
Algorithmica (2017) 78:741–770
DOI 10.1007/s00453-016-0173-4

FPTAS for Minimizing the Earth Mover’s Distance
Under Rigid Transformations and Related Problems

Hu Ding1 · Jinhui Xu2

Received: 7 July 2015 / Accepted: 3 June 2016 / Published online: 10 June 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we consider the problem (denoted as EMDRT) of minimizing
the earth mover’s distance between two sets of weighted points A and B in Rd under
rigid transformation. EMDRT is an important problem in both theory and applications
and has received considerable attentions in recent years. Previous research on this
problem has resulted in only constant factor approximations and it has been an open
problem for a long time to achieve PTAS solution. In this paper, we present the first
FPTAS algorithm for EMDRT. Our algorithm runs roughly in O((nm)d+2(log nm)2d)

time (which is close to a lower bound on any PTAS for this problem), where n and m
are the sizes of A and B, respectively. Our result is based on several new techniques,
such as the Sequential Orthogonal Decomposition andOptimum Guided Base, and can
be extended to several related problems, such as the problem of earth mover’s distance
under similarity transformation and the alignment problem, to achieve FPTAS for each
of them.

This research was supported in part by NSF under Grants CCF-1422324, IIS- 1422591, IIS-1115220, and
CNS-1547167. A preliminary version of this paper has appeared in the 21st European Symposium on
Algorithms (ESA 2013).

B Hu Ding
huding@msu.edu

Jinhui Xu
jinhui@buffalo.edu

1 Department of Computer Science and Engineering, Michigan State University, East Lansing, MI,
USA

2 Department of Computer Science and Engineering, State University of New York at Buffalo,
Buffalo, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0173-4&domain=pdf

742 Algorithmica (2017) 78:741–770

Keywords Earth mover’s distance · Approximation Algorithms · Rigid transforma-
tion · Geometric matching

1 Introduction

In this paper, we study the problem (denoted as EMDRT) of minimizing the earth
mover’s distance between two sets of weighted points A and B (with size n and m,
respectively) in R

d under rigid transformation. In EMDRT, each point in A and B
is associated with a nonnegative weight, and the objective is to determine the best
rigid transformation T for B so that the earth mover’s distance (EMD) between A and
T (B) is minimized, where EMD measures the minimum transportation cost between
the two point sets. EMDRT is an important problem in both theory and applications. In
theory, it is a natural generalization of the Euclidean bipartite matching problem (i.e.,
from one-to-one matching to many-to-many matching) and is a powerful model for a
number of other matching or partial matching problems. For instance, if all points in
A and B have unit weight, EMDRT becomes a one-to-one matching problem. If all
points in A have unit weight and all points in B have infinity weight, EMDRT becomes
a many-to-one matching problem (i.e., the Hausdorff distance matching problem).

In applications, EMDRT has connections to many EMD (or its variants such as
Proportional Transportation Distance (PTD)) based problems in computer vision
and pattern recognition[12,21,24,28,30], and can be used to solve the challenging
alignment problem for rigid objects and compute their similarities. Besides the com-
monly studied computer vision problems in 2 or 3D space, EMDRT also finds some
interesting applications in general d-dimensional space.One such example is the align-
ment problem of biological networks (such as protein-protein interaction network or
gene regulatory network). Given two biological networks, finding their alignment is
a fundamental problem in bioinformatics for detecting the evolution and mutation of
species [18]. Since the networks are usually represented by graphs, directly computing
their alignment could be very costly and of high time complexity (e.g., reduction to
graph isomorphism). One way to solve this problem is to first make use of the fact that
biological networks can often be embedded into Euclidean space (due to their intrin-
sic nature), and then convert the alignment problem from graph domain to geometry
domain. Since embedding preserves the pairwise distances of the vertices, each bio-
logical network becomes a rigid structure in the Euclidean space. Furthermore, since
the matching between networks is not necessarily one-to-one matching, finding their
alignment can thus be reduced to minimizing the EMD of two point-sets under rigid
transformation, i.e., EMDRT.

A number of results exist for EMDRT and its related problems. Cabello et al. [16]
presented several approximation results in R2 space; particularly, they gave a (2+ ε)-
approximation solution for the 2D EMDRT problem, and a (1 + ε)-approximation
solution for a special case in which only translation is allowed. Later, Klein and
Veltkamp [27] introduced a few improved results by using reference point, and
achieved an O(2d−1)-approximation for EMDRT in R

d space. It has been an open
problem for quite some time to achieve PTAS for this problem [16]. For static points

123

Algorithmica (2017) 78:741–770 743

(i.e., without transformation), several approximation algorithms for computing EMD
were presented in [4–6,16,26,29].

For the related alignment (also called geometric matching) problem, there is a long
and rich history [1–3,7–11,13,14,17,19,22,23,25]. Some early results on this problem
can be found in the survey paper byAlt andGuibas [2]. Points in the alignment problem
can be matched in an either one-to-one or many-to-one (i.e., Hausdorff distance)
manner. For one-to-one matching, Agarwal and Phillips [9] presented a PTAS for 2D
point-sets using the total squared Euclidean distance between matched points as the
cost function. Benkert et al. [11] gave a PTAS for minimizing the bottleneck (i.e.,
the maximum distance between the matched points) of the 2D case. For many-to-one
matching, Goodrich et al. [23] obtained constant approximation solutions in 2 and
3D spaces, and showed practicality of their algorithms. Later, Gavrilov et al. [22]
and Cardoze et al. [17] achieved pseudo-PTAS for 2D and fixed dimensional spaces,
respectively, with running time depending on the spread ratio of the point-sets. There
are also a number heuristic algorithms for the alignment problem. The most popular
technique in practice is probably the Iterative Closest Point (ICP) algorithm [10],
which finds a proper transformation in a step-by-step fashion so that its objective value
converges to a local minimum. Ezra et al. [20] showed that the number of iterations of
ICP is bounded by O(mdnd). Furthermore, if the correspondences (i.e., to-be-matched
point pairs) between the two point-sets are known in advance, the alignment problem
can be solved optimally by some linear algebra techniques [7].

1.1 Our Results

In this paper, we present the first FPTAS algorithm for EMDRT in any fixed dimen-
sional space. Our result is based on a few new techniques, such as Sequential
Orthogonal Decomposition (SOD) and Optimum-Guided-Base (OGB). SOD decom-
poses a rigid transformation into a sequence of primitive operations which enables us
to accurately analyze how the transportation flow changes in a step-by-step fashion
during the whole process of rigid transformation and therefore have a better estimation
on the quality of solution1. OGB enables us to use some information of the unknown
optimal solution to select some critical points which partially define the rigid trans-
formation. We show that although OGB cannot be explicitly implemented, its result
can actually be implicitly obtained. A major advantage of OGB is that it can help us
to significantly reduce the search space. Consequently, our FPTAS runs in roughly
O((nm)d+2(log nm)2d) time, which is close to (i.e., matches the order of magnitude
of the degree of) the lower bound max{m, n}Ω(d) on the running time of any PTAS
for EMDRT [15].

Our techniques for EMDRT can be extended to several related problems, such as the
problemofminimizingEMDunder similarity transformation (i.e., rigid transformation
plus scaling) and the alignment problem, and achieve an FPTAS for each of them. For
the alignment problem, we consider three different cost metrics, the l∞ sense metric

1 Note that [17,23] also analyze the rigid transformations in a step-by-step fashion, but their methods are
only for unweighted point-sets.

123

744 Algorithmica (2017) 78:741–770

and l1 sense metric in the one-to-one matching case, and the Hausdorff distance metric
in the many-to-one matching case. Our result for the Hausdorff distance metric is an
FPTAS, while existing results [17,22] are only pseudo-PTAS whose running times
depend on the spread ratios.

The rest of the paper is organized as follows. Section 2 introduces a few definitions.
Section 3 gives an overview of our approach for achieving FPTAS for the EMDRT
problem. In Sect. 4, we discuss our key technique, Sequential Orthogonal Decompo-
sition (SOD), and its properties. In Sect. 5, we present our first FPTAS for the EMDRT
problem. Section 6 shows that our FPTAS can be further improved so that its running
time is close to the lower bound. Section 7 extends our techniques to several other
related problems.

2 Preliminaries

This section introduces several definitions to be used throughout the paper.

Definition 1 (Rigid Transformation) Let P be a set of points in Rd . A rigid transfor-
mation T (P) of P is a transformation (i.e., rotation, translation, reflection, or their
combination) which preserves the pairwise distances of points in P . After a rigid
transformation, the new set of points T (P) is called an image of P .

Definition 2 (Earth Mover’s Distance (EMD)) Let A = {p1, . . . , pn} and
B = {q1, . . . , qm} be two sets of weighted points in R

d with nonnegative weights
αi and β j for each pi ∈ A and q j ∈ B respectively, and W A and W B be their
respective total weights. The earth mover’s distance between A and B is

EMD(A, B) = minF
∑n

i=1
∑m

j=1 hi j ||pi − q j ||
min{W A, W B} , (1)

where H = {hi j } is a feasible flow satisfying the following conditions.

1. hi j ≥ 0, for any 1 ≤ i ≤ n and 1 ≤ j ≤ m;
2.

∑m
j=1 hi j ≤ αi for any 1 ≤ i ≤ n;

3.
∑n

i=1 hi j ≤ β j for any 1 ≤ j ≤ m;
4.

∑n
i=1

∑m
j=1 hi j = min

{
W A, W B

}
.

Definition 3 (Earth Mover’s Distance Under Rigid Transformation (EMDRT)) Given
two weighted point sets A and B in R

d , the problem of the earth mover’s distance
between A and B under rigid transformation is to determine a rigid transformation T
for B so as to minimize the earth mover’s distance EMD(A, T (B)).

Orientation and Reflection For simplicity, we do not consider reflection in the rigid
transformation, as it can be captured by performing our algorithm twice, one for the
original point-set B and the other for its mirror image.

123

Algorithmica (2017) 78:741–770 745

3 Overview of Our Approach

FromDefinition 3,we know that ourmain task for achieving an FPTAS is to find a good
approximation of the optimal rigid transformation Topt for B. By Lemma 1, we will
know that this is equivalent to identifying d points R (called reference system) from
A and another d points (called base) from B and determining a rigid transformation
T to map points in the base to the neighborhoods of the points in R.

Our approach consists of twomain steps: (1) Design an approximation algorithm to
compute an upper bound of the optimal objective value, and (2) use the upper bound
to derive an FPTAS. In both steps, directly searching for T in the rigid transformation
space could be very costly. Our idea is to introduce a new technique called Sequential
Orthogonal Decomposition (SOD), which decomposes a rigid transformation into a
sequence of d primitive operations (i.e., a translation and d − 1 one-dimensional
rotations). One important property of SOD is that its outcome is independent of the
initial position of B and depends only on the choice of R and the base2. This enables
us to assume that B is initially located at Topt (B). Another important property of SOD
is that it allows us to analyze, in a step by step fashion, how the transportation flow
changes when B moves from Topt (B) to SOD(B). This gives us an accurate estimation
on the quality of the solution.

The quality of the rigid transformation T determined by SOD depends on the refer-
ence system R and the base. To find a good R, we first build a grid in the neighborhood
of each point in A and then consider R as all possible d-tuple point-set where each
point comes from the neighbor grid of one individual point in A. To find a good base,
a key problem is that a small error in the rotation could cause some point in B to
move a long distance and therefore introduce a large error (see Fig. 1). To avoid this
problem, we select the base as a set of d ordered points in B which are as “dispersed”
as possible (since other choices cause larger error). We consider two types of disper-
sions. Type 1 dispersion is based on the weighted distance (with weight β j) between
each point q j and the flat spanned by all points appearing before q j in the sorted order
of the base (see Algorithm Base-Selection in Sect. 5.1). Type 2 dispersion considers
not only the weighted distance, but also the distance between each q j and all points
in A in the optimal solution (see Optimum-Guided-Base (OGB) in Sect. 6). We show
that although OGB cannot be explicitly implemented (as it depends on the optimal
solution), it can actually be implicitly obtained. A major advantage of the second type
of dispersion is that it enables us to significantly improve the running time.

4 Sequential Orthogonal Decomposition

To solve the EMDRT problem, we first introduce the sequential orthogonal decom-
position which will be used as a key technique in our algorithms. We start with the
following lemma on rigid structure 3.

2 We just need to determine which point belongs to the base from B, rather than specify the position of
each point.
3 This lemma might have been studied in some other papers or presented in other forms; for self-
completeness, we present our proof here.

123

746 Algorithmica (2017) 78:741–770

Fig. 1 A small rotation of a
non-dispersed base (i.e., the two
red points at the left bottom)
causes a large error for a
faraway point at the right top

Lemma 1 For any rigid structure in R
d with m ≥ d vertices (or points), its position

is completely fixed if the locations of any d vertices that are not contained in any
(d − 2)-dimensional flat 4, are fixed.

Proof Let P be any rigid structure in R
d with vertices {p1, p2, . . . , pm}. Without

loss of generality, we assume that {p1, p2, . . . , pd} are the d fixed vertices that are
not contained in any (d − 2)-dimensional flat. In other words, span{p1, . . . , pd} is a
(d − 1)-dimensional flat.

Consider the process of fixing the positions of the d vertices one by one. In the
first step, we fix the position of p1. Then for any other vertex pi of P , the feasible
region of its location is constrained on a d-dimensional sphere centered at p1 and with
radius ||pi − p1||. If we continue this process, in the j-th step, we have already fixed
the positions of {p1, . . . , p j }. Let F j = span{p1, . . . , p j } be the flat spanned by the
first j vertices, and p̃i be the orthogonal projection of pi on F j for any i > j . Then
the feasible region of the location of pi is constrained on a (d − j + 1)-dimensional
sphere centered at p̃i and with radius ||pi − p̃i ||. Thus, in the d-th step, the positions
of {p1, . . . , pd} have all been fixed and any vertex pi , i > d, is constrained on a
1-dimensional sphere, i.e., the two endpoints of a segment. Since reflection is not
allowed in our rigid transformation, only one endpoint is feasible. Thus, each vertex
pi is fixed, and the lemma is true. ��
Sequential Orthogonal Decomposition (SOD) Let P = {p1, p2, . . . , pn} be a set
of points in R

d with n ≥ d, and R = {r1, . . . , rd} be another set of fixed points
(i.e., whose locations will not change), called reference system, which spans a (d −1)-
dimensional flat inRd . Then for any injectivemapping f from {1, . . . , d} to {1, . . . , n},
if {p f (1), . . . , p f (d)} span a (d − 1)-dimensional flat, we define a sequential orthog-
onal decomposition, SOD(P, R, f), as follows (before touching the details of SOD in
general d-dimensional space, the reader is referred to Fig. 2 which illustrates a toy
example in 3D).

1. In step 1, perform a translation on P such that p f (1) coincides with r1. Let p1i be
pi ∈ P in its new position, and P1 be the new image of P .

2. In the j-th step for 2 ≤ j ≤ d

4 In Rd , a j-dimensional flat for any j < d is a j-dimensional subspace translated by some vector.

123

Algorithmica (2017) 78:741–770 747

r1r1

r2r2

r3r3

p1p1

p2p2 p3p3

p4p4

(a)

r1r1
r2r2

r3r3

p1p1

p2p2 p3p3

p4p4

(b)

r1r1

r2r2

r3r3

p1p1

p2p2

p3p3p4p4

(c)

r1r1

r2r2

r3r3

p1p1

p2p2

p3p3

p4p4

(d)

Fig. 2 An illustrative example of SOD in 3D, where n = 4 and f (i) = i for i = 1, 2, 3. a Is the initial
positions of the points; the first step b is a translation of P to coincide r1 with p1; c is a rotation of P about
r1 such that r1, r2, and p2 are collinear (the rotation axis is the line orthogonal to the two dimensional flat
spanned by r2 − r1 and p2 − p1 before the rotation. See the description of SOD for details); d is a rotation
of P about the line r1r2 such that p3 falls onto the two dimensional flat spanned by r1, r2, and r3

(a) LetH j−1 be theflat spanning {r1, . . . , r j−1}, and p̃ j−1
f (j) and r̃ j be theorthogonal

projections of p j−1
f (j) and r j on H j−1, respectively.

(b) Let Δ j be the 2-dimensional subspace determined by the two vectors, p j−1
f (j) −

p̃ j−1
f (j) and r j − r̃ j , and Δ⊥

j be the (d − 2)-dimensional flat orthogonal to Δ j

and containing p̃ j−1
f (j).

(c) Perform a one-dimensional rotation T on P j−1 about Δ⊥
j such that the vector

T (p j−1
f (j)) − p̃ j−1

f (j) is parallel to the vector r j − r̃ j (see Fig. 3).

(d) Let p j
i denote pi in its new position, and P j denote the new image of P .

We first prove the feasibility of SOD.

Theorem 1 (SOD feasibility) In Step j (2 ≤ j ≤ d) of SOD, there exists a one-

dimensional rotation T on P j−1 about Δ⊥
j such that the vector T

(
p j−1

f (j)

)
− p̃ j−1

f (j) is

parallel to the vector r j − r̃ j .

123

748 Algorithmica (2017) 78:741–770

Fig. 3 One-dimensional
rotation in SOD T (pj−1

f (j))

rj

r̃j

pj−1
f (j)

Δ⊥
j

Δj

p̃j−1
f (j)

Fig. 4 An illustration for
Theorem 1

Δj

T (pj−1
f (j))

r̃j

θ

pj−1
f (j)

Δ⊥
j

ν

rj

p̃j−1
f (j)

Proof Firstly, since both p j−1
f (j) − p̃ j−1

f (j) and r j − r̃ j are perpendicular to H j−1, we

know that H j−1 ⊂ Δ⊥
j . Thus, for any one-dimensional rotation about Δ⊥

j , the whole

H j−1 stays invariant. Since p̃ j−1
f (j) ∈ H j−1, we have T (p̃ j−1

f (j)) = p̃ j−1
f (j).

Let ν be the ray starting from p̃ j−1
f (j) and parallel to r j − r̃ j , and θ be the angle

between p j−1
f (j) − p̃ j−1

f (j) and ν (see Fig. 4). Consider the one-dimensional rotation

about Δ⊥
j with angle θ . Since both ν and p j−1

f (j) − p̃ j−1
f (j) are perpendicular to Δ⊥

j ,

T (p j−1
f (j)) must locate on the two-dimensional flat determined by ν and p j−1

f (j) − p̃ j−1
f (j).

Moreover, since T (p̃ j−1
f (j)) = p̃ j−1

f (j) and the rotation angle is θ , vector T (p j−1
f (j))− p̃ j−1

f (j)

must be collinear with ν. In other words, T (p j−1
f (j)) − p̃ j−1

f (j) is parallel to the vector
r j − r̃ j . ��

4.1 Some Properties of SOD

In this section we reveal several important properties of SOD, which will be used to
analyze the proposed algorithms for EMDRT. For convenience, we still use the ray ν

constructed in the proof of Theorem 1.

Lemma 2 Let I(P) be any image of P (i.e., I(P) is the new P after a rigid trans-
formation). Then the outputs of SOD(P, R, f) and SOD(I(P), R, f) are the same.

To prove Lemma 2, we need the following result.

Lemma 3 In the j-th step of SOD, p j
f (j) locates on H j .

123

Algorithmica (2017) 78:741–770 749

Proof Notice that p j
f (j) is the new position of p f (j) after performing the rotation in

the j-th step, and H j = span{r1, . . . , r j } = span{H j−1, r j − r̃ j }. From the proof of

Theorem 1, we know that p j
f (j) locates on the ray ν. Furthermore, since ν is parallel

to r j − r̃ j and emits from p̃ j−1
f (j) (which locates on H j−1), we know that ν locates on

H j . Thus, p j
f (j) also locates on H j . ��

With the above lemma, we now prove Lemma 2.

Proof (of Lemma 2) Let I(pi) and I(pi)
j denote the corresponding points of pi

and p j
i respectively in I(P). From Lemma 3, we know that p j

f (j) locates on H j ,

1 ≤ j ≤ d. Note that for any j < l ≤ d, we have H j ⊂ Hl−1 ⊂ Δ⊥
l . Thus, the

position of p f (j) does not change after the j-th step (i.e, always located at p j
f (j)).

Thus, we just need to show that p j
f (j) = I(p f (j))

j for each 1 ≤ j ≤ d, and then use

Lemma 1 to complete the proof. Below we prove p j
f (j) = I(p f (j))

j by mathematics
induction on j .
Base case For j = 1, it is easy to know that p1f (1) = I(p f (1))

1 = r1.

Induction step Assume that pl
f (l) = I(p f (l))

l for any l ≤ j − 1 and j ≥ 2.

Recall that in the SOD procedure, we denote the images of P and I(P) as P j

and I(P) j respectively in the j-th step. Thus, I(P) j is also an image of P j under
some rigid transformation TR. From the induction hypothesis, we know that all
pl

f (l)’s stay invariant under the rigid transformation TR. By Lemma 3, we know that

H j−1 = span{p1f (1), . . . , p j−1
f (j−1)}. Thus, the whole H j−1 also stay invariant under

rigid transformation TR. Meanwhile, since p̃ j−1
f (j) locates on H j−1, p̃ j−1

f (j) stays invari-

ant as well under rigid transformation TR, i.e., p̃ j−1
f (j) = TR(p̃ j−1

f (j)), where TR(p̃ j−1
f (j))

is the projection of I(p f (j))
j−1 on H j−1. From the proof of Theorem 1, we know

that both p j
f (j) and I(p f (j))

j locate on ray ν. Since p̃ j−1
f (j) = TR(p̃ j−1

f (j)) and from

the fact that rigid transformation preserves pairwise distance, i.e., ||p j
f (j) − p̃ j−1

f (j)|| =
||I(p f (j))

j − TR(p̃ j−1
f (j))||, we know that p j

f (j) = I(p f (j))
j . This completes the

induction step, and the lemma is true. ��

Lemma 4 For 2 ≤ j ≤ d, ||p j
f (j) − p j−1

f (j)|| ≤ 2||p j−1
f (j) − r j ||.

Proof Firstly, from triangle inequality, we know that

||p j
f (j) − p j−1

f (j)|| ≤ ||p j
f (j) − r j || + ||p j−1

f (j) − r j ||. (2)

Next, we prove that ||p j
f (j) − r j || ≤ ||p j−1

f (j) − r j ||. For simplicity,

we let x = || p̃ j−1
f (j) − r̃ j ||, y = ||r j − r̃ j ||, and z = ||p j−1

f (j) − p̃ j−1
f (j)||. Since both

p̃ j−1
f (j) and r̃ j locate on H j−1, we know that vector p̃ j−1

f (j) − r̃ j is perpendicular to both

r j − r̃ j and p j−1
f (j) − p̃ j−1

f (j). Recall that θ is the angle between p j−1
f (j) − p̃ j−1

f (j) and ν in the

123

750 Algorithmica (2017) 78:741–770

Fig. 5 An illustration for
Lemma 4

Δ⊥
j

p̃j−1
f(j)

r̃j

rj

pj
f(j)

pj−1
f(j)

x
y

z
θ

ν

h1

h2

x

proof of Theorem 1 (see Fig. 5). Let h1 and h2 denote the projections of p j−1
f (j) and r j on

ray ν, respectively. Because r j −r̃ j and h2− p̃ j−1
f (j) are parallel with each other, and both

r̃ j − p̃ j−1
f (j) and r j −h2 are perpendicular to r j −r̃ j and h2− p̃ j−1

f (j), we know that the four

points {r̃ j , r j , h2, p̃ j−1
f (j)} form a rectangle. Meanwhile, vector r j −h2 is perpendicular

to the two-dimensional flat determined by ν and p j−1
f (j) − p̃ j−1

f (j). Thus, we have

||p j−1
f (j) − r j ||2 = ||h2 − r j ||2 + ||p j−1

f (j) − h2||2

= ||h2 − r j ||2 + ||p j−1
f (j) − h1||2 + ||h1 − h2||2

= x2 + (z sin θ)2 + (y − z cos θ)2

= x2 + y2 + z2 − 2yz cos θ, (3)

||p j
f (j) − r j ||2 = ||h2 − r j ||2 + ||p j

f (j) − h2||2
= x2 + (y − z)2

= x2 + y2 + z2 − 2yz. (4)

Comparing (3) and (4), we know that ||p j
f (j) − r j || ≤ ||p j−1

f (j) − r j ||. Combining this

and (2), we have ||p j
f (j) − p j−1

f (j)|| ≤ 2||p j−1
f (j) − r j ||. ��

As for the running time of SOD, we know that there are d steps in the process, and
each step involves computing the projection of one point to the corresponding flat,
which costs O(d3) time. Thus, we have the following lemma.

Lemma 5 SOD can be performed in O(|P|d4) time.

5 FPTAS For EMDRT

In this section, we present an FPTAS for EMDRT. Our algorithm first applies SOD
to obtain an upper bound on the optimal objective value of EMDRT, and then use

123

Algorithmica (2017) 78:741–770 751

it to determine a proximity region (called grid-ball) for each point in A containing
its possible match in B. By searching a grid in each such grid-ball, we show that an
FPTAS can be attained for EMDRT.

To solve EMDRT, a basic problem is to determine the earthmover’s distance (EMD)
between two sets of fixed points without considering any rigid transformation. In [16],
Cabello et al. introduced a (1 + ε)-approximation algorithm for computing EMD in
a plane, and generalized it to any d-dimensional space. Below is a lemma proved in
[16].

Lemma 6 ([16]) Given two weighted point sets A and B in R
d and a small ε > 0,

there exists an algorithm which outputs a (1 + ε)-approximation of EMD between A
and B in O((n2/ε2(d−1)) log2(n/ε)) time, where n = max{|A|, |B|}.

5.1 Upper Bound

For the upper bound, we notice that although [27] provides an O(2d−1)-approxim-
ate solution, it cannot be used as an upper bound as it assumes that the two input point
sets have equal total weight, which may not be the case in our problem. To obtain an
upper bound for EMDRT, we need the following definition.

Definition 4 (Bottleneck) Let H={hi j } be any feasible flow between A and B in Defi-

nition 2.Then theBottleneckof H is defined asBN (A, B, H) = maxi, j { hi j ||pi −q j ||
min{W A,W B } }.

From the above definition, we immediately have the following lemma.

Lemma 7 For any feasible flow H between A and B,

1

nm

∑n
i=1

∑m
j=1 hi j ||pi − q j ||

min{W A, W B} ≤ BN (A, B, H) ≤
∑n

i=1
∑m

j=1 hi j ||pi − q j ||
min{W A, W B} .

Our main idea for obtaining an upper bound is to first identify a good base from
B, then enumerate all possible subsets of A with cardinality d as the reference system
R, and finally use SOD to obtain a rigid transformation for B. The criterium for
selecting the base is to make them as “dispersed” as possible, where the dispersiveness
is measured by the weighted distance between each point q j ∈ B and the flat spanned
by all determined base points.

Algorithm Upper-Bound-for-EMDRT
Input Two weighted point sets A = {p1, . . . , pn} and B = {q1, . . . , qm} in R

d with
weight αi ≥ 0 and β j ≥ 0 for pi and q j respectively, and W A ≥ W B .
Output An upper bound on minT EMD(A, T (B)).

1. Call Base-Selection on B, and let {qb(1), . . . , qb(d)} be the output base.
2. Enumerate all d-point tuples from [A]d = A × · · · × A. For each tuple

R = {pi(1), . . . , pi(d)}, Do
(a) Define the mapping such that f (i(j)) = b(j) for each 1 ≤ j ≤ d.

(a) Define the mapping such that f (i(j)) = b(j) for each 1 ≤ j ≤ d.

123

752 Algorithmica (2017) 78:741–770

Fig. 6 An illustration for
Algorithm base-selection (for
l = 3) qb(1) qb(2)

qb(3)

qj

F3

dist(qj, F3)

(b) Emulate the execution of the procedure SOD(B, R, f), and stop at the
final step or at the l-th step if pi(l) locates on the flat span{pi(1), . . . ,

pi(l−1)} 5. Then compute the (1 + ε)-approximation of EMD between A
and the output the image of B by using the algorithm in Lemma 6.

3. Output the image of B which has the minimum EMD to A among all images
of B corresponding to the tuples of [A]d .

Algorithm Base-Selection
Input A weighted point set B = {q1, . . . , qm} in R

d with nonnegative weight β j for
each q j .
Output A base which is an ordered subset {qb(1), . . . , qb(d)} of points in B.

1. Select the point with largest weight from B, and denote it as qb(1). Let l = 1, and
repeat the following steps until l = d.
(a) Let Fl be the flat spanned by {qb(1), . . . , qb(l)}. See Fig. 6.
(b) Find the point realizing max{β j · dist(q j ,Fl) | 1 ≤ j ≤ m}, and denote it as

qb(l+1), where dist(q j ,Fl) is the distance between q j and Fl .
(c) Let l = l + 1.

2. Output {qb(1), . . . , qb(d)}.

Theorem 2 The algorithm of Upper-Bound-for-EMDRT yields in O(nd+2(log n)2

md4) time an upper bound Π which is a ((1+ε)nm(n+1)(2n+1)d−1)-approximation
of the optimal objective value.

To prove Theorem 2, we need the following lemma. Let Topt be an optimal
rigid transformation (i.e., the one realizing the value of minT EMD(A, T (B))), and
H = {hi j } be the corresponding optimal flow. Since the algorithm enumerates all
d-point tuples in [A]d , we just need to focus on the tuple {pi(1), . . . , pi(d)} which
has hi(j)b(j) = max{hib(j) | 1 ≤ i ≤ n} for each 1 ≤ j ≤ d. With a slight abuse
of notation, we use R = {pi(1), . . . , pi(d)} to denote the tuple which satisfies this
requirement.

Lemma 8 Let I(B) be the final output image of B by SOD(B, R, f) in the above
algorithm. Then BN (A, I(B), H) ≤ (n + 1)(2n + 1)d−1BN (A, Topt (B), H).

5 Actually, another reason causing stop is that qb(l) locates on the flat span{qb(1), . . . , qb(l−1)} for some
2 ≤ l ≤ d. If that happens, recalling the Algorithm Base-Selection, we know that the whole B would locate
on the (l −2)-dimensional flat. In this case we can assume that SOD(B, R, f) does not stop in the following
d − l + 1 steps, but the corresponding d − l + 1 rotation angles are all zeros.

123

Algorithmica (2017) 78:741–770 753

Proof We analyze how the Bottleneck changes from BN (A, Topt (B), H) to BN (A,

I(B), H) in a step-by-step fashion. Note that the original position of B may not be
the same as Topt (B). By Lemma 2, we know that the final result of SOD(B, R, f) is
always the same. Thus, we can assume that the original position of B is at Topt (B)

if the emulation in Step 2(b) finishes all steps of SOD(B, R, f). Furthermore, if the
emulation stops at the l-th step for some l ≤ d, in this case, by the proof of Lemma 2
we know that the first l − 1 points {qb(1), . . . , qb(l−1)} always stay at their respective
same positions even if B does not locate at Topt (B). Below we will show that it does
not affect us from bounding the Bottleneck, even if it happens.

Let u0 = BN (A, Topt (B), H) be the Bottleneck at the beginning, and u j be the
Bottleneck in the j-th step of the SOD procedure. Then in the first step, we have the
following for any 1 ≤ t ≤ n and 1 ≤ l ≤ m.

htl ||pt − q1
l || ≤ htl(||pt − ql || + ||ql − q1

l ||)
≤ htl ||pt − ql || + βb(1)||ql − q1

l ||
= htl ||pt − ql || + n × βb(1)

n
||qb(1) − pi(1)||, (5)

where q1
l is the new position of ql after the first step, the second inequality follows from

the fact that βb(1) is the largest weight (see Step 1 of the Base-Selection algorithm),
and the equality follows from the translation performed in the first step of SOD (i.e.,
||ql − q1

l || = ||qb(1) − pi(1)||). Since hi(j)b(j) = max{hib(j) | 1 ≤ i ≤ n}, we know
that hi(1)b(1) ≥ βb(1)

n . Combining this and (5), we have htl ||pt −q1
l || ≤ htl ||pt −ql ||+

nhi(1)b(1)||qb(1) − pi(1)||. Thus by Definition 4, we have u1 ≤ (1 + n)u0.
In the j-th step (j ≥ 2), there are two cases: (1) pi(j) does not locate on the flat

determined by {pi(1), . . . , pi(j−1)} and (2) pi(j) locates on the flat. For case (1), by
Lemma 4, we know that

||q j
b(j) − q j−1

b(j) || ≤ 2||q j−1
b(j) − pi(j)||, (6)

where q j−1
b(j) and q j

b(j) are point qb(j) at its new locations in the (j − 1)-th and j-th
steps respectively. The following claim is a key to case (1).

Claim 1 In case (1), for any 1 ≤ t ≤ n and 1 ≤ l ≤ m,

htl ||pt − q j
l || ≤ htl ||pt − q j−1

l || + 2nhi(j)b(j)||q j−1
b(j) − pi(j)||.

Proof Note that when we perform the one-dimensional rotation in the j-th step of
SOD, the loci of {ql | 1 ≤ l ≤ m} are a set of co-centered circles with radius
dist(q j−1

l ,Δ⊥
j) for each l. Let θ be the angle rotated in the one-dimensional rotation.

Then, since dist(q j−1
l ,Δ⊥

j) = dist(q j
l ,Δ⊥

j) (see Fig. 7), we have

||q j
l − q j−1

l || = 2dist
(

q j−1
l ,Δ⊥

j

)
sin

θ

2
. (7)

123

754 Algorithmica (2017) 78:741–770

Fig. 7 An illustration for
Claim 1

Δ⊥
j

θ

qj−1
l

qj
l

From the Base-Selection algorithm, we know that

βl · dist
(

q j−1
l ,Δ⊥

j

)
≤ βb(j) · dist(q j−1

b(j) , Δ
⊥
j). (8)

Thus, combining (6), (7) and (8), we have

||q j
l − q j−1

l || = 2dist
(

q j−1
l ,Δ⊥

j

)
sin

θ

2

≤ 2
βb(j)

βl
dist

(
q j−1

b(j) , Δ
⊥
j

)
sin

θ

2

= βb(j)

βl
||q j

b(j) − q j−1
b(j) ||

≤ 2
βb(j)

βl
||q j−1

b(j) − pi(j)||, (9)

where thefirst inequality follows from (8), the second equality follows from (7) (replac-
ing l by b(j)), and the second inequality follows from (6). By the assumption that
hi(j)b(j) = max{hib(j) | 1 ≤ i ≤ n}, we get hi(j)b(j) ≥ βb(j)

n . Thus, from (9) we have

htl ||pt − q j
l || ≤ htl

(
||pt − q j−1

l || + ||q j
l − q j−1

l ||
)

≤ htl ||pt − q j−1
l || + βl ||q j

l − q j−1
l ||

≤ htl ||pt − q j−1
l || + 2βb(j)||q j−1

b(j) − pi(j)||
≤ htl ||pt − q j−1

l || + 2nhi(j)b(j)||q j−1
b(j) − pi(j)||, (10)

where the first inequality follows from triangle inequality, the second follows from
the fact that htl ≤ βl , the third follows from (9), and the forth follows from the fact
that hi(j)b(j) ≥ βb(j)

n . This completes the proof of Claim 1. ��
Now we resume to proving case (1). From Definition 4, we know that both

htl ||pt −q j−1
l || and hi(j)b(j)||q j−1

b(j) − pi(j)|| are nomore than u j−1W B . Thus, we have
u j ≤ (1 + 2n)u j−1 for case (1).

123

Algorithmica (2017) 78:741–770 755

For case (2), we know that pi(j) locates on the flat spanning {pi(1), . . . , pi(j−1)}.
This means that the emulation in Step 2(b) stops at the j-th step of SOD. Let q̃ j−1

b(j) be

the projection of q j−1
b(j) on the flat span{pi(1), . . . , pi(j−1)}. As we mentioned earlier,

in this case the first j − 1 points {qb(1), . . . , qb(j−1)} always stay at their respective
same positions even if B does not originally located at Topt (B). It is easy to see

that span{pi(1), . . . , pi(j−1)} = span{q j−1
b(1) , . . . , q j−1

b(j−1)}. Thus, q j−1
b(j) is constrained

on the (d − j + 2)-dimensional sphere, which is centered at q̃ j−1
b(j) and with radius

dist(q j−1
b(j) , Δ

⊥
j) = ||q j−1

b(j) − q̃ j−1
b(j) ||. By triangle inequality, we have

||q j
b(j) − q j−1

b(j) || ≤ ||q j
b(j) − q̃ j−1

b(j) || + ||q j−1
b(j) − q̃ j−1

b(j) ||
= 2||q j−1

b(j) − q̃ j−1
b(j) ||

≤ 2||q j−1
b(j) − pi(j)||, (11)

where the second inequality follows from the facts that pi(j) locates on Δ⊥
j and q̃ j−1

b(j)

is the projection of q j−1
b(j) on Δ⊥

j , which imply that ||q j−1
b(j) − q̃ j−1

b(j) || ≤ ||q j−1
b(j) − pi(j)||.

Since (11) is equivalent to (6) in case (1), by a similar argument, we know that Claim 1
also holds for case (2). This means that u j ≤ (1 + 2n)u j−1.

In summary, we have u j ≤ (1+ n)(1+ 2n) j−1u0 for either case. This implies that
BN (A, I(B), H) ≤ (n + 1)(2n + 1)d−1BN (A, Topt (B), H). ��

With the above lemma, we now prove Theorem 2.

Proof (of Theorem 2) Let Πopt = EMD(A, Topt (B)), and Π be the objective value
returned by the algorithm. Obviously, Πopt ≤ Π . By Lemma 7, we know

Π ≤ nmBN (A, I(B), H), (12)

BN (A, Topt (B), H) ≤ Πopt . (13)

By Lemma 8, we immediately have Π ≤ nm(n + 1)(2n + 1)d−1Πopt . Since the
algorithm in Lemma 6 only yields a (1 + ε)-approximation of EMD, we have an
additional (1 + ε) factor in the approximation ratio.
Running time It is easy to see that the Base-Selection algorithm takes O(md4) time.
Since we enumerate all nd tuples in [A]d and each tuple corresponds to a call to the
procedure of SOD which costs O(md4) time (by Lemma 5), the total running time is
thus O(nd+2(log n)2md4) (including the time by the algorithm in Lemma 6), where
the hidden constant depends on ε and d. ��

5.2 The FPTAS Algorithm

The upper bound determined in last section enables us to achieve a (1 + ε)-
approximation for EMDRT in the following way. We first draw d balls (called
Grid-Ball) centered at the d points of A respectively, and then build a grid inside

123

756 Algorithmica (2017) 78:741–770

each ball. For each d-grid-point tuple (one from each grid-ball), emulate the SOD
procedure on B. The purpose of using grid points is for determining more “accurate”
rigid transformation for B. To implement this approach, we need to resolve two major
issues: (1) What is the radius of each grid-ball and (2) what is the density of the grids.
Below we discuss our ideas on each of them.

Lemma 9 If W A ≥ W B in EMDRT, then for any 1 ≤ j ≤ m,

min
1≤i≤n

||pi − Topt (q j)|| ≤ nW B

β j
EMD(A, Topt (B)). (14)

Proof Let H = {hi j } be the flow realizing the distance ofEMD(A, Topt (B)) (i.e., H is
the optimal flow). FromDefinition 2, we know that for any 1 ≤ i ≤ n and 1 ≤ j ≤ m,

||pi − Topt (q j)|| ≤ W B

hi j
EMD(A, Topt (B)). (15)

By pigeonhole principle, we know that max1≤i≤n hi j ≥ β j
n . Combining this and (15),

we have (14). ��
Lemma 9 indicates that for each q j , there exists some pi whose grid-ball con-

tains Topt (q j) if its radius is set to be nW B

β j
EMD(A, Topt (B)). However, since

EMD(A, Topt (B)) is unknown, we cannot directly use nW B

β j
EMD(A, Topt (B)) as the

radius. Since the algorithm of Upper-Bound-for-EMDRT yields an upper bound of
EMD(A, Topt (B)), we can use it to approximate the radius. The following lemma
suggests a way to determine the density of the grid.

Lemma 10 If W A ≥ W B and T is a rigid transformation for B such that for each
1 ≤ j ≤ m, at least one of the following two conditions hold,

1. ||T (q j) − Topt (q j)|| ≤ cε min1≤i≤n ||pi − Topt (q j)||;
2. ||T (q j) − Topt (q j)|| ≤ cε W B

mβ j
EMD(A, Topt (B)),

where c > 0 is a constant, then EMD(A, T (B)) ≤ (1 + 2cε)EMD(A, Topt (B)).

Proof By Definition 2 and triangle inequality, we have

EMD(A, T (B)) ≤ EMD(A, Topt (B)) + 1

W B

m∑

j=1

β j ||T (q j) − Topt (q j)||. (16)

Consider the two conditions in the lemma. Firstly, we assume that Condition 1 holds
for all 1 ≤ j ≤ m (i.e., ||T (q j) − Topt (q j)|| ≤ cε min1≤i≤n ||pi − Topt (q j)||). Then
we know that

123

Algorithmica (2017) 78:741–770 757

β j ||T (q j) − Topt (q j)|| ≤ cεβ j min
1≤i≤n

||pi − Topt (q j)||

= cε
n∑

i=1

hi j min
1≤i≤n

||pi − Topt (q j)||

≤ cε
n∑

i=1

hi j ||pi − Topt (q j)||, (17)

where the first equality follows from the fact that β j = ∑n
i=1 hi j . Summing both sides

of (17) over j , we have

m∑

j=1

β j ||T (q j) − Topt (q j)|| ≤ cε
m∑

j=1

n∑

i=1

hi j ||pi − Topt (q j)|| = cεW BEMD(A,Topt (B)).

Combining the above inequality and (16), we complete the proof for this case.
Secondly, we assume that Condition 2 holds for all 1 ≤ j ≤ m (i.e.,

||T (q j) − Topt (q j)|| ≤ cε W B

mβ j
EMD(A, Topt (B))). Then we have

m∑

j=1

β j ||T (q j) − Topt (q j)|| ≤ cε
m∑

j=1

β j
W B

mβ j
EMD(A,Topt (B)) = cεW BEMD(A,Topt (B)).

Thus, by (16), we know that the lemma holds for the second case as well.
Finally, we consider the case where different j may satisfy different conditions.
In this case, we can use the same strategy to prove the result. The only differ-

ence is that we need to add a factor of 2 (i.e.,
∑m

j=1 β j ||T (q j)−Topt (q j)||≤2cεW B

EMD(A, Topt (B))). Thus the lemma holds for all cases. ��
Algorithm FPTAS-for-EMDRT
Input Two weighted point sets A = {p1, . . . , pn} and B = {q1, . . . , qm} in R

d with
weight αi ≥ 0 and β j ≥ 0 for pi and q j respectively, and W A ≥ W B ; a small number
ε > 0.
Output A rigid transformation T for B

with EMD(A, T (B)) ≤ (1 + ε)EMD(A, Topt (B)).

1. Call Upper-Bound-for-EMDRT in Sect. 5.1, and letΠ be the yielded upper bound.
Construct the set Γ = {Π

2t | t = 0, 1, . . . , 2d log(max{n, m})}.
2. Call Base-Selection on B in Sect. 5.1, and let {qb(1), . . . , qb(d)} be the base.
3. Enumerate all d-point tuples from [A]d = A × · · · × A. For each tuple

R = {pi(1), . . . , pi(d)}, do
(a) Call Grid-Construction algorithm, and let {G1, . . . , Gd} be the output.
(b) For each tuple {g1, . . . , gd} ∈ G1 × G2 × · · · × Gd , emulate SOD on B,

{g1, . . . , gd}, and the mapping f , where f (j) = b(j). Compute the EMD
between A and the output image of B.

4. Output the image of B among all the obtained images which has the minimum
EMD to A.

123

758 Algorithmica (2017) 78:741–770

Fig. 8 Black points are A, red
points are Topt (B), and green
points are grid points (Color
figure online)

pi(j)

gj

Topt(qb(j))

Algorithm Grid-Construction
Input Γ , {qb(1), . . . , qb(d)} and R = {pi(1), . . . , pi(d)}.
Output Grids {G1, . . . , Gd}
1. For each 1 ≤ j ≤ d, do:

(a) Build the set of radius candidates { nW B

βb(j)
γ | γ ∈ Γ }.

(b) For each radius candidate r , construct a grid-ball centered at pi(j) and with
radius r , and build a grid inside the ball with grid length rε

8·3d nm
√

d
.

(c) Let G j denote the union of the grids inside all the grid-balls.
2. Output {G1, . . . , Gd}.

Theorem 3 The above FPTAS-for-EMDRT algorithm yields a (1+ε)-approxim- ation
for the EMDRT problem in O((nm)O(d2)(

√
d/ε)d2

3d3
d4) time.

Sketch of the proof From Lemma 9 and 10, we know that for each Topt (qb(j)), there
is one grid point close to it. We denote these d grid points as {g1, . . . , gd} (see Fig. 8).
We construct an implicit set of points B ′ = {q ′

1, . . . , q ′
m} called ‘relayer’, where

q ′
b(j) = g j for 1 ≤ j ≤ d, and q ′

l = Topt (ql) for any l /∈ {b(j) | 1 ≤ j ≤ d},
and assign each q ′

l a weight βl . B ′ is used as a bridge to show the quality of solution
from the above algorithm. Particularly, we first prove that EMD(A, B ′) is close to the
optimal objective value, since B ′ is close to Topt (B). Then, we show that I(B) is close
to B ′, where I(B) is the output from the execution of SOD on B and {g1, . . . , gd}.
Finally, we view B ′ as the one which relays all flow from I(B) to A; this implies that
EMD(A, I(B)) is also close to the optimal objective value.

Proof (of Theorem 3) Firstly, by Theorem 2 and Step 1 of the FPTAS-for-EMDRT
algorithm, we know that there must exist γ0 ∈ Γ such that

EMD(A, Topt (B)) ≤ γ0 ≤ 2E M D(A, Topt (B)). (18)

Since the algorithm enumerates all d-tuples from [A]d , we can focus on the tuple
{pi(1), . . . , pi(d)}which has ||pi(j) −Topt (qb(j))|| = min1≤i≤n ||pi −Topt (qb(j))|| for
each 1 ≤ j ≤ d. We know that if we let r j = nW B

βb(j)
γ0 for all 1 ≤ j ≤ d, then the grid

length satisfies the following inequality,

123

Algorithmica (2017) 78:741–770 759

Fig. 9 An example showing the
flow from I(q j) to pi passing
through the q ′

j

I(qj)I(qj) q′
jq
′
jh′

jj = βjh′
jj = βj

hijhij

pipi

r jε

8 · 3dnm
√

d
≤ εW B

4 · 3dm
√

dβb(j)
EMD(A, Topt (B)). (19)

From Lemma 9, we know that Topt (qb(j)) locates inside the grid-ball centered at pi(j)

and with radius r j . Thus, there exists one grid point g j ∈ G j such that

||g j − Topt (qb(j))|| ≤ cε
W B

mβb(j)
EMD(A, Topt (B)), (20)

where c = 1/(4 · 3d) (see Fig. 8). Now, we construct an implicit point set
B ′ = {q ′

1, . . . , q ′
m} as the relayer point set, where q ′

b(j) = g j for 1 ≤ j ≤ d,
and q ′

l = Topt (ql) for any l /∈ {b(j) | 1 ≤ j ≤ d}, and assign each q ′
l a weight βl .

From Lemma 10 and inequality (20), we have

EMD(A, B ′) ≤ (1 + 2cε)EMD(A, Topt (B)). (21)

This means that EMD(A, B ′) is close to the optimal objective value.
Consider executing the SOD procedure on B and {g1, . . . , gd} (i.e., {q ′

b(1),

. . . , q ′
b(d)}), and let I(B) be the output image of B. We define the flow H ′ = {h′

i j }
from Topt (B) to B ′ as h′

j j = β j for each 1 ≤ j ≤ m and h′
i j = 0 for all i �= j . Note

that from (20), we have

BN (Topt (B), B ′, H ′) ≤ cε

m
EMD(A, Topt (B)). (22)

Using a similar idea in the proof of Lemma 8, we have

BN (I(B), B ′, H ′) ≤ 2 · 3d−1BN (Topt (B), B ′, H ′) ≤ ε

2m
EMD(A, Topt (B)).

(23)

The only difference from Lemma 8 is that we replace the factor of (n +1)(2n +1)d−1

in Lemma 8 by 2 · 3d−1 (due to the difference in the flow H ′).
In the above construction, B ′ can be viewed as a point set which relays all the flow

from I(B) to A. More specifically, any flow from I(q j) to pi can be thought as a
flow arriving q ′

j first, and then flowing to pi (see Fig. 9). From (21), (23), and triangle
inequality, we have

123

760 Algorithmica (2017) 78:741–770

EMD(A, I(B))≤EMD(A, B ′)+
m∑

j=1

BN (I(B), B ′, H ′)≤(1+ε)EMD(A, Topt (B)).

This means that I(B) is the desired image of B which yields a (1+ε)-approxim- ation
for EMDRT. Since the algorithm enumerates all tuples in [A]d andG1×G2×· · ·×Gd ,
I(B) must be one of the output images.

Running time The most time consuming step is enumerating all tuples in G1 ×
G2×· · ·×Gd . Since each |G j | = O(d log(max{n, m})(8·3d nm

√
d

ε
)d), the total running

time is O((nm)O(d2)(
√

d/ε)d2
3d3

d4) (including the time for SOD). ��

6 FPTAS with Improved Running Time

The FPTAS algorithm given in Sect. 5.2 can be further improved in its running time.
To achieve this, we notice that the most time-consuming part of the algorithm is for
examining all combinations of the grid points inside the d grid-balls. To speed up
the computation, it is desirable to reduce the size of the grids. For this purpose, we
first observe that the contribution of a point q j ∈ B to the optimal objective value
is

∑n
i=1 hi j ||pi − Topt (q j)||/min{W A, W B}, where ∑n

i=1 hi j can be viewed as the
weight β j of q j (by Definition 2) and ||pi −Topt (q j)|| is the distance between pi ∈ A
and the position of q j in the optimal solution. This means that, to reduce the error
caused by the rigid transformation, we need to consider both β j and ||pi − Topt (q j)||
when selecting the base. The Base-Selection Algorithm in Sect. 5.1 maximizes the
dispersion of the base using only the weight (i.e., type 1 dispersion; see Sect. 3). Thus,
a better way for maximizing the dispersion of the base is to consider both factors
(i.e., type 2 dispersion). This motivates us to consider the following base selection
algorithm.

Algorithm Optimum-Guided-Base (OGB)
Input A weighted point set B = {q1, . . . , qm} in Rd with weight β j ≥ 0 for q j .
Output A base which is an ordered subset of points in B.

1. For each 1 ≤ j ≤ m, define a value

v j = max

{

min
1≤i≤n

||pi − Topt (q j)||, W B

mβ j
EMD(A, Topt (B))

}

.

2. Select the point in B with the minimum v j value, and denote it as qb(1).
3. Set l = 1, and repeat the following steps until l = d.

(a) Let Fl the flat spanning {qb(1), . . . , qb(l)}.
(b) Find the point in B realizing the value of

max

{
1

v j
dist(q j ,Fl) | 1 ≤ j ≤ m

}

,

and denote it as qb(l+1), where dist(q j ,Fl) is the distance between q j and Fl .

123

Algorithmica (2017) 78:741–770 761

(c) Let l = l + 1.
4. Output {qb(1), . . . , qb(d)}.

Note: The above OGB algorithm differs from the Base-Selection algorithmmainly on
the use of v j value for selecting the base. Since v j depends on the optimal solution,
OGB cannot be directly implemented. To resolve this issue, we can enumerate all
d-tuples in [B]d , and find the one corresponding to the output of OGB. Thus, for ease
of analysis, we can assume that OGB is available.

With OGB, we can now discuss our improved FPTAS algorithm. Since most part of
the improved algorithm is similar to the original FPTAS algorithm given in Sect. 5.2,
below we just list the main differences.

1. Replace the Base-Selection algorithm by the OGB algorithm.
2. In the Grid-Construction algorithm, replace the set of radius candidates by

{ nW B

2t βb(j)
γ | γ ∈ Γ, t = 1, 2, . . . , log(nm)} for each 1 ≤ j ≤ d, and change

the grid length to rε

8·3d
√

d
.

Before analyzing the above algorithm, we first consider the following two essential
questions.
Why is the grid size reduced?To seewhy the above algorithm is an improved FPTAS,
we first analyze the grid size. Similar to the original FPTAS, we can build a grid-ball
centered at pi(j) and with radius

vb(j) = max

{

min
1≤i≤n

||pi − Topt (qb(j))||, W B

mβb(j)
EMD(A, Topt (B))

}

. (24)

By Lemma 10, we know that we can choose the grid length to be

O

(
ε√
d
max

{

min
1≤i≤n

||pi − Topt (qb(j))||, W B

mβb(j)
EMD(A, Topt (B))

})

= O

(
ε√
d

vb(j)

)

, (25)

This means that the ratio between the radius and grid length is O(
√

d
ε

), which is

independent of m and n, while the ratio in the first FPTAS (in Sect. 5.2) is O(
√

d
ε

nm)

(see Step 1(b) in Algorithm Grid-Construction). Thus, the grid size in each grid-ball
is bounded by a constant depending only on d and ε, and consequently the running
time can be significantly reduced.

Why take the maximum of the two terms as the radius? In the above improved
algorithm, a natural question is “Why do we take the maximum of min1≤i≤n ||pi −
Topt (qb(j))|| and W B

mβb(j)
EMD(A, Topt (B)), rather than just one of them, as the radius

of the grid-balls?” To understand the rationale behind this, we first consider what
happens if only one of them is used as the radius. If min1≤i≤n ||pi − Topt (qb(j)|| is
the radius, an immediate difficulty is how to estimate the value of min1≤i≤n ||pi −
Topt (qb(j))||, since it might be extremely small. Also, if W B

mβb(j)
EMD(A, Topt (B)) is

123

762 Algorithmica (2017) 78:741–770

the radius, the grid-ball may not even contain Topt (qb(j)) and therefore it is difficult
to estimate the error related to qb(j). This indicates that using either term as the radius
leads to different problem. Surprisingly, if we simply take the maximum of the two

terms, min1≤i≤n ||pi − Topt (qb(j))|| and W B

mβb(j)
EMD(A, Topt (B)), as the radius, both

difficulties can be rather easily overcome. This is because with max{min1≤i≤n ||pi −
Topt (qb(j)||, W B

mβb(j)
EMD(A, Topt (B))} as the radius, we can determine its approximate

value by guessing O(logmn) times, using the upper bound (of the optimal objective
value) fromSect. 5.1 (note that there is no need to obtain the exact value; some constant
approximation will be sufficient for us to reduce the grid size). Also with this radius,
we can always guarantee that the grid ball contains Topt (qb(j)) (i.e., ensured by the
first term). Thus, it is necessary to use the maximum of the two terms as the radius.

With the above understanding, we can show the following theorem using a similar
argument given in the proof of Theorem 3.

Theorem 4 The improved FPTAS algorithm yields a (1 + ε)-approximation for the
EMDRT problem in O((nm)d+2(log(nm))2d(

√
d/ε)d2

3d3
d4) time.

Proof Firstly, from Lemma 9 and the definition of v j we know that there must exist
one r j in the set of radius candidates such that v j ≤ r j ≤ 2v j . By a similar argument
in the proof of Theorem 3, we know that there exists one grid point g j ∈ G j such that

||g j − Topt (qb(j))|| ≤ cεv j , (26)

where c = 1/(4 · 3d). Following the same strategy in the proof of Theorem 3, we
construct an implicit point set B ′ = {q ′

1, . . . , q ′
m}, where q ′

b(j) = g j for 1 ≤ j ≤ d,
and q ′

l = Topt (ql) for any l /∈ {b(j) | 1 ≤ j ≤ d}, and assign each q ′
l a weight βl .

Consider the execution of SOD on B with {g1, . . . , gd} as the reference system. In the

l-th step of SOD, we let ul
j = ||ql

j −q ′
j ||

cεv j
for each 1 ≤ j ≤ m, where ql

j is q j at its new
position in the l-th step. When l = 0, we know that

u0
j ≤ 1 (27)

by (26). For other values of l, we have the following claim.

Claim 2 For any 1 ≤ j ≤ m, u1
j ≤ 2 and ul

j ≤ ul−1
j + 2ul−1

b(l) for all l ≥ 2.

Proof Firstly, when translating Topt (B) to make q1
b(1) coincident with q ′

b(1), we have

u1
j = ||q1

j − q ′
j ||

cεv j

≤ ||q1
j − q0

j || + ||q0
j − q ′

j ||
cεv j

= ||q1
j − q0

j || + ||q0
b(1) − q ′

b(1)||
cεv j

123

Algorithmica (2017) 78:741–770 763

= u0
j + vb(1)

v j
u0

b(1)

≤ u0
j + u0

b(1)

≤ 2, (28)

where the second inequality follows from the fact that vb(1) = min1≤ j≤m v j , and the
last inequality follows from (27).

Secondly, in the l-th step for l ≥ 2, from OGBwe know that qb(l) realizes the value
of max{ 1

v j
dist(q j ,Fl−1) | 1 ≤ j ≤ m}. Thus for each 1 ≤ j ≤ m, we have

∥
∥|ql

j − ql−1
j |∥∥ = dist(q j ,Fl−1)

dist(qb(l),Fl−1)

∥
∥|ql

b(l) − ql−1
b(l) |

∥
∥

≤ v j

vb(l)

∥
∥|ql

b(l) − ql−1
b(l) |

∥
∥. (29)

Moreover, from Lemma 4, we have

||ql
b(l) − ql−1

b(l) || ≤ 2||ql−1
b(l) − q ′

b(l)||
= 2cεvb(l)u

l−1
b(l). (30)

Combining (29) and (30), we have

∥
∥|ql

j − ql−1
j |∥∥ ≤ 2cεv j u

l−1
b(l). (31)

By triangle inequality and (31), we have

ul
j = ||ql

j − q ′
j ||

cεv j

≤ ||ql
j − ql−1

j || + ||ql−1
j − q ′

j ||
cεv j

≤ ul−1
j + 2ul−1

b(l). (32)

Thus Claim 2 is true. ��
From Claim 2 and (27), we can know that ud

j ≤ 2 · 3d−1 for each 1 ≤ j ≤ m (by
simple calculation and mathematical induction). Together with triangle inequality and
(26) (note that g j = q ′

b(j)), we have ||qd
j − Topt (q j)|| ≤ (1 + 2 · 3d−1)cεv j . Using

Lemma 10, we obtain the desired FPTAS solution.
Running time Comparing to the previous FPTAS algorithm, there are two major
differences which affect the running time. One is that we have to enumerate
all md tuples in [B]d to implement OGB. The other is that |G j | is reduced to

O(d(log(nm))2(8·3d
√

d
ε

)d). Thus, the total time is reduced to O((nm)d+2 (log(nm))2d

(
√

d/ε)d2
3d3

d4). ��
Lower bound on running time Cabello et al. [15] showed that given two point sets A
and B in Rd with size |A| = m ≤ |B| = n, it is not only NP-hard, but also W[1]-hard

123

764 Algorithmica (2017) 78:741–770

(with d as a parameter) to determine whether A is congruent with a subset of B, and
cannot be solved in O(mno(d))-time unless SN P ⊂ DT I M E(2o(n)). Since the subset
congruent problem can be reduced to our EMDRT problem (i.e., let each αi = β j = 1,
and EMD(A, Topt (B)) = 0), this means that obtaining an FPTAS for EMDRT costs
at least mnΩ(d)-time (this is because the optimal objective value of the congruent
problem is 0 and a (1 + ε)-approximation of the objective value implies an exact
solution to the congruent problem). As our algorithm takes O((nm)d+2(log(nm))2d)-
time (if ignore the factor involving only d and ε), this suggests that it almost reaches
the limit.

7 Extensions to Some Related Problems

In this section, we show that our techniques for EMDRT can be extended to several
related problems and achieve FPTAS for each of them.

7.1 EMD Under Similarity Transformation

In this section,we consider the problemofminimizingEMDof twoweighted point sets
under Similarity Transformation (EMDST). We start with the definition of similarity
transformation.

Definition 5 (Similarity Transformation) Similarity transformation in R
d includes

rigid transformation, scaling, or their combination.

Similar to SOD,we have the following decomposition for similarity transformation.

Orthogonal Similarity Transformation Decomposition (OSTD) OSTD consists all
steps of SOD and an additional step (after Step 1; i.e., the translation step making
p f (1) coincident with r1) which scales P about r1 by some factor to be determined
later.

As shown in Lemma 2, the outcome of SOD is independent of the initial position
of the point set P . Due to the additional scaling step, this nice property seemingly no
longer holds for OSTD. However, as it will be shown later, this property is actually
still true for OSTD for some carefully chosen scaling factor. Below, we first present
an algorithm similar to the Upper-Bound on EMDRT algorithm in Sect. 5.1, and
determine the scaling factor in one of its main steps.

Algorithm Upper-Bound on EMDST The main body of the algorithm is almost the
same as Upper-Bound on EMDRT (in Sect. 5.1); the only difference is that SOD is
replaced by OSTD in Step 2(b). The scaling factor of OSTD is determined as follows.
Let Topt be an optimal similarity transformation, Topt (qb(2))

1 be qb(2) in its new posi-
tion after B is translated to make qb(1) coincident with pi(1), and pi∗ be the point in
A closest to Topt (qb(2))

1 (note that pi∗ is not necessary in R = {pi(1), . . . , pi(d)}).
Since pi∗ depends on the unknown optimal transformation Topt , it cannot be found
directly; however, it is possible to obtain it implicitly by the same strategy used in the
Optimum-Guided-Base algorithm in Sect. 6. With pi∗ , we can then choose the scaling
factor of OSTD as such a value that

123

Algorithmica (2017) 78:741–770 765

||qs
b(2) − qs

b(1)|| = ||pi∗ − pi(1)||,

where qs
j is q j in its new position after scaling about pi(1) for each 1 ≤ j ≤ m (note

that qs
b(1) = q1

b(1) since q1
b(1) coincides with pi(1)).

The following lemma is the counterpart of Lemma 2 for OSTD.

Lemma 11 In the algorithm of Upper-Bound on EMDST, if the reference system
R = {pi(1), . . . , pi(d)} and the mapping function f are fixed, the output of
O ST D(B, R, f) is always the same as that of O ST D(I(B), R, f) for any simi-
larity transformation I.

Proof To prove this lemma, our strategy is to first show that the outputs are congruent
with each other 6, and then demonstrate that they are exactly the same.

Claim 3 O ST D(B, R, f) and O ST D(I(B), R, f) are congruent with each other.

Proof Since all the steps of O ST D, except for the scaling step, are rigid transforma-
tions, we only need to show that B and I(B) are congruent with each other after the
scaling step. To prove this, we first introduce the following basic fact.

Fact Let Q = {q1, . . . , qm} be a point set, and T (Q) be its image transformed by some
similarity transformation T . Q is congruent with T (Q) if and only if there exists a pair
of points q j and q j ′ in Q satisfying the condition ||q j − q j ′ || = ||T (q j) − T (q j ′)||.

With this fact, we now show the correctness of Claim 3. For any chosen Topt , we
know that both Topt (B) and Topt (qb(2))

1 are fixed. Thus, the index i∗ is also fixed.
This means that the length between qb(2) and qb(1) is always scaled to be the fixed
value of ||pi∗ − pi(1)||. By the above Fact, we know that Bs and I(B)s are congruent
with each other, where Bs and I(B)s are the new B and I(B), respectively, after the
scaling. This completes the proof for the claim. ��

Since O ST D(B, R, f) and O ST D(I(B), R, f) are always congruent with each
other after the scaling step and the following d − 1 steps of OSTD are the same as
SOD, using the same idea in the proof of Lemma 2, we can show that the final outputs
are exactly the same. ��

The lemma below on the running time of OSTD trivially follows from Lemma 5
and the definition of OSTD.

Lemma 12 OSTD can be performed in O(|P|d4) time.

We now present the main result for the upper bound algorithm of EMDST.

Theorem 5 The algorithm of Upper-Bound on EMDST yields in O(nd+3(log n)2

md4) time an upper boundΠ which is a2(1+ε)(nm+1)nm(2n+1)d−1-approximation
of the optimal objective value.

6 Two point sets are congruent if one can be transformed to completely coincide with the other by some
rigid transformation.

123

766 Algorithmica (2017) 78:741–770

Proof By Lemma 11, we can assume that the initial position of B is at Topt (B). This
indicates that we can use the same idea in the proof of Theorem 2 to analyze the
change of the bottleneck between A and B in a step-by-step fashion, and obtain the
approximation ratio ofEMD(A, Topt (B)). The only place that we need to pay attention
is the scaling step. We have the following claim first.

Claim 4 Let d j be the distance traveled by q j , 1 ≤ j ≤ m, when performing the
scaling step in OSTD. Then β j d j ≤ βb(2)db(2).

Proof First, we have the following two inequalities.

β j ||q j − qb(1)|| ≤ βb(2)||qb(2) − qb(1)||, (33)
db(2)

d j
= ||qb(2) − qb(1)||

||q j − qb(1)|| , (34)

where the first inequality follows from the fact that b(2) = arg j max{β j ||q j −qb(1)|| |
1 ≤ j ≤ m}, and the second inequality follows from the property of the scaling.
Combining (33) and (34), we have the inequality in Claim 4.

Let B1 and Bs be the images of B after the first step and the scaling step of OSTD.
By Claim 4 and triangle inequality, we have

EMD(A, Bs) ≤ EMD(A, B1) + 1

W B
mβb(2)db(2). (35)

Also, we have the following inequality for db(2).

Claim 5 db(2) ≤ ||q1
b(2) − pi || for any 1 ≤ i ≤ n.

Proof First, since ||qs
b(2) − qs

b(1)|| = ||pi∗ − pi(1)|| and qs
b(1) = q1

b(1) = pi(1) (see
Fig. 10), we know that

db(2) = ||qs
b(2) − q1

b(2)||
= | ||qs

b(2) − q1
b(1)|| − ||q1

b(2) − q1
b(1)|| |

= | ||pi∗ − pi(1)|| − ||q1
b(2) − pi(1)|| |, (36)

where the second equality follows from the fact that the three points q1
b(1), q1

b(2) and
qs

b(2) are collinear (see Fig. 10). By triangle inequality, we have the following inequal-
ity.

||q1
b(2) − pi∗ || ≥| ||pi∗ − pi(1)|| − ||q1

b(2) − pi(1)|| | . (37)

Plugging (37) into (36), we have db(2) ≤ ||q1
b(2) − pi∗ ||. Meanwhile, since pi∗ is the

closest point to q1
b(2) in A, we know that db(2) ≤ ||q1

b(2) − pi || for any 1 ≤ i ≤ n. ��

123

Algorithmica (2017) 78:741–770 767

Fig. 10 An illustration for
Claim 5

pi(1)(= q1
b(1) = qs

b(1))

q1
b(2)

qs
b(2)

pi∗

From Claim 5, Definition 4, and Lemma 7, we know that

βb(2)db(2) =
n∑

i=1

hib(2)db(2)

≤
n∑

i=1

hib(2)||q1
b(2) − pi ||

≤ nW BBN (A, B1, H)

≤ nW BEMD(A, B1), (38)

where H is the flow realizing EMD(A, B1). Combining (35) and (38), we get

EMD(A, Bs) ≤ (1 + mn)EMD(A, B1). (39)

It means that due to the scaling step, we have an extra factor (1 + mn) in the approx-
imation ratio, comparing to that in Theorem 2.

As for the running time, comparing to Theorem 2, there is an additional factor of
n which is for guessing pi∗ (for determining the scaling factor). This completes the
proof. ��

Using the above upper bound and techniques similar to the ones in Sects. 5 and 6,
we have an FPTAS algorithm for EMDST. The following theorem summarizes the
result for EMDST. Similar to Theorem 5, there is an additional factor of n which is
for guessing pi∗ .

Theorem 6 There exists a (1+ ε)-approximation algorithm for the EMDST problem
which runs in O(nd+3md+2(log(nm))2(d+1)(

√
d/ε)(d+1)23(d+1)3d4) time.

7.2 Alignment problem

In this section, we show that the Alignment problem is a natural extension of EMDRT,
and can be solved in a similar fashion.

123

768 Algorithmica (2017) 78:741–770

Definition 6 (One-to-One Matching) Let A = {p1, . . . , pn} and B = {q1, . . . , qm}
be two sets of points in R

d with n ≤ m. A one-to-one matching between A and B is
an injective mapping f from {1, . . . , n} to {1, . . . , m} which matches pi to q f (i) for
1 ≤ i ≤ n. The cost of the matching can be either in l∞ or in l1 sense, and is defined as
M∞(A, B) = max{||pi − q f (i)|| | 1 ≤ i ≤ n} and M1(A, B) = ∑n

i=1 ||pi − q f (i)||
respectively.

Definition 7 ((Directed) Hausdorff Distance) Let A = {p1, . . . , pn} and B =
{q1, . . . , qm}be two sets of points inRd withn ≤ m. The (directed)HausdorffDistance
from A to B is defined as H D(A, B) = max1≤i≤n min{||pi − q j || | 1 ≤ j ≤ m}.
Note We only consider the directed Hausdorff distance from A to B, as the undirected
Hausdorff distance can be obtained by computing the directed Hausdorff distance
twice, one from A to B and the other from B to A.

Definition 8 (Alignment) Let A = {p1, . . . , pn} and B = {q1, . . . , qm} be two sets
of points in Rd . The alignment of A and B is to find a rigid transformation T so as to
minimize the cost between A and T (B), where the cost metric is M∞, M1 or H D.

From the above definitions, we immediately have the following lemma.

Lemma 13 Let A = {p1, . . . , pn} and B = {q1, . . . , qm} be two sets of weighted
points in R

d with n ≤ m. If all point in A and B have unit weight, then minimizing
the EMD between A and B under rigid transformation is equivalent to determining
the alignment of A and B using cost metric M1.

This means that we can use our FPTAS algorithm to directly solve the alignment
problem with cost metric M1.

Theorem 7 There exists a (1+ε)-approximation algorithm for the alignment problem
with cost metrics M1 which runs in O((nm)d+2(log(nm))2d(

√
d/ε)d2

3d3
d4) time.

The following lemma shows the connection between the alignment problem and
the Bottleneck problem and directly follows from the definitions.

Lemma 14 Let A = {p1, . . . , pn} and B = {q1, . . . , qm} be two sets of weighted
points in R

d with n ≤ m.

1. If all points in A and B have unit weight, then minimizing the Bottleneck BN
between A and B under rigid transformation is equivalent to determining the
alignment of A and B using cost metric M∞;

2. if each pi has unit weight and each q j has infinity weight, then minimizing the
Bottleneck BN between A and B under rigid transformation is equivalent to
determining the alignment of A and B using cost metric H D.

Note In the above lemma, A or B having infinity weight will not cause issue in our
FPTAS algorithm. This is because, by Definition 2, we know that the cost function (1)
only allows min{WA, WB} amount of flow transporting from A to B.

123

Algorithmica (2017) 78:741–770 769

Although we do not present an FPTAS algorithm for the Bottleneck problem BN
in Sect. 5, we can use techniques similar to those in the FPTAS algorithm for EMDRT
to achieve an FPTAS for BN .

Minimizing the Bottleneck First of all, from Lemma 8, we know that the algo-
rithm given in Sect. 5.1 yields a (n + 1)(2n + 1)d−1-approximation for the
Bottleneck problem, which can be used to build grids and achieve an FPTAS
for the Bottleneck problem in a way similar to the algorithm in Sect. 5.2. Note
that to build the grids, we still need to determine the radius and grid length of
the grid-balls. For the radius, it is easy to achieve a result similar to Lemma 9

(i.e., min1≤i≤n ||pi − Topt (q j)|| ≤ nW B

β j
BN opt , where BN opt is the optimal value,

and Topt is the corresponding optimal rigid transformation). For grid length, we
also have a result similar to Lemma 10 (i.e., ||T (q j) − Topt (q j)|| is no more than

cε min1≤i≤n ||pi − Topt (q j)|| or cε W B

β j
BN opt). Thus, it is easy to see that we can

use the same algorithm in Sect. 5.2 (with slight changes on the radius and density of
the grids) to achieve an FPTAS for the Bottleneck problem. This means that we have
FPTAS for the alignment problem using either M∞ or H D as the cost metric.

Theorem 8 There exists a (1 + ε)-approximation algorithm for the alignment
problem using either M∞ or H D as the cost metrics which runs in O((nm)d+2

(log(nm))2d(
√

d/ε)d2
3d3

d4) time.

References

1. Alt, H., Behrends, B., Blomer, J.: Approximate matching of polygonal shapes (Extended Abstract).
In: Proceedings of the 7th ACM Symposium on Computational Geometry (SoCG’91), pp. 186–193
(1991)

2. Alt, H., Guibas, L.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack,
J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier, Amsterdam
(1999)

3. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric
objects. Discrete Comput. Geom. 3, 237–256 (1988)

4. Andoni, A., Indyk, P., Krauthgamer, R.: Earth mover’s distance over high-dimensional spaces. In:
Proccedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pp. 343–352
(2008)

5. Andoni, A., Do Ba, K., Indyk, P., Woodruff, D.P.: Efficient sketches for earth mover’s distance, with
applications. In: Proccedings 50th IEEE Symposium on Foundations of Computer Science (FOCS’09),
pp. 324–330 (2009)

6. Andoni, A., Onak, K., Nikolov, A., Yaroslavtsev, G.: Parallel Algorithms for Geometric Graph Prob-
lems. In: Proccedings of the 46th Symposium on Theory of Computing Conference (STOC’14), pp.
574–583 (2014)

7. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEETrans. Pattern
Anal. Mach. Intell 9(5), 698–700 (1987)

8. Arkin, E.M., Kedem, K., Mitchell, J.S.B., Sprinzak, J., Werman, M.: Matching points into pairwise-
disjoint noise regions: combinatorial bounds and algorithms. INFORMS J. Comput. 4(4), 375–386
(1992)

9. Agarwal, P.K., Phillips, J.M.: On bipartite matching under the RMS distance. In: Proccedings of the
18th Canadian Conference on Computational Geometry (CCCG’06) (2006)

10. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach.
Intell. 14(2), 239–256 (1992)

123

770 Algorithmica (2017) 78:741–770

11. Benkert,M., Gudmundsson, J.,Merrick,D.,Wolle, T.: Approximate one-to-one point patternmatching.
J. Discrete Algorithms 15, 1–15 (2012)

12. Cohen, S.: Finding color and shape patterns in images. PhD thesis, Stanford University, Department
of Compute Science (1999)

13. Chew, L.P., Dor, D., Efrat, A., Kedem, K.: Geometric pattern matching in d-dimensional space. In:
Proccedings of the 3rd European Symposium on Algorithms (ESA’95), pp. 264–279 (1995)

14. Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric
pattern matching under euclidean motion. Comput. Geom. 7, 113–124 (1997)

15. Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of d-dimensional point
set pattern matching. Inf. Process. Lett. 105(2), 73–77 (2008)

16. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Matching point sets with respect to the earth
mover’s distance. Comput. Geom.: Theory Appl. 39(2), 118–133 (2008)

17. Cardoze, D.E., Schulman, L.J.: Pattern matching for spatial point sets. In: Proccedings of the 39th
IEEE Symposium on Foundations of Computer Science (FOCS’98), pp. 156–165 (1998)

18. Clark, C., Kalita, J.: A comparison of algorithms for the pairwise alignment of biological networks.
Bioinformatics 30(16), 2351–2359 (2014)

19. Efrat, A., Itai, A.: Improvements on bottleneck matching and related problems using geometry. In:
Proccedings of the 12th ACM Symposium on Computational Geometry (SoCG’96), pp. 301–310
(1996)

20. Ezra, E., Sharir, M., Efrat, A.: On the performance of the ICP algorithm. Comput. Geom. 41(1–2),
77–93 (2008)

21. Graumann, K., Darell, T.: Fast contour matching using approximate earth mover’s distance. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’04), pp. 220–227 (2004)

22. Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Combinatorial and experimental meth-
ods for approximate point pattern matching. Algorithmica 38(1), 59–90 (2004)

23. Goodrich,M.T.,Mitchell, J.S.B., Orletsky,M.W.: Approximate geometric patternmatching under rigid
motions. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 371–379 (1999)

24. Giannopoulos, P., Veltkamp, R.: A pseudo-metric for weighted point sets. In: Proccedings of 7th
European Conference Computer Vision (ECCV’02), pp. 715–731 (2002)

25. Huttenlocher, D.P., Kedem, K., Kleinberg, J.M.: On dynamic Voronoi diagrams and the minimum
Hausdorff distance for point sets under Euclidean motion in the plane. In: Proccedings of the 8th ACM
Symposium on Computational Geometry (SoCG’92), pp. 110–119 (1992)

26. Indyk, P.: A near linear time constant factor approximation for Euclidean bichromatic matching (cost).
In: Proccedings of the 8th ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 39–42
(2007)

27. Klein, O., Veltkamp, R.C.: Approximation algorithms for computing the earth mover’s distance under
transformations. In: Proccedings of the 16th International Symposium onAlgorithms and Computation
(ISAAC’05), pp. 1019–1028 (2005)

28. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J.
Comput. Vis. 40(2), 99–121 (2000)

29. Sharathkumar, R., Agarwal, P. K.: Algorithms for the transportation problem in geometric settings. In:
Proccedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), pp. 306–317
(2012)

30. Typke, R., Giannopoulos, P., Veltkamp, R.C., Wierking, F., Oostrum, R.: Using transportation dis-
tances for measuring melodic similarity. In: Proccedings of the 4th International Conference Music
Information Retrieval, pp. 107–114 (2003)

123

	FPTAS for Minimizing the Earth Mover's Distance Under Rigid Transformations and Related Problems
	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Overview of Our Approach
	4 Sequential Orthogonal Decomposition
	4.1 Some Properties of SOD

	5 FPTAS For EMDRT
	5.1 Upper Bound
	5.2 The FPTAS Algorithm

	6 FPTAS with Improved Running Time
	7 Extensions to Some Related Problems
	7.1 EMD Under Similarity Transformation
	7.2 Alignment problem

	References

