

Citation: Teixeira MA, Sela N, Atamian HS, Bao E, Chaudhary R, MacWilliams J, et al. (2018)
Sequence analysis of the potato aphid
Macrosiphum euphorabiariptome identified two new viruses. PLoS ONE 13(3): e0193239.
https://doi.org/10.1371/journal.pone.0193239

Editor: Rui Lu, Louisiana State University, UNITED STATES

Received: May 31, 2017 Accepted: February 7, 2018

Published: March 29, 2018

Copyright: ©2018 Teixeira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by a grant from United States Department of Agriculture National Institutes of Food and Agriculture (Award no 2010-65106-20675) to IK and TG and UC Riverside Experimental Station to IK. Computational resources used for this study were funded by NIH grant S10OD016290-01A1 and NSF grant MRI-1429826 to TG. MT was supported by a training

RESEARCH ARTICLE

Sequence analysis of the potato aphid Macrosiphum euphorbiae transcriptome identified two new viruses

Marcella A. Teixeira 1© ta, Noa Sela2©, Hagop S. Atamian 1© tb, Ergude Bao 3© tc, Ritu Chaudhary 1td, Jacob MacWilliams 1, Jiangman He 1, Sophie Mantelin 1te, Thomas Girke 4,5, Isgouhi Kaloshian 1,5,6*

- 1 Department of Nematology, University of California, Riverside, California, United States of America, 2 Department of Plant Pathology and Weed Research, Volcani Center, Bet Dagan, Israel, 3 Graduate Program in Computer Science and Engineering, University of California, Riverside, California, United States of America, 4 Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America, 5 Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America, 6 Center for Infectious Disease Vector Research, University of California, Riverside, California, United States of America
- These authors contributed equally to this work.
- ¤a Current address: Ministry of Agriculture, Livestock and Food Supply, Brasilia, Brazil

 ¤b Current address: Schmid College of Science and Technology, Chapman University, Orange, California,
 United States of America
- xc Current address: School of Software Engineering, Beijing Jiaotong University, Beijing, China xd Current address: National Institutes of Health, Bethesda, Maryland, United States of America xe Current address: Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- * isgouhi.kaloshian@ucr.edu

Abstract

The potato aphid, Macrosiphum euphorbiase an important agricultural pest that causes economic losses to potato and tomato production. To establish the transcriptome for this aphid, RNA-Seq libraries constructed from aphids maintained on tomato plants were used in Illumina sequencing generating 52.6 million 75-105 bp paired-end reads. The reads were assembled using Velvet/Oases software with SEED preprocessing resulting in 22,137 contigs with an N50 value of 2,003bp. After removal of contigs from tomato host origin, 20,254 contigs were annotated using BLASTx searches against the non-redundant protein database from the National Center for Biotechnology Information (NCBI) as well as IntereProScan. This identified matches for 74% of the potato aphid contigs. The highest ranking hits for over 12,700 contigs were against the related pea aphidAcyrthosiphon pisur@ene Ontology (GO) was used to classify the identified. euphorbia eontigs into biological process, cellular component and molecular function. Among the contigs, sequences of microbial origin were identified. Sixty five contigs were from the aphid bacterial obligate endosymbiont Buchnera aphidicobaigin and two contigs had amino acid similarities to viruses. The latter two were named Macrosiphum euphorbiae virus 2 (MeV-2) and Macrosiphum euphorbiae virus 3 (MeV-3). The highest sequence identity to MeV-2 had the Dysaphis plantaginea densovirus, while to MeV-3 is the Hubei sobemo-like virus 49. Characterization of MeV-2 and MeV-3 indicated that both are transmitted vertically from adult aphids to nymphs. MeV-2 peptides were detected in the aphid saliva and only MeV-2 and not MeV-3 nucleic acids

grant from the Coordination for the Improvement of Higher Education of Brazil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

were detected inside tomato leaves exposed to virus-infected aphids. However, MeV-2 nucleic acids did not persist in tomato leaf tissues, after clearing the plants from aphids, indicating that MeV-2 is likely an aphid virus.

Introduction

Aphids (Hemiptera: Aphididae) are among the most destructive agricultural insect worldwide [1]. They have a short generation time often resulting in vast population during a growing season. Aphids damage their host plants directly through their fee ity and indirectly by transmitting viruses or supporting the growth of saprophytic fras sooty mold. Aphids are phloem feeders and remove phloem sap, which might of used for plant growth and reproduction. Moreover, during the feeding process, the saliva that can be phytotoxic and contains effectors which modulate plant defense thus predispose the plant to other diseases [2], [3]. Indirect damage caused by plat transmitted by aphids far exceed the aphid's direct impact on crops [4, 5].

Aphids have complex life cycles, comprising of both sexual and asexual (parther modes of reproduction and wing dimorphism [6, 7]. In addition, they show high dividerms of host range and host plant specialization. Moreover, they possess a divers community including the mutualistic obligate bacterial endosymbiont *Buchnera ap* that is essential for aphid reproduction and survival [8]. Aphids may also harbor se facultative symbionts, a subset of which are believed to contribute to aphid host readdition, aphids establish complex relationships with their plant hosts. Recent study shown that aphids produce effectors that modulate host defense responses [2, 10, unusual biology of aphids makes them ideal models for the study of several biolog that are not readily studied in other genetic model systems. Some of these aphid-coharacteristics are expected to be the result of unique sets of genes found in this coharacteristics.

The potato aphid *Macrosiphum euphorbiae* belongs to the subfamily Aphidinae *euphorbiae* infests many plant species including those from the Solanaceae such a tomato and transmits a number of plant viruses [13]. In tomato, resistance to this mediated by the *Mi-1* gene that encodes a nucleotide-binding leucine-rich repeat [15]. Both *Mi-1*-virulent and avirulent *M. euphorbiae* isolates exist in nature [16, 17 scriptome of one *Mi-1* avirulent *M. euphorbiae* isolate was generated and used for cation of the salivary proteome [18, 19]. Using these transcriptome and secretome aphid effectors modulating plant immune responses were identified [11, 19, 20]. It these effectors, these resources identified the chaperonin GroEL from the *B. aphid* symbiont as the first aphid-associated molecular pattern to trigger plant immunity over, analysis of this transcriptome identified a novel virus, the Macrosiphum euph virus 1 (MeV-1), belonging to the family Flaviviridae with single-stranded RNA general

In recent years, genomes of a few aphids have been sequenced and the transcript additional aphid species have been published [2, 22–30]. In this study, we describe aphid transcriptome. This transcriptome was generated from 128 giga bases of hig euphorbiae sequence information using Illumina technology and was de novo asset the SEED-VELVET/Oasis approach [31, 32]. Based on Gene Ontology (GO) analysis tigs were assigned to diverse molecular function and biological process categories comprehensive representation of the *M. euphorbiae* transcriptome. Interestingly, we two contigs with homologies to two new viruses and named them MeV-2 and MeV-

discovered that peptides of one of these viruses, MeV-2, were detected in the prot *M. euphorbiae* saliva and that MeV-2 is secreted into the aphid host plant.

Materials and methods

Plants and aphid colonies

from Canada and the Netherlands.

Tomato cultivar (cv.) UC82B (*mi-1/mi-1*) and near isogenic cv. Motelle (*Mi-1/Mi-1*) a Moneymaker (*mi-1/mi-1*) were grown in UC mix II (agops.ucr.edu/pdfs/soil_mix_rec in a growth room at 24th 16h light/8h dark. A colony of potato aphid (*M. euphorbia* late WU11, acquired from France, was reared parthenogenetically on the susceptible UC82B. Aphids were maintained inside insect cages in a pesticide-free greenhouse Samples of other *M. euphorbiae* populations stored in RNAlater (Ambion) were

Aphid material for library construction

Age-synchronized, one-day-old, adult aphids were generated as described previou About 200 one-day-old adult aphids were exposed to resistant Motelle for 12 h and susceptible Moneymaker tomato plants for 24 h. An additional 200 one-day old ad were subjected to starvation for 24 h in a Petri dish. Mixed stage aphids were also from the colony reared on the susceptible tomato cv. UC82B.

RNA extraction, library construction and sequencing

A total of 5 libraries were prepared. For the biotic stress conditions, three libraries pared from 200 age-synchronized one day-old adult aphids either exposed to cv M Moneymaker tomato. For the abiotic stress, a single library was prepared from 200 nized, one day-old adult aphids. In addition, a single library was prepared from the aphid developmental stages maintained on susceptible tomato. For Illumina library RNA was extracted using the RNeasy Midi kit according to the manufacturer's recording (Qiagen). Twenty µg of RNA was treated with DNase I enzyme (New England B lowed by phenol-chloroform extraction and isopropanol precipitation. The RNA quaintegrity were evaluated using an Agilent 2100 BioAnalyzer (Agilent Technologies)

RNA-Seq libraries were prepared for high-throughput sequencing on the Illumina Station and Genome analyzer as described by [34]. In brief, mRNA was isolated from the DNase-treated total RNA using Sera-mag Magnetic oligo(dT) beads and fragmed divalent cations under elevated temperatures. The cleaved mRNA fragments were first- and second-strand cDNA using random primers. The overhangs were converted blunt ends using T4 DNA polymerase and Klenow DNA polymerase, followed by the of an "A" base to the 3' end of the blunt phosphorylated cDNA fragments. Adapters ligated to the ends of the cDNA fragments, purified on a gel and 300 bp templates downstream enrichment by PCR using primers complementary to the adapter sequence, purity and concentration of the prepared library were evaluated by running 1 agarose gel. To assess the diversity of the library, 1 μ l of the library was cloned int Blunt TOPO vector following the manufacturer's recommendation (Invitrogen) and were sequenced. TBLASTx searches identified distinct sequences for each clone w library suggesting that the libraries were not biased.

The RNA-Seq library from mixed aphid developmental stages was run on two flo lanes, while the remaining four libraries were combined together and run on a sing lane.

Paired-end 75 or 105 nucleotide-long sequencing was performed with the Illumir Station and Genome Analyzer II at the Institute for Integrative Genome Biology, Ur California, Riverside.

de novo assembly of reads and annotation

Data from Illumina Genome Analyzer II sequencing runs were processed using the pipeline version 1.4 to generate sequencing reads, base-call quality scores, and requality reads. The sequence data generated were deposited in National Center for ogy Information's (NCBI) Sequence Read Archive SRA) (SRP029202), accession nur SRX339176. The reads were assembled by first applying SEED (1.2.1) preprocessin near identical RNA reads followed by Velvet/Oases (1.0.15/0.1.18) to assemble the center reads in each cluster and the initial reads, respectively, as described in Bao The assembled transcriptome was deposited in NCBI (accession number GAOM000 The resulting contigs were annotated by BLASTx searches against NCBI's non-reductabase (E-value cut off 1e-3) and InterProScan searches [35] against several prosequence, domain and motif databases. For *Buchnera* sequence annotation, BLAST against the UniProt database were used.

Virus detection in aphids and tomato leaves

Nucleic acids were isolated from tomato leaflets or aphids using Trizol (Invitrogen) for cDNA synthesis using Superscript III reverse transcriptase (Invitrogen) and oligon primers according to the manufacturer's recommendations. For single aphid nucle extraction, acrylamide (Fisher) was added as a carrier before precipitation. PCR was formed in 25 µl reactions using the following primers: MeV2-F 3'CCGGATGACAAATC CGA5' and MeV2-R 3'AATAGGCGCAGAGATGGACG5'; MeV3-F: TTTTGACTTGACCTAT GGTTCCCTT and MeV3-R: AGCCAATTTAGTACCATCACTACGT. PCR conditions were 94 for 5 min, followed by 35 cycles of 94C for 30 sec, 60C (MeV2) or 53C (MeV3) for 3 for 30 sec and a final cycle at 72C for 3 min. The aphid ribosomal protein L27 (*RpL* and the tomato ubiquitin (*SIUbi3*) [36] were used as control. Products were separatrophoresis in 1.2% agarose gels and visualized by ethidium bromide staining.

Results

Transcriptome sequencing and assembly

To maximize the genome coverage of the *M. euphorbiae* expressed genes in our exmaterial, we prepared RNA-Seq libraries representing transcripts from mixed aphic mental stages as well as aphids exposed to various biotic or abiotic stresses. Five constructed and run in three flowcell lanes generating a total of 52.6 million paired

We applied SEED (1.2.1) [31] to cluster the RNA reads, and then used Velvet/Oa (1.0.15/0.1.18) [32] to assemble the resulting center reads in each cluster and the respectively. We used the VelvetOptimiser (2.1.7) tool to find the best k-mer length Oases between 19 and 71. The Velvet/Oases with SEED pre-processing generated tigs with an N50 value of 2,003bp. The N50 value is the contig length where 50% cassembly is contained in contigs of at least this value.

Annotation and gene ontology assignments

The contigs were annotated by BLASTx searches against the NCBI's NR protein databases (Fig 1; S1 Table) [35]. About 1

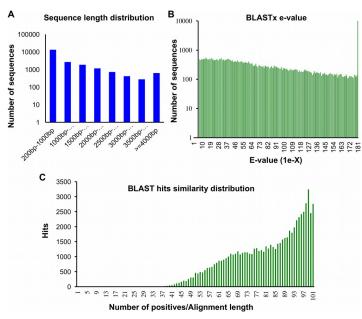


Fig 1.Characterization of the *de novo* assembly of the *Macrosiphum euphorbiae* transcriptome. Dis (A) Sequence length (B) BLASTx E-values and (C) Sequence BLASTx hits similarity.

(1,818/22,137) of the assembled sequences identified as from tomato origin were contaminants and consequently excluded from downstream analyses as well as the aphid transcriptome we submitted to NCBI. Moreover, BLASTx analysis against the database revealed that 65 contigs originated from the aphid endosymbiont *Buchn* Table). These sequences were also excluded from the potato aphid transcriptome.

Of the remaining assembled contigs, over 82% were greater than 300 bp in length About 74% (15,139/20,254) showed sequence similarity to proteins in NCBI's nr probase (E < 1)e(Fig 1B and 1C). The sequences were annotated based on their match nr database by Blast2go software [37]. In addition, the contigs were translated into scanned with InterProScan against several protein databases (S2 Table). The top be the known contigs showed 84.4% (12,781/15,139) matches with A. pisum sequence (1,704/15,139) matches with the Russian wheat aphid, Diuraphis noxia (Fig 2).

Finally the 12,781 contigs were aligned to the predicted *A. pisum* transcriptome mRNA v2.1) in AphidBase 2.1. More than 6,800 of the *A. pisum* transcripts had ove erage by their corresponding *M. euphorbiae* contigs (Fig 3).

To classify the functions of *M. euphorbiae* contigs, we used the Blast2GO softwa the contigs GO terms. The contigs were categorized into 43 functional groups with main ontologies, defined as cellular components, molecular function, and biologica (Fig 4). Within the cellular component ontology category, a high proportion of geneciated with the terms cell (7,388 genes, 36.5%) and cellular parts (7,367 genes, 36 molecular function ontology, a high percentage of genes was assigned to binding 39.7%) and catalytic activity (5,269 genes, 26%) categories, while the most abundances terms were cellular processes (6,812 genes, 31.1%) and metabolic process genes, 31.1%) (Fig 4).

GO term enrichment analysis of the *Buchnera* sequences revealed within the bic cess ontology, the highest representations for primary metabolic processes (11 ge and organic substance metabolic processes (11 genes, 17%) (Fig 5). Within the mo

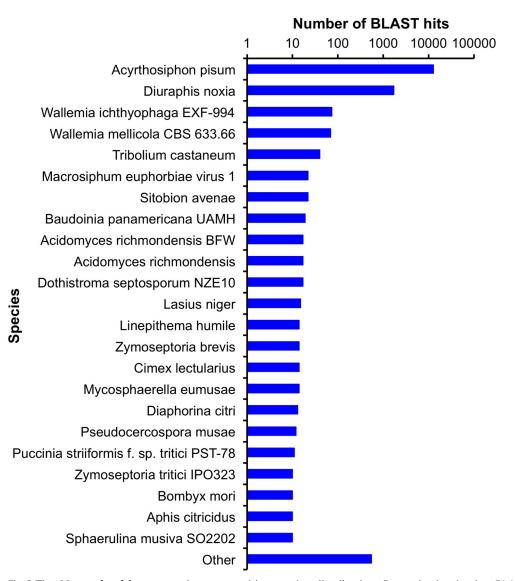


Fig 2.The **M**. **euphorbiae** transcriptome top hits species distribution. Data obtained using BLASTx ana NCBI's non-redundant protein database.

function ontology, the most abundant GO terms were heterocyclic compounds (13 organic cyclic compounds binding (13, 20%); and for the cellular component ontol intracellular (15 genes, 23%) and intracellular part (14 genes, 21%) (Fig 5).

Contigs of viral origins

In addition to MeV-1 (KT309079), which was previously identified as a novel aphid two of the assembled sequences (GAMO01012456.1/Me_WB16380 and GAOM01012456.1) showed sequence similarities to viral sequences. The Me_WB16380 2,668 nucleotides in length. BLASTx searches against NCBI-NR revealed top hits top plantagine densovirus (DplDNV) (ACG50804.1) (36% coverage; E=2e-71) and to dicted protein from A. pisum (LOC100575585; XP_016656124.1) (12% coverage; E well as to a putative nonstructural protein NS-1 of Myzus persicae densovirus (MpI

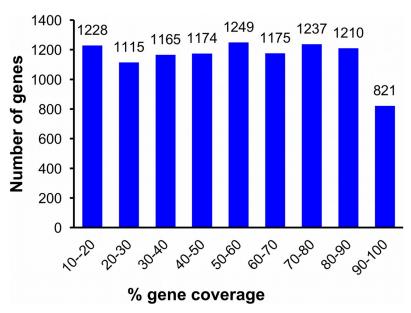


Fig 3 **Acyrthosiphon pisum** gene coverage by **M**. **euphorbiae** contigs. Histogram showing the coverage predicted genes by the *de novo* assembled **M**. **euphorbiae** transcriptome.

(NP_874375.1) (14% coverage; E = 4e-08). The translated proteins of these seque presence of nonstructural viral protein sequences (Fig 6A). Therefore, it is likely the Me_WB16380 is of viral origin. Therefore, we named this virus Macrosiphum euphovirus 2 (MeV-2).

The second contig, Me_WB14511, is 478 nucleotides in length and BLASTx search against NCBI-NR revealed high similarities to the following viruses: Hubei sobemo-49 (APG75768.1) (99% coverage; E = 4e-45), Braid Burn virus (AMO03212.1), (97% E = 2e-39), Hubei sobemo-like virus 48 (APG75765.1) (97% coverage; E = 3e-34);

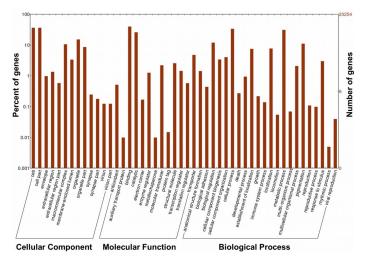


Fig 4.Histogram of **the M**. **euphorbiae** transcriptome gene ontology (GO) classification. GO level 2 de the indicated three main categories. The visualization of GO distribution was done with WEGO tool (httgenomics.org.cn/).

https://doi.org/10.1371/journal.pone.0193239.g004

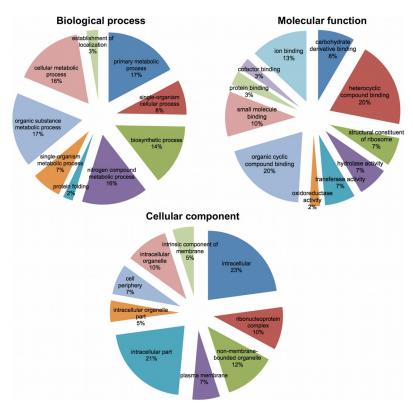


Fig 5.Gene ontology (GO) classification of the endosymbiont **Buchnera aphidicola**. GO level 3 descri Buchnera transcripts identified among the M. euphorbiae transcriptome.

virus (AMO03214.1), 97% coverage; E = 9e-32); and to Wuhan insect virus 34 (APO (82% coverage; E = 4e-26) (Fig 6B). Based on these high similarities to viral seque likely that contig Me_WB14511 is also of viral origin and we named this virus Macreuphorbiae virus 3 (MeV-3).

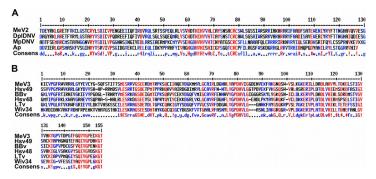


Fig 6.Line up of MeV-2 and MeV-3 sequences with their respective homologous sequences. (A) Amino a translation of MeV-2 transcript (GAMO01012456.1; Me_WB16380), with its related virus proteins included Dysaphis plantaginea DNV (DpIDNV; ACI01073.1); Myzus persicae DNV (MpDNV; NP_874375.1); and Acyrthosiphum pisum uncharacterized protein (Ap; XP-016664361.1). (B) Amino acid translation of Me (GAOM01011582.1; Me_WB14511) with its related virus proteins including: Hubei sobemo-like virus 49 APG75768.1), Braid Burn Virus (BBv; AMO03213.1), Hubei sobemo-like virus 48 (Hsv48; APG75765.1), virus (LTv; AMO03214.1), and Wuhan insect virus 34 (Wiv34; APG75723.1). Amino acids in red indicate consensus, blue low consensus and black neutral.

https://doi.org/10.1371/journal.pone.0193239.g006

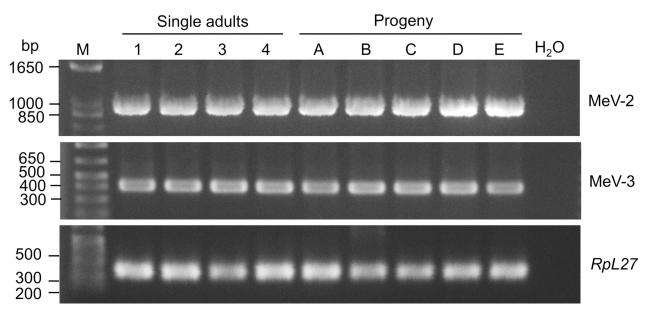


Fig 7.MeV-2 and MeV3 are present in *M. euphorbiae* WU11 population and is vertically transmitted to progeny. Aphid nucleic in RT-PCR for MeV-2 and MeV-3 detection. For evaluation of vertical transmission, first instar nymphs were collected while bein aphids, before touching tomato leaflets, using a brush and transferred to a naïve tomato plant. One week later, when nymphs single aphids were processed for the presence of MeV-2 and MeV-3. Aphid ribosomal gene *RpL27* was used as positive control marker.

Detection of MeV-2 and MeV-3 in *M. euphorbiae*

Based on sequence similarity, MeV-2 belongs to the genus Densovirus with single-DNA genomes and is likely an aphid virus [38]. To determine the extent of MeV-2 pour *M. euphorbiae* population, we investigated the presence of this virus in 12 randindividual adult aphids. MeV-2 was detected in all these aphids suggesting that the cally transmitted from adult aphids to nymphs (Fig 7). To confirm the transovarial to of the virus, adult aphids, collected as first instar nymphs from the posterior ends while being delivered, and grown on naive tomato plants, were also tested for the the virus. Of the ten aphids tested, all were positive for MeV-2 (Fig 7).

In contrast to MeV-2, MeV-3 belongs to the Luteo-sobemo group of viruses with pense RNA genomes [39]. Recently viruses from the Luteo-sobemo group have been from mix insect species from China suggesting MeV-3 is also an arthropod virus [3] fore, we investigated the distribution of MeV-3 in our *M. euphorbiae* population. Medetected in all four individual adult aphids tested (Fig 7). In addition, the virus was detected in all aphid progeny collected as first instars from the posterior ends of the suggesting vertical transmission of MeV-3 (Fig 7).

The population of *M. euphorbiae* WU11 was originally acquired from France. To the presence of this virus among *M. euphorbiae* populations from Europe and north Arther euphorbiae isolates were obtained from Germany, the Netherlands, Canada and Unia). MeV-2 was detected only from the USA population and not from populations of European countries or Canada (Fig 8). Our aphid that was imported from France has maintained in the lab for over 14 years. To eliminate the possibility that the virus of duced to this aphid population (FR1a) while in the lab, we tested the presence of No sister colony (FR1b) that was imported from the same source in France but kept in location in the USA. MeV-2 was also detected in this later aphid population as well

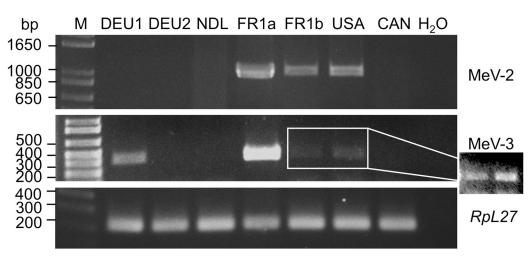


Fig 8. MeV-2 and MeV3 are present in different *M. euphorbiae* (*Me*) populations. Nucleic acids from mix developmental stages of aphids were used in RT-PCR for the detection of MeV-2 and MeV-3. *Macrosiphum* from Germany (DEU), the Netherlands (NDL), France (FR) the United States of America (USA), and Canada used. The population from France is WU11 colony from which the virus was identified. Arabic numerals st different aphid populations. FR1a and FR1b colonies are from the same *M. euphorbiae* population separa years. Aphid ribosomal gene *RpL27* was used as positive control. M = molecular weight marker. The crop the MeV-3 gel, displays enhanced imaging of the two amplified bands.

Using the same *M. euphorbiae* populations, the distribution of MeV-3 was also e MeV-3 was detected from the USA population as well as in the sister colony (FR1b) from France albeit at very low titers. In contrast to MeV-2, in addition to the USA per MeV-3 was also detected from a *M. euphorbiae* population from Germany (Fig 8). It ingly, MeV-3 was not detected in a second *M. euphorbiae* population from German

Detection of MeV2 in the plant host

Inspecting the *M. euphorbiae* salivary secretome [18, 19], we identified peptides be MeV-2 but not to MeV-3 in the saliva of this aphid. Detection of peptides derived from proteins in *M. euphorbiae* saliva suggested that the virus is delivered into plant tis aphid feeding. To test for the presence of MeV-2 in plant tissues, tomato leaflets he infested with MeV-2 infected *M. euphorbiae* were used. Using RT-PCR, MeV-2 was din leaves of aphid-infested plants but not in leaves of control naïve plants not expecting 9A). We also tested the dynamic of MeV-2 within a tomato leaflet. Heavily infectomato plants were cleared from MeV-2-infected aphids, and leaflets were cut throw vein collecting half of the leaflet and leaving the second half attached to the plant the first halves of the leaflets (Fig 9B). However, two weeks later, no MeV-2 was detected these infested halve leaflets (Fig 9B).

MeV-3 could be present at low titer in the aphid saliva and be below the mass specified limit. To confirm that MeV-3 is not secreted into the plant, we also tested ence of MeV-3 in the aphid-infested tomato leaves using RT-PCR. MeV-3 was not determined the infested tomato leaves confirming the proteomics analysis of the aphid saliva

Discussion

For organisms for which full genome sequences are not available, transcriptome so and *de novo* assembly provides an alternative to build genomics resources as a ba

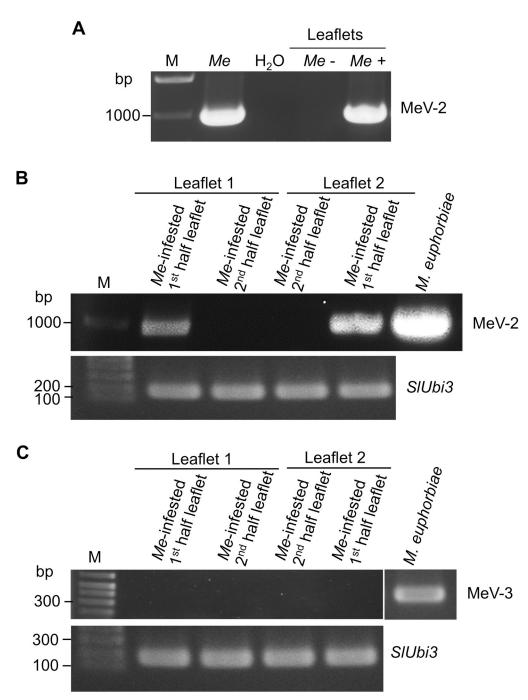


Fig 9. MeV-2 is delivered by **M**. **euphorbiae** (**Me**) into plant tissues during feeding but does not persis in the absence of the aphid. (A) Nucleic acids isolated from leaves of naïve tomato plants or from plant weeks with MeV-2-infected *M*. **euphorbiae** were used in RT-PCR. (B, C) *M*. **euphorbiae** heavily infested t were cleared of the aphids. Leaflets were cut into halves longitudinally through the midrib and the deta processed for MeV-2 (B) or MeV-3 (C) detection. The second half of the leaflet was left attached to the aphids, for 14 additional days before processing. **SIUbi3** was used as a positive control. M = molecular

studies. High-throughput sequencing technologies, with deep coverage at base leve ease of library preparation and requirement for low quantity of total RNA as starting made possible the inclusion of sequencing in studies aimed at finding answers to re-

biological questions. Moreover, transcriptome sequencing addresses the expressed genome, which cannot be unequivocally predicted from the genome sequence alo genome sequence availability, the transcriptome sequences represent a valuable accurate gene finding, including the identification of splicing patterns. The charact a comprehensive set of expressed genes from an organism requires the constructi from different tissues and biological conditions. With this in mind, we used the Illui nology to sequence libraries derived from mixed developmental stages of M. euph M. euphorbiae exposed to different biotic or abiotic stresses. These libraries were before sequence-tagging technology for multiplexing was commercially available. were mixed before sequencing as our interest was to build the transcriptome resor aphid. Therefore, transcripts associated with specific biotic and abiotic treatments be inferred from this study. However, the different biotic and abiotic treatments an developmental stages used are expected to provide a wide diversity of gene expre and consequently a more comprehensive transcriptome set to be derived. The rea novo assembled into 22,137 contigs (N50 = 2,130 bp) using the SEED/Velvet/Oase [31]. Various de novo transcriptome assembly algorithms are freely available. Eacl tages and disadvantages and one has to choose among different assemblers the r for the specific application [40]. For this study we chose to apply a method that im scriptome assemblies by preprocessing the reads with a clustering approach [31].

Sequences from tomato origin were identified among the contigs. The source of tomato sequences most likely is the trichomes on tomato leaf surfaces. Since aphi developmental stages were collected by carefully brushing the aphids from tomatomust have also collected tomato trichomes along with aphids. In addition to tomat contigs originating from the aphid-associated endosymbiont *Buchnera* were also ic among the aphid transcriptome. The genome of *Buchnera* is AT-rich, with about 73 rich regions [41]; therefore, some of its sequences must have been captured durin purification step by oligo(dT) magnetic beads used for the library preparation and sented among the aphid sequences.

Since M. euphorbiae is closely related to A. pisum [12], we used the predicted go A. pisum as reference to assess the quality of the contigs assembled in this study. 6,800 A. pisum-predicted transcripts have at least 40% coverage by the M. euphor scriptome generated, providing a valuable resource for future gene expression and identifying genes regulated by host-aphid interactions as well as other aphid related

As part of the analysis of the *M. euphorbiae* transcriptome, we previously descriaphid virus, MeV-1, belonging to the positive polarity ssRNA genomes family *Flavio* [21]. Here we describe the discovery of two additional viruses, MeV-2 and MeV-3, i same aphid transcriptome. The analysis of transcriptome sequences generated by throughput sequencing technologies has enabled the discovery of a large number and novel viruses from diverse insect species [39, 42–44]. The top blast hits to the field MeV-3 coding sequences all belong to novel viruses recently identified through high throughput sequences of various insect transcriptomes. The Hubei sobemo-like was identified from Odonata [39], Wuhan insect virus 34 was identified from a mix source [39], Braid Burn virus from *Drosophila subsilvestris* [44] and La Tardoire virus *Scaptodrosophia deflexa* [44] transcriptomes. Most of these viruses have incomplet their classification is not yet resolved but they seem to be associated with Sobemo which are RNA viruses. The diversity of insects infected with this group of viruses seems to be associated with this group of viruses.

The MeV-2 contig encodes a nonstructural protein, presenting high homology to ously described aphid Densoviruses such as the rosy apple aphid (*D. plantaginea*)

that these novel RNA viruses constitute a group of arthropod infecting viruses.

[45] and green peach aphid (*M. persicae*) MpDNV [46]. While infection with either viruses negatively affect the aphid hosts, MeV-2 infected *M. euphorbiae* do not exhobservable pathology. MpDNV infected *M. persicae* exhibit abnormal growth and de [46] while the DpIDNV infected *D. plantaginea* have reduced reproduction rate and opment in the absence of triggers inducing wing formation, such as crowding or shlength [45]. Our *M. euphorbiae* colony (strain WU11) is infected with at least three no obvious pathology or unusual phenotypic characteristics. It remains to be seen these viruses individually or combined contribute to subtle differences in the aphic

In our *M. euphorbiae* colony, MeV-2 and MeV-3 infected aphids seem to be common the virus was detected from every single aphid tested. In addition, both MeV-2 and transmitted vertically and likely transovarially since it could be detected in all adulected as first instar nymphs, while being delivered by their mothers and grown on plants. Vertical transmission seems to be common among aphid Densoviruses as a transmission from mother to nymphs have been demonstrated for both DpIDNV ar MpDNV [45, 46].

Unlike MeV3, both MeV-1 and MeV-2 derived peptides were detected in *M. eupho* saliva, indicating that similar to MeV-1, MeV-2 is also delivered through the saliva i host tissues [21]. Indeed, MeV-2 nucleotides were detected in tomato leaflets fed c2-infected aphids. However, since MeV-2 was not detected in the plant tissues 2 w aphids were cleared from the plants, MeV-2 is not likely to be a plant virus. However remains unclear whether MeV-2 can be transmitted horizontally through the plant naïve *M. euphorbiae* or to other aphid species or to additional piercing-sucking institutional piercing institutional piercing institutional piercing ins

Our *M. euphorbiae* population (WU11) from which all three viruses (MeV-1, MeV-MeV-3) were identified originated from France and has been reared under greenho tions for about 16 years. Therefore, the presence of MeV-2 and MeV-3 among addit *euphorbiae* populations was unknown. Evaluating *M. euphorbiae* populations, colled different European and North American geographical locations, showed that these present only in certain populations from both continents. The presence of these virus infections are not likely arisen under laboratory conditions. Moreover, althouge *euphorbiae* populations from Germany and France have been maintained under gronditions for many years, the population from the USA is relatively new and been for about a year.

MeV-1, unlike MeV-2 and MeV-3, is present in several M. euphorbiae populations different European countries but not from the US or Canada, indicating geographic of MeV-1 infections [21], and the likelihood that infections of M. euphorbiae by the viruses occurred independently. Similarly, not all M. euphorbiae populations tested infected with both MeV-2 and MeV-3 also indicating independent infections by the viruses. The prevalence of such cryptic viruses among aphids is not well documen study of cryptic insect viruses associated with herbivorous insects is at its infancy increasing body of evidence from various organisms [39, 44, 48, 49] combined wit described here, suggest the potential of additional discoveries of herbivorous inseviruses. Considering that the MeV-2 and MeV-3 genome sequences are incomplete presence of large number of unknown, with no BLAST hits, and short sequences ar M. euphorbiae transcriptome, and likely among other herbivorous insect transcript gest the likelihood of new virus discoveries. The persistence of the identified virus euphorbiae populations suggests beneficial effects to the insect host. The exciting remain as how these viruses contribute to the well-being of their insect host and t the insect's adaptation to plant hosts and to abiotic environmental changes.

Supporting information

S1 Table. Annotation of the **Macrosiphum euphorbiae** transcriptome. Annotation formed using BLASTx analysis against NCBI's non-redundant protein database and database.

(XLSX)

S2 Table. **Buchnera aphidicola** sequences identified among the **Macrosiphum** etranscriptome. Annotation was performed by BLASTx analysis against the UniProt (XLS)

Acknowledgments

We thank Barbara Jablonska for help with RNA isolation. We are grateful to Will Tor tus-Liebig-University), Ben Vosman (Wageningen University), Claudia Goyer and Callark (Agri-Food Canada), Fiona Goggin (University of Arkansas), and Claire Castee Davis) for providing aphids.

Author Contributions

Conceptualization: Hagop S. Atamian, Isgouhi Kaloshian.

Data curation: Noa Sela.

Formal analysis: Marcella A. Teixeira, Noa Sela, Hagop S. Atamian, Ergude Bao, Ritu Chaudhary, Jacob MacWilliams, Jiangman He, Sophie Mantelin, Thomas Girke.

Funding acquisition: Thomas Girke, Isgouhi Kaloshian.

Investigation: Ergude Bao, Ritu Chaudhary, Jacob MacWilliams, Sophie Mantelin.

Methodology: Hagop S. Atamian, Ergude Bao, Jiangman He, Thomas Girke.

Project administration: Isgouhi Kaloshian.

Supervision: Thomas Girke, Isgouhi Kaloshian.

Visualization: Noa Sela.

Writing – original draft: Marcella A. Teixeira, Noa Sela, Hagop S. Atamian, Thomas (Isgouhi Kaloshian.

Writing - review & editing: Isgouhi Kaloshian.

References

- Dedryver CA, Le Ralec A, Fabre F. The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol. 2010; 333(6–7):539–553. https://doi.org/10.1016/j.crvi. 2010.03.009 PMID: 20541165.
- Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. A functional genomics approach identifies candidate effectors from the aphid speciel/yzus persica@green peach aphid). PLoS Genet. 2010; 6(11):e1001216. https://doi.org/10.1371/journal.pgen.1001216 PMID: 21124944.
- 3. Kaloshian I, Walling LL. Hemipteran and dipteran pests: Effectors and plant host immune regulators. J Integr Plant Biol. 2016; 58(4):350–361. https://doi.org/10.1111/jipb.12438 PMID: 26467026.
- 4. Katis NI, Tsitsipis JA, Stevens M, Powell G. Transmission of plant viruses. In: Emden HFv, Harrington R, editors. Aphids as Crop Pests.London, UK: CABI; 2007. pp. 353–390.
- Nault LR. Arthropod transmission of plant viruses: A new synthesis. Ann Entomol Soci Am. 1997; 90 (5):521–541.

- Blackman RL, Eastop VF. Aphids on the world's crops2nd ed. New York: John Wiley & Sons Ltd.; 2000.
- Braendle C, Davis GK, Brisson JA, Stern DL. Wing dimorphism in aphids. Heredity (Edinb). 2006; 97 (3):192–199. https://doi.org/10.1038/sj.hdy.6800863 PMID: 16823401.
- 8. Buchner P. Endosymbiosis of animals with plant microorganimsNew York: John Wiley; 1965.
- Leonardo TE, Muiru GT. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc Biol Sci. 2003; 270 Suppl 2:S209–S212. https://doi.org/10.1098/rsbl.2003. 0064 PMID: 14667385.
- Elzinga DA, De Vos M, Jander G. Suppression of plant defenses by Mayzus persica (green peach aphid) salivary effector protein. Mol Plant Microbe Interact. 2014; 27(7):747–756. https://doi.org/10.1094/MPMI-01-14-0018-R PMID: 24654979.
- Kettles GJ, Kaloshian I. The potato aphid salivary effect de 47 is a glutathione-s-transferase involved in modifying plant responses to aphid infestation. Front Plant Sci. 2016; 7:1142. https://doi.org/10.3389/ fpls.2016.01142 PMID: 27536306.
- Von Dohlen CD, Teulon DAJ. Phylogeny and historical biogeography of New Zealand indigenous aphidini aphids (Hemiptera, Aphididae): An hypothesis. Ann Entomol Soci Am. 2003; 96(2):107–116.
- Radcliffe E, Ragsdale DW. Aphid-transmitted potato virus: The importance of understanding vector biology. Amer J of Potato Res. 2002; 79:353–386.
- Kaloshian I, Lange WH, Williamson VM. An aphid-resistance locus is tightly linked to the nematoderesistance gene, Mi, in tomato. Proc Natl Acad Sci USA. 1995; 92(2):622–625. PMID: 11607509.
- Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA. 1998; 95 (17):9750–9754. PMID: 9707547.
- Hebert SL, Jia L, Goggin FL. Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the iresistance gene. Environ Entomol. 2007; 36(2):458–467. PMID: 17445382
- 17. Kaloshian I, Kinsey MG, Ullman DE, Williamson VM. The impact Meu1-mediated resistance in tomato on longevity, fecundity, and behavior of the potato aphidMacrosiphum euphorbi Eetomol Exp Appl. 1997; 83:181–187.
- Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. GroEL from the endosymbidbuchnera aphidicolbetrays the aphid by triggering plant defense. Proc Natl Acad Sci USA. 2014; 111(24):8919– 8924. https://doi.org/10.1073/pnas.1407687111 PMID: 24927572.
- Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. Potato aphid salivary proteome: enhanced salivation using resorcinol and lidentification of aphid phosphoproteins. J Proteome Res. 2015; 14 (4):1762–1778. https://doi.org/10.1021/pr501128k PMID: 25722084.
- Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I. In planta expression or delivery of potato aphid Macrosiphum euphorbeffectors Me10and Me23enhances aphid fecundity. Mol Plant-Microbe Interact. 2013; 26(1):67–74. https://doi.org/10.1094/MPMI-06-12-0144-FI PMID: 23194342.
- 21. Teixeira M, Sela N, Ng J, Casteel CL, Peng H, Bekal S, et al. A novel virus from crosiphum euphor-biaewith similarities to members of the family laviviridae Gen Virol. 2016; 97(5):1261–1271. https://doi.org/10.1099/jgv.0.000414 PMID: 26822322.
- The International Aphid Genomics Consortium. Genome sequence of the pea aph dryrthosiphon pisum PLoS Biol. 2010; 8(2):e1000313. https://doi.org/10.1371/journal.pbio.1000313 PMID: 20186266.
- Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, et al. Predicted effector molecules in the salivary secretome of the pea aphid/(cyrthosiphon pis)\(\text{urA}\) dual transcriptomic/proteomic approach. J Proteome Res. 2011; 10(4):1505–1518. https://doi.org/10.1021/pr100881q PMID: 21226539
- Liu S, Chougule NP, Vijayendran D, Bonning BC. Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts. PLoS One. 2012; 7(9):e45161. https://doi.org/10.1371/journal. pone.0045161 PMID: 22984624.
- Agunbiade TA, Sun W, Coates BS, Djouaka R, Tamo M, Ba MN, et al. Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in west Africa. PLoS One. 2013; 8(11):e79929. https://doi.org/10.1371/journal.pone.0079929 PMID: 24278221.
- Nicholson SJ, Nickerson ML, Dean M, Song Y, Hoyt PR, Rhee H, et al. The genome Difuraphis noxia a global aphid pest of small grains. BMC Genomics. 2015; 16:429. https://doi.org/10.1186/s12864-015-1525-1 PMID: 26044338.

- Thorpe P, Cock PJ, Bos J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics. 2016; 17:172. https://doi.org/10.1186/ s12864-016-2496-6 PMID: 26935069.
- Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST, Baa-Puyoulet P, et al. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol. 2017; 18(1):27. https://doi.org/10.1186/s13059-016-1145-3 PMID: 28190401.
- Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, et al. Whole genome sequence
 of the soybean aphid Aphis glycines assect Biochem Mol Biol. 2017. https://doi.org/10.1016/j.ibmb.
 2017.01.005 PMID: 28119199.
- 30. Zhang Y, Fan J, Sun J, Francis F, Chen J. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avena@ci Rep. 2017; 7(1):15911. https://doi.org/10.1038/s41598-017-16092-z PMID: 29162876.
- Bao E, Jiang T, Kaloshian I, Girke T. SEED: efficient clustering of next-generation sequences. Bioinformatics. 2011; 27(18):2502–2509. https://doi.org/10.1093/bioinformatics/btr447 PMID: 21810899.
- Schulz MH, Zerbino DR, Vingron M, Birney Dases robust de nov@NA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012; 28(8):1086–1092. https://doi.org/10.1093/ bioinformatics/bts094 PMID: 22368243.
- Bhattarai KK, Xie QG, Pourshalimi D, Younglove T, Kaloshian Coi1-dependent signaling pathway is not required forMi-1-mediated potato aphid resistance. Mol Plant Microbe Interact. 2007; 20(3):276– 282. https://doi.org/10.1094/MPMI-20-3-0276 PMID: 17378430.
- Atamian HS, Kaloshian I. Construction of RNA-Seq libraries from large and microscopic tissues for the Illumina sequencing platform. Methods Mol Biol. 2012; 883:47–57. https://doi.org/10.1007/978-1-61779-839-9_3 PMID: 22589123.
- Zdobnov EM, Apweiler R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001; 17(9):847–848. PMID: 11590104.
- Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1 Plant J. 2010; 63(2):229–240. https://doi.org/10.1111/j.1365-313X.2010.04232.x PMID: 20409007.
- Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18):3674–3976. https://doi.org/10.1093/bioinformatics/bti610 PMID: 16081474.
- 38. Tattersall P, Bergoin M, Bloom ME, Brown KE, Linden RM, Muzyczka N, et al. Family Parvoviridae. In: Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball LA, editors. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Virusesan Diego: Elsevier Academic Press; 2005. pp. 353–369
- 39. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, et al. Redefining the invertebrate RNA virosphere. Nature. 2016:539–543. https://doi.org/10.1038/nature20167 PMID: 27880757.
- Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. Optimizingle novoranscriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics. 2011; 12 Suppl 14:S2. https://doi. org/10.1186/1471-2105-12-S14-S2 PMID: 22373417.
- Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphidsBuchnerasp. APS. Nature. 2000; 407(6800):81–86. https://doi.org/10. 1038/35024074 PMID: 10993077.
- Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015; 4. https://doi. org/10.7554/eLife.05378 PMID: 25633976.
- Liu S, Chen Y, Bonning BC. RNA virus discovery in insects. Curr Opin Insect Sci. 2015; 8(0):1–8. https://doi.org/10.1016/j.cois.2014.12.005
- Webster CL, Longdon B, Lewis SH, Obbard DJ. Twenty-five new viruses associated with the Drosophilidae (Diptera). Evol Bioinform Online. 2016; 12(Suppl 2):13–25. https://doi.org/10.4137/EBO.S39454 PMID: 27375356.
- 45. Ryabov EV, Keane G, Naish N, Evered C, Winstanley D. Densovirus induces winged morphs in asexual clones of the rosy apple aphidDysaphis plantagin&roc Natl Acad Sci USA. 2009; 106(21):8465–8470. https://doi.org/10.1073/pnas.0901389106 PMID: PMC2688996. PMID: 19439653
- van Munster M, Dullemans AM, Verbeek M, van den Heuvel JF, Reinbold C, Brault V, et al. Characterization of a new densovirus infecting the green peach aph yzus persicae Invertebr Pathol. 2003; 84(1):6–14. PMID: 13678707.
- 47. Liu S, Vijayendran D, Chen Y, Bonning BC. Aphis Glycines Virus 2, a Novel Insect Virus with a Unique Genome Structure. Viruses. 2016; 8(11). https://doi.org/10.3390/v8110315 PMID: 27869772.

- 48. Roossinck MJ. Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet. 2012; 46:359–369. https://doi.org/10.1146/annurev-genet-110711-155600 PMID: 22934641.
- Liu S, Vijayendran D, Bonning BC. Next generation sequencing technologies for insect virus discovery. Viruses. 2011; 3(10):1849–1869. https://doi.org/10.3390/v3101849 PMID: PMC3205385. PMID: 22069519