia diagnosis.

This study contributes to a better understanding of the biology
underlying inter-individualvariation in muscle mass,since lean
body mass consists primarily ofmuscle mass (especially in the
extremities).Genetic determinants of lean body mass cannot be
studiedspecificallyby usinganthropometricmeasuressuch
as height,waistcircumference,hip circumferences,or BMI,
as evidenced by our finding of associations between genetic loci
and lean mass that were not observed in results from the GIANT

consortium26–29. Four novel GWS loci for lean mass phenotypes
harboringADAMTSL3,VCAN, HSD17B11,and IRS1 genes
have biologic effectssupporting theirrole in skeletalmuscle.
Although the functionalinvolvementof the ADAMTSL3 gene
(a disintegrin-like and metalloprotease domain with thrombos-
pondin type I motifs-like 3) remains unknown, it has been shown
to be consistently associated with adultheightin large human
samples26, including individuals of African ancestry35. The gene
is expressed ubiquitously,including in skeletalmuscle butthe
lead GWAS SNP in this locus was notsignificantly associated
with expression ofADAMTSL3 in any ofthe tissues examined.
One mighthypothesize thatour observed association between
this gene and lean mass could be a reflection ofan allometric
relationship between muscle mass/size and body size36. Since our
analyses were adjusted for height,it is plausible that variation in
ADAMTSL3 is associated with muscle mass directly.In fact,in a
recentstudythat identified classesof potentiallyregulatory
genomic elements thatare enriched in GWAS loci,the height
phenotype wasalmostexclusively enriched in DNAse sitesin
muscle37. In our study,we observed enrichmentof regulatory
genomicelementsin this locusin both skeletalmuscleand
smooth muscle, which may not fully support a unique role of this
gene in only skeletalmuscle tissue.

Versican (VCAN) plays a role in intercellular signaling and in
connectingcellswith theextracellularmatrix,which also is
important for the skeletal muscle.Interestingly,VCAN facilitates
chondrocyte differentiation and regulates joint morphogenesis38,
and therefore hasa widerrole in the musculoskeletalhealth.
The GWAS SNP in the HSD17B11locuswas significantly
associated with the HSD17B11 gene expression in skeletal muscle.
Hydroxysteroid(17-beta)dehydrogenase11 (HSD17B11)
functions in steroid biosynthesis,and mostrelevantto muscle
tissue,contributes to androgen catabolic processes.Although not
much is known abouthow variants in this gene associate with
sex-hormone related human phenotypes, androgen metabolism is
certainly a driver of muscle tissue anabolism and catabolism.

As for the FTO locus,variantsin the FTO gene,which is
known to regulate postnatal growth in mice39, have been found to
be associated with adiposity/obesity40and related traits,such as
BMI41, metabolicsyndrome/type2 diabetesand even with
menarche42. Apart from its role in adiposity,in two recent can-
didate gene studies,SNPs in FTO were found to associate both
with DXA-derived fat and lean mass43, and in one,the associa-
tion for lean mass wasonly slightly attenuated after fatmass
adjustment44, similar to our results using fat mass-adjusted lean
mass.Also,FTO knockoutmice have been shown to have not
only reduced fat mass, but also decrease in lean mass45. Recently,
obesity associated non-coding sequences in the FTO gene were
found to be functionally connected to the nearby gene,IRX3,by
directly interacting with the promoters of this gene33, suggesting
obesity SNPslocated inside the FTO gene may regulate gene
expression other than FTO.Our GWAS lead SNP rs9936385 in
the FTO locuswasin LD with the obesity GWAS SNP and
located in the same haplotype. A denser fine-mapping study using
sequencing ofthe FTO locuswith a betterresolution willbe
helpfulin narrowing down the FTO region to identify potential
causalvariant(s).The actualfunction ofthe variantsand the
underlying mechanisms of FTO’s involvement in skeletalmuscle
biology still need to be further elucidated by in vitro and animal
experiments.

The other body composition-related gene that was successfully
replicated is the insulin receptor substrate 1 (IRS1), which belongs
to the insulin signalingpathway and participatesin growth
hormone and adipocytokine signaling pathways.Besidesbeing
overexpressed in adipocytes,IRS1 is also highly expressed in
skeletalmuscle13, IRS1 polymorphismshavebeen associated
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with fastinginsulin-relatedtraits46, adiposity13, and serum
triglycerides/HDL cholesterol47. Our GWAS lead SNP rs2943656
wasassociated with IRS1 geneexpression in skeletalmuscle
obtained from theGTEx project.Interestingly,anotherSNP,
rs2943650,near IRS1 in high LD with our lead SNP (R2= 0.854)
was previously found to be associated with percent body fat in the
opposite direction from the association thatwe find with lean
mass13. The body fatpercentage decreasing allele in this study
was associated with lower IRS1 expression in omentaland sub-
cutaneous fat13. Another study reported an association between a
SNP in high LD (rs2943641) with IRS-1 protein expression and
insulin-induced phosphatidylinositol3-OH kinaseactivityin
skeletalmuscle13. Also rs2943656 wasassociated with obesity
traits in the GIANT Consortium; the allele associated with greater
lean mass was inversely associated with obesity traits.Further
understanding of the potential functional effects of these variants
in the IRS1 locus are needed to determine whether they have
pleiotropic and opposite effects on fat and lean tissue. The same is
true for variants in the FTO locus for which the allele that was
associated with greater lean mass was previously reported to be
associated with greater fat mass.

From the currenteQTL data analysis,we have no definitive
evidence that the non-coding GWAS SNPs (or variants in high
LD) functionally influence gene expression ofIRS1,HSD17B1,
and FTO in skeletalmuscle.Use ofa larger reference panelfor
imputation in the GWAS sample,and analysis oflarger tissue
expression data sets coupled with conditionalanalysis willhelp
revealif underlyingfunctionalassociationsexist.It should
be emphasized thatwith the currentdata we are notable to
determine which SNPs may be functionaland it is possible that
the identified lean mass variants are not driving the associations
with expression.Using ENCODE and Epigenetic Roadmap data,
we found that the GWAS SNPs (or SNPs in LD with these SNPs)
weresignificantlyenriched in thepredicted generegulatory
regions (in our case,enhancers) not only in skeletalmuscle,but
also in smooth muscle, fat and brain tissues. With the complexity
of lean mass phenotypes,we cannot rule out the possibility that
these genes are involved in regulating lean mass biology via tis-
sues other than skeletalmuscle.

Using results from the overallmeta-analysis,the percent var-
iance explained by the successfully replicated SNPs was 0.23%
and 0.16% for whole body and appendicular lean mass,respec-
tively.Estimates were slightly higher when we used individual
level data from the Framingham Study cohorts (percent variance
explained of 0.97% and 0.55% for whole body and appendicular
lean mass,respectively).This relativelysmallpercentageof
explained variance is notdissimilar to other body composition
measures such as bone mineraldensity of the femoralneck,for
which 63 SNPs explained 5.8% of the variance48. To estimate the
proportion of variance for lean mass explained by allgenotyped
SNPs across the genome in Framingham Study participants,we
applied a GREML modelimplemented in the GCTA package49

with the assumption thatall 550K genotyped SNPscaptured
≥80% ofthe common sequence variance in the Framingham
Study participants who are Caucasians of European ancestry.We
estimated thatthe proportion ofwholebody lean massand
appendicular lean mass variance explained by all genotyped SNPs
together was 43.3% (SE:2.7%) and 44.2% (SE:2.6%), respectively
(after adjustmentfor age,age2, sex,heightand fatmass),sug-
gesting most of the heritability of lean mass was not detected in
the currentstudy due to the limitations ofstudy design (only
common variants in this study). This percent variance is similar to
the 45% of the variance explained for height using this method49.

Becauseof the substantialsexualdimorphism in body
composition with men having higher muscle mass compared with
women24, we performed both sex-combined and sex-stratified

analyses.We examined potentialsex differences in the genetic
associations.Lean massis a highlyheritabletrait and the
heritabilityis of similarmagnitudein both genders24, 50.
No formalinteraction test between SNP and sex was significant
for any of theseSNPs. Thus,our findingsdo not support
any substantialsex-specificgeneticinfluencefor any of the
successfully replicated lean massSNPs.We cannotrule out
the possibility thatthe reported GWS SNPsare false-positive
findings,although the chance of such false positives is extremely
low due to the robustnessof replication in ourwell-powered
study.There are also other limitations to our study.Because lean
mass is correlated with fat mass, we adjusted for fat mass to focus
our search on genes contributing to lean mass independentof
those regulating fat mass. A potential limitation with this strategy
of adjusting for fatmass is thatthe power to identify genetic
signals with a similar impact on lean and fat mass will be reduced.
Nevertheless,the FTO signal was found to be significantly
associated with lean mass after fat adjustment and the direction of
this association was the same as the association with fatmass.
Since androgens have a major impacton muscle mass,it is a
limitation of the present study that the X chromosome, harboring
the androgen receptorgene,wasnot included in the present
meta-analysis.Another potentialweakness ofthis study is our
decision to meta-analyze body composition resultsusing two
differenttechniques(BIA and DXA). Nevertheless,the two
methods are highly correlated (r = 0.83 for Framingham cohort
participants),and by combining them power to detect GWS loci
was greatly enhanced.

In conclusion,in this first large-scale meta-analysis of GWAS,
five GWS variants in or near the HSD17B11, VCAN, ADAMTSL3,
IRS1,and FTO genes were found to be robustly associated with
lean body mass. Three of these loci were found to be significantly
enriched in enhancers and promoters in muscle cells,suggesting
that our signals have a potentialfunctionalrole in muscle.Our
findings shed light on pathophysiological mechanisms underlying
lean mass variation and potential complex interrelations between
the genetic architecture of muscle mass, fat mass, body height and
metabolic disease.

Methods
Study summary.We focused on two phenotypes:(1) whole body lean mass;(2)
appendicular lean mass.For these two phenotypes,we performed a genome-wide
meta-analysis of the discovery cohorts (Stage I), then meta-analyzed the genotyped
discovery SNPs in replication cohorts (Stage II),followed by a combined analysis
with discovery and replication cohorts (Supplementary Fig.1).The totalsample
size for the combined analysis was just over 100,000 from 53 studies.Our primary
results are based on the ~85,000 individuals of European descent in 47 studies,as
was pre-specified.Because whole body and appendicular lean mass are correlated
with fat mass and height, analyses were adjusted for these potential confounders in
addition to sex, age, age2, and other study-specific covariates to focus our search on
genes contributing to lean mass independent of those of body height and fat mass.

Study population.The Stage I Discovery sample comprised 38,292 individuals of
European ancestry drawn from 20 cohorts with a variety of epidemiological designs
and participant characteristics (Supplementary Tables 4–6 and Supplementary
Note 2.8).Whole body lean mass was measured using DXA (10 cohorts,
n = 21,074) and BIA (10 cohorts,n = 17,218).Of the 20 cohorts,15 consisted
of male and female subjects,while 2 had male and 3 had female subjects only.
In total,the cohorts included 22,705 women and 15,587 men.Appendicular lean
mass was estimated in 28,330 subjects from a subset of 15 cohorts (9 using DXA
and 6 using BIA).

Subjects from 33 additional studies were used for replication with a total sample
size of 63,475 individuals.Of these 63,475,the majority was of European ancestry
(n = 47,227 in 27 cohorts),and the remaining 16,248 were of African American,
South Asian, or Korean ancestry (Supplementary Table 4). All these 33 cohorts had
data for whole body lean mass.Among them,16 studies had DXA measurements
(n = 23,718) and 17 studies had BIA measurements (n = 39,757).Twenty-five
cohorts had data for appendicular lean mass in a totalof 45,090 individuals
(16 cohorts with DXA (n = 23,718) and 9 with BIA (n = 21,372)).Of these,42,360
individuals (23 cohorts) were of European ancestry and the remaining 2730 of
African American and Korean descent. Our a priori aim was to perform replication
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in cohorts with European subjects only and to explore if adding non-European
cohorts would increase power or show evidence of heterogeneity due to ethnicity.
The Stage II Replication included cohorts with existing GWAS data that were
unavailable at the time of the Stage I Discovery, and cohorts who agreed to undergo
de novo genotyping.All studies were approved by their institutional ethics review
committees and allparticipants provided written informed consent.

Lean mass measurements.Lean mass was measured in allcohorts using either
DXA or BIA. DXA provides body composition as three materials based on specific
X-ray attenuation properties;bone mineral,lipid (triglycerides,phospholipid
membranes,etc.) and lipid-free soft tissue.For each pixel on the DXA scan,these
three materials are quantified.For the cohorts with DXA measures,the phenotype
used for these analyses was the lipid free,soft tissue compartment that is referred
to as lean mass,and is the sum of body water,protein,glycerol,and soft tissue
mineralmass.Two lean mass phenotypes were used:whole body lean mass and
appendicular lean mass.The latter was obtained by considering only pixels in the
arms and legs collectively,which has been demonstrated to be a valid measure of
skeletalmuscle mass51.

Some of the cohorts estimated body composition using BIA, which relies on the
geometrical relationship between impedance (Z),length (L),and volume (V) of an
electrical conductor.Adapted to the human body,V corresponds to the volume of
fat-free mass (FFM) and L to the height of the subject.Z is composed of the pure
resistance (R) of the conductor,the FFM,and the reactance (Xc),produced by
the capacitance of cellular membranes,tissue interfaces and non-ionic tissues:
Z2= R2+ Xc2. A variety of BIA machines were used by the various cohorts
(summarized in Supplementary Table 5),and in some cohorts,the specific
resistance and reactance measures were not available because the manufacturers
provided only summary output on FFM.For BIA cohorts with specific resistance
and reactance measures,we used the validated equation from Kyle et al.52with an
R2 of 0.95 between BIA and DXA to calculate the appendicular lean mass.

Stage 1: genome-wide association analyses in discovery cohorts.Genotyping
and imputation.Genome-wide genotyping was done by each study on a variety of
platforms following standard manufacturer protocols.Quality controlwas per-
formed independently for each study.To facilitate meta-analysis,each group
performed genotype imputation with IMPUTE53or MACH54software using
HapMap Phase II release 22 reference panels (CEU or CHB/JPT as appropriate).
Overallimputation quality scores for each SNP were obtained from IMPUTE
(“proper_info”) or MACH (“rsq_hat”).Details on the genotyping platform used,
genotype quality controlprocedures and software for imputation employed for
each study are presented in Supplementary Table 6.

Study-specific genome-wide association analyses with lean mass.In each study,
a multiple linear regression modelwith additive genetic effect was applied to test
for phenotype–genotype association using ~2.0 to 2.5 million genotyped and/or
imputed autosomalSNPs.Other covariates adjusted in the modelincluded
ancestral genetic background, sex, age, age2, height, fat mass measured by the body
composition device (kg) and study-specific covariates when appropriate such as
clinicalcenter for multi-center cohorts.Adjustment for ancestralbackground was
done within cohorts using principalcomponent analyses as necessary.
Furthermore,for family-based studies,including the Framingham Study,ERF,
UK-Twins, Old Order Amish Study and the Indiana cohort,familialrelatedness
was taken into account in the statistical analysis within their cohorts by:(1) linear
mixed-effects models that specified fixed genotypic and covariate effects and a
random polygenic effect to account for familialcorrelations (the R Kinship
package; http://cran.r-project.org/web/packages/) in the Framingham Study; (2) the
GenABEL55in the ERF and UK-Twins cohorts;(3) the Mixed Model Analysis for
Pedigrees (MMAP) program (http://edn.som.umaryland.edu/mmap/index.php) in
the Amish cohort; and GWAF, an R package for genome-wide association analyses
with family data in the Indiana cohort56.

Meta-analyses.Meta-analyseswereconductedusingthe METAL package
(www.sph.umich.edu/csg/abecasis/metal/).We used the inverse variance
weighting and fixed-effect model approach.Prior to meta-analysis,we filtered out
SNPs with low minor allele frequency,MAF (<1%) and poor imputation quality
(proper_info<0.4 for IMPUTE and rsq_hat<0.3) and applied genomic control
correction where the genomic controlparameter lambda (λGC) was >1.0.

We used quantile–quantile (Q–Q) plots of observed vs.expected –log10
(p-value) to examine the genome-wide distribution of p-values for signs of
excessive false-positive results.We generated Manhattan plots to report genome-
wide p-values,regionalplots for genomic regions within 100 Kb of top hits,and
forest plots for meta-analyses and study-specific results of the most significant SNP
associations.A threshold of p < 5 × 10−8was pre-specified as being genome-wide
significant (GWS), while a threshold of p < 2.3 × 10−6was used to select SNPs for a
replication study (suggestive genome-wide significant,sGWS).

Stage 2: replication.In each GWS or sGWS locus,we selected the lead SNP
with the lowest p-value for replication.In addition,GWS or sGWS SNPs that had
low-linkage disequilibrium with the lead SNPs (LD < 0.5) were also selected for
replication.Both in silico replication and de novo genotyping for replication was
conducted.In silico replication was done in 24 cohorts with GWAS SNP chip

genotyping that did not have data available at the time of the initialdiscovery
efforts (Supplementary Table 7).De-novo replication genotyping was done using:
KBioScience Allele-Specific Polymorphism (KASP) SNP genotyping system
(in OPRA,PEAK25,AGES,CAIFOS,DOPS cohorts),TaqMan (METSIM),
Illumina OmniExpress + Illumina Metabochip (PIVUS and ULSAM),
or Sequenom’s iPLEX (WHI) (Supplementary Table 8). Samples and SNPs that did
not meet the quality controlcriteria defined by each individualstudy were
excluded.Minimum genotyping quality-controlcriteria were defined as:SNP call
rate > 90% and Hardy–Weinberg equilibrium p > 1 × 10−4.

Meta-analysis of replication and discovery studies.In the replication stage,we
meta-analyzed results from:(1) individuals of European descent only (Rep-EUR);
and (2) allreplication cohorts with multiple ethnicities (Rep-All).Likewise
we meta-analyzed results from discovery cohorts and European-descent-only
replication cohorts (“Combined EUR”) from discovery cohorts and allreplication
cohorts (“Combined All”). To investigate and account for potential heterogeneities
in allelic effects between studies,we also performed “trans-ethnic meta-analysis”
using MANTRA25in the replication sample that included allethnic groups
(“Rep-All”) and in the combined analysis of the discovery and all ethnic groups in
the replication sample (“Combined All”).

A successfulreplication was considered if:(1) the association p-value in
the cumulative-meta-analysis (Combined EUR) was genome-wide significant
(p < 5 × 10−8) and less than the discovery meta-analysis p-value;or (2) the
association p-value in the meta-analysis of replication-cohorts only (Rep-EUR) was
less than p = 0.0024 (a Bonferroni-adjusted threshold at p = 0.05/21 since there
were a totalof 21 tests performed for whole body and appendicular lean mass in
Rep-EUR cohorts during replication). Using the METAL package we also estimated
I2 to quantify heterogeneity and p-values to assess statistical significance for a total
of eight associations that were replicated in the cumulative-meta-analysis
(combined EUR,five SNPs for whole body and three for appendicular lean mass).

To estimate the phenotypic variance explained by the genotyped SNPs
in the Framingham Heart Study (FHS),we used a restricted maximum likelihood
modelimplemented in the GCTA (Genome-wide Complex Trait Analysis) tool
package57,58and adjusted for the same set of covariates included in our GWAS.

Finally,we examined associations between all imputed SNPs in/near five genes
(THRH,GLYAT, GREM1,CNTF,and PRDM16 including 60 kB up and
downstream of the gene) and lean mass,as these genes have been implicated to
have associations with lean mass in previous association studies18–20.

Annotation and enrichment analysis of regulatory elements.For coding
variants,we predicted their function by PolyPhen-2.For all variants,we annotated
potentialregulatory functions of our replicated GWAS SNPs and loci based on
experimentalepigenetic evidence including DNAse hypersensitive sites,histone
modifications, and transcription factor-binding sites in human cell lines and tissues
from the ENCODE Project and the Epigenetic Roadmap Project.We first selected
SNPs in high LD (r2≥ 0.8) with GWAS lead SNPs based on the approach of
Trynka et al.59We then identified potential enhancers and promoters in the GWAS
loci(GWAS SNPs and SNPs in LD with the GWAS SNPs) across 127 healthy
human tissues/normalcelllines available in the ENCODE Project and the
Epigenetic Roadmap Project from the HaploReg4 web browser60using
ChromHMM31. To evaluate whether replicated GWAS loci were enriched with
regulatory elements in skeletal muscle tissue,we performed a hypergeometric test.
Specifically we tested whether estimated tissue-specific promoters and enhancers in
a GWAS locus were enriched in eight relevant skeletalmuscle tissues/celllines vs
enrichment in non-skeletal muscle tissues (119 tissues/cell lines).The permutation
with minimum p-value approach was performed to correct for multiple testing.
Permutation p-values <0.05 were considered statistically significant.In addition,
we also performed enrichment analyses in smooth muscle tissues/cells,fat tissue,
brain,blood cells and gastrointestinaltract tissues.The eight skeletalmuscle
relevant tissues/cells were excluded when conducting enrichment analyses for
other tissue types.The detailed information for tissue types and chromatin state
estimation is described in the Supplementary Materials.

cis-eQTL. We conducted cis-eQTL analyses on the five replicated GWS loci,SNPs
rs2943656,rs9991501,rs2287926,rs4842924,and rs9936385,with gene expression
within 2 Mb of the SNP position. A linear regression model was applied to examine
associations between SNP and gene expression. The eQTL analyses were performed
in five studies with available human skeletalmuscle tissues,including:GTEx61,
STRRIDE62,63, a study with chest wallmuscle biopsies from patients who
underwent thoracic surgery for lung and cardiac diseases64, the Finland-United
States Investigation of NIDDM Genetics (FUSION) Study65, and a study of Pima
Indians66. In addition,eQTL analyses were also conducted in studies with other
human tissues,including subcutaneous adipose67,68, omentaladipose67,68, liver
tissue67, lymphocytes69, and primary osteoblasts70(obtained from bone biopsies).
These five GWAS SNPs were either genotyped or imputed in each sample.The
detailed methods are described in the Supplementary Materials.Multiple testing
was corrected by using false discovery rate (FDR q-value <0.05) to account for all
pairs of SNP-gene expression analyses in multiple tissues and studies.
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Data availability.All relevant data are available from the authors and summary
levelresults are available on dbGaP.
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