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Abstract

Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand
the seasonal and geographic range of transmission by Aedes aegyptiand Ae. albopictus mos-
quitoes. We use mechanistic transmission models to derive predictions for how the probability
and magnitude of transmission for Zika, chikungunya, and dengue change with mean temper-
ature, and we show that these predictions are well matched by human case data. Across all
three viruses, models and human case data both show that transmission occurs between 18—
34°C with maximal transmission occurring in a range from 26—-29°C. Controlling for population
size and two socioeconomic factors, temperature-dependent transmission based on our
mechanistic model is an important predictor of human transmission occurrence and inci-
dence. Risk maps indicate that tropical and subtropical regions are suitable for extended sea-
sonal or year-round transmission, but transmission in temperate areas is limited to at most
three months per year even if vectors are present. Such brief transmission windows limit the
likelihood of major epidemics following disease introduction in temperate zones.
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Author summary

Understanding the drivers of recent Zika, dengue, and chikungunya epidemics is a
major public health priority. Temperature may play an important role because it affects
virus transmission by mosquitoes, through its effects on mosquito development, sur-
vival, reproduction, and biting rates as well as the rate at which mosquitoes acquire and
transmit viruses. Here, we measure the impact of temperature on transmission by two
of the most common mosquito vector species for these viruses, Aedes aegypti and Ae.
albopictus. We integrate data from several laboratory experiments into a mathematical
model of temperature-dependent transmission, and find that transmission peaks at 26—
29°C and can occur between 18-34"C. Statistically comparing model predictions with
recent observed human cases of dengue, chikungunya, and Zika across the Americas
suggests an important role for temperature, and supports model predictions. Using the
model, we predict that most of the tropics and subtropics are suitable for transmission
in many or all months of the year, but that temperate areas like most of the United
States are only suitable for transmission for a few months during the summer (even if
the mosquito vector is present).

Introduction

Epidemics of dengue, chikungunya, and Zika are sweeping through the Americas, and are part
of a global public health crisis that places an estimated 3.9 billion people in 120 countries at
risk [1]. Dengue virus (DENV) distribution and intensity in the Americas has increased over
the last three decades, infecting an estimated 390 million people (96 million clinical) per year
[2]. Chikungunya virus (CHIKV) emerged in the Americas in 2013, causing 1.8 million sus-
pected cases from 44 countries and territories (www.paho.org). In the last two years, Zika virus
(ZIKV) has spread throughout the Americas, causing 764,414 suspected and confirmed cases,
with many more unreported (http://ais.paho.org/phip/viz/ed_zika_cases.asp, as of April 13,
2017). The growing burden of these diseases (including links between Zika infection and both
microcephaly and Guillain-Barré syndrome [3]) and potential for spread into new areas cre-
ates an urgent need for predictive models that can inform risk assessment and guide interven-
tions such as mosquito control, community outreach, and education.

Predicting transmission of DENV, CHIKV, and ZIKV requires understanding the ecology
of the vector species. For these viruses the main vector is Aedes aegypti, a mosquito that prefers
and is closely affiliated with humans, while Ae. albopictus, a peri-urban mosquito, is an impor-
tant secondary vector [4,5]. We expect one of the main drivers of the vector ecology to be the
climate, particularly temperature. For that reason, mathematical and geostatistical models that
incorporate climate information have been valuable for predicting and responding to Aedes
spp. spread and DENV, CHIKV, and ZIKV outbreaks [5-10].

The effects of temperature on ectotherms are largely predictable from fundamental meta-
bolic and ecological processes. Survival, feeding, development, and reproductive rates predict-
ably respond to temperature across a variety of ectotherms, including mosquitoes [11,12].
Because these traits help to determine transmission rates, the effects of temperature on trans-
mission should also be broadly predictable from mechanistic models that incorporate temper-
ature-dependent traits. Here, we introduce a model based on this framework that overcomes
several major gaps that currently limit our understanding of climate suitability for transmis-
sion. Specifically, we develop models of temperature-dependent transmission for Ae. aegypti
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and Ae. albopictus that are (a) mechanistic, facilitating extrapolation beyond the current dis-
ease distribution, (b) parameterized with biologically accurate unimodal thermal responses for
all mosquito and virus traits that drive transmission, and (c) validated against human dengue,
chikungunya, and Zika case data across the Americas.

We synthesize available data to characterize the temperature-dependent traits of the mos-
quitoes and viruses that determine transmission intensity. With these thermal responses, we
develop mechanistic temperature-dependent virus transmission models for Ae. aegypti and
Ae. albopictus. We then ask whether the predicted effect of temperature on transmission is
consistent with patterns of actual human cases over space and time. To do this, we validate the
models with DENV, CHIKV, and ZIKV human incidence data at the country scale in the
Americas from 2014-2016. To isolate temperature dependence, we also statistically control for
population size and two socioeconomic factors that may influence transmission. If tempera-
ture fundamentally limits transmission potential, transmission should only occur at actual
environmental temperatures that are predicted to be suitable, and conversely, areas with low
predicted suitability should have low or zero transmission (i.e., false negative rates should
be low). By contrast, low transmission may occur even when temperature suitability is high
because other factors like vector control can limit transmission (i.e., the false positive rate
should be higher than the false negative rate). Finally, if the simple mechanistic model accu-
rately predicts climate suitability for transmission, then we can use it to map climate-based
transmission risk of DENV, CHIKV, ZIKV, and other emerging pathogens transmitted by Ae.
aegypti and Ae. albopictus seasonally and geographically.

Results
Temperature-dependent transmission

Data gathered from the literature [9,13-30] revealed that all mosquito traits relevant to trans-
mission—biting rate, egg-to-adult survival and development rate, adult lifespan, and fecundity
—respond strongly to temperature and peak between 23°C and 34°C for the two mosquito
species (Ae. aegyptiin Fig 1 and Ae. albopictus in Fig A in S1 Text). DENV extrinsic incubation
and vector competence peak at 35°C [31-37] and 31-32°C [31,32,34,38], respectively, in both
mosquitoes—temperatures at which mosquito survival is low, limiting transmission potential
(Fig 1, Fig A in S1 Text). Appropriate thermal response data were not available for CHIKV
and ZIKV extrinsic incubation and vector competence.

We estimated the posterior distribution of Ry(T) and used it to calculate key temperature
values that indicate suitability for transmission: the mean and 95% credible intervals (95% CI)
on the critical thermal minimum, maximum, and optimum temperature for transmission by
the two mosquito species. At constant temperatures, Ae. aegypti transmission peaked at 29.1°C
(95% CI: 28.4-29.8°C), and declined to zero below 17.8°C (95% CI: 14.6-21.2°C) and above
34.6°C (95% CI: 34.1-35.6°C) (Fig 2). Ae. albopictus transmission peaked at 26.4°C (95% CI:
25.2-27.4°C) and declined to zero below 16.2°C (95% CI: 13.2-19.9°C) and above 31.6°C
(95% CI: 29.4-33.7°C) (Fig 2). Overall, the thermal response curve for Ae. albopictus is shifted
towards lower temperatures than Ae. aegypti, so Ae. albopictus transmission is better suited to
cooler environments. For a more realistic scenario in which daily temperature ranged over
8°C, the transmission peak, minimum, and maximum were slightly lower for both Ae. aegypti
(28.5°C, 13.5°C, 34.2°C, respectively) and Ae. albopictus (26.1°C, 11.9°C, and 28.3°C, respec-
tively). The lower thermal maximum under fluctuating temperatures occurs because we incor-
porated empirically supported irreversible lethal effects of temperatures that exceed thermal
maxima for survival (see Materials and Methods).
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Fig 1. Thermal responses of Ae. aegyptiand DENV traits that drive transmission (data sources listed in Table B in
S2 Text). Informative priors based on data from additional Aedes spp. and flavivirus studies helped to constrain uncertainty
in the model fits (see Materials and Methods; Table C in S2 Text). Points and error bars indicate the data means and
standard errors (for display only; models were fit from the raw data). Black solid lines are the mean model fits; red dashed
lines are the 95% credible intervals. Thermal responses for Ae. albopictus are shown in Fig Ain S1 Text.

https://doi.org/10.1371/journal.pntd.0005568.9g001

The posterior distribution of Ry(T) allows us to evaluate uncertainty in key temperature val-
ues that define the transmission range, including critical thermal minimum, maximum, and
optimum. Uncertainty was higher for the critical thermal minimum for transmission than for
the maximum or optimum, and the two mosquito species overlapped most for this outcome
(Fig 2, bottom panels). This result occurred because several trait thermal responses increase
gradually from low to mid temperatures but decline more steeply at high temperatures (Fig 1),
so uncertainty is greatest at low temperatures. Ae. aegypti has a substantially higher optimum
and maximum temperature than Ae. albopictus (Fig 2) due to its greater rates of adult survival
at high temperatures (see Supplementary Materials for sensitivity analyses).
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Fig 2. Relative R, across constant temperatures (°C; top) for Ae. albopictus (light blue) and Ae. aegypti (dark
blue), and histograms of the posterior distributions of the critical thermal minimum (bottom left), temperature at
peak transmission (bottom middle), and critical thermal maximum (bottom right; all in °C). Solid lines: mean
posterior estimates; dashed lines: 95% credible intervals. R, curves normalized to a 0—1 scale for ease of comparison and
visualization.

https://doi.org/10.1371/journal.pntd.0005568.g002

Model validation

We used generalized linear models (GLM) to ask whether the predicted relationship between
temperature and transmission, Ry(T), was consistent with observed human cases of DENV,
CHIKYV, and ZIKV. Specifically, we assessed whether Ry(T) was an important predictor of the
probability of autochthonous transmission occurring and of the incidence given that transmis-
sion occurred. We also controlled for human population size, virus species, and two socioeco-
nomic factors. (Note that we focused on testing the Ry(T) model, rather than on constructing
the best possible statistical model of human case data.) To do this, we used the version of the
Ae. aegypti Ry(T) model that includes 8°C daily temperature range, along with country-scale
weekly case reports of DENV, CHIKV, and ZIKV in the Americas and the Caribbean between
2014-2016. We first addressed the fact that countries with larger populations have greater
opportunities for (large) epidemics by creating two predictors that incorporate scaled Ry(T)
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Fig 3. Ae. aegypti Ry(T) and population size predict the probability and magnitude of transmission of DENV,
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show the models that only include the covariates log(p)* GR, or log(p* Ro(T)), respectively, and do not include the
socioeconomic covariates (models PA6 and IM4 in Table D in S2 Text). For each case report data point, log(p)* GR, and
log(p* Ro(T)) were calculated at the mean temperature 10 weeks prior to the reporting week [40].

https://doi.org/10.1371/journal.pntd.0005568.g003

and population size. In the models of the probability of autochthonous transmission occurring
we used the product of the posterior probability that Ry(T) > 0 (which we notate as GR,) and
the log of population size (p) to give log(p)*GR,. (Here, and throughout, log denotes the natural
logarithm.) In the models of incidence, given that transmission does occur, we used the log of
the product of the posterior mean of Ry(T) and population size, log(p*Ry(T)). To control for
several socioeconomic factors that might obscure the impact of temperature, we also included
log of gross domestic product (GDP) and log of percent of GDP in tourism (using logs because
the predictors were highly skewed, to stabilize variance). These are potential indicators of
investment in and/or success of vector control and infrastructure improvements that prevent
transmission. By comparing models that included the Ry(T) metric alone, socioeconomic fac-
tors alone, or both, we tested whether Ry(T) was an important predictor of observed transmis-
sion occurrence and incidence (see Table D in S2 Text). Note that Ry(T) is out of sample for all
validation analyses because it is derived and calculated strictly from laboratory data on mos-
quitoes, and we perform a validation analyses for Ry(T) using independent case incidence
reports. For this validation step we assessed model adequacy for the transmission data in two
ways. First we used the full dataset for case incidence reports to select the best model (Table D
in S2 Text) and to determine whether or not our predicted value of relative Ry(T) based on lab-
oratory data was included in the model (“within sample” analysis). Second we used a boot-
strapping approach where models were fit on subsets of the case incidence data that were
randomly sampled and then predictive accuracy of the competing models (Table D in S2 Text)
was assessed on left-out data (“out of sample” analysis).

For the probability of autochthonous transmission occurring, the model that included both
the Ry(T) predictor and socioeconomic predictors had overwhelming support based on Bayes-
ian Information Criterion (BIC; model PAS5 relative probability = 1, Table D in S2 Text). Based
on deviance explained, the models that included Ry(T), with or without the socioeconomic
predictors out-performed the model that did not include Ry(T) (Table D in S2 Text; Fig 3A,
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Fig B in S1 Text). In analyses of out-of-sample accuracy, models that included the Ry(T) metric
(with or without the socioeconomic factors) were surprisingly accurate. They predicted the
probability of transmission with 86-91% out-of-sample accuracy for DENV (Table D in S2
Text). For CHIKV and ZIKV, models that included the Ry(T) metric or population alone had
66-69% out-of-sample accuracy (Table D in S2 Text). There were no significant differences in
out-of-sample accuracy between the top four models, but for both DENV and CHIKV/ZIKV
the best model was significantly better than the worst model [see supplementary code in 39 for
full results]. The lower out-of-sample accuracy for CHIKV and ZIKV likely reflects the much
lower frequency of positive values and the lower total sample size of this dataset. All results
were similar for a set of models that separated GR, from population size, so for simplicity we
show the model predictors that combines GR, and population size here (see Table D in S2
Text and [39] for results of other models). Further, from a biological perspective, the combined
model better describes what we know about disease systems: if either the probability of Ry(T)
being greater than zero is small or population size is very small, transmission is unlikely to
occur. Together, these analyses suggest that Ry(T) is an important predictor of transmission
occurrence, but that CHIKV and ZIKV need further data to better explain the probability of
transmission occurrence (Fig 3A, Fig B in S1 Text).

Ry(T) was also an important predictor of incidence, given that autochthonous transmission
did occur. Within-sample, incidence was best predicted by the model that included both Ry(T)
and the socioeconomic predictors (model IM5 in Table D in S2 Text) based on BIC (relative
probability = 1). The models that included Ry(T) out-performed those that did not based on
deviance explained (Table D in S2 Text). In out-of-sample validation, the models that included
Ry(T) explained the magnitude of incidence based on mean absolute percentage error (85-
86% accuracy versus 83% accuracy for models that did not include Ry(T); Table D in S2 Text),
but this difference was not statistically significant. For illustration, we show the simpler model
that only contains the Ry(T) predictor in the main text (Fig 3B; model IM1 in Table D in S2
Text). Notably, the models that contained Ry(T) predicted incidence well for all three viruses,
despite the lower incidence of CHIKV and ZIKV.

Although predicted Ry(T) correlated with the observed occurrence and magnitude of
human incidence for all three viruses, these observed incidence metrics were higher for DENV
than for CHIKV and ZIKV. While the reason for this difference is unclear, the most likely
explanation is that DENV is much more established in the Americas, so it is more likely to be
detected, diagnosed, and reported. Because ZIKV and CHIKYV are newly emerging, they may
not have fully saturated the region at this early stage.

The ability of the model to explain the probability and magnitude of transmission is notable
given the coarse scale of the human incidence versus mean temperature data (i.e., country-
scale means), the lack of CHIKV- and ZIKV-specific trait thermal response data to inform the
model, the nonlinear relationship between transmission and incidence, and all the well-docu-
mented factors other than temperature that influence transmission. Together, these analyses
show simple mechanistic models parameterized with laboratory data on mosquitoes and den-
gue virus are consistent with observed temperature suitability for transmission. Moreover, the
similar responses of human incidence of ZIKV, CHIKV, and DENV to temperature suggest
that the thermal ecology of their shared mosquito vectors is a key determinant of outbreak
location, timing, and intensity.

Mapping climate suitability for transmission

The validated model can be used to predict where transmission is not excluded (posterior
probability that Ry(T) > 0, a conservative estimate of transmission risk). Considering the
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number of months per year at which mean temperatures do not prevent transmission, large
areas of tropical and subtropical regions, including Puerto Rico and parts of Florida and
Texas, are currently suitable year-round or seasonally (Fig 4). These regions are fundamentally
at risk for DENV, CHIKYV, ZIKV, and other Aedes arbovirus transmission during a substantial
part of the year (Fig 4). Indeed, DENV, CHIKV, and/or ZIKV local transmission has occurred
in Texas, Florida, Hawaii, and Puerto Rico (www.cdc.gov). On the other hand, many temper-
ate regions experience temperatures suitable for transmission three months or less per year
(Fig 4). Temperature thus limits the potential for the viruses to generate extensive epidemics in
temperate areas even where the vectors are present. Moreover, many temperate regions with
seasonally suitable temperatures currently lack Ae. aegypti and Ae. albopictus mosquitoes, mak-
ing vector transmission impossible (Fig 4, black line). The posterior distribution of Ry(T) also
allows us to map months of risk with different degrees of uncertainty (e.g., 97.5%, 50%, and
2.5% posterior probability that that Ry > 0), ranging from the most to least conservative (Fig D
in S1 Text).

Discussion

Temperature is an important driver of—and limitation on—vector transmission, so accurately
describing the temperature range and optimum for transmission of DENV, CHIKYV, and
ZIKV is critical for predicting their geographic and seasonal patterns of spread [12,41]. We
directly estimated the temperature—transmission relationship using mechanistic transmission
models for each mosquito species (Fig 2). These models are built using empirical estimates of
the (unimodal) effects of temperature on mosquito and pathogen traits that drive transmis-
sion, including survival, development, reproduction, and biting rates (Fig 1, Fig A in S1 Text).
Because these trait thermal responses are unimodal across the majority of ectotherm taxa and

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005568  April 27,2017 8/18


http://www.cdc.gov/
https://doi.org/10.1371/journal.pntd.0005568.g004
https://doi.org/10.1371/journal.pntd.0005568

@‘ PLOS NEGLECTED
-z} ’ TROPICAL DISEASES Temperature predicts Zika, dengue, and chikungunya transmission

traits, and because the traits combine nonlinearly to drive transmission, the emergent relation-
ship between temperature and transmission is difficult to infer directly from field data or from
individual trait responses. Here, we present a model of temperature-dependent DENV,
CHIKYV, and ZIKV transmission that advances on previous models because it is mechanistic,
fitted from experimental trait data (Fig 1, Fig A in SI Text), and validated against independent
human case data at a broad geographic scale (Fig 3).

Mechanistic understanding is valuable for extrapolating beyond the current spatial and
temporal range of transmission (Fig 4), as compared to environmental niche models, for
example [5,42,43]. Of the six previous mechanistic temperature-dependent models of DENV,
CHIKYV, or ZIKV transmission by Ae. aegypti and Ae. albopictus that we were able to repro-
duce, three had similar thermal optima [7,44,45] while the other three had dramatically higher
optima (3-6°C) [9,46] (Fig E in S1 Text). Two of the models were very similar to ours [44,45];
of the remaining four models, two predicted much greater suitability for transmission at low
temperatures [46] and all four predicted greater suitability at high temperatures [7,9,46] (Fig E
in S1 Text). Only one of these previous models was (like ours) statistically validated against
independent data not used to estimate model parameters, and its predictions were very similar
to those of our model [44]. Other mechanistic and environmental niche models could not be
directly compared with ours [5,10,41-43], either because fully reproducible equations, param-
eters, and/or code were not provided or because their predicted marginal effects of tempera-
ture were not displayed. Visually, our maps are similar to maps based on a previous model of
Ae. aegypti and Ae. albopictus persistence suitability indices [41]. Recent environmental niche
models of Zika distribution have shown similar but more constrained predicted distributions
of environmental suitability, in part because these models include not just temperature suit-
ability but also further environmental, socioeconomic, and demographic constraints
[5,42,43,47].

Even though the thermal response data are imperfect—for example, CHIKV and ZIKV
thermal response data are missing—and the human case data are reported at a coarse spatial
scale, the validation analyses suggest that Ry(T) is an important predictor of both the probabil-
ity of transmission occurring and the magnitude of incidence for DENV, CHIKV, and ZIKV.
This has several key implications. First, temperature-dependent transmission is pervasive
enough to be detected at a coarse spatial scale. Second, dynamics of the mosquito predict trans-
mission for a suite of Ae. aegypti-transmitted viruses, without additional virus-specific infor-
mation. Third, climate and socio-economic factors combine to shape variation in incidence
across countries. Finally, these simple predictors explain a substantial proportion of the vari-
ance in both the probability and intensity of transmission.

Predicting arbovirus transmission at a higher spatial resolution and precision will require
more detailed information on factors like the exposure and susceptibility of human popula-
tions, environmental variation (e.g., oviposition habitat availability, seasonal and daily temper-
ature variation), and socioeconomic factors. However, as a first step our mechanistic model
provides valuable insight because it makes broad predictions about suitable environmental
conditions for transmission, it is mechanistic and grounded in experimental trait data, it is val-
idated against independent human case data, and its predictions are applicable across three
different viruses. Using these thermal response models as a scaffold, additional drivers could
be incorporated to obtain more precise and specific predictions about transmission dynamics,
which could in turn be used for public health and vector control applications. For this purpose,
all code and data used in the models are available on Figshare [39].

The socio-ecological conditions that enabled CHIKV, ZIKV, and DENV to become the
three most important emerging vector-borne diseases in the Americas make the emergence of
additional Aedes-transmitted viruses likely (potentially including Mayaro, Rift Valley fever,
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yellow fever, Uganda S, or Ross River viruses). Efforts to extrapolate and to map temperature
suitability (Fig 4) will be critical for improving management of both ongoing and future
emerging epidemics. Mechanistic models like the one presented here are useful for extrapolat-
ing the potential geographic range of transmission beyond the current envelope of environ-
mental conditions in which transmission occurs (e.g., under climate change and for newly
invading pathogens). Accurately estimating temperature-driven transmission risk in both
highly suitable and marginal regions is critical for predicting and responding to future out-
breaks of these and other Aedes-transmitted viruses.

Materials and methods
Temperature-sensitive Romodels

We constructed temperature-dependent models of transmission using a previously developed
R, framework. We modeled transmission rate as the basic reproduction rate, R,—the number
of secondary infections that would originate from a single infected individual introduced to a
fully susceptible population. In previous work on malaria, we adapted a commonly used
expression for R, for vector transmission to include the temperature-sensitive traits that drive
mosquito population density [12]:

2 —u(T)/PDR(T 12
R(T) = <a(:r) b(T) ¢(T) e *D/™XT) EED(T) p,(T) MDR(T)) )

Nru(T)’

Here, (T) indicates that the trait is a function of temperature, T; a is the per-mosquito biting
rate, b is the proportion of infectious bites that infect susceptible humans, ¢ is the proportion
of bites on infected humans that infect previously uninfected mosquitoes (i.e., b*c = vector
competence), ¢ is the adult mosquito mortality rate (lifespan, If = 1/u), PDR is the parasite de-
velopment rate (i.e., the inverse of the extrinsic incubation period, the time required between a
mosquito biting an infected host and becoming infectious), EFD is the number of eggs pro-
duced per female mosquito per day, pg4 is the mosquito egg-to-adult survival probability, MDR
is the mosquito immature development rate (i.e., the inverse of the egg-to-adult development
time), N is the density of humans, and r is the human recovery rate. For each temperature-sensi-
tive trait in each mosquito species, we fit either symmetric (Quadratic, -¢(T-T,)(T-T,,)) or
asymmetric (Briére, cT(T-To)(T,,—T)"?) unimodal thermal response models to the available
empirical data [48]. In both functions, Ty and T, are respectively the minimum and maximum
temperature for transmission, and c is a positive rate constant.

We consider a normalized version of the Ry equation such that it is rescaled to range from
zero to one with the value of one occurring at the unimodal peak. Although absolute values of
R that are used to determine when transmission is stable depend on additional factors not
captured in our model, the minimum and maximum temperatures for which R, > 0 map
exactly onto our normalized equations, allowing us to accurately calculate whether or not
transmission should be possible at all. Empirical estimates of absolute values of R are difficult
to obtain in any case, but it is much easier to determine whether transmission is occurring and
for how long. While different model formulations for predicting R, versus temperature can
produce results with different magnitudes and potentially different overall shapes [49], the
temperatures for which R, is above or below zero (or one) are mostly model independent. For
instance, two competing models differ only by whether or not the formula in Eq (1) is squared,
but the square of a number (e.g., an absolute R, value) greater than one is always greater than
one, and the square of a number less than one is always less than one. Therefore, the threshold
temperatures at which absolute R, > 0 or absolute R, > 1 will be exactly the same for either
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choice of formula (Fig F in S1 Text). Similarly, because different expressions for R, including
the square of Eq (1), map monotonically onto our function, they will produce identical esti-
mates for the temperatures at which transmission declines to zero and peaks (Fig F in S1 Text).
Consequently, our use of relative R, adequately describes the nonlinear relationship between
mosquito and virus traits and transmission.

We fit the trait thermal responses in Eq (1) based on an exhaustive search of published labo-
ratory studies that fulfilled the criterion of measuring a trait at three or more constant temper-
atures, ideally capturing both the rise and the fall of each unimodal curve (Tables S1-S2).
Constant-temperature laboratory conditions are required to isolate the direct effect of temper-
ature from confounding factors in the field and to provide a baseline for estimating the effects
of temperature variation through rate summation [50]. We attempted to obtain raw data from
each study, but if they were not available we collected data by hand from tables or digitized
data from figures using WebPlotDigitizer [51]. We obtained raw data from Delatte [19] and
Alto [21] for the Ae. albopictus egg-to-adult survival probability (pEA), mosquito development
rate (MDR), gonotrophic cycle duration (GCD, which we assumed was equal to the inverse of
the biting rate) and total fecundity (TFD) (Table D in S2 Text). Data did not meet the inclusion
criterion for CHIKV or ZIKV vector competence (b, ¢) or extrinsic incubation period (EIP) in
either Ae. albopictus or Ae. aegypti. Instead, we used DENV EIP and vector competence data,
combined with sensitivity analyses.

Following Johnson et al. [52], we fit a thermal response for each trait using Bayesian mod-
els. We first fit Bayesian models for each trait thermal response using uninformative priors (T,
~ Uniform (0, 24), T,, ~ Uniform (25, 45), ¢ ~ Gamma (1, 10) for Briére and ¢ ~ Gamma (1, 1)
for Quadratic fits) chosen to restrict each parameter to its biologically realistic range (i.e., Tp <
T,, and we assumed that temperatures below 0°C and above 45°C were lethal). Any negative
values for all thermal response functions were truncated at zero, and thermal responses for
probabilities (pga, b, and ¢) were also truncated at one. We modeled the observed data as aris-
ing from a normal distribution with the mean predicted by the thermal response function cal-
culated at the observed temperature, and the precision 7, (7 = 1/0), distributed as 7 ~ Gamma
(0.0001, 00001). We fit the models using Markov Chain Monte Carlo (MCMC) sampling in
JAGS, using the R [53] package rjags [54]. For each thermal response, we ran five MCMC
chains with a 5000-step burn-in and saved the subsequent 5000 steps. We thinned the poste-
rior samples by saving every fifth sample and used the samples to calculate R, from 15-40°C,
producing a posterior distribution of R, versus temperature. We summarized the relationship
between temperature and each trait or overall R, by calculating the mean and 95% highest pos-
terior density interval (HPD interval; a type of credible interval that includes the smallest con-
tinuous range containing 95% of the probability, as implemented in the coda package [55]) for
each curve across temperatures.

We fit a second set of models for each mosquito species that used informative priors to
reduce uncertainty in R, versus temperature and in the trait thermal responses. In these mod-
els, we used Gamma-distributed priors for each parameter T, T, ¢, and 7 fit from an addi-
tional ‘prior’ dataset of Aedes spp. trait data that did not meet the inclusion criteria for the
primary dataset (Table C in S2 Text). We found that these initial informative priors could have
an overly strong influence on the posteriors, in some cases drawing the posterior distributions
well away from the primary dataset, which was better controlled and met the inclusion criteria.
We accounted for our lower confidence in this data set by increasing the variance in the infor-
mative priors, by multiplying all hyperparameters (i.e., the parameters of the Gamma distribu-
tions of priors for Ty, T, and c) by a constant k to produce a distribution with the same mean
but 1/k times larger variance. We chose the value of k based on our relative confidence in the
prior versus main data. Thus we chose k = 0.5 for b, ¢, and PDR and k = 0.01 for If. This is the
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main model presented in the text (Fig 2). It is comparable to some but not all previous mecha-
nistic models for Ae. aegypti and Ae. albopictus transmission (Fig E in S1 Text). Results of our
main model, fit with informative priors, did not vary substantially from the model fit with
uninformative priors (Figs G-H in S1 Text).

Incorporating daily temperature variation in transmission models

Because organisms do not typically experience constant temperature environments in nature,
we incorporated the effects of temperature variation on transmission by calculating a daily
average R, assuming a daily temperature range of 8°C, across the range of mean temperatures.
This range is consistent with daily temperature variation in tropical and subtropical environ-
ments but lower than in most temperate environments. At each mean temperature, we used a
Parton-Logan model to generate hourly temperatures and calculate each temperature-sensitive
trait on an hourly basis [56]. We assumed an irreversible high-temperature threshold above
which mosquitoes die and transmission is impossible [57,58]. We set this threshold based on
hourly temperatures exceeding the critical thermal maximum (T}, in Tables A-B in SI Text)
for egg-to-adult survival or adult longevity by any amount for five hours or by 3°C for one
hour. We averaged each trait over 24 hours to obtain a daily average trait value, which we used
to calculate relative R, across a range of mean temperatures. We used this model in the valida-
tion against human cases (Fig 3) and the risk map (Fig 4).

Model validation with DENV, CHIKV, and ZIKV incidence data

To validate the model, we used data on human cases of DENV, CHIKYV, and ZIKV at the
country scale and mean temperature during the transmission window. Using statistical models
(as described below), we estimated the effects of predicted Ry(T) on the probability of local
transmission and the magnitude of incidence, controlling for population size and several
socioeconomic factors. We downloaded and manually entered Pan American Health Organi-
zation (PAHO) weekly case reports for DENV and CHIKYV for all countries in the Americas
(North, Central, and South America and the Caribbean Islands) from week 1 of 2014 to week 8
0f 2015 for CHIKV and from week 52 of 2013 to week 47 of 2015 for DENV (www.paho.org).
ZIKV weekly case reports for reporting districts (e.g., provinces) within Colombia, Mexico, El
Salvador, and the US Virgin Islands were available from the CDC Epidemic Prediction Initia-
tive (https://github.com/cdcepi/) from November 28, 2015 to April 2, 2016. We aggregated the
ZIKV data into country-level weekly case reports to match the spatial resolution of the DENV,
CHIKYV, and covariate data.

Temperature data collection

We matched the DENV, CHIKYV, and ZIKV incidence data with temperature using daily
temperature data from METAR stations in each country, averaged at the country level by epi-
demic week. A previous study found a six-week lagged relationship between temperature and
oviposition for Aedes aegypti in Ecuador [40]. Assuming that the subsequent transmission, dis-
ease development, medical care-seeking, and case reporting in humans takes an additional
four weeks, we assumed a priori a ten-week lag between temperature and incidence (i.e., mean
temperature for the week that is ten weeks prior to each case report). METAR stations are
internationally standardized weather reporting stations that report hourly temperature and
precipitation measures. Outlier weather stations were excluded if they reported a daily maxi-
mum temperature below 5°C or a daily minimum temperature above 40°C during the study
period, extremes that would certainly eliminate the potential for transmission in a local area.
Because case data are reported at the country level, we needed a collection of weather stations
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in each country that accurately represent weather conditions in the areas where transmission
occurs, excluding extreme areas where transmission is unlikely. For the study period of Octo-
ber 1, 2013 through April 30, 2016, we downloaded daily temperature data for each station
from Weather Underground using the weatherData package in R [59]. We removed all data
from Chile because it spans so much latitude and the terrain is so diverse that its country-level
mean is unlikely to be very representative of the temperature where an outbreak occurred.

Socioeconomic covariate data

We accessed available data on projected 2016 gross domestic product (GDP) for countries of
interest via the International Monetary Fund’s World Economic Outlook Database (http://
www.imf.org/external/ns/cs.aspx?id=28). The direct and total contributions of tourism to
GDP in 2016 were compiled from World Travel and Tourism Council economic impact
reports (http://www.wttc.org/research/economic-research/economic-impact-analysis/
country-reports/#undefined). We retrieved population size data for 2013-2015 from the
United Nations Population Division (https://esa.un.org/unpd/wpp/Download/Standard/
Population/) and averaged them across the three years for each country. Throughout the anal-
yses below, unless otherwise specified, we used the natural log of the population size and

of GDP as our predictors. We have two reasons for this choice. The first is that, intuitively,

the relative order of magnitude of the population/GDP is more important in determining
observed outbreak sizes or probabilities than their absolute sizes. Second, population sizes and
GDPs across countries tend to exhibit clumped patterns with a few outliers that are much
larger than the others. From a statistical perspective, using the un-transformed populations (or
GDPs) results in those few large/rich countries having very high leverage in the analysis, and
thus potentially skewing the results. Taking a log of the population better balances these pre-
dictors and is the standard accepted approach when using these kinds of predictors in regres-
sion models.

Validation analyses with human incidence versus temperature datasets

To validate the Ry(T) model while controlling for population and socio-economic factors,

we used generalized linear models (GLMs) on the weekly case count data. Importantly, we
focused on testing whether the case counts were consistent with the transmission-temperature
relationship predicted from our model, rather than on maximizing the variation explained in
the statistical model. We are more specifically interested in understanding autochthonous
transmission (i.e., locally acquired, not just imported cases). We set country-level thresholds
for the number of cases defining autochthonous transmission for our three diseases separately,
based on current transmission understanding: seven cases of CHIKV, 70 cases of DENV, and
three cases of ZIKV. We derived these thresholds in the following way. First, we looked for
data on outbreaks of travel related cases in countries that are not expected to experience any
local transmission. For instance, in 2014 Canada experienced 320 confirmed, travel-related
cases of chikungunya (http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/15vol41/dr-rm41-01/
rapid-eng.php), equivalent to an average of more than six cases per week. Thus, to be conserva-
tive in our estimates, we set the threshold of transmission as seven cases/week for CHIKV. The
reported weekly cases of DENV transmission in our study sample are considerably higher than
for CHIKV (mean DENV incidence was nearly 100 times higher mean CHIKV incidence).
We chose a moderately high threshold of 70 cases in a week (i.e., 10 times higher than the
CHIKYV threshold based on Canadian cases) to reflect higher overall incidence and increased
potential for travel related cases. We examined the sensitivity of the results to choice of thresh-
old by varying it from 25 to 100, and we found qualitatively similar results for all thresholds
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that we tested. As ZIKV is not as well established as either CHIKV or DENV at this time,
smaller numbers of cases may indicate autochthonous transmission. Consequently, we chose a
threshold of three cases for ZIKV (approximately half the CHIKV threshold). Further, the
results were fairly sensitive to the ZIKV threshold as many locations have small numbers of
cases. Since higher thresholds exclude a very large proportion of available case data making
analysis impossible, we used the slightly less conservative threshold of three cases for autoch-
thonous transmission of ZIKV. The resulting data consisted of zeros for no transmission and
positive case counts when transmission is presumed to be occurring. To model these data, we
used a hurdle model that first uses logistic regression on the presence/absence of local trans-
mission data to understand the factors correlated with local transmission occurring or not (PA
analysis). Then we modeled the log of incidence (number of new cases per reporting week) for
positive values with a gamma generalized linear models (incidence analysis).

We were interested in understanding whether Ry(T) was an important predictor of human
transmission occurrence and incidence, after controlling for potentially confounding factors
like population size and socioeconomic conditions. To do this, we fit a series of models with
different subsets of predictors that included Ry(T) and population size, the socioeconomic var-
iables, or both (see Table D in S2 Text for full models). To control for human population size,
we created new metrics based on Ry(T) and population size to use for validation against the
PAHO incidence data. We define GRy, which is the posterior probability that Ry(T) > 0. We
use log(p)* GRy, where p is the population size, as the relevant Ry-based predictor for the PA
analysis. For the incidence analysis, we instead use log(p*Ry(T)) as the predictor. In all cases
log refers to the natural logarithm. For simplicity, we refer to these as the Ry(T) metrics hereaf-
ter and in the Results.

In both the PA and incidence analyses, we first used the full data sets to examine which of
the candidate models best described the data. Randomized quantile residuals indicated that
the logistic and gamma GLM models were performing adequately. We compared the approxi-
mate model probabilities, calculated from the BIC scores, as well as the proportion of deviance
explained (D?) from each model. Next we examined the performance of the models in predict-
ing out of sample, for both PA and incidence analyses. To do this we created 1000 random par-
titions, where 90% of the data were used to train the model and 10% were used for testing. In
the PA analyses we classified each partition based on presence/absence, with separate classifi-
cation thresholds for DENV versus CHIKV/ZIKV as these grouping had much different prob-
abilities of occurrence. We assessed the performance of the model for the PA analysis based on
the mean misclassification rate. In the incidence analyses we assessed the model performance
based on the predictive mean absolute percentage error (MAPE). Since differences in predic-
tion success between the models in both the PA and incidence analyses were not statistically
significant, we present the simpler models that only include the Ry(T) metrics in the main text
(Fig 3) and the models that additionally include socioeconomic covariates in the Supplemen-
tary Information (Figs B-C in S1 Text). We plotted the model predictions as a function of the
Ry(T) metrics together with the observed data for the PA and incidence analyses using the R
package visreg [60].

The residuals of the incidence model exhibit “inverse trumpeting,” in which residual varia-
tion is larger at low than high predicted incidence (Fig I in S1 Text). This occurs in part
because we forced the model to go through the origin, i.e., no transmission when Ry(T) or the
population size is equal to zero. However, the data did sometimes show transmission where we
did not expect it, potentially because of imported cases, errors in reporting, or small pockets of
transmission suitability in countries or times that are otherwise unsuitable on average. More
local-scale case reporting that separates autochthonous from travel-associated cases would be
needed to tease apart the source of this error.
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Mapping temperature suitability for transmission

Using the validated model, we were interested in where the temperature was suitable for Ae.
aegypti and/or Ae. albopictus transmission for some or all of the year to predict the potential
geographic range of outbreaks in the Americas. We visualized the minimum, median, and
maximum extent of transmission based on probability of occurrence thresholds from the R,
models for both mosquitoes. We calculated the number of consecutive months in which the
posterior probability of R, > 0 exceeds a threshold of 0.025, 0.5, or 0.975 for both mosquito
species, representing the maximum, median, and minimum likely ranges, respectively. The
minimum range is shown in Fig 4 and all three ranges are overlaid in Fig D in S1 Text. This
analysis indicates the predicted seasonality of temperature suitability for transmission geo-
graphically, but does not indicate its magnitude. To generate the maps, we cropped monthly
mean temperature rasters from 1950-2000 for all twelve months (Worldclim; www.worldclim.
org/) to the Americas (R, raster package, crop function) and assigned cells values of one or zero
depending on whether the probability that R, > 0 exceeded the threshold at the temperatures
in those cells. We then synthesized the monthly grids into a single raster that reflected the max-
imum number of consecutive months where cell values equaled one. The resulting rasters
were plotted in ArcGIS 10.3, overlaying the three cutoffs (Fig D in S1 Text). We employed this
process for both mosquito species.
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