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Tara Righetti, Robert W. Godby, Dalia Patino-Echeverri, Temple Leigh Stoellinger, 
and Kipp A. Coddington*

When designing environmental protection and energy regu-
lation policies, legislators and regulators rely upon the results 
of computer models that purport to forecast future condi-
tions such as energy supply, demand, available technologies 
and market characteristics. In a perfect world, these energy 
models would prove to be reliable1 and would, in turn, yield 
projections that would enable legislators and regulators to 
confidently enact regulations that advance societal energy 
and environmental goals.2

Unfortunately, it is impossible to predict or forecast with 
confidence all the variables that influence regulation and the 
effects of any regulatory choice.3 Anticipating the impacts 
of future conditions and the effects of regulatory change on 
the power sector, for example, requires consideration of a 
complex mix of factors, including: (1) technology costs and 
performance; (2) macro-economic conditions; (3) fuel prices; 
(4) consumer preferences; (5) an ever-changing regulatory 
framework at the local and state levels of government; (6) the 
impact of naturally occurring events, such as adverse weather; 
(7) market impacts related to energy choice; (8) shifting bal-
ances of federalism; and (9) the fact that energy outcomes are 
intimately intertwined with the political process.4 Box’s state-
ment “all models are wrong, some are useful,” enunciated 
about statistical models, applies and will continue to apply 

1. Michael Wara, Instrument Choice, Carbon Emissions, and Information, 4 Mich. 
J. Envtl. & Admin. L. 261, 269 (2015).

2. Id. at 272–73.
3. This calls to mind the short story, first introduced to the authors by Danny 

Cullenward. See generally Jorge Luis Borges, On Exactitude in Science, in Col-
lected Fictions (Andrew Hurley trans. 1658); see also Bezdek et al., A Half 
Century of Long Range Energy Forecasts: Errors Made, Lessons Learned, and Im-
plications for Forecasting, 21 J. Fusion Energy, 155, 155–72 (2002).

4. See generally Wara, supra note 1.
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“It is tough to make predictions, particularly about the future.”
—Yogi Berra
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to models of energy and other complex systems.5 Hence, the 
outcomes of regulatory action are inevitably uncertain.6

Because energy forecasts are often wrong, they are regu-
larly revised. However, the regulations and policies developed 
based upon earlier modeled forecasts are not often revised 
or updated alongside the models.7 Modelers recognize that 
models are uncertain, but regulators and legislators rely upon 
models as if they are not. The result is the development of 
lasting regulations that are more or less inflexible and unable 
to account for new information.8 Should the conditions of 
the regulated system deviate from the expected, rules enacted 
under conditions of uncertainty could be ineffective, or 
worse, cause unintended negative consequences. Thus, the 
acknowledgement of systematic uncertainty and the reliance 
on modeling, present a challenge: can laws and rules govern-
ing the electricity sector have adaptability and flexibility that 
are commensurate with the uncertain and volatile nature of 
the regulated activity?

In this Article, we suggest that principles of dynamic law 
can be used as guidance to design policy that is coherent with 
the highly uncertain context in which it operates. We explore 
the idea that the uncertainty surrounding the outcomes of a 
regulation can be taken into account and made part of the 
regulatory design. In so doing, we suggest that regulations 
can tackle uncertainty using the same methods by which the 
energy modeling community attempts to understand and 
bound uncertainty. The diverse set of projected regulatory 
effects produced by different models under different assump-
tions reveals risks and opportunities: The risk of ineffective 
regulation and unintended consequences; and the opportu-
nity of making “dynamic regulations” that change with the 
pace of new information.

This Article is organized as follows; Section I provides 
evidence of the magnitude of the uncertainty surrounding 
regulatory outcomes and lists reasons for resisting the goal 
of forecasting. It argues that, despite the use of large and 
detailed computer based models, the enormous and persistent 
uncertainty surrounding the future of the U.S. power system 
needs to be embraced and tackled with rules that are prede-

5. George E.P. Box, Robustness in the Strategy of Scientific Model Building, in Ro-
bustness in Statistics 201–02 (1979); George E.P. Box, Science and Statistics, 
71 J. Am. Stat. Ass’n 791, 791–99 (1976).

6. Steve Yetiv & Lowell Field, Why Energy Forecasting Goes Wildly Wrong, 
J. Energy Security (2013), http://ensec.org/index.php?option=com_
content&view=article&id=466:why-energy-forecasting-goes-wildly-wrong& 
catid=139:issue-content&Itemid=425 (noting that energy forecasting mod-
els are “almost always wrong and sometimes wildly mistaken.”). Despite this 
uncertainty, investment decisions are made in part on the basis of regulatory 
conditions. As a result, capital-intensive and heavily regulated industries such 
as energy are subject to the whims of model-reliant rules—many of which are 
environmental—that tend to be inflexible and unfit to account for new infor-
mation. This dilemma is particularly acute in the energy sector, given the long-
lived nature of investments. A natural gas fired power plant, for example, may 
be in service for sixty years or more. See Wara, supra note 1, at 269; see generally 
Avinash K. Dixit & Robert S. Pyndick, Investment Under Uncertainty 
(1994) (defining the irreversibility of investment).

7. Yetiv & Field, supra note 6; see also Wara, supra note 1, at 272, 276, 300.
8. Wara, supra note 1, at 271–74.

signed to adapt to changing conditions of the regulated sys-
tem. Section II describes three sources for the uncertainty 
surrounding the results of computer based energy models. 
Using the several models that have been used to evaluate 
the U.S. Environmental Protection Agency’s Clean Power 
Plan (“CPP”) as a case study, the section unpacks the way 
in which this uncertainty is understood and bound. Section 
III describes the concepts and different types of dynamic 
law, such as contingency rules, durational rules, and adap-
tive management, and provides broad observations on how 
dynamic provisions can be used to avoid unintended con-
sequences that could result from the confluence of inflex-
ible rules and unanticipated conditions, including a brief 
overview of dynamic approaches used in other sectors and 
opportunities for further experimentation. Section IV con-
cludes by suggesting that the complexity of models and 
uncertain conditions in which rulemaking occurs creates 
fertile ground for the integration of dynamic systems in 
environmental regulation.

I. The Prevailing Irreducible Uncertainty 
Surrounding the Outcome of 
Regulations Affecting the Electricity 
Sector

The history of the use of computer-based quantitative energy 
models for informing policy and regulatory analysis in the 
U.S. spans at least half a century. In 1973, triggered by the 
energy crisis following the Arab Oil Embargo, the use of 
energy modeling systems for policy studies “exploded.”9 
A decade later, in 1981, President Reagan’s requirement 
that federal agencies perform Regulatory Impact Analysis 
of every major rule, spurred the development and use of 
models to understand the impact of changing world and 
regulatory conditions on the energy sector and the wider 
economy.10 Since then, investment in energy models has 
continually increased.11

In the regulatory context, computer-based models are 
principally used to estimate the impacts of a proposed law, 
regulation, or agency decision on any number of variables.12 
Despite a proliferation of models, regulations are often devel-
oped based on the analysis resulting from a single or lim-
ited set of modeled outcomes using a single or limited set 
of models. For example, in developing its rules for carbon 
dioxide (“CO2”) emissions at existing power plants, the U.S. 
Environmental Protection Agency analyzed possible impacts 

9. William W. Hogan, Energy Modeling for Policy Studies, 50 Operations Res. 
89, 89, 92–93 ((2002).

10. Exec. Order No. 12291, 46 Fed. Reg. 13,193 (Feb. 19, 1981).
11. Hogan, Energy Modeling for Policy Studies, supra note 9, at 89.
12. See generally Comm. on Models in the Regulatory Decision Process, 

Models in Environmental Regulatory Decision Making 40–75 (2007); 
Desmond Saunders-Newton & Harold Scott, But the Computer Said!: Credible 
Uses of Computational Modeling in Public Sector Decision Making, 19 Soc. Sci. 
Computer Rev. 47, 47 (2001).



58 GEORGE WASHINGTON JOURNAL OF ENERGY & ENVIRONMENTAL LAW Vol. 8 No. 1

based on the results of a single model—the Integrated Plan-
ning Model or IPM.13 The inherent uncertainty present in 
such type of analysis suggests that the practice of designing 
regulations based on modelling outcomes could be greatly 
improved by widening the scope of models used.

The uncertainty surrounding the regulated systems and 
the outcomes of a regulation cannot be reduced, and hence 
must be acknowledged, characterized, and tackled with ex-
ante regulatory provisions. The first step to identify opportu-
nities for adding flexibility and adaptability into the design 
of a regulation affecting the electric power sector consists of 
predicting possible outcomes of such regulation under a wide 
set of future scenarios. In this exercise, projections from all 
corners of the private and public sectors should be considered.

Numerous government agencies around the world gather, 
analyze, and publish a wealth of energy data to inform deci-
sion-making and for other purposes. In the United States at 
the federal level, for example, that task largely falls to the 
Energy Information Administration (“EIA”).14 Internation-
ally, organizations such as the International Energy Agency 
play a similar role.15 These entities and others like them pro-
duce thoughtful and insightful analyses that are generally 
removed of any claim of real or perceived bias for or against 
any specific fuel source or technology.

However, it is often the case that not all the potential 
of these models is exploited. In general, baseline projec-
tions receive more attention and are more commonly used 
and cited than other alternative outcomes modeled in side 
cases. This presupposes that baseline projections are more 
likely, and side cases outcomes can be disregarded, when 
in fact both are needed for an accurate interpretation of 
modeling results. For example, due to EIA’s goal to provide 
policy neutral projections, the agency’s baseline projections 
assume existing U.S. laws and regulations as if the world 
was going to stay in a “business as usual” state. The EIA 
also provides a set of additional projections for alternative 
conditions to those assumed in the baseline case.16 This 
practice makes baseline projections useful only as a bench-
mark to compare the effect of different assumptions, such 
as changes in fossil fuel resources, regulations on carbon 
emissions, or the expansion potential of renewable energy. 
The baseline case alone is understood to be a potentially 
and inherently inaccurate representation of future energy 
markets.17 Given this limitation, any reliance on baseline 
EIA projections—the so-called Annual Energy Outlook 

13. U.S. Envtl. Prot. Agency, EPA-452/R-15-003, Regulatory Impact 
Analysis for the Clean Power Plan Final Rule 3–19 (2015) [hereinaf-
ter Regulatory Impact Analysis], https://www.epa.gov/sites/production/
files/2015-08/documents/cpp-final-rule-ria.pdf.

14. About EIA, U.S. Energy Info. Admin, http://www.eia.gov/about/ (last visited 
Sept. 29, 2016).

15. Alan Neuhauser, Wasted Energy: The Federal Agency Charged With Predicting the 
Nation’s Energy Future Is Hamstrung by Its Attempt to Remain Objective, U.S. 
News & World Rep., May 28, 2015, at *9, http://www.usnews.com/news/
articles/2015/05/28/wasted-energy-the-pitfalls-of-the-eias-policy-neutral- 
approach.

16. Id.
17. Id.

(“AEO”) reference case18—is questionable.19 Yet, the EIA’s 
data and projections from the baseline case are “used widely 
in regulatory proceedings, energy planning, scientific 
research, investment decisions, litigation, and legislation.”20 
Greater use should be made of the EIA’s AEO side-cases 
to better incorporate the uncertainty EIA acknowledges in 
the creation of its own projections.

Other forecasts and projections are also available. A num-
ber of other government agencies, think thanks, industry 
associations, non-governmental organizations, and firms 
project future energy outcomes to understand policy issues 
or current industry challenges, making predictions about 
what the future of energy holds.21 The predictions made 
often differ, as it could be expected by the diversity of inter-
ests and sources of information of the analysts involved. 
Discrepancies may result due to the fact that the groups fore-
casting within specific industries possess data, sophisticated 
models, marketing/customer information, and technology 
assessments that are not otherwise in the public domain. 
While those projections may be sometimes biased by the 
commercial interests they represent, their credibility is often 
supported by the corporate disclosure and reporting require-
ments that limit, if not prohibit, the ability of publicly traded 
companies to engage in unsupported optimism about what 
the future holds for the products and services they offer.22

Far from being a problem, the diversity of projections is 
an opportunity. Conflicting forecasts can be used as inputs 
into an exercise to discern the outcomes of a regulatory 
mechanism. The varying size and scope of models available 
also suggests that a multiplicity of models may be necessary 
to understand the full scope and impact of a given regu-

18. U.S. Energy Info. Admin, Annual Energy Outlook 2016 Early Release: 
Annotated Summary of Two Cases, DOE/EIA-0383ER, at 2 (2016), http://
www.eia.gov/forecasts/aeo/er/index.cfm.

19. Owen Comstock, EIA’s Annual Energy Outlook Is a Projection, Not a Prediction, 
Today in Energy: U.S. Energy Info. Admin. (May 17, 2016), http://www.
eia.gov/todayinenergy/detail.php?id=26272#.

20. T.J. Considine & F.A. Clemente, Gas Markets: Betting on Bad Numbers; Why 
Predictions From the Energy Information Administration May Contain System-
atic Errors, Fort. Mag., July 2007, at 1, http://www.fortnightly.com/fort-
nightly/2007/07/gas-market-forecasts-betting-bad-numbers; Neuhauser, supra 
note 15 (“EIA models explore virtually every conceivable aspect of the energy 
industry: how the U.S. will generate its electricity, how Americans will heat 
their homes and fuel their cars, whether coal and oil will be viable . . . and how 
fast solar and wind power may expand.”); Janet Peace & John Weyant, Insights 
Not Numbers: The Appropriate Use of Economic Models, Pew Ctr. on Global 
Climate Change 11, 13 (2008), http://www.c2es.org/docUploads/insights-
not-numbers.pdf. Not all agencies rely on EIA’s NEMS model, for example, 
EPA used the IPM model to project outcomes new emissions regulations on 
standing sources whereas EIA later used NEMS to determine the effects of the 
regulation. See Regulatory Impact Analysis, supra note 13, at 3–4, 3–23; 
Considine & Clemente, supra at 2.

21. BP Energy Outlook, BP, http://www.bp.com/en/global/corporate/energy-
economics/energy-outlook-2035.html (last visited Sept. 29, 2016); US Solar 
Market Set to Grow 119% in 2016, Installations to Reach 16 GW, Solar En-
ergy Indus. Ass’n (Mar. 9, 2016), http://www.seia.org/news/us-solar-market-
set-grow-119-2016-installations-reach-16-gw (reporting findings from GTM 
Research). Certain participants within the oil and gas industry publish energy 
assessments that extend beyond their own traditional markets to cover, for 
example, coal and renewables. BP does this through its “Energy Outlook” pub-
lications. ExxonMobil publishes its “Outlook for Energy” assessments. Shell 
does something similar through its “Scenarios” analyses.

22. The U.S. Securities and Exchange Commission imposes disclosure require-
ments under numerous regulations. See, e.g., 17 C.F.R. § 229.101 (2011) 
(“Description of business”).
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lation on the energy system. Models representing smaller 
systems may have a better chance of estimating ranges of 
possible outcomes in the short term that are reasonably nar-
row. These models make an effort to include more details, 
as if they are engineering models, whereas projections that 
examine different scenarios are unable to properly repre-
sent a “myriad of complex and generally uncontrollable 
variables.”23 Therefore, a multiplicity of projections is use-
ful and may offer insights beyond what would be available 
through evaluation of a singular model or without the use 
of modeling altogether.

A. Desisting From the Goal of “Predicting” Future 
Outcomes

To understand why EIA and others from the energy mod-
eling community do not attempt prediction or forecasting, 
and rather call the output of models “projections,” it is useful 
to briefly discuss the meaning of “prediction” in the context 
of the natural sciences.24 The notion of making predictions 
is rooted in the desire since ancient times to understand the 
past, predict the future, and therefore develop laws to explain 
observed natural phenomena with predictive force.25

Scientific discoveries are sometimes verified through predic-
tion: prediction of the planet Neptune’s existence by Lever-
rier, prediction of deviation of light by Einstein, prediction 
of the helical structure of DNA by Watson and Crick, etc. 
Prediction [in these scientific contexts] has a very strong 
force of argument.26

Richard Feynman, in his famous lecture on the scientific 
method, described the process similarly.27 In science, accord-
ing to Feynman, the researcher first makes a guess.28 She then 
runs experiments to determine if the guess was correct.29 If 
the guess was correct based upon the experiments that were 
run, the scientist has a workable hypothesis that, in turn, 
may be applied again and again until the day comes—as it 
inevitably does—when it is proven wrong.30 In Feynman’s 
construct of the scientific method, the prediction is the ini-
tial “guess” about how a physical system operates.

Predictions have particular utility in scientific disciplines 
where repeated tests or observations may be conducted to 
check their validity. However, “the difficulty of prediction 
depends on the degree of freedom and complexity of the sys-
tem; if too many parameters should be fixed, it is impossible 
to make a precise prediction.”31 Whereas the effects of grav-
ity on a certain object may be possible to predict, in systems 

23. Considine & Clemente, supra note 20, at 1.
24. Comstock, supra note 19.
25. Y. Matsuo & P. McBurney, Chance Discovery—Prediction, Forecasting, & 

Chance Discovery, in Chance Discovery 30–31 (2003), http://link.springer.
com/chapter/10.1007%2F978-3-662-06230-2_3#page-1.

26. Id.
27. Nonstampcollector, Feynman on Scientific Method, YouTube (Feb. 18, 2011), 

https://www.youtube.com/watch?v=EYPapE-3FRw.
28. Id.
29. Id.
30. Id.
31. Matsuo & McBurney, supra note 25, at 30.

where multiple parameters “amplif[y] initial uncertainty too 
rapidly,” prediction becomes impossible.32 Where prediction 
is futile, projection is preferable.

The techno-economic system where electricity is generated, 
transmitted, and consumed consists of complex, interrelated 
and interdependent infrastructure, market participants, and 
institutions. A wide range of energy sources—some baseload, 
others intermittent, and each subject to market forces that 
impact both fuel availability and price—supply the power 
system.33 Energy demand is created by millions of users. 
Weather happens. Federal, state and third-party energy and 
environmental regulators impose ever-changing obligations 
on the system. There is nothing about energy systems that is 
even remotely similar to making an initial “guess” about how 
a prism diffracts a beam of light. Accordingly, in contrast 
to physical or man-made systems, energy systems are better 
suited to projection across a wide arena of possible cases and 
combinations of events.

An evaluation of how well past predicative energy policy 
assessments have projected past or current outcomes pro-
vides insight into how accurately current modeling methods 
incorporate the various factors impacting energy models. The 
answer: not very well.34 Recent history illustrates the chal-
lenges of reliance on baseline energy forecasts. For example, 
official forecasts did not foresee current oil price outcomes, 
or the “shale gas revolution.” Yesterday’s liquefied natural 
gas (“LNG”) import terminals are now being converted to 
export terminals, and low natural gas prices are upending 
expectations and forecasts related to electricity generation 
and coal.35 Other notable errors have occurred in the recent 
past with respect to model forecasts. For example, models in 
1995 and 1996 predicted a contraction in the coal sector and 
loss of coal mining jobs due to fuel switching towards lower 
sulfur coal due to the imposition of non-climate environ-
mental requirements such as the acid rain program.36 Despite 
these projections coal usage increased in the United States.37 

32. Id.
33. See What Are the Major Factors Affecting Natural Gas Prices?, U.S. Energy Info. 

Admin. (May 18, 2016), https://www.eia.gov/tools/faqs/faq.cfm?id=43&t=8; 
What Is U.S. Electricity Generation by Energy Source, U.S. Energy Info. Ad-
min. (Apr. 1, 2016), https://www.eia.gov/tools/faqs/faq.cfm?id=427&t=3.

34. Yetiv & Field, supra note 6 (“Relying on [energy] forecasts, particularly long-
term projections going out [ten] or [twenty] years, is largely a mistake because 
they are almost always wrong and sometimes wildly mistaken.”).

35. Chris Cassar, Nationwide, Electricity Generation From Coal Falls While Natu-
ral Gas Rises, Today in Energy: U.S. Energy Info. Admin. (Oct. 7, 2015), 
http://www.eia.gov/todayinenergy/detail.cfm?id=23252; Clifford Krauss, U-
Turn for a Terminal Built in Texas to Import Natural Gas, N.Y. Times, Sept. 29, 
2014, http://www.nytimes.com/2014/09/30/business/energy-environment/a-
u-turn-for-a-terminal-built-in-texas-to-import-natural-gas.html?_r=0.

36. U.S. Envtl. Prot. Agency, Impacts of the Acid Rain Program on Coal 
Industry Employment 23, 27, 28 (2001), https://nepis.epa.gov/Exe/Zy-
PURL.cgi?Dockey=900O0600.txt; U.S. Envtl. Prot. Agency, EPA/430-
R-96-012, 1995 Compliance Results (1996), https://www.epa.gov/sites/
production/files/2015-08/documents/1995compreport.pdf.

37. U.S. Dep’t. of Energy, Energy Info. Admin., DOE/EIA-0384, Annual 
Energy Review 2006, at 206 fig. 7.3 (2007), http://www.eia.gov/totalenergy/
data/annual/archive/038406.pdf (entitled “Coal Consumption by Sector,” 
1949–2006); Nicolas Berghmans & Emilie Alberola, The Power Sector in Phase 
2 of the EU ETS: Fewer CO2 Emissions but Just as Much Coal, 42 Climate 
Rep. 15 (2013), http://www.cdcclimat.com/IMG/pdf/13-11_climate_report_
no42_co2_emissions_in_the_power_sector.pdf (noting that “the use of coal-
fired power plants increased in a number of States from 2011 onwards”).
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In Europe, the creation of cap-and-trade climate regulation 
under the European Union Emissions Trading System (“EU 
ETS”) was predicted to slash demand for coal, and yet, at 
least in Sweden, no link has been demonstrated between 
the carbon pricing in the EU ETS and CO2 emissions from 
Swedish Electricity Production, and overall demand for 
European coal has increased.38

The examples mentioned above illustrate several reasons 
for energy forecasting’s poor record of divining the future. 
First, forecasts generally are based upon future projections 
of historic and current trends, an approach that is prone to 
missing the role that significant developments such as new 
technologies may play down the road.39 Second, the impacts 
of shifting public attitudes and government policy are dif-
ficult to predict.40 Third and finally, it has been noted that 
energy analysts, perhaps like their brethren on Wall Street, 
“tend to run in packs” out of fear of being the outlier with 
an obviously wrong assessment, leading to peer group and 
public scorn and ridicule.41 As a result, forecasts are largely 
clustered around a mean of commercially or politically popu-
lar, and typically conservative, outcomes.

The dismal record of the accuracy of the forecasts pro-
duced by energy models demonstrates that the value of large 
and complex energy models is not in their products, but in 
the process they facilitate, and that their contribution is in 
the “insights [and] not in the numbers” they offer.42 In line 
with this understanding, the EIA does not call the output of 
its models “forecasts” but “projections,” and has in the last 
years made an effort to project ranges, rather than to offer 
point estimates.43

Although uncertainty is pervasive and irreducible, impor-
tant features of the electricity sector are known with a rea-
sonable degree of certainty. First, the system exhibits the 
properties of inertia and path dependency.44 This is evident 
in the fact that energy sources have changed little over the 

38. Anna Widenberg & Markus Wråke, The Impact of the EU Emissions Trading 
System on Co2 Intensity in Electricity Generation 1 (Univ. of Gothenburg, 
Dept. of Econ., Working Paper in Economics No. 361, 2009); Berghmans 
& Alberola, supra note 37. But see Tim Laing et al., Assessing the Effectiveness 
of the EU Emissions Trading System 24–26 (Ctr. for Climate Change Econs. 
& Policy, Working Paper No. 126, 2016) (noting attributable emissions 
savings from the EU ETS, despite the global recession and problems with 
initial over allocation).

39. John P. Weyant & Thomas Olavson, Issues in Modeling Induced Technological 
Change in Energy, Environment, and Climate Policy, 4 Envtl. Modeling & 
Assessment 67, 79–80 (1999).

40. See Darryl Read et al., The Theory of Planned Behavior as a Model for Predicting 
Public Opposition to Wind Farm Developments, J. Envt. Psychol. 36, 70–76 
(2013).

41. See Kevin Walsh, Challenging the Groupthink of the Guild, Hoover Inst. (Mar. 
8, 2016), http://www.hoover.org/research/challenging-groupthink-guild-0 
(“The clustering of economic forecasts reveals conformity of views inside the 
Fed. The groupthink among policymakers may well deepen the groupthink 
among other stakeholders, including outside economists, Wall Street pros, and 
business leaders.”).

42. Peace & Weyant, supra note 20, at 2; see Wara, supra note 1.
43. Comstock, supra note 19; Karl Mathieson, Are Fossil Fuel Companies Us-

ing IEA to Talk Up Demand?, Guardian, Oct. 23, 2015, https://www.the
guardian.com/environment/2015/oct/23/are-fossil-fuel-companies-using-iea- 
reports-to-talk-up-demand.

44. Phillippe Aghion, Path Dependence, Innovation, and the Economics 
of Climate Change, Center for Climate Change Economics and Poli-
cy 6 (2014).

centuries. Second, infrastructure generally is long-lived. 
Specific entrenched fuels possess physical and chemical attri-
butes that make their displacement by an incumbent exceed-
ingly unlikely.45

These intrinsic characteristics of the system can be well 
represented in energy models. Although any attempt to 
represent complex interactions of social, economic, techni-
cal and environmental factors that shape trends in energy 
consumption, production, or prices will be subject to inac-
curacies; much can be learned from these models, and par-
ticularly from the discrepancies in model projections under 
different assumptions, or different modeling frameworks.

The growing demand for policy foresight combined with 
the enhanced scientific methods to detect risk, make it likely 
that the use of models to estimate policy impacts will become 
increasingly prevalent.46 Given the inevitability of uncertainty 
and the futility of forecasting, there is room for attempting 
to consider this uncertainty ex-ante in the regulatory process. 
In this Article, we argue there is an opportunity for attempt-
ing to characterize the uncertainty on future system condi-
tions, and to use such characterization to design contingent 
rules (explained in Section II) to react to system changes and 
new information. While both modelers and regulators are 
aware of the limits in modeling outputs, much more could be 
done to determine the bounds of the uncertainty facing the 
regulation and accomplish the goal of having stakeholders 
and regulators better informed today, rather than hypoth-
esizing about the future.47 Rather than designing regulation 
according to baseline or best guess projections of the future, 
and then subjecting those rules to multiple sequential reviews 
and updates as conditions in the regulated system change 
or emerge, we explore the idea of designing such contingent 
rules based on the outcomes of using multiple model runs 
exploring different future scenarios and conditions.

A close look at how modelers deal with uncertainty may 
offer insights towards improving regulatory and policy 
making processes to address future unknowns through 
the use of flexible and dynamic systems of law. First, more 
models should likely be used than is often the case under 
current regulatory practice to broaden the understanding 
of the wide variety of potential outcomes. Wider modeling 
through greater numbers of scenarios and the use of mul-
tiple model frameworks would also make clear the value of 
preserving the option to pursue alternative actions. Second, 
given the inherent uncertainty present in future condi-
tions and resulting system outcomes, flexible and dynamic 
systems of law offer the potential benefits of both incen-
tivizing regulated parties to take actions towards preferred 
outcomes, and offering opportunities to adjust the law to 
take into consideration new information and react to uncer-

45. Id. at 8; Robert Bryce, Don’t Count Oil Out, Slate (Oct. 14, 2011), http://www.
slate.com/articles/technology/future_tense/2011/10/oil_and_gas_won_t_be_ 
replaced_by_alternative_energies_anytime_so.html.

46. Jonathan Wiener & Daniel L. Ribeiro, Impact Assessment: Diffusion and Inte-
gration, in Comparative Law and Regulation 161 (Francesca Bignami & 
David Zaring eds., Elgar 2016).

47. Daniel Shostak, Difference Between Prediction and Forecasting, Analytic-
Bridge, http://www.analyticbridge.com/forum/topics/difference-between-
prediction (last visited Sept. 29, 2016).
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tainty. By focusing on the evolving roles of modeling in an 
ever increasing data-rich environment and the challenges of 
accurate electricity market modeling, it may be possible to 
draw insights to better frame our understanding of dynamic 
law as a response to uncertainty.

II. Uncertainty and the Role of Current 
Models in Policy-Making: A Case Study 
in the Use of Multi-Model Assessment

Insights from individual and comparative results of modeling 
efforts conducted by a multiplicity of stakeholders can help 
to characterize the uncertainty about the effects of the regu-
lation in the techno-economic system in which the electric 
power sector exists. To evaluate the Clean Power Plan, mod-
elers and policy-makers have had to grapple with uncertainty 
in several forms. For simplicity, these types of uncertainty 
might be classified under the following trichotomy: First, 
policy-makers have to deal with implementation uncertainty 
with respect to the policy change they consider.48 This metric 
considers a variety of variables related to when and how a 
certain policy may be put into effect, and to what extent the 
de facto application differs from the de jure rule.49 For exam-
ple, given that the Clean Power Plan can be implemented 
in several different ways, none of which can be exactly fore-
seen, modelers are forced to assume a particular implementa-
tion, and hence it becomes uncertain how well the modeling 
results represent the potential outcome of the regulation.50 
Second, the outcomes are tempered by assumptions regard-
ing inputs, or input uncertainty.51 Some future outcomes 
must be assumed, for example with respect to the conditions 
assumed present during the time any policy in question is 
implemented. Assumptions regarding economic growth, fuel 
prices, and resource availability, for example, are unknown, 
and model results are contingent upon these assumptions.52 
Third, policy-makers have to deal with model uncertainty—
even models that represent the same policy implementation, 
and make the same assumptions about key inputs, can result 
in different conclusions due to modelers’ different representa-
tions of the energy economy, and their divergent descriptions 
of the world.53 To understand modeling uncertainty, several 
communities engage in multi-model analyses54 but refrain 

48. See Mary Hallward-Driemeier, Deals Versus Rules: Policy Implementation Uncer-
tainty and Why Firms Hate It 2–5 (Nat’l Bureau of Econ. Research, Working 
Paper No. 16001, 2010).

49. Id.
50. Kate Konschnik & Ari Peskoe, State Roles in the Clean Power Plan: A Primer for 

States, Harv. Envtl. Pol’y Initiative (Aug. 19, 2015), http://environment.
law.harvard.edu/wp-content/uploads/2015/08/State-Roles-Clean-Power-Plan.
pdf.

51. See Shane G. Henderson, Input Model Uncertainty: Why Do We Care and What 
Should We Do About It?, in Proceedings of the 2003 Winter Simulation 
Conference 93–94 (S. Chick et al. eds., 2003).

52. Id.
53. Merlise Clyde & Edward I. George, Model Uncertainty, 19 Stat. Sci., 81, 

81–94 (2004).
54. For examples of groups that use multi-model analyses, see generally About, 

Stan. Univ., https://emf.stanford.edu/about (last visited Sept. 29, 2016), and 
Energy Modeling Forum, Stan. Univ., https://emf.stanford.edu/ (last visited 
Sept. 2, 2016).

from ranking their outcomes.55 Since policy implications of 
each model can differ, and it cannot be known which, if 
any, of the competing models is a better description of the 
“true” world, using a scenario based approach may result in 
a range of insights and inferences with respect to a particu-
lar policy question.56

The following section describes in more detail the sources 
of the uncertainty surrounding modeling results, and how 
they potentially confuse (or reinforce) the estimated impacts 
of the Clean Power Plan and the importance of particular 
regulatory choices, as well as how policy-makers often try 
to deal with such mixed sets of results and implications. The 
section then describes a selection of different models used 
to analyze various versions of the Clean Power Plan, ending 
with some broad conclusions regarding the results of these 
different models. Finally, more recent simulation results from 
two of these models, the EPA’s IPM models, and the EIA’s 
National Energy Modeling System (“NEMS”) model (and 
an additional implementation used by Rhodium Group) 
are compared to describe how all three types of uncertainty, 
specifically, the changes from the 2014 to 2015 versions of 
the Clean Power Plan, changes in input assumptions, and 
context might be considered as examples of the dynamic 
modeling environment policy-makers must deal with in 
understanding and further developing regulations like the 
Clean Power Plan.

A. Implementation Uncertainty

Recent analyses of the potential impacts of the Clean Power 
Plan highlight the challenges policy-makers face in defin-
ing regulations, given policy goals and possible impacts of 
a given menu of policy choices they choose to consider. The 
Clean Power Plan, as it pertains to regulating existing power 
plants, is perhaps the most complex implementation of rule-
making under section 111(d) ever created. The reason is that, 
given the multiplicity of compliance strategies, it is not clear 
exactly how it will be implemented by states as they devise 
their state implementation plans.57 This has created a seri-
ous problem for modelers attempting to estimate the poten-
tial impact of the plan. Understanding the challenge first 
requires a description of how modelers have dealt with the 

55. The use of non-hierarchically ranked models is not unique to the energy sector. 
See Jenee A. Colton, Toxicity Extrapolation Models, in Ecological Modeling 
in Risk Assessment: Chemical Effects on Populations, Ecosystems, and 
Landscapes 181 (Robert A. Pastorok et al. & CRC Press eds., 2016); George 
Casella & Elias Moreno, Objective Bayesian Variable Selection, 473 J. Am. Stat. 
Ass’n. 157, 158 (2006).

56. Stacy Langsdale, Communiciation of Climate Change Uncertainty to Stakehold-
ers Using the Scenario Approach, 140 J. Contemp. Water Res. & Educ., 24–29 
(2008).

57. Patrick Knight et al., Multi-State Compliance Report With the Clean Power Plan 
in CP3T, Synapse Energy Econ., Inc. (July 29, 2015), http://www.synapse-
energy.com/sites/default/files/Multi-State-Compliance-Report-15-025.pdf; 
see also Robert Godby & Roger Coupal, A Comparison of Clean Power Plan 
Forecasts for Wyoming: The Importance of Implementation and Modeling Assump-
tions, 29 Electricity J. 53, 55, 61 (2015); Franz Litz & Brian Murray, Mass-
Based Trading Under the Clean Power Plan: Options for Allowance Allocation 2–3 
(Duke Nicholas Inst., Working Paper NI WP 16-04, 2016), http://nicholasin-
stitute.duke.edu/publications.
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evolution of regulatory methods from centralized to decen-
tralized frameworks prior to the Clean Power Plan.

Historically, most Clean Air Act-based regulations have 
relied on command and control regulation—that is the 
requirement and imposition of a specific set of performance 
requirements at all regulated facilities, which have been deter-
mined centrally by regulators.58 Typically, these standards of 
performance requirements have been defined in terms of site-
specific emissions permits.59 Under the Clean Air Act, these 
permits have specified maximum emissions rates per unit of 
output (for example, tons of emissions per unit of electricity 
produced), and plants are permitted emissions rates up to the 
levels of their specific permit.60 These requirements have been 
defined after consideration of available technologies, or “Best 
Systems of Emission Reduction” (“BSERs”) choices avail-
able to firms.61 In the past, the defined technologies that 
the EPA assumed could be used would normally be applied 
to plants “within the fence”—they implied specific changes 
to facilities, and in production techniques and inputs used 
by firms.62 One example is the use of specific types of 
“scrubbers” in the control of power plant air emissions.63 
Accordingly, modeling such regulations and their impact 
in the electricity sector occurred by assuming the timing 
of implementation controls, their cost, and assumptions 
regarding improvements in technologies over time within 
economic and energy system models.64 The interaction of 
these costs and market conditions over time—which were 
either assumed exogenously, or partially determined endog-
enously based on the model’s internal structure65—would 
define the model’s outcomes. These outcomes then provided 
estimates of the impact of such regulations on measures of 
policy interest such as emissions outcomes, electricity pro-
duction, utility rates, primary energy production, and prices 
and economic growth, relative to projections using the same 
model when regulation is not implemented.66

The potential impacts of centralized regulation, while 
complex, are easier to forecast than decentralized or market-
based regulations. For example, if a specific technology or 
production restriction is assumed to be implemented, it is 
often straightforward to use a mathematical optimization 

58. 42 U.S.C. § 7411(d) (2012); Samuel D. Eisenberg et al., A State Tax Approach 
to Regulating Greenhouse Gases Under the Clean Air Act, Brookings 1, 3 (May 
22, 2014), https://www.brookings.edu/wp-content/uploads/2016/06/state_
approach_regulating_ghgs_morris.pdf.

59. Id. at 3.
60. Id.
61. Id.
62. Ohio EPA Comments on “Carbon Pollution Emission Guidelines 

for Existing Stationary Sources: Electric Utility Generating Units; 
Proposed Rule” [79 FR 34830], Ohio Envtl. Protection Agency 11, 
http://www.epa.ohio.gov/portals/27/111d/CPP_2014-12-01_Final_Tech_ 
Comments.pdf; Marlo Lewis, How Unlawful Is EPA’s Clean Power Plan 
(Oct. 6, 2014), http://www.globalwarming.org/2014/10/06/how-unlawful- 
is-epas-clean-power-plan/.

63. Id. (“Although even here the analogy is strained. Previous 111(d) rules based 
ESPS on particular control technologies (e.g., scrubbers for fluoride emissions 
from phosphate fertilizer plants).”).

64. U.S. Envt’l Prot. Agency, The Benefits and Cost of the Clean Air Act, 
1970 to 1990 app. B (1997).

65. U.S. Envt’l Prot. Agency, EPA No. 450R13002, Documentation for EPA 
Base Case v.5.13, Using the Integrated Planning Model 2–2 (2013).

66. Id. at 2–13.

framework to describe how the adoption of such technolo-
gies will affect costs and production capacities, as well as 
the implications on power system outcomes, such as hourly 
electricity prices or longer term utility rates.67 The regulatory 
impact of a particular policy is then defined by how these 
measures change relative to a no regulation baseline. Results 
become more complicated if dynamic economic models 
are combined with such simulations, allowing estimation 
of wider energy system and economic outcomes over time. 
Such models are referred to as partial equilibrium if they also 
estimate impacts on a limited set of additional market out-
comes, or full equilibrium if they estimate impacts on the 
entire economy for regulatory changes in the power system.68

More recent regulations have moved away from command-
and-control regulations, toward market-based approaches.69 
These decentralized approaches pose added complications to 
modeling potential policy-outcomes. The EPA’s sulfur diox-
ide (“SO2”) trading market is one example of such a system, 
and the Clean Power Plan is another.70 At the simplest level 
of explanation, decentralized “cap and trade” approaches like 
the SO2 trading system begin by defining site-specific emis-
sion permits, but unlike earlier centralized approaches, such 
permits are transferable through trade.71 Facilities may emit 
more than their original permitted levels only if they hold 
additional permits purchased from other regulated firms 
while selling firms would be obligated to emit less than they 
were initially permitted to.72 Total emissions remain con-
trolled as they would be under a centralized system and are 
defined by the total permits allocated across facilities, how-
ever, site specific emission-levels are allowed to vary based 
on the reallocation due to trade that occurs between firms.73

Market-based regulatory approaches attempt to take 
advantage of differences across firms regarding emission con-
trol costs to create incentives to minimize the cost of emis-
sion reduction.74 Such permit trading systems effectively 
commodify emissions reductions, creating incentives for 
firms with lower control costs to finance additional reduc-
tions through sales of their emission permits.75 Similarly, 

67. Timothy Lawrence Johnson, Energy Models, in Encyclopedia of Geography 
(SAGE Publications, 2016), http://sk.sagepub.com.proxygw.wrlc.org/refer-
ence/geography/n347.xml.

68. Lisa M.H. Hall & Alastair R. Buckley, A Review of Energy Systems Models in 
the UK: Prevalent Usage and Categorisation, 169 Applied Energy 619, 623 
(2016).

69. Winston Harrington & Richard D. Morgenstern, Resources for the 
Future, Economic Incentives Versus Command and Control 13–14 
(2004).

70. See generally 40 C.F.R. §§ 72–78 (2016); Gabriel Chan et al., The SO2 Allow-
ance-Trading System and the Clean Air Act Amendments of 1990: Reflections on 
20 Years of Policy Innovation, 65(2) Nat’l Tax J. 419, 421–26 (2012).

71. Dallas Burtraw & Sarah Jo Szambelan, U.S. Emissions Trading Markets for SO2 
and Nox 5 (Res. for the Future, Discussion Paper No. RFF DP 09-40, 2009); 
Robert N. Stavins, Market-Based Environmental Policies 1, 4 (Res. for the Fu-
ture, Discussion Paper No. 98-26, 1998).

72. Stavins, supra note 71, at 1, 3. Permits may be defined on the basis of total 
emissions or for emissions rates. See Burtraw & Szambelan, supra note 71, at 5.

73. Inter-firm trade of emissions permits can be further controlled, for example to 
avoid “hotspots” by specific regulations restricting possible trade, or by apply-
ing trading ratios to avoid excessive local emissions levels. See, e.g., W. David 
Montgomery, Markets in Licenses and Efficient Pollution Control Programs, 5 J. 
Econ. Theory 395, 403 (1972).

74. Stavins, supra note 71, at 1, 3.
75. Id. at 4–5.
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high emission-cost firms and facilities will willingly pur-
chase such permits as long as the prices paid are lower than 
the costs faced at their own plants to reduce emissions by a 
similar amount. Permit market outcomes (price and quantity 
traded) adjust to reflect the equilibrium between total per-
mit market supply, defined by the permits made available for 
trade, and total market demand to purchase permits.

The advantages of market-based systems over command-
and-control ones are several and well demonstrated by 
recent programs such as EPA’s Acid Rain program. First, 
they can create incentives to minimize the total cost of 
emission control across all regulated firms, something cen-
tralized approaches do not achieve.76 They can also reduce 
informational burdens for regulators and create additional 
incentives to develop new control technologies that lower 
future emissions control costs.77 Additionally, by leaving to 
firms the decision of when, where, and how to reduce emis-
sions, the bureaucracy required to administer, monitor, and 
enforce pollution regulations can be reduced relative to cen-
tralized methods.

Modeling the impacts of such decentralized systems, how-
ever, becomes much more complicated in part because decen-
tralized methods rely on incentives and assumed behavior of 
regulated agents. Power system models that assume estimates 
of emissions-control costs as part of the electricity genera-
tion costs to project power plant investment, dispatch, and 
prices, are no longer adequate as they do not endogenously 
incorporate feedbacks between market outcomes and firm 
decisions. Instead, firm investment choices and costs must be 
modeled explicitly, along with the emission permit markets 
to endogenously determine the control costs that result from 
the imposition of a given emissions limit. These can then be 

76. Theoretically, a competitive market creates the incentive for all firms to choose 
emissions levels such that the cost of making an additional emission reduction 
equivalent to the amount one permit would allow to be avoided, is equal to 
the market price of acquiring an emission permit. If control costs differ but are 
rising across all regulated firms in the market, the resulting competitive market 
outcome results in all firms buying or selling permits until the control costs 
across firms are equal. When this outcome occurs, no additional reallocation 
of control effort, which reduces total control costs across all firms, is possible, 
and the cost of emission control across the market has been minimized. The 
potential for such a cost-minimizing decentralized regulatory outcomes was 
first described in seminal papers by Thomas D. Crocker, The Structuring of 
Atmospheric Pollution Control Systems, in The Economics of Air Pollution 
234 (Wolozin, ed. 1966), John H. Dales, Pollution, Property and Prices 6 
(1968), and Montgomery, supra note 73, at 396. Outcomes in emission trad-
ing markets under uncompetitive conditions have been described in Robert 
Hahn, Market Power and Transferable Property Rights, 99 Q. J. Econ. 753–65 
(1984), and William S. Misiolek & Harold W. Elder, Exclusionary Manipula-
tion of Markets for Pollution Rights, 16 J. Envtl. Econ. & Mgmt. 156, 156–66 
(1989), and were demonstrated in artificial markets by Robert Godby, Market 
Power in Laboratory Emission Permit Markets, 23 Envtl. & Resource Econ., 
279–318 (2002). The actual success of such decentralized approaches over al-
ternative centralized ones (in which permits are allocated and no trade is al-
lowed) has been documented by many authors. See, e.g., Richard Schmalensee 
et al., An Interim Evaluation of Sulfur Dioxide Emissions Trading, 12 J. Econ. 
Persp. 53, 64–65 (1998). More recently, Richard Schmalensee and Robert 
N. Stavins commented on these results and the additional impacts other con-
temporary changes (such as railroad deregulation) had on these original cost 
estimates, as well as the recent challenges such regulatory methods have faced 
politically and in the courts. See Richard Schmalensee & Robert N. Stavins, 
The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experi-
ment, 27 J. Econ. Persp. 103 (2013).

77. U.S. Envtl Prot. Agency, Guidelines for Preparing Economic Analyses 
4–5 (2010).

input into optimization/simulation models intended to rep-
resent power system operations and its outcomes. Optimally, 
associated input and production markets would also be mod-
eled to demonstrate the impact of regulations on emissions 
and the economy, as well as on electricity prices. Modeled 
outcomes, however, are inherent to the assumptions made 
regarding agent behavior.78

The Clean Power Plan utilizes neither a market-based 
approach such as a tax or a traditional cap and trade pro-
gram, nor purely a centralized “command and control” 
approach. Instead, it employs a unique decentralized 
approach that makes possible multiple compliance alter-
natives to firms and to the states regulating affected firms 
within their borders.79 Eschewing defined actions “inside the 
fence” at regulated sites, facilities do not have site-specific 
permitted levels of emission. Instead, annual emissions tar-
gets are defined at unique state-wide levels utilizing a unique 
“building block” approach.80 The BSER assumed relevant to 
meet the regulation at existing plants does not define any 
specific technologies, but instead a set of actions that a state 
could potentially enforce at and across sites.81 Specifically, 
to reduce greenhouse gases (“GHGs”), states may employ 
a combination of energy efficiency improvements at plants, 
recommitment decisions between fossil-fueled and renew-
able and zero-emissions sources across the state power sector, 
and recommitment from fossil-fueled plants to less intensive 
GHG emitting sources (e.g. from coal to natural gas) across 
the state power sector.82 States could choose any combina-
tion of these (or in the 2015 rules, the first three choices), 
or undefined alternative means of reducing GHG emissions, 
such as the use of carbon capture technologies to meet their 
emissions requirements.83

State implementation plans can also include regional trad-
ing schemes in which groups of states can create cooperative 
arrangements such as permit trading programs to meet their 
collective emissions targets.84 While both the 2014 and 2015 
rules contemplated state trading programs, in the 2014 rules, 
no specific rules were assumed regarding how these trad-
ing systems would be organized.85 In contrast, the 2015 rule 
promised “model rules” to hasten and help state cooperation 
and coordination in developing regional emission control 

78. Peace & Weyant, supra note 20, at 2. Specifically, models assume both how 
agents perceive the choices they face, and they usually assume agents optimize 
perfectly. Neither is necessarily consistent with how agents will actually make 
choices for a wide variety of reasons.

79. 42 U.S.C. § 7410(a)(1) (2012).
80. Carbon Pollution Emission Guidelines for Existing Stationary Sources: Elec-

tric Utility Generating Units, 80 Fed. Reg. 64,662, 64,667, passim (proposed 
Oct. 23, 2015) (to be codified at 40 C.F.R. pt. 60).

81. Id.
82. Carbon Pollution Emission Guidelines for Existing Stationary Sources: Elec-

tric Utility Generating Units, 80 Fed. Reg. 64,662, 64,666 (proposed Oct. 
23, 2015) (to be codified at 40 C.F.R. pt. 60). The original 2014 rules also 
permitted reductions through the use of end-user energy efficiency measures to 
reduce total electricity demand.

83. Id. at 64,884.
84. Knight et al., supra note 57, at 15–16, 23–30.
85. Carbon Pollution Emission Guidelines for Existing Stationary Sources: Elec-

tric Utility Generating Units, 80 Fed. Reg. 64,662, 64,833 passim (proposed 
Oct. 23, 2015) (to be codified at 40 C.F.R. pt. 60).
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plans.86 Finally, the 2015 version of the CPP permits states to 
choose how their emissions target will be defined—as a mass-
based (total mass of CO2 emissions) or rate based (amount of 
CO2 emissions per megawatt-hour of generation).87 Choice 
of target definition then limits potential cooperative efforts 
only with states choosing to define emissions in a similar 
manner.88 Overall, the CPP leaves responses to the regula-
tion to firms and states.

The unprecedented latitude by which regulated states, and 
the firms within them, can meet the requirements of the CPP 
creates significant complexity for energy modelers.89 This lat-
itude and resulting complexity can be used to consider the 
possible limitations of relying on too few models to consider 
future impacts of a regulation, and therefore the need and 
utility of using a wider multi-model assessment of a proposed 
regulation.90 A study by the National Association of Clean Air 
Agencies (2015) included twenty-six chapters of individual 
and separate ways the CPP could be implemented by states 
and firms under the proposed 2014 rules.91 These choices 
are shown in Table 1. Not only does the CPP define specific 
performance outcomes across facilities, it also includes the 
potential choice to have states define how the grid operates.92 
The multiplicity of choices the regulation could include, and 
the far-reaching implications these choices could have, not 
only on the grid but also on related sectors of the economy 
(and potentially on the entire economy), calls for the use of 
larger models that incorporate multiple inter-related sectors. 
Further, longer-term, larger, and more complex models seem 
necessitated by the regulation, given that state emissions tar-
gets may take place according to the EPA’s suggested time-
table, or outside of it, provided average emissions levels are 
achieved in the interim period prior to the final target year 
of 2030.93

Exercises to bound modeling uncertainty would optimally 
include several model outcomes with identical implementa-
tion assumptions. Unfortunately, due to modelers’ prefer-
ences, possibly with respect to the questions and potential 
choices and impacts they wish to address, the complexity of 
the modeling problem, or a mix of both, different CPP stud-
ies have assumed alternative implementation assumptions.

Further, the CPP itself has been released in two iterations: 
the proposed rules released in June 2015, and the final rules 

86. Id.
87. Id. at 64,832; 79 Fed. Reg. 34,830, 34,833 (proposed June 18, 2014); Godby 

& Coupal, A Comparison of Clean Power Plan Forecasts for Wyoming, supra note 
57, at 2; Martin T. Ross et al., The Clean Power Plan: Implications of Three 
Compliance Decisions for U.S. States, NI WP 15-02, 2 (Duke Univ., Working 
Paper NI WP 15-02, 2015), https://nicholasinstitute.duke.edu/sites/default/
files/publications/ni_wp_15-02_full_pdf.pdf.

88. Godby & Coupal, A Comparison of Clean Power Plan Forecasts for Wyoming, 
supra note 57, at 4.

89. See William W. Hogan, Electricity Markets and the Clean Power Plan, 28.9 
Electricity J. 9, 11 (2015) (explaining that the Clean Power Plan is 
only a rule that sets emissions standards, and not a prescription for how 
to meet standards).

90. Id.
91. Nat’l Ass’n of Clean Air Agencies, Implementing EPA’s Clean Pow-

er Plan: A Menu of Options ES-1 (2015), http://www.4cleanair.org/
NACAA_Menu_of_Options.

92. Hogan, Electricity Markets and the Clean Power Plan, supra note 89, at 12, 17.
93. Id. at 3.

released August 2015.94 Between these two releases, addi-
tional potential choices were made available, for example the 
choice to regulate on the basis of mass or rate-based targets.95 
Accordingly, policy-makers considering the implications of 
the rule have a wide range of potential projection outcomes 
to contemplate depending on which model and implementa-
tion rules they consider, creating uncertainty as to the scale 
of potential impacts of various aspects of the CPP.

Since there may be many possible combinations of policy 
implementations, studies are often designed as an experiment 
in which end-points of policy choices are modeled such that 
a “bracket of truth” is created.96 Policies are modeled in isola-
tion to other choices, creating what is called a “polar type”—a 
case study involving extreme or unique characteristics—and 
which can yield theoretical insights.97 While policies are sel-
dom implemented in manner that mimics a polar case, polar 
cases are often used in models.98 Such an approach allows the 
range of outcomes to be described between the polar cases 
and allows an inference regarding the degree to which a pol-
icy choice might affect model outcomes.

For example, the Clean Power Plan allows states to meet 
their individual CO2 targets through actions within their 
respective borders, or through working together to meet col-
lective state targets.99 In both the 2014 and 2015 versions of 
the CPP, emissions trading was presumed to be a primary 
mechanism under which such regional cooperation could 
occur. The scope of such cooperation could range from 
regional state efforts to a national trading model, depending 
on if, or how, states choose to work together. It may be less 
likely that all states choose to coordinate in a national plan, 
however, modelers unwilling to assume specific regional 
combinations will often model a national trade outcome 
and compare it to one with no state cooperation (no trade). 
Policy-makers can use such an approach even if the mod-
eled outcomes are not exactly like those they are specifically 
considering, inferring that wider trading outcomes includ-
ing more states are more likely to be similar to the modeled 
national trade outcomes, while limited trade may result in 
outcomes closer to the no-trade results.

94. Carbon Pollution Emission Guidelines for Existing Stationary Sources: Elec-
tric Utility Generating Units, 80 Fed. Reg. 64,832 (proposed Oct. 23, 2015) 
(to be codified at 40 C.F.R. pt. 60); Carbon Pollution Emission Guidelines for 
Existing Stationary Sources: Electric Utility Generating Units, 79 Fed. Reg. 
34,830 (proposed June 18, 2014) (to be codified at 40 C.F.R pt. 60).

95. See Hogan, Electricity Markets and the Clean Power Plan, supra note 89, at 9.
96. An example of such a methodology being employed is found in John Larsen 

et al., Remaking American Power, Ctr for Strat. and Int’l Studies 
and Rhodium Group 57–64 (2014), https://csis-prod.s3.amazonaws.com/
s3fspublic/legacy_files/files/publication/141107_Ladislaw_RemakingAmer-
Power_Web.pdf.

97. Kam Jugdev & Lisa N. LaFramboise, Polar Types, in Encyclopedia of Case 
Study Research (SAGE Publications, 2016), http://sk.sagepub.com/refer-
ence/casestudy/n257.xml.

98. It may be impossible to know the precise linear combination for any continu-
ous variable, and accordingly polar cases are used to illustrate important ideas 
about how the models work and to frame the range of possibilities dependent 
on that variable. For example, economics models usually consider markets that 
are either monopolistic or perfectly competitive, although modelers know that 
the actual effect is somewhere in the middle (monopolistic competition) on 
a possible continuous spectrum. See N. Gregory Mankiw, Principals of 
Economics 346 (5th ed. 2008).

99. See Hogan, Electricity Markets and the Clean Power Plan, supra note 89, at 9.
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B. Input Uncertainty

Input uncertainty, or the assumptions regarding exogenous 
factors in any model (for example, the initial starting condi-
tions), can have a tremendous impact on projected outcomes. 
Input uncertainty arises not only with respect to unexpected 
changes in model inputs, such as economic growth trends, 
technological change, production costs, energy prices, or 
resource availability, but also due to context assumptions, 
such as additional regulatory conditions. Projections of new 
policy impacts will often be dependent on the other policies 
that may be in place, especially in the energy sector where a 
multiplicity of regulations exist.100 The existence of previously 
implemented policies could reinforce or counteract impacts 
of the specific policy under consideration. Model results are 
contingent upon both types of input assumptions, and viola-
tions of these assumptions are inevitable as time passes after a 
particular modeling effort is completed, and can occur even 
while a modeled analysis is being prepared.101 For example, 
regulations or a set of energy prices can change during the 
preparation of an analysis, but contemporary estimates of 
economic growth may not be available for some additional 
period of time. Including new conditions in the model with-
out including a set of consistent economic conditions can be 
problematic. Therefore, to meet a research or contract dead-
line, or in the interest of generating results, modeling may 
proceed despite the fact that some assumptions or assumed 
conditions are already known to violate reality.102 Users of 

100. Elizabeth Doris et al., Energy Efficiency in the United States: Over-
view of Trends at Different Levels of Government, National Renew-
able Energy Laboratory 2 (2009).

101. Peace & Weyant, supra note 20, at 3.
102. For example, recent modeling of the Clean Power Plan by Rhodium-CSIS 

(January 2015), which is referred to in more detail in the next section, was con-
ducted using AEO2015 assumptions to be consistent with previous modeling, 
with the exception of Production and Investment tax credit conditions. The 
AEO2015 assumptions were known to be outdated, in particular regarding 
oil and natural gas prices, but, because new AEO2016 conditions were not yet 
available, to maintain consistency with previous modeling efforts and to high-
light the impact of the tax credit changes within the National Energy Modeling 

such results then face uncertainty regarding whether model 
results are due purely to policy conditions or are driven in 
part by the assumed model context.

There are numerous examples of the impacts that assump-
tion changes over time can have on model projections.103 
Some modeling organizations even document these changes 
and the failures over time of projections to match reality as 
well as overall impacts of changes to assumed conditions.104 
For example, past projections of United States coal produc-
tion have been impacted by unexpected developments in 
natural gas production.105 As a result of the development of 
shale gas resources and the implementation of new technolo-
gies to extract gas from previously undevelopable “tight gas” 
formations domestic production of natural gas has increased 
since 2005.106 The result has been dramatically lower natural 
gas prices, and reduced coal demand as cheaper natural gas 
has displaced it in electricity generation.107 Figures 1 and 2 
compare the EIA’s NEMS-derived AEO projections for coal 
production and natural gas prices in the electricity sector 
from 1994 to 2014, as well as actual coal production and 
natural gas prices over this period.108 Coal use projections 
prior to 2008 tended to increase year over year beginning 
around 2000 as unanticipated natural gas price increases 

system, they were used anyway. Robert Godby & Roger Coupal, The Po-
tential Impact of Rate-Based or Mass-Based Rules on Coal-Producing 
States Under the Clean Power Plan, 29 Electricity J. 42, 42–51 (2016).

103. Note that the changes discussed here are assumed to have been unexpected 
and often outside the normal variation of such variables. As will be dis-
cussed, normal variations in many variables can be in part addressed by 
sensitivity analyses.

104. For example, the EIA’s AEO2015 report included an appendix comparing ref-
erence case conditions to those in the previous report. See U.S. Energy Info. 
Admin., Annual Energy Outlook 2015, DOE/EIA-0282, at app. E (2016), 
http://www.eia.gov/forecasts/aeo/appendixe.cfm.

105. Am. Petroleum Inst., Understanding Natural Gas Markets 2–3 (2014). 
106. U.S. Energy Info. Admin., Natural Gas, Annual Energy Outlook 

2015, at 6–7 (2015), https://www.eia.gov/forecasts/aeo/section_energyprod.
cfm#naturalgas.

107. Cassar, supra note 35.
108. Data for figures come from U.S. Energy Info. Admin., Annual Energy 

Outlook Retrospective Review, DOE/EIA-0640, at tbls. 7(a) & 13 
(2015), https://www.eia.gov/forecasts/aeo/retrospective/.

Table 1: Possible Implementation Choices Under the CPP

Optimize Power Plant Operations Implement Combined Heat and Power in the Electric Sector

Implement Combined Heat and Power in Other Sectors Improve Coal Quality

Optimize Grid Operations Increase Generation From Low-Emission Resources

Pursue Carbon Capture and Utilization or Sequestration Retire Aging Power Plants

Switch Fuels at Existing Power Plants Reduce Losses in the Transmission and Distribution System

Establish Energy Savings Targets for Utilities Foster New Markets for Energy Efficiency

Pursue Behavioral Efficiency Programs Boost Appliance Efficiency Standards

Boost Building Energy Codes Increase Clean Energy Procurement Requirements

Encourage Clean Distributed Generation Revise Transmission Pricing and Access Policies

Revise Capacity Market Practices and Policies Improve Integration of Renewables Into the Grid

Change the Dispatch Order of Power Plants Improve Utility Resource Planning Practices

Improve Demand Response Policies and Programs Adopt Market-Based Emissions Reduction Programs

Tax Carbon Dioxide Emissions Consider Emerging Technologies and Other Important Policies
Source: William W. Hogan, Electricity Markets and the Clean Power Plan, 28.9 ELECTRICITY J. 9, 12 (Nov. 2015).
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took place.109 After 2008 the opposite occurred; annual pro-
jections of coal use shifted downward as unexpected natural 
gas price declines continued.110 These outcomes have had sig-
nificant impacts on CO2 emissions from the electric power 
sector since 2008, as coal’s share of total electricity genera- as coal’s share of total electricity genera-’s share of total electricity genera-
tion fell from approximately 50% to 39% by 2014.111

Figure 1: AEO Coal Production 
Projections vs. Actual112

Figure 2: AEO Natural Gas 
Projections vs. Actual113

Figures 1 and 2 illustrate how unanticipated changes in 
market outcomes can affect model results. The primary input 
assumption that changed between both was a resource assump-
tion regarding availability of natural gas. The source of the 
change was technology and the implicit assumption in early 
forecasts that production costs for natural gas would not change 
due to new technological developments in its production.

With respect to more recent Clean Power Plan modeling, 
projected use of coal in generation is very sensitive not only 
to natural gas assumptions, but also to oil price and coal 
productivity (production cost) assumptions and how they 

109. Id.
110. Id.
111. Id.; Ass’n of Am. R.Rs., Railroads and Coal (2016), https://www.aar.org/

BackgroundPapers/Railroads%20and%20Coal.pdf.
112. U.S. Energy Info. Admin., Annual Energy Outlook Retrospective Re-

view, supra note 108, at tbl. 13.
113. Id. at tbl. 7(a).

change over time. Godby and Coupal illustrate the impacts 
these changes have on the potential impacts of the Clean 
Power Plan on Wyoming, the nation’s largest coal producing 
state.114 They compare estimated impacts of the 2014 pro-
posed CPP rules on Wyoming coal production by consider-
ing two NEMS-based simulations, one using the AEO2014 
modeling assumptions and one using updated 2015 assump-
tions.115 A major difference in the input assumptions between 
the two simulations is the dramatic and unexpected change 
in oil prices that occurred in mid-2014. These lower oil prices 
result in the assumed time-path of world oil prices shifting 
downward from 2015 through 2040.116 The result is higher 
natural gas prices.117 These, along with revisions to the previ-
ously assumed rate of decrease in coal productivity result-
ing in lower Wyoming coal production costs, and downward 
revisions to assumed wind generation costs over the pro-
jection period, cause Wyoming coal production to rise by 
as much as 100 million tons per year (approximately 33%) 
relative to the 2014 estimates under the CPP.118 Nationally 
these changes have wider impact, causing natural gas to be 
displaced by wind as the “bridge fuel” to the more stringent 
carbon-emission standards.119 Overall, the change in input 
assumptions results in complex dynamics playing out across 
energy markets, and significant changes to how the country 
accommodates more stringent GHG emissions standards. 
While models are necessary for policy-makers to understand 
and estimate these complexities, these results are indicative of 
the sensitivity modeled outcomes have to input assumptions.

To understand and characterize what has been called 
input uncertainty, a first step is to assume several future 
scenarios within a specific model, in order to test the sensi-
tivity of outcomes to changes in assumptions. For example, 
EIA in its AEO modeling always includes several side cases. 
These side cases are used to account for input variables that 
are historically volatile or a priori judged to be most likely to 
change. The AEO2014 projections included 30 side cases, 
including ones for both higher and lower natural gas and 
oil prices than assumed in the baseline case.120 The natural 
gas cases were included because of the volatility and relative 
unpredictability of natural gas outcomes over the recent past, 

114. See Godby & Coupal, A Comparison of Clean Power Plan Forecasts for Wyoming: 
supra note 57, at 53–62.

115. Id. at 54.
116. Id. at 57.
117. Some natural gas production is a byproduct of oil production, and lower oil 

prices result in lower oil production, which results in lower natural gas produc-
tion nationally and therefore higher natural gas prices.

118. Robert Godby & Roger Coupal, The Potential Impact of Rate-Based or 
Mass-Based Rules on Coal-Producing States Under the Clean Power 
Plan: Implications for Wyoming 17 (2016), http://www.uwyo.edu/cee/_
files/docs/wyoming-cpp-impact-2016-state%20report.pdf.

119. Reduced use of natural gas in generation due to higher fuel costs results in 
greater coal use in the EIA simulations of the proposed 2014 CPP rules. See 
U.S. Energy Info. Admin., Analysis of the Impacts of the Clean Power 
Plan 47–48 (2015), https://www.eia.gov/analysis/requests/powerplants/clean-
plan/. The resultant increase in coal emissions is accommodated under the 
emissions regulations through greater electricity generation from wind, which 
is enabled by the lower costs assumed in the 2015 technology assumptions for 
this fuel relative to 2014 assumptions.

120. U.S. Energy Info. Admin., Annual Energy Outlook 2014, DOE/EIA-
0383, at E6–8 (2014) [hereinafter AEO2014], http://www.eia.gov/forecasts/
aeo/pdf/0383(2014).pdf.
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and oil cases were included to allow users to understand the 
potential impacts of the historic volatility in these prices.121

Furthermore, such side cases can be used to account for 
alternative regulatory scenarios. Again, EIA’s AEO2014 
side cases included three carbon tax scenarios to allow the 
impacts of such a policy to be identified.122 The use of sev-
eral side cases within the same model (i.e., sensitivity analysis) 
facilitates a single consistent framework for understanding 
the potential relative changes caused to the overall system for 
a specific change in assumptions. As such, sensitivity analy-
ses not only allow for reduced input uncertainty by offering 
a wide range of projections through changed assumptions, 
but also greater understanding of how model outcomes occur 
when assumed conditions change. These insights are indeed 
the most valuable benefit of modeling.123

C. A Multiplicity of Models: Model Uncertainty

Models reduce a complex system of relationships in the actual 
world to a subset that can be represented by a set of mathe-
matic equations. Models are simplified abstractions of reality, 
and, as such, they will differ in design and structure, depend-
ing on what modelers feel most appropriate to describe the 
aspect of the world they wish to abstract.124 In the energy 
space, this creates competing representations of the energy 
economy and generates divergent descriptions of the world. 
Model differences can be driven by structure, but further, 
even in similar structures, they can be driven by parameter 
uncertainty—for example, differences in assumptions about 
productivity and cost relationships, parameter stability over 
time, and the dynamics of technological change.125 Model 
differences may also be fundamental, due to their representa-
tion of whether agents have perfect foresight. Facing choices 
under uncertainty, do agents look ahead to anticipate future 
conditions, or act myopically? Models may also be limited to 
describing a narrower or wider set of outcomes and/or may 
be constrained by limiting assumptions, or the level of tech-
nical detail.126 Models may also be partial equilibrium sys-

121. Id. at CP–3, CP–9. The low oil price case was fortunate as the low oil resource 
(high oil price case) considered an outcome in which oil prices were similar 
to what they actually were at the end of 2014 when they unexpectedly fell on 
world markets. Unfortunately, oil prices continued to fall, and by 2015 even 
the low oil prices relative to recent history assumed in the high oil resource case 
were significantly higher than those that actually occurred.

122. AEO2014, supra note 120, at D–1.
123. Peace & Weyant, supra note 20, at 2.
124. Id. at 1–3.
125. Recent research on integrated climate models and related parameter uncer-

tainties can be found in Kenneth Gillingham et al., Modeling Uncertainty in 
Climate Change: A Multi-Model Comparison (Yale Univ., Cowles Found. Dis-
cussion Paper No. 2022, 2015), http://www.nber.org/papers/w21637. While 
not directly relevant to energy models, some of the models considered include 
integrated economic and power sector relationships. The dynamics of technical 
change has been an area of recent research. Technological change and innova-
tion are historically assumed exogenous to many models; however, since policy 
often directs or incentivizes technological development, specific policy choices 
may change the path of technological innovation. In such cases, technologi-
cal change becomes endogenous and such feedbacks may also be included 
in economic policy models. See Kenneth Gillingham et al., Modeling Endog-
enous Technological Change for Climate Policy Analysis, 30 Energy Econ. 6, 30 
(2008).

126. Such assumptions could include imperfectly versus perfectly mobile capital or 
the inclusion of backstop technologies.

tems which may describe power systems only—that is, fuels 
and output relationships in the generation sector alone, or 
the larger energy sector that describes how policy decisions 
impact use of all forms of energy; or they may be general 
equilibrium systems describing the energy sector and its rela-
tionship to wider economic outcomes, and how these eco-
nomic outcomes in turn determine the demand for the use of 
energy to begin with.

To deal with modeling uncertainty—that is, to under-
stand how much of the discrepancy in modeling results is 
due to the models structure and policies implemented—
policy-makers will often turn to a meta-analysis of model 
outcomes.127 Such multi-model assessments allow a combi-
nation of qualitative and quantitative approaches. Models 
outcomes are compared for similar policy choices to deter-
mine a range of outcomes.128 The actual model outcomes can 
define a quantitative range of impacts while also describing 
a qualitative response to the policy choice considered. These 
can further be described and compared for changes in inputs 
and policy implementations assumed. The overall results can 
then be used to describe the probable outcomes that policy-
makers may expect to occur for a specific policy given the 
current state of collective knowledge over energy systems 
(and the wider economy where appropriate) as described and 
embodied within the models considered.129

In addition, to deal with the input and implementation 
uncertainties already described, each model considered in a 
multi-model assessment may include alternative scenarios to 
account for model sensitivity to changes in input and imple-
mentation assumptions. They will also usually include a 
baseline (no-policy) case to allow comparison of scenarios to 
a “business as usual (“BAU”) condition in which the policy 
is not implemented at all.130 Comparison of scenarios to the 
BAU-case allows modelers to quantify estimates of impacts 
due to changes in input and implementation assumptions 
within a model-consistent framework.

D. How Multi-Model Assessment Can Be Used: CPP 
Outcomes as Predicted by Various Modeling Efforts

The Clean Power Plan provides an example of how models are 
used by policy-makers in their attempt to assess the potential 
impact a regulatory program may have on the energy sec-
tor and the wider economy. Table 2 describes a collection 
of analyses of the Clean Power Plan since 2014, delineating 
the agency conducting the study, the model used, the input 

127. See Daniel A. Farber, Modeling Climate Change and Its Impacts: Law, Policy, and 
Science, 86 Tex. L. Rev. 1655, 1669 (2007).

128. Stanford Univ., About, Energy Modeling F., https://emf.stanford.edu/about 
(last visited Oct. 2, 2016).

129. A more formal analysis of collective model outcomes is also possible beyond 
the simple aggregation of a range model outcomes as described. Gillingham 
et al., supra note 125, at 25–28, suggests a quantitative meta-analysis to deal 
with model and parameter uncertainties more formally, introducing a Monte 
Carlo framework for such multi-model assessments. Such methods, however, 
are uncommon.

130. Johns Hopkins Ctr. for Climate and Energy Sol., Modeling EPA’s 
Clean Power Plan: Insights for Cost-Effective Implementation 4 
(2015) [hereinafter Hopkins], http://www.c2es.org/publications/modeling-
epas-clean-power-plan-insights-cost-effective-implementation.
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and implementation assumptions, as well as the additional 
scenarios considered, and illustrates the three forms of uncer-
tainty discussed as they pertain to analyzing the CPP. Infor-
mation regarding inputs for current and assumed economic 
conditions, energy prices, technology improvement and 
production cost time-paths, etc. has been updated as new 
forecasts have become available. The 2014 CPP proposal and 
the 2015 CPP final rule changes necessitated an additional 
round of modeling. Specifically, increases in the stringency 
of CO2 reductions in the new rule (from a 30% reduction 
from 2010 levels in the 2014 proposal to a 32% reduction 
by 2030 in the final rules), changes in BSER used in the 
final rule which eliminated energy efficiency, changes to final 
state emissions targets, the required state choice of mass and 
rate-based emissions standards, and changes to the timing 
of emissions limits being implemented from 2020 to 2022, 
as well as additional rules changes, would all have resulted 
in the estimated impacts of the CPP changing even without 
changes to initial input assumptions. Summaries of all study 
outcomes would be beyond the scope of this paper, however, 
a summary of the first six studies can be found in Hopkins 
(2015).131

Overall, modeling of the 2014 proposed CPP rules using 
AEO 2013 and 2014 input assumptions led to some broad 
conclusions. As outlined in Hopkins (2015), a qualitative 
summary of the results of the first six models in Table 2 
prompts the following observations:

Energy efficiency is the most cost-effective means to 
reduce emissions and resulted in lower power con-
sumption. Studies, however, differed in how energy 
efficiency was considered, the degree of energy effi-
ciency implementation assumed, and the cost savings 
this choice entailed.
Switching from coal to natural gas was the primary 
means of meeting the regulation requirements from 
a generation perspective. The degree to which energy 
efficiency was employed could potentially offset or 
minimize the degree that natural gas prices rise due 
to the CPP.
Forecasted cost impacts to U.S. households were rela-
tively low, averaging an increase of $87/year (in 2012 
dollars). Total increases in power spending were esti-
mated to be less than $10 billion/year in five of the 
six studies.
Renewable generation and nuclear power growth 
remained at business as usual levels despite the imposi-
tion of the CPP. In the case of renewables this growth 
remained robust.
In all but one scenario modeled in the first six studies, 
annual average CO2 emissions were between 1514 and 
1774 million metric tons (“MMT”) between 2020 and 
2030.132

131. Id. at 1.
132. Hopkins, supra note 130, at 15.

In addition to the results reported in Hopkins (2015), the 
Rhodium-CSIS 2014 study, utilizing a version of the EIA’s 
NEMS model, considered the impact of expanded state 
cooperation through the use of permit trading as permitted 
by the CPP rules.133 Their study indicated that in addition 
to exploiting energy efficiency, widened trade opportunities 
could both reduce emissions more quickly and reduce the 
cost of compliance nationally.134

In June 2015, prompted by a request from Congress,135 
the EIA released the most extensive analysis of the proposed 
2014 CPP rules to date.136 In this study the EIA updated 
its input assumptions to be consistent with those in the 
AEO2015. As previously discussed, some significant effects 
were caused by this change, as well as the modeling meth-
ods the EIA undertook. The EIA modeling considered states 
engaging in various levels of electricity trade as a proxy for 
state cooperation. In addition, the EIA model allowed states 
to choose a minimum-cost time-path of emissions reduction, 
as opposed to explicitly meeting the schedule of proposed 
targets in the 2014 proposal.137 Results of their modeling in 
the baseline case were generally consistent with the previous 
results. However, there were some significant differences138:

The degree of energy efficiency utilized was much lower 
than some past studies predicted, in part because an 
alternative set of estimated costs for implementing 
energy efficiency were used.
Previously discussed changes to the assumed cost of 
renewable generation in the future, as well as natural 
gas price and coal production cost assumptions caused 
renewable energy to play a much larger role in the 
transition towards the final CPP target in 2030. This 
was further enabled by the alternative glide-path that 
states were allowed to use in meeting final emissions 
targets under the CPP.139 Initial compliance is achieved 
through greater natural gas use. However, later in the 
CPP compliance period, renewables become much 
more important and renewable generation deployment 
is higher than in the BAU case.140 Nuclear generation is 
also expanded if treated in the same manner as renew-
able generation with respect to CPP compliance.

133. Larsen et al., supra note 96, at vii–viii, 2.
134. Id. at 17, 46.
135. U.S. Energy Info. Admin., Analysis of the Impacts of the Clean Power 

Plan 74 (2015) [hereinafter EIA 2015 Analysis], https://www.eia.gov/analy-
sis/requests/powerplants/cleanplan/pdf/powerplant.pdf.

136. See Hopkins, supra note 130, at 4.
137. See EIA 2015 Analysis, supra note 135, at 75–76. Previous studies assumed 

states met the time path of target reductions outlined in the 2014 CPP pro-
posal. The 2014 rules, however, allowed states to emit higher levels of CO2 
in the early years of the implementation period if in later years they exceeded 
targets such that the average annual emissions rate defined by the CPP targets 
for each state was met from 2020 to 2029.

138. See Hopkins, supra note 130, at 8–10.
139. See Godby & Coupal, A Comparison of Clean Power Plan Forecasts for Wyoming, 

supra note 57, at 58. Due to greater use of renewables and delayed implemen-
tation of emissions reductions between 2020 and 2029 under the alternative 
emissions time path that states are presumed to use, the EIA study also pro-
jected a reduced impact on coal generation.

140. Hopkins, supra note 130, at 12.
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Average annual CO2 emissions in this study were 
between 1553 and 1727 MMT by 2030, depending on 
the scenario.
Trade and wider state cooperation benefits, as the EIA 
modeled them, were reduced relative to those modeled 
in the Rhodium-CSIS study. However, they still poten-
tially improved systems cost and emissions outcomes 
relative to a no cooperation outcome.141

Electricity expenditure outcomes by end-users are con-
sistent with earlier studies summarized in Hopkins 
(2015).142

Representation of the final CPP rules in August 2015 
required yet more modeling. Based on previous study 
findings, policy analysis had not focused on the benefits 
of wider trade and state cooperation. Earlier findings indi-
cating the benefits of such efforts were likely some of the 
impetus for the 2015 rules clarifying trade and cooperation 
rules, and the inclusion of “model trading rules” developed 

141. See Larsen et al., supra note 96, at 10–11, 29. The EIA modeled state coop-
eration on the basis of expanded power flows across the transmission system. 
They did not model expanded cooperation as a permit system in the way the 
Rhodium-CSIS studies did.

142. See Hopkins, supra note 130, at 2; EIA 2015 Analysis, supra note 135, at 87.

by the EPA to facilitate state implementation plans includ-
ing such efforts.143

In addition to changes in the methodology, probably one 
of the most significant impacts of the new rules on states 
was the requirement that states select the type of regulatory 
standard by which they wish to be governed.144 Among the 
first decisions states must make to comply with the new rules 
is whether they wish to have their state emissions targets 
defined by a rate or mass-based standard.145 The EPA 2015 
modeling utilized a “bracket of truth” methodology to com-
pare the impacts of either choice on power sector outcomes, 
including scenarios for both rate and mass-based outcomes, 
under the assumption that regulated states all choose one or 
the other option while utilizing limited state cooperation.146

143. See generally U.S. Envtl. Prot. Agency, Factsheet: Clean Power Plan 
Proposed Federal Plan and Proposed Model Rules 1 (2015), https://
www.epa.gov/sites/production/files/2015-10/documents/fs-cpp-proposed-
federal-plan.pdf.

144. See Carbon Pollution Emission Guidelines for Existing Stationary Sources: 
Electric Utility Generating Units, 80 Fed. Reg. 205, 64,664 (proposed Oct. 
23, 2015) (to be codified at 40 C.F.R. pt. 60); Carbon Pollution Emission 
Guidelines for Existing Stationary Sources: Electric Utility Generating Units, 
79 Fed. Reg. 117, 34,830, 34,833 (proposed June 18, 2014) (to be codified at 
40 C.F.R. pt 60).

145. See 80 Fed. Reg. 205, at 64,664 ((proposed Oct. 23, 2015) (to be codified at 
40 C.F.R. pt. 60).

146. Id. at 64,927–29. In reality, it is highly unlikely states will coordinate in this 

Table 2: Selected CPP Analyses

Study 
 

Model 
 

Sectors 
Included 

Policy
Modeled 

CPP 
Rules 

Initial 
Conditions 
Assumed

Sensitivity 
Cases 

BSER Range 
Considered 

EPA (2014) IPM Power Sector 
Only

State-based emissions 
rates

2014 
Proposal

AEO 2013 N.A. All 2014 building 
blocks

CATF Northbridge Power Sector 
Only

Mass-budget, inter-
state trade allowed

2014 
Proposal

AEO 2013 N.A. Did not include 
energy efficiency

EVA AuroraXMP Power Sector 
Only

State emission rate, 
inter-state trade 
allowed

2014 
Proposal

AEO 2013 N.A. Did not include heat 
rate improvements

NERA NewERA Power Sector 
Only

State emission rate, 
inter-state trade 
allowed

2014 
Proposal

AEO 2013 No energy 
efficiency

All 2014 building 
blocks

NRDC IPM Power Sector 
Only

State emission rate 2014 
Proposal

AEO 2014 Limited energy 
efficiency

All 2014 building 
blocks

Rhodium-
CSIS (2014)

RHG-NEMS Power and 
Energy Sectors 

Regional emissions 
rate, inter-state trade 
allowed

2014 
Proposal

AEO 2014 No energy effi-
ciency, national 
trading. 

Did not include heat 
rate improvements

EIA (2015) EIA-NEMS Power and 
Energy Sectors 

State emission rate, 
inter-state trade 
allowed

2014 
Proposal

AEO 2015 No CPP, 15 side 
cases including 
no EE, 

All 2014 building 
blocks

EPA (2015) IPM Power Sector 
Only

State-based emissions 
rates and mass-based 
limits

2015 
Proposal

AEO 2015 Rate-based, 
mass-based stds.

All 2015 building 
blocks

Rhodium-
CSIS (2015)

RHG-NEMS Power and 
Energy Sectors 

State-based emissions 
rates and mass-based 
limits, inter-state trade 
allowed

2015 
Proposal

AEO 2015 Rate-based, 
mass-based 
stds., national 
trade, renewable 
tax extension 

Did not include heat 
rate improvements

Source: JOHNS HOPKINS CTR. FOR CLIMATE AND ENERGY SOL., MODELING EPA’S CLEAN POWER PLAN: INSIGHTS FOR COST-EFFECTIVE IMPLEMENTATION 1 (2015). 
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EPA’s emissions results under the new rules projected 
higher estimated emissions from the power sector than pre-
vious studies, ranging from 1812 MMT in the rate-based 
case to 1814 MMT in the mass-based case by 2030.147 Incre-
mental costs from the EPA’s BAU base case were also consis-
tent with previous studies, ranging from $5.1 billion under 
a mass-based approach to $8.4 billion under the rate-based 
approach.148 Despite these costs, the EPA estimated that the 
average consumer’s electricity bill would decrease by between 
7% and 7.7% by 2030 due to reduced power consumption 
through energy efficiency measures, while retail electricity 
rates were nearly unchanged from their BAU projections.149 
Unlike EIA’s results under the 2014 proposed rules, but using 
the same AEO2015 input assumptions, renewable generation 
would increase only moderately under the 2015 rules. By 
2030, all non-hydro renewables are projected to rise by 8% 
under a mass-based regime, and increase by 9% in a rate-
based setting.150 Natural gas generation at existing plants 
(existing when the rules are implemented) was the generation 
source projected to increase the most under the new rules—
by 5% and 18% under a mass-based and rate-based system, 
respectively.151 Both renewable and natural gas generation are 
projected to increase despite an 8% reduction in total genera-
tion under both mass and rate-based rules.

Rhodium-CSIS also consider two scenarios describing 
outcomes under rate and mass-based rules using their ver-
sion of the NEMS model. Their study assumed unrestricted 
nationwide trading, unlike EPA’s study. While complete 
results of the modeling—including cost and generation 
details of their analysis—were not released by Rhodium, the 
emissions reduction in 2030 achieved 34% to 35% relative to 
2005 levels.152 This compared to EPA’s projection of 32% in 
their study.153

Rhodium released a companion study later that repeated 
their original analysis of the 2015 rules, but included the 
impact of Congress’ decision to extend renewable produc-

fashion and it is unclear if there is a cost to a lack of coordination. The EPA 
study comments on this possibility but gives no potential cost estimates of 
uncoordinated state choices regarding rate or mass-based regulation.

147. 80 Fed. Reg. 64,924 (Oct. 23, 2015).
148. Clean Power Plan Fact Sheet: Energy Efficiency in Mass-Based Plans, All. to 

Save Energy, https://www.ase.org/sites/ase.org/files/cpp_fact_sheet_-_ee_in_
mass-based_plans.pdf (last visited Sept. 1, 2016).

149. Stephen D. Eule, Shocking! Electricity Bills Will Rise Under EPA’s Clean Power 
Plan, Energy XXI, http://www.energyxxi.org/shocking-electricity-bills-will-
rise-under-epa’s-clean-power-plan; FACT SHEET: Clean Power Plan Benefits, 
U.S. Envtl. Protection Agency, https://www.epa.gov/cleanpowerplan/fact-
sheet-clean-power-plan-benefits#affordable-reliable (last visited Oct. 2, 2016) 
(“In 2030 when the plan is fully implemented, electricity bills would be ex-
pected to be roughly 8 percent lower that they would been without the actions 
in state plans”); Ari Phillips, Obama’s Clean Power Plan Will Actually Lower 
Your Energy Bill, According to New Study, Think Process (July 30, 2015), 
https://thinkprogress.org/obamas-clean-power-plan-will-actually-lower-your-
energy-bill-according-to-new-study-141cad0314cd#.vgmbplhm3.

150. 80 Fed. Reg. 64,695 (Oct. 23, 2015).
151. Id.
152. John Larsen et al., Assessing the Clean Power Plan 7 (2016), https://csis-

prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/160106_
Larsen_AssessingCleanPowerPlan2_Web.pdf.

153. Id. Rhodium noted that differences in the emissions estimates between the two 
studies could be due to modeling different models, different implementations 
of the CPP assumed, or due to EPA’s use of their own emissions data, which 
differs from that reported by the EIA, which Rhodium used. Id.

tion and investment tax credits through 2020 and 2021, 
respectively.154 Production tax credits for wind had expired 
in 2014, and investment tax credits for solar were sched-
uled to fall to 10% from 30% of project costs in 2016.155 
They reported that under their modeling, the primary 
change in power generation mix to meet the new CPP 
rules was in the share of natural gas, however, the impact 
of Congress’ decision was to significantly increase renew-
able build-out in their projections.156 With the tax-exten-
sions, they projected under mass-based rules that the new 
CO2 rules would be met almost exclusively with renewable 
energy. This newer study did not include details of emis-
sions and cost impacts either.

Taking stock of the combined modeling results from the 
exercises presented in Table 2, it becomes clear how mod-
eling uncertainty might be at least reduced by the use of 
multi-model assessments and scenario analysis. Considering 
the exercises cited, clear areas of convergence and divergence 
arise. Overall, the model outcomes are generally consistent 
with their projections of emissions outcomes and program 
costs under both the 2014 and 2015 rules. In those models 
where it is considered, clear benefits can be achieved with 
greater cooperation among states, such as through the use of 
permit trading programs. These results likely had some influ-
ence on the additional accommodations and efforts in the 
2015 rules to encourage such plans. Convergence over model 
outcomes occurred despite differences in input assumptions 
and policy implementation.

Divergence, where it exists, appears to be created when 
modelers’ assumptions regarding how states will achieve 
emissions targets are changed as illustrated in the EIA’s 
study. Unlike other studies, EIA’s analysis allowed states 
to delay implementation of emissions standards early in 
the compliance period of the CPP to access greater cost 
savings as new technologies developed later in the compli-
ance period.157 Such actions also reduced the impact on 
natural gas prices and therefore reduced the cost of com-
plying with the rules. This study, and Rhodium-CSIS’s are 
the only studies that find renewables playing the most sig-
nificant role in meeting the CPP emissions limit. All other 
studies conclude that natural gas generation will be the 
primary means of achieving emissions targets.158 This sug-
gests that changes in technology and market conditions 
could significantly alter how firms and states comply with 
the CPP.

The later Rhodium-CSIS study also indicates the poten-
tial for other changes in the regulatory environment to affect 
program outcomes. Changes in legislation and tax treat-

154. John Larsen et al., What Happens to Renewable Energy Without the Clean 
Power Plan?, Rhodium Group (Feb. 25, 2016), http://rhg.com/notes/
renewable-energy-without-the-clean-power-plan.

155. Renewable Electricity Production Tax Credit (PTC), U.S. Dep’t of Energy, 
http://energy.gov/savings/renewable-electricity-production-tax-credit-ptc (last 
visited Oct. 23, 2016); Solar Investment Tax Credit (ITC), Solar Energy In-
dus. Ass’n, http://www.seia.org/policy/finance-tax/solar-investment-tax-cred-
it (last visited Oct. 2, 2016).

156. See Larsen et al., supra note 154.
157. Larsen et al., supra note 96, at 7.
158. Id. at 47.
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ments, as well as other regulations, could have a significant 
impact on how emissions reductions are achieved. Given 
that states are required to make early decisions regarding 
how to comply with the current and proposed new regula-
tions like the CPP, and these decisions then commit states 
to future costs which may eventually be seen in hindsight as 
sub-optimal, are there ways to design regulation that avoid 
such potential costs?

III. Accounting for Uncertainty in Law

Despite the fact that large and complex models seeking to 
project long term, global trends in energy generation and 
consumption, resulting prices, emissions and reliability will 
always be wrong in their projections, the exercises of sensitiv-
ity analysis and multi-model comparisons can offer useful 
information about the magnitude of the uncertainty, and 
suggest ways in which the law can be designed to be effective 
under changing and unforeseen conditions. In fact, increased 
understanding about the uncertain effects of proposed regu-
lations reveals an opportunity for enlarging the box in which 
models operate.159 Modeling offers the benefit of identifying 
which inputs, if changed, will have material impacts on the 
efficacy of the regulation—for example, the availability of 
tax credits for renewables such as wind, or the price of natu-
ral gas. This, in turn, provides an opportunity to deal with 
certain contingencies prospectively by incorporating them 
directly into the rule in an if-then format.

Recent scholarly contributions in the area of dynamic law 
suggest that rules that account for uncertainty and antici-
pate new information and a changing regulatory landscape 
are not only possible but also may offer incentives towards 
desired behavior and overcome certain issues with passive 
law such as inertia and path-dependency.160 Dynamic law is 
designed to account for uncertainty in the system it intends 
to regulate.161 Recognizing that lawmakers are forced to reg-
ulate with imperfect information, dynamic law seeks to build 
responsiveness to emerging information and changing norms 
into the law itself. For example, having tested the sensitiv-
ity of outcomes to changes in assumptions during model-
ing, dynamic rules would provide for subsequent revision, 
repeal, or learning based processes depending on evolving 
understandings of these baseline assumptions. This view of 
law has taken hold among scholars advocating for regulation 
that acknowledges the metamorphic nature of ecological sys-
tems.162 As J.B. Ruhl has written: “[t]o manage the impact of 
human society on the inherently chaotic, adaptive environ-
ment, the environmental law system itself must possess those 
dynamical qualities.”163

159. Attributed to Dwight D. Eisenhower “if you cannot solve a problem, enlarge 
it.” Russ Linden, Reframe, Broaden a Problem, Governing (May 4, 2011), 
http://www.governing.com/columns/mgmt-insights/reframe-broaden-prob-
lems.html.

160. E.g., Justin R. Pidot, Governance and Uncertainty, 37 Cardozo L. Rev. 113, 
118, 139–41 (2015).

161. Id. at 118.
162. See id. at 125–27.
163. J.B. Ruhl, Thinking of Environmental Law as a Complex Adaptive System: How 

to Clean Up the Environment by Making a Mess of Environmental Law, 34 

Dynamic law can take a variety of forms, but all relate to 
the notion that rules should themselves acknowledge and be 
responsive to the uncertainties inherent in the systems the 
rules are designed to regulate. Importantly, dynamic rules 
must be distinguished from flexible rules. Flexible rules are 
those that provide discretion in the means to achieve compli-
ance. Examples of flexible rules in the electricity regulation 
sector are state implementation programs and the Acid Rain 
programs under the Clean Air Act, including the CPP.164 
These rules are helpful in that they can promote innovation 
and reduce compliance costs. However, they are not neces-
sarily, in and of themselves, dynamic as the ultimate stan-
dard that must be achieved is static—and is not subject to 
repeal, change, or reconsideration upon the happening of any 
specific event, whether it be the passage of time, receipt of 
new information, or the occurrence (or non-occurrence) of a 
predetermined outcome. Dynamism requires that the stan-
dard itself be responsive to new information, not solely the 
method of achieving the standard.

Justin Pidot, in his exploration of the topic, categorizes 
the forms of dynamic law as durational, adaptive, and con-
tingent.165 As Pidot acknowledges, even static law has some 
dynamic elements, taking into consideration changing 
community standards, for prurience for example, and con-
gressional authority to “exit” from static regimes through 
subsequent repeals.166 The next section describes durational 
and contingent categories of dynamic law, and discusses how 
lawmakers can apply insights from models to better address 
uncertainty through dynamic legal rules.

A. Durational Rules

Durational rules are those that provide opportunities to law-
makers to consider new information by “facilitating periodic 
opportunities for amendment or repeal of existing rules” 
with the goal of considering new information and encourag-
ing responsiveness.167 These rules can take a variety of forms 
including sunset provisions168 and retrospective review.169 
Deadline-based measures have been praised for their ability 
to create pressure to adapt to evolving standards and new 

Hous. L. Rev. 933, 940 (1997).
164. See Dalia Patino-Echeverri, Feasibility of Flexible Technology Standards for Exist-

ing Coal-Fired Power Plants and Their Implications for New Technology Develop-
ment, 61 UCLA L. Rev. 1896, 1907–08 (2014). Other examples of flexible 
standards can be found in a review of CAFÉ, see, e.g., Carley et al., Re-
thinking Auto Fuel Economy Policy: Technical and Policy Sugges-
tions for the 2016-17 Midterm Reviews 10–11 (2016).

165. Pidot, supra note 160, at 141.
166. There are challenges with these mechanisms in static law. As Pidot notes, “Even 

when lawmakers agree that a static law regime needs to be amended or aban-
doned altogether, it may nonetheless persist because lawmakers lack resources 
or attention to the matter.” Id. at 139 (citing Hannah Wiseman, Remedying 
Regulatory Diseconomies of Scale, 94 Boston L. Rev. 235, 272 (2014)).

167. Pidot, supra note 160, at 142.
168. In actuality it has been hard for lawmakers to consider changes or exit due to 

political and economic considerations, see Rebecca Kysar, Lasting Legislation, 
159 U. Pa. L. Rev. 1007, 1007–08 (2011).

169. Cary Coglianese, Moving Forward With Regulatory Lookback, 30 Yale J. on 
Reg. 57, 57–66 (2013).
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information, but have been derided for their high economic 
and political costs.170

Although most durational rules incorporate a deadline in 
the form of a term of years, there is nothing per se that requires 
use of a standard increment of time. Durational rules can 
also be structured so that they sunset upon the occurrence 
or non-occurrence of a specified, foreseeable event.171 Mod-
eling can help identify which inputs would have a material 
impact on the rule, and help design a response accordingly. 
The downside of this approach is that rules that adopt such 
an approach could require constant or periodic monitoring 
to determine whether such an event had occurred. Further, 
tying durational rules to other outcomes may compound 
the regulatory uncertainty associated with other potential 
agency or actions. While not without costs, this approach 
may offer benefits—particularly where initial major points of 
divergence are foreseeable.

Another category of durational rules is experimental, 
or multi-stage durational rules.172 These rules consist of an 
experimental stage prior to the sunset and a more permanent 
stage after the agency takes regulatory action in response to 
the experimental results.173 Implementing a rule in a con-
trolled setting on a representative sample population provides 
an opportunity to collect data about the costs and benefits in 
response to the regulation.174 Carefully designed experiments 
will incorporate prior knowledge and provide insights where 
the policy maker or modeler needs information most.175 
While there is a potential that the structure of the experi-
mental rule could in fact create behavioral anomalies, the 
benefit of this approach is that it allows policy makers to test 
a theory before creating a final rule.176 This approach may 
offer the most benefits where the costs and benefits of a given 
policy are highly uncertain.177

An understanding of the sources of modeling uncertainty 
may provide an opportunity for a more efficient use of dura-
tional rules or help scope use of retrospective review. This may 
ultimately yield an iterative process of review and response 
that provides a pathway for “careful systematic research that 
addresses . . . benefits and costs that can actually be attrib-
uted to a regulation after it has been implemented[.]”178 In a 
multi-stage experimental rule the mechanism for retrospec-
tive review, at least after the initial implementation, would be 
crafted into the structure of the rule itself.179 As such, these 
rules provide options for subsequent learning and evaluation. 

170. Pidot, supra note 160, at 128 (citing Roberta Romano, Regulating in the Dark, 
in Regulatory Breakdown: The Crisis of Confidence in U.S. Regula-
tion 86, 87 (Cary Coglianese, ed., 2012), Zachary J. Gubler, Experimental 
Rules, 55 B.C. L. Rev. 129, 134 (2014), and Rebecca M. Kysar, Lasting Legisla-
tion, 159 U. Pa. L. Rev. 1007, 1067 (2011)).

171. Pidot, supra note 160, at 113, 118, 142–43.
172. Gubler, supra note 170, at 130, 134–35 (2014) (describing two examples of 

multi-stage rules in the context of the SEC: the proxy rule and the rules regu-
lating short sales).

173. Id. at 131.
174. See id. at 136–38.
175. Jens Ludwig et al., Mechanism Experiments and Policy Evaluation, 25-3 J. 

Econ. Persps. 17, 19 (2011).
176. Gubler, supra note 170, at 148–49.
177. Id.
178. Coglianese, supra note 169, at 61 (citation omitted).
179. Id. at 60–61.

By structuring rules so that experimentation and subsequent 
evaluation is achievable, it is possible to improve understand-
ing of costs and benefits, inform future lawmaking, and 
increase the public’s trust in government.180

Rules enacted based on benefit and cost estimates sub-
ject to high levels of uncertainty, or that rely on common 
assumptions, may be particularly suited to this type of 
review.181 For example, multi-stage durational rules inher-
ently require a new final agency decision to be made at a 
specified point in the future; at the specified time, or upon 
occurrence or non-occurrence of the pre-determined event, 
the rule will be cancelled, revised or extended. The Admin-
istrative Procedure Act’s “hard look review” requires that 
an agency considers information reasonably available to it 
in the process.182 Accordingly, any data gathered during 
the initial stage of the rule would therefore be required to 
be considered in any decision whether to extend, modify, 
or terminate the rule.183 This information, in turn, could 
be used to update and refine models and to generate new 
model runs—taking earlier, simplified models incorporat-
ing long-term projections and adding new information to 
make projections of the rule outcomes more narrow and 
specific, “identify[ing] both real successes and real prob-
lems that need fixing” and thus better informing future 
promulgations of the rule.184

B. Adaptive Rules

Adaptive rules are those that focus on flexible decision mak-
ing and learning through process-based mechanisms, such 
as periodic reviews, that allow an agency or other party 
to modify rules based on the availability of new informa-
tion.185 Recognizing the benefits that adaptive management 
principals offer towards species and land management, the 
Department of the Interior (“DOI”) encourages agencies 
to incorporate adaptive management principals wherever 
possible.186 The DOI’s technical guide187 and Applications 
Guide188 identify eight main conditions that should be met 

180. Michael Greenstone, Toward a Culture of Persistent Regulatory Experimentation 
and Evaluation, in New Perspectives on Regulation 111, 119 (David Moss 
& John Cisternino eds., 2009), http://www.tobinproject.org/sites/tobinpro-
ject.org/files/assets/New_Perspectives_Ch5_Greenstone.pdf.

181. Coglianese, supra note 169, at 65.
182. Gubler, supra note 170, at 144.
183. See 5 U.S.C. § 557(c)(3)(A) (2012).
184. Coglianese, supra note 169 (citation omitted).
185. Robin Kundis Craig & J.B. Ruhl, Designing Administrative Law for Adaptive 

Management, 67 Vand. L. Rev. 1, 1 (2014) (“Adaptive management is a 
structured decision-making method, the core of which is a multi-step, itera-
tive process for adjusting management measures to changing circumstances 
or new information about the effectiveness of prior measures or the system 
being managed.”).

186. Melinda Harm Benson, Adaptive Management Approaches by Resource Manage-
ment Agencies in the United States: Implications for Energy Development in the 
Interior West, 28 J. Energy & Nat. Resources L. 87, 88 (2010).

187. Byron K. Williams et al., The U.S. Department of the Interior Techni-
cal Guide v (2009) [hereinafter Technical Guide], http://www2.usgs.gov/
sdc/doc/DOI-%20Adaptive%20ManagementTechGuide.pdf.

188. See Byron K. Williams & Eleanor D. Brown, The U.S. Department of 
the Interior Applications Guide vi–vii (2012), http://www2.usgs.gov/sdc/
doc/DOI-Adaptive-Management-Applications-Guide-27.pdf.
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before adaptive management is implemented.189 Adaptive 
management is justified when: (1) there must be a mandate 
to take action in the face of uncertainty; (2) there must be 
the institutional capacity and commitment to undertake 
and sustain an adaptive program; (3) there are consequential 
decisions to be made; (4) there is an opportunity to apply 
learning; (5) the objectives of management are clear; (6) the 
value of reducing uncertainty is high; (7) uncertainty can be 
expressed as a set of competing, testable models; and (8) a 
monitoring system can be put in place with a reasonable 
expectation of reducing uncertainty.190

These parameters make clear the potential benefits of using 
adaptive management in rules such as the Clean Power Plan, 
that are designed to regulate the highly uncertain impacts 
of the electricity sector. Examples of inclusion of adaptive 
management principles, or planned adaptation, provide 
insight as to where “induced-learning” mechanisms in law 
have been successful to reduce or re-characterize underlying 
uncertainties over time.191 In addition to examples in land 
management, McCray, Oye, and Petersen identify five cases, 
including EPA’s program for ambient air standards, where 
planned adaptation has been implemented towards adop-
tion of more open-ended policy.192 This approach may help 
overcome the inertia and path dependency that characterize 
static rules by permitting requirements to evolve in response 
to new information over time.193

It is difficult to characterize the impacts of adaptive rules 
on investments in technology. On one hand, open-endedness 
can increase uncertainty as to final impacts on the regulated 
community, thus making long-term investment in compli-
ance technology more risky. However, adaptive rules also 
have the nearly unique capacity for rules to keep pace with 
the accelerated development of new technologies.194 Rather 
than “locking in” inferior technology choices, adaptive rules 
acknowledge an opportunity for the role of new technologies 
in a flexible and changing regulated environment.195 One could 
surmise, for example, that technological developments such as 
Big Data196 and the Internet of Things197 will have beneficial 

189. Technical Guide, supra note 187, at 9.
190. Id.
191. L. McCray et al., Planned Adaptation in Risk Regulation: An Initial Survey of 

US Environmental, Health, and Safety Regulation, 77 Tech. Forecasting & 
Social Change 951, 951–59 (2010) (citing Warren E. Walker et al., Adaptive 
Policies, Policy Analysis, and Policymaking, 128(2) Eur. J. Oper. Res. 282–89 
(2001)).

192. Id. at 958.
193. Id.
194. See Gary E. Marchant, The Growing Gap Between Emerging Technolo-

gies and Legal-Ethical Oversight ch. 2 (2011) (discussing the growing 
gap between pace of technology and law).

195. David Grover, Do Flexible Instruments Really Induce More Environmental R&D? 
(Jan. 2012), http://www.webmeets.com/files/papers/EAERE/2012/1026/
Do%20flexible%20instruments%20really%20induce%20more%20envi-
ronmental%20R&D.pdf; David Kline, Positive Feedback, Lock-In, and Envi-
ronmental Policy, 34 Pol’y Sci. 95-107, 95 (2001), www.nrel.gov/docs/gen/
fy01/28513.pdf; Ryan Plummer et al., Adaptive Comanagement and Its Rela-
tionship to Environmental Governance, 18 Ecology & Soc’y *1 (2013).

196. “Big Data” can be defined as “datasets whose size is beyond the ability of typi-
cal database software tools to capture, store, manage and analyze.” See James 
Manyika et al., Big Data: The Next Frontier For Innovation, Competition, and 
Productivity, McKinsey Global Inst. (2011).

197. “The Internet of Things” is the interconnection between physical devises and 
other items embedded with electronics, software, sensors, and networks that 

and likely unanticipated impacts on future electricity markets. 
Big Data, for example, may drive remarkable improvements in 
energy efficiency as utilities gain more information about how 
their systems—and customers—make use of energy. Like-
wise, the Internet of Things—which for starters is expected 
to arm consumers with more information about how they use 
energy—may result in decreases in energy demand as the pub-
lic becomes more educated about what a kilowatt is, how it is 
generated, and how much it costs.

Although issues remain, the concept of adopting learn-
ing rules is growing across multiple sectors and industries. 
Incorporated into rules, adaptive management principals 
may present an opportunity for rules themselves to evolve 
based on changing sets of inputs and as questions of imple-
mentation are resolved, thereby becoming ever more refined 
towards accomplishing a set of fluid goals.

C. Contingency Rules

Unlike the durational rules and adaptive rules that encour-
age incorporation of new information at a later date for mod-
ification, renewal, or repeal, contingency regulation includes 
predetermined substantive outcomes. Contingency rules 
provide for an alternate set of rules that will automatically 
spring into effect upon the occurrence or non-occurrence of 
a predetermined, foreseeable event, the occurrence of which 
would impact the efficacy of the rule.198 This method provides 
an ideal opportunity to deal with divergent expectations of 
parties and information asymmetries: it permits parties to 
agree to disagree about how the future will look and instead 
to focus efforts on what should happen in either scenario. As 
a result, contingent regulation may encourage information 
sharing and signaling via disclosure.199

Contingent regulation also has potential to address what 
Hanna Wiseman calls diseconomies of scale.200 Disecono-
mies of scale refer to the “disproportionately negative effects 
sometimes associated with the expansion of a long regulated 
activity” rendering the balance struck by earlier static rules 
inadequate.201 The same diseconomies can occur where the 
scale of a regulated activity contracts, possibly to the point 
where it is no longer needed.202 Wiseman offers several 
examples of diseconomies of scale, including the inability 
of regulations to keep pace with the rapid increase in scale 
of hydraulic fracturing and the possibility that increases in 
numbers of vehicles driven may render fuel economy and 
pollution control standards under the Clean Air Act ineffec-
tive for achieving emissions reductions.203 Similarly, a rule 

enable devises and products to interact, collect, and exchange data. See Michael 
Chiu et al., The Internet of Things, McKinsey Q. (Mar. 2010), http://www.
mckinsey.com/industries/high-tech/our-insights/the-internet-of-things.

198. Pidot, supra note 160, at 117, 164.
199. Id. at 168–69.
200. See Wiseman, Remedying Regulatory Diseconomies of Scale, supra note 166, at 

246–49.
201. Id. at 236.
202. Id. at 241; J.B. Ruhl & James Salzman, Regulatory Exit, 68 Vand. L. Rev. 

1295, 1300 n.13 (2015).
203. Wiseman, Remedying Regulatory Diseconomies of Scale, supra note 166, at 

244–46.
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that requires “massive simultaneous investment that either 
replaces or retrofits coals plants” could have the effect of 
reducing the size of the market for new plants, thus stifling 
incentives for research, development, and implementation 
of new path breaking electricity-generation technologies.204 
Each of these examples demonstrates potential failures for 
static regulation achieving its objectives when scale of regu-
lated activity, or where independent “small harms,” increase 
beyond initial estimates.205

As Wiseman suggests, one way to remedy these disecono-
mies is through use of harm thresholds.206 Harm thresholds 
impose more stringent controls on a regulated activity as it 
moves closer to a predetermined harm threshold or thresh-
olds. If the threshold is not reached, “industry can continue 
growing and innovating without burdensome regulation.”207 
If it is reached, new rules determined at the outset would 
spring into place. By way of example, Wiseman describes 
the health-based standards in the Clean Air Act. When pol-
lution exceeds a designated level in a specified region, new, 
more stringent controls on industrial activities in that region 
spring into effect.208 This is a form of contingency rule.

One of the benefits of contingent regulation is that the 
existence of a contingency can itself drive behavior towards a 
desired result. Because contingent regulation is static in the 
sense that it requires that lawmakers make choices about the 
optimal regulation under an anticipated set of circumstances 
at the outset, contingent regulations communicate precise 
eventualities to the regulated community. This in turn, 
reduces regulatory uncertainty and its associated costs209 and 
motivates those regulated to consider scientific or market 
uncertainty. As such, a contingent rule may drive behavior 
among participants in the regulated activity to achieve or 
avoid the triggering factor that would result in the contin-
gent rule.

The efficacy of contingent rules in driving behavior may 
depend on the causal relationship between the regulated 
activity and the triggering event. One can surmise that the 
stronger the causal relationship—and therefore the more 
control a participant has over the ultimate outcome of the 
rule—the greater incentive it provides. For example, a trig-
ger based on a set amount of temperature or sea level rise 
would likely have nominal incentive effects because the abil-
ity of any one market participant, or even a consortium of 

204. Dalia Patino-Echeverri, Feasibility of Flexible Technology Standards for Existing 
Coal-Fired Power Plants and Their Implications for New Technology Development, 
61 UCLA L. Rev. 1896, 1899–900 (2014). For example, policy decisions that 
have driven disinvestment in coal generation could result in disincentive to 
develop commercially viable technologies for coal carbon capture and geologic 
sequestration. Ironically, it may have made more sense to pursue these tech-
nologies ten years ago than it does now.

205. Wiseman, Remedying Regulatory Diseconomies of Scale, supra note 166, at 245–
46 (citing William E. Odum, Environmental Degradation and the Tyranny of 
Small Decisions, 32 Bioscience 728, 728–29 (1987), and Dave Owen, Critical 
Habitat and the Challenge of Regulating Small Harms, 64 Fla. L. Rev. 141, 195 
(2012)).

206. Id. at 279.
207. Id. at 241 n.12.
208. Id. at 247 (citing 42 U.S.C. §§ 7408(a), 7502(a)(1)(A) (2006)).
209. See generally Dalia Patino-Echeverri et al., Econ. and Envt’l Cost of Regulatory 

Uncertainty for Coal-Fired Power Plants, 43 Envtl. Sci. & Tech. 578, 581–83 
(2009).

them, to meaningfully influence the result is minimal. For 
example, a potential that an unforeseen event such as a 
volcanic eruption210 or the Aliso Canyon211 gas leak could 
completely reverse positive efforts by industry to avoid the 
trigger established by the harm threshold. The stronger the 
perceived inevitability of the triggers’ occurrence, the less the 
rule would be anticipated to incentivize innovation, early 
adoption, or compliance.

Returning to Wiseman’s example of the Clean Air Act, 
the harm trigger is unlikely to incentivize the owners of 
industrial sources to take proactive action to avoid reaching 
the harm threshold. While the established threshold may 
advance the public policy of preventing harmful public 
health outcomes, it is unlikely to spur individual investment 
in new emissions control technologies. Given the multiple 
contributors to air quality in any given region unrelated to 
industrial sources—including weather, wood burning, and 
vehicle emissions, each of which may accumulate to trigger 
the harm threshold—action by any one industrial source 
or even a group of them would not guarantee preventing 
the imposition of more stringent rules. While this method 
may be effective in terms of creating an immediate response 
to the health-based harms the Act attempts to avoid, the 
rule itself does not encourage individuals to take actions to 
avoid harms.

As an alternative to harm threshold rules, we propose 
rules that focus instead on achieving a minimum level 
of participation through the creation of a compliance 
threshold. Rather than concentrating on prevention of an 
externality related to the regulated activity, a compliance 
threshold rule would focus on achieving a minimum level 
of participation in a desired activity. By tying the resultant 
regulation to the decisions of the regulated community, 
rules developed according to this design would incorporate 
a strong causal relationship to incentivize individuals in the 
regulated communities to make choices directed towards 
achieving a predetermined result and would encourage pri-
vate ordering among participants in the regulated commu-
nity. Returning to the example of the Clean Power Plan 
advanced earlier in this Article, and leaving aside all discus-
sion of the legality or likelihood of implementation of that 
rule, a regulation could be structured so that industry would 
have to achieve a quantified reduction in air emissions from 
industrial sources or offsets from mitigation, and to meet a 
minimum level of industry participation within a specified 
period of time—thus creating a compliance threshold. The 
failure to meet the threshold would result in the application 
of more stringent and broad-based rules than were initially 
proposed. Importantly, the rule would provide maximum 
flexibility to the regulated community: it would not require 

210. Terry Gerlach, Volcanic Versus Anthropogenic Carbon Dioxide, 92(24) Eos 
Trans. AGU 201, 201 (2011) (noting that present-day volcanoes emit rela-
tively modest amounts of CO2, about as much annually as states like Florida, 
Michigan, and Ohio).

211. The leak from the Aliso Canyon gas storage facility was estimated (as of Octo-
ber 21, 2016) to have emitted 109,500 tons of methane. Aliso Canyon Natural 
Gas Leak, Cal. Envtl. Protection Agency: Air Resources Board (Oct. 
25, 2016), http://www.arb.ca.gov/research/aliso_canyon_natural_gas_leak.
htm.
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participation by all market participants, require equal dis-
tribution across geographic areas, or specify the means of 
compliance. Theoretically, the potential imposition of more 
stringent regulation would encourage compliance, facilitate 
transfers from holdouts to early adopters, and incentivize 
investment in R&D and innovation oriented towards the 
development of new technologies. As such, the structure 
of the rule itself could contribute to the likelihood of it 
achieving its stated goals.212

Contingent regulation is the form of dynamic law that 
perhaps offers the greatest opportunity for law to address the 
issues of model uncertainty.213 A contingency rule would start 
with a baseline rule based off the status quo and then provide 
a series of alternative rules that would come into play at a 
later date based on new information indicating the occur-
rence or non-occurrence of a specified event. Models can be 
the basis for assessing which events have potentially disrup-
tive impacts on baseline assumptions. For example, a contin-
gency rule based on the Clean Power Plan could allow for 
later assessment of state implementation plans and actions, 
as well as certain key inputs such as the price of natural gas, 
and provide for predetermined adjustments in the rule based 
on those findings, which in turn may improve outcomes and 
reduce compliance costs.

While requiring more extensive effort on the front end, 
contingent regulations are attractive because they require 
fewer resources for monitoring.214 Contingent rules achieve 
this ease of implementation precisely because the substan-
tive result has been determined in advance and thus has been 
subjected to the process-based review of rulemaking. Careful 
design of thresholds should make the monitoring relatively 
painless by incorporating publicly available metrics already 
subject to consistent monitoring by the EIA or other agen-
cies. If a threshold were met, the agency would issue a declar-
ative order (which of course would be subject to challenge), 
and the contingency rule could go into effect immediately 
without additional rulemaking.215

Despite a rich body of literature in this area, actual use 
of dynamic law is relatively rare.216 There are a number of 
possible explorations for why they are not used more often, 
including path dependence, capital intensive demands on 
front end, opposition from interest groups, and a perception 
that dynamic rules may be more susceptible to legal chal-
lenge.217 As Pidot argues, contingency rules may be best 
suited to resolve some of these issues,218 and present the 

212. There is a possibility that some within the regulated community could try to 
arbitrage the possibility that the rule would be overturned prior to enforce-
ment of stricter controls.

213. See discussion supra notes 124-130 and accompanying text (“A Multiplicity of 
Models”).

214. Pidot, supra note 160, at 7 (“Such efforts currently face stiff obstacles because 
governing bodies often fail to provide ongoing resources necessary to success-
fully revisit existing rules and, where such revisitation occurs, interest group 
politics appear to obstruct meaningful change.”).

215. Id. at 164.
216. McCray et al., supra note 191, at 958.
217. Gubler, supra note 170, at 132–36; McCray et al., supra note 191, at 951; 

Pidot, supra note 160, at 149.
218. Pidot, supra note 160, at 119 (“Contingent regulation in particular may 

ameliorate thorny problems that are endemic to previous attempts at dy-

added benefit of communicating expected outcome to the 
regulated community.

D. An Example: The Flexible Technology Standards 
Re-Conceptualized as a Contingent-Durational 
Adaptive Rule

The flexible technology standard, proposed by Patino-Ech-
everri of Duke University, attempts to address the highly 
uncertain conditions under which owners of power plants 
must decide how and whether to retrofit or replace a plant 
to comply with new and proposed EPA rules.219 Among the 
variables at play are the characteristics of the coal plant and 
the state’s implementation of such rules, but also variables 
affecting the cost and profitability of any alternative, includ-
ing “future fuel prices, costs and performance of future tech-
nologies, future regulations,” and assumptions about the 
economic life of the new or retrofitted plant.220 Faced with 
these uncertain conditions within which to make a decision, 
investors may desire to defer decision-making until more 
information or potential new “path breaking” technologies 
are available.221

A flexible technology standard is a performance stan-
dard that would permit owners of older coal-fired plants to 
defer installation of pollution controls in order to wait for 
new information or potential breakthrough technologies.222 
Building upon existing source performance emissions stan-
dards, the flexible mandate would permit plant owners to 
either install conventional pollution controls or to make 
alternative payments for each unit of emissions in excess 
of the standard during a set flexible period. The payment 
and the duration of the flexibility period would be chosen 
by regulators based on expectations about the likelihood of 
arrival of path-breaking technologies and their performance 
to ensure that on expectation, the total emissions over the 
lifetime of the regulated plant would not exceed those that 
would have been permitted under existing traditional source 
performance standards.223 If a new technology capable of 
achieving greater emissions reductions was not proven suc-
cessful during the flexible period, the plant would be ret-
rofitted with conventional emissions control equipment.224 
Alternative payments could, in turn, be used to subsidize 
early adoption of pollution controls on other plants, to sup-
port future capital costs of retrofits, or could be invested in 
research to support successful realization of the path break-
ing technology during the flexibility period.225 This invest-

namic law.”).
219. Patino-Echeverri, Feasibility of Flexible Technology Standards for Existing Coal-

Fired Power Plants and Their Implications for New Technology Development, su-
pra note 204, at 1901–02.

220. Id. at 1909–15.
221. Id. at 1916–17.
222. Id. at 1920.
223. Id. at 1921.
224. Patino-Echeverri, Feasibility of Flexible Technology Standards for Existing Coal-

Fired Power Plants and Their Implications for New Technology Development, su-
pra note 204, at 1922.

225. Dalia Patino-Echeverri et al., Flexible Mandates for Investment in New Technology 
15 (Res. for the Future, Discussion Paper No. RFF-DP 12-14, 2012), http://
www.rff.org/files/sharepoint/WorkImages/Download/RFF-DP-12-14.pdf.
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ment could increase the possibility of success and superior 
emissions reductions by not only supporting research but by 
also assuring the availability of a market for such new tech-
nologies were they to prove successful.226

The flexible implementation permitted by the standard can 
be combined with elements of adaptive planning and contin-
gency regulation to create a more dynamic rule that strives to 
craft incentives for development and implementation of new 
technologies, while reducing overall emissions. As proposed, 
the rule resembles a multi-stage experimental rule with only 
one significant variable—whether new technology capable 
of achieving greater emissions reductions will become fea-
sible during the experimental period. In this example, the 
method and timing by which companies must achieve emis-
sions reductions to comply with EPA rules is flexible, but the 
actual levels of emissions reductions enforced by EPA are 
static.227 Accordingly, to introduce elements of dynamism, 
EPA’s emissions standards for companies not installing 
pollution control technology at the outset should be open-
ended. For example, instead of requiring companies that fail 
to realize new technologies to outfit plants with conventional 
emissions control equipment available at the beginning of 
the period, the rule could be revised to provide periodic 
opportunities for learning the potential of improved tech-
nologies in order to revise the emissions compliance stan-
dards. Accordingly, plant owners facing the decision whether 
to retire or retrofit older coal-fired power plants could, at the 
end of the flexible period, be subject to new sets of standards 
that take into account new information about factors both 
related (such as compliance rates and the availability and effi-
cacy of new technology) and unrelated (such as generation 
fuel prices). Additionally, the rule could incorporate a con-
tingency mechanism, with a new standard or standards, pre-
determined at the outset, which would then spring into effect 
if program participants failed to reach certain total emissions 
reductions over the flexible period. Drafted as such, the flex-
ible technology standard would present an opportunity to 
address two sources of uncertainty including implementa-
tion (availability and use of new technologies) and inputs 
(fuel prices and demand).

E. Opportunities for Integration of Dynamic Principles 
of Law in the CPP

The modeling of the CPP suggests that decisions to comply 
may result in considerable costs to society if key uncertain-
ties are resolved differently than what is assumed by deci-
sion makers. For example, if states ex ante assume the use 
of greater natural gas technologies is optimal based on what 
later turn out to be inaccurate assumptions regarding renew-

226. Id. at 20–21 (discussing how rational investors who seeks profit under a 
surcharge-based regime will shop in a market that forces investors to choose 
whether to devote resources toward new emission control technology, existing 
technology, or new facility construction).

227. Patino-Echeverri, Feasibility of Flexible Technology Standards for Existing Coal-
Fired Power Plants and Their Implications for New Technology Development, su-
pra note 204, at 1921.

able technology options, the result could be a higher cost and 
sub-optimal response to the legislation ex post.

It is unclear if and when key uncertainties such as the cost 
of renewables and the prices and environmental implications 
of natural gas will resolve, or whether such uncertainties jus-
tify delaying the CPP or any CPP-like regulation. However, 
it is clear that a regulatory approach that could allow states to 
adapt to the unfolding of uncertainty before committing to 
what could be sub-optimal investment decisions could save 
society significant cost in meeting its regulatory goals. It is 
also clear that, given the long economic lives of power plants, 
natural gas pipelines, and other energy relevant infrastruc-
ture, a policy affecting investment in the electric sector must 
look at the goals of the CPP of reducing CO2 emissions by 
30% as interim goals, and incentivize investment alternatives 
that do not conflict with the more ambitious decarboniza-
tion objectives that may be pursued in the near future.228

Crafting a rule that accounts for potential revisions of car-
bon abatement goals, new technological developments that 
would improve the performance and costs of electric power 
generation alternatives, and new knowledge about the envi-
ronmental impacts of coal, gas and renewables, could avoid 
costly investment in inferior technology choices.229 While 
proposing a specific rule to address these issues is beyond the 
scope of this Article, given the multiple forms of uncertainty 
and opportunities for future learning, adaptive and dynamic 
forms of regulation based on projections from energy models 
that characterize and account for relevant uncertainties, may 
offer attractive solutions.

IV. Conclusion

Generous budgets, and tremendous increases in computa-
tional power may produce more complex—and sometimes—
more realistic models, but the causes of the impossibility of 
forecasting will remain.230 Despite this limitation, large and 
complex energy models have a lot to offer to the policy and 
regulatory processes. They represent an unparalleled oppor-
tunity to document current knowledge about the system 
they represent,231 and can be used in research for identify-
ing and prioritizing knowledge gaps. The same reasons that 
originated the field of system dynamics and the development 
of controversial models persist: using models to project sys-
tems performance under a set of assumptions offers insights 
that the limited ability of the human brain would probably 
miss on its own. The system’s emergent properties resulting 
from relations between causes and effects that are removed 

228. Consider for example the announcement of a historic goal for North Amer-
ica to strive to achieve 50% clean power generation by 2025 made by Prime 
Minister Justin Trudeau, President Barack Obama, and President Enrique 
Peña Nieto on June 2016. See Press Release, White House, Leaders’ Statement 
on a North American Climate, Clean Energy, and Environment Partnership 
(June 29, 2016), https://www.whitehouse.gov/the-press-office/2016/06/29/
leaders-statement-north-american-climate-clean-energy-and-environment.

229. See Hopkins, supra note 130.
230. See id.; Vaclav Smil, Against Forecasting, in Energy at the Cross-Roads: 

Global Perspectives and Uncertainties 121–80 (2012).
231. M. Granger Morgan et al., Uncertainty: A Guide to Dealing With 

Uncertainty in Quantitative Risk and Policy Analysis 289–90 (1990).



Winter 2017 THE ROLE OF ENERGY MODELS 77

in time and space, are likely to involve many moving pieces 
of information hard to process without a quantitative com-
puter model.

Current regulatory processes utilize modeling, however, 
the impact analysis used to define anticipated regulatory out-
comes when developing such rules usually involves the use of 
only a single model and limited set of scenarios. The Envi-
ronmental Protection Agency’s use of its IPM model provides 
such an example.232 Shortcomings of this approach include 
lack of consideration modeling uncertainties and this could 
be improved through best practices already identified in the 
energy modeling community, including the use of multi-
model assessments.

Although nobody knows with precision what the elec-
tricity market and its various components—generation and 
transmission, for example—will look like next year, let alone 
20 or 30 years in the future, it is possible to identify the 
factors likely to influence that outcome. IEA forecasts that 
even in the face of the 2015 Paris Agreement, global energy 
consumption, and thus demand, will continue to grow with 
varying regional outcomes.233 We also know that, domes-

232. Power Sector Modeling, U.S. Envtl. Protection Agency (Nov. 23, 2015), 
https://www.epa.gov/airmarkets/power-sector-modeling.

233. World Energy Outlook 2015—Executive Summary, Int’l Energy Agency 1 
(2015), http://www.iea.org/publications/freepublications/publication/world-
energy-outlook-2015---executive-summary---english.html (“Energy use 
worldwide is set to grow by one-third to 2014 . . . driven primarily by India, 
China, Africa, the Middle East, and Southeast Asia.”).

tically, without regulations such as the Clean Power Plan, 
the generation mix is expected to be little changed through 
2030, and that the Clean Power Plan, if enacted as currently 
defined, might primarily impact the market through fuel-
switching from coal to natural gas.234 Undeniably, the relative 
prices of fuels will be essential to forecasting and regulating 
future electricity markets.

An investigation of these factors and acknowledgement of 
the uncertainties inherent in energy projections, provides an 
opportunity to identify windows of expansion for the use of 
dynamic systems of law. A systematic evaluation of a regu-
lation’s effects under varied sets of assumptions—including 
extreme scenarios—can help determine the range of possible 
outcomes. Using these outcomes, it may be possible to design 
backstop provisions, contingent rules, and “insurance poli-
cies” that discourage sub-optimal investment actions, reduce 
the social cost of regulation, and make the regulation’s effec-
tiveness resilient to the volatile environment in which it oper-
ates. Contingent rules, combined with imbedded processes 
of adaptive management, may harmonize the adaptability 
and flexibility of the regulated sectors with the need to meet 
regulatory goals.

234. Regulatory Impact Analysis, supra note 13, at fig. 3–4 (Oct. 23, 2015), 
https://www.epa.gov/sites/production/files/2015-08/documents/cpp-final-
rule-ria.pdf ). Natural gas, however, faces its own suite of environmental chal-
lenges, and thus whether it will remain the low cost option for fuel switching 
is unknown.


