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We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their first
rotational excited state, using an adimensional approach. We establish a map of good and bad candidates for
efficient evaporative cooling based on this shielding mechanism, by presenting the ratio of elastic over quenching
processes as a function of a rescaled rotational constant B̃ = B/sE3 and a rescaled electric field F̃ = dF/B.
B,d,F, and sE3 are respectively the rotational constant, the full electric dipole moment of the molecules, the
applied electric field, and a characteristic dipole-dipole energy. We identify two groups of bi-alkali-metal dipolar
molecules. The first group, including RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is favorable with a
ratio over 1000 at collision energies equal to (or even higher than) their characteristic dipolar energy. The second
group, including LiNa and KRb, is not favorable. More generally, for molecules well described by Hund’s case
b, our adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate
rescaled rotational constant and rescaled field is approximately B̃ � 108 and 3.25 � F̃ � 3.8, with a maximum
ratio reached for F̃ � 3.4 for a given B̃. We also discuss the importance of the electronic van der Waals interaction
on the adimensional character of our study.
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I. INTRODUCTION

Ultracold dipolar molecules have been the subject of
tremendous experimental and theoretical investigations these
past years. They are promising candidates for many interesting
applications [1] using electromagnetic field manipulation [2],
from many-body physics [3] to ultracold controlled chemistry
[4–8] and from quantum information [9] to precision mea-
surements [10]. Different kinds of ultracold dipolar molecules
produced from already cold atoms exist now. They have been
produced in ultracold gases with sufficiently high densities
to study their two-body interactions and collisions [11]. They
can possess an electric or magnetic dipole moment so that they
can be controlled by either an electric or magnetic field. These
molecules can be fermionic or bosonic, chemically reactive or
not, and produced in the absolute ground state or in a weakly
bound state. Examples of fermionic molecules are 40K87Rb
[12] and 23Na40K [13] while 87Rb133Cs [14,15] and 23Na87Rb
[16] are examples of bosonic molecules. They were produced
in their absolute ground state in which they possess an electric
dipole moment and can then be controlled by an electric
field [17,18]. Magnetic dipolar ultracold molecules such as
Er2 have also been produced in a weakly bound state. They
possess a magnetic dipole moment and can be controlled with
a magnetic field [19]. Dipolar molecules can also be cooled
directly by laser cooling [20–29], by Sisyphus cooling [30–32]
for polyatomic molecules, or by evaporative cooling [33].

However, all these molecules share the same problem: They
can suffer from two-body collisional losses (quenching), due
to the chemical reactivity of the molecules [34–36], inelastic
collisions to lower molecular states [19], or possible collisional
losses mediated by long-lived complexes [37,38]. It is then
problematic to reach the quantum degeneracy of an ultracold
gas of dipolar molecules. Quantum degeneracy can be reached
by evaporative cooling, which was successfully applied to
obtain Bose-Einstein condensates of ultracold neutral atoms
[39,40] and degenerate Fermi gases [41]. The technique relies

(at least but not only) on large two-body elastic rate coefficients
for fast thermalization times and on small quenching rate
coefficients for low collisional losses. Therefore, shielding the
molecules from these unwanted collisional losses is absolutely
essential to reach quantum degeneracy in ultracold gases.

A somewhat counterintuitive scheme has been proposed to
shield polar molecules from quenching collisions by preparing
them in their first rotationally excited state. In this state,
if the electric field is tuned just above a critical value,
there results an effective repulsion that keeps the molecules
from changing their internal state or reacting. This has been
studied for inelastic collisions [42], reactive collisions of 1�

molecules [43], and 2� molecules [44]. In contrast with these
previous works, this paper presents a systematic study using
an adimensional perspective. We determine adimensional
rescaled parameters that govern the dynamics of the systems,
namely a rescaled rotational constant, a rescaled electric field,
and a rescaled collision energy. Then, all molecules are treated
on equal footing with the same rescaled formalism [45–49]. We
find the molecules and the range of the rescaled parameters for
which the collisional loss suppression is high enough so that
evaporative cooling techniques can be used efficiently to reach
quantum degeneracy in ultracold gases of dipolar molecules.

The paper is organized as follows. In Sec. II, we briefly
recall the formalism used in the former papers [42–44] using
dimensional quantities. Then we introduce the adimensional
formalism based on the dipolar interaction which defines
a characteristic length and energy. We obtain adimensional
rescaled cross sections, rate coefficients, and scattering length
as a function of the rescaled parameters. We present and
discuss our results in Sec. III. With a single figure, one
can determine the good molecular candidates for efficient
evaporative cooling based on the shielding. We also discuss
the importance of the electronic van der Waals interaction on
the adimensional character of our study. Finally, we conclude
in Sec. IV.
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II. THEORY

A. Presentation of the scattering problem using
dimensional quantities

We consider collisions between two species 1 and 2 of
mass m1 and m2, in the presence of an external electric
field F . The direction of the electric field is chosen as the
space-fixed quantization axis. The species 1 and 2 are diatomic
molecules considered in this study as dipolar rotors with
permanent electric dipole moment d1 = d2 = d . The scattering
Hamiltonian can be written

Ĥ = − h̄2

2μ
r−1 d2

dr2
r + l̂2

2μr2
+ Ĥ1 + Ĥ2 + V̂, (1)

where μ = m1m2/(m1 + m2) is the reduced mass for the
molecule-molecule collision, r is the distance between the
species’ centers of mass, and l̂ is the space-fixed operator
for the orbital angular momentum between the two species.
Ĥ1 and Ĥ2 describe the Hamiltonian of the isolated species
1 and 2, including their interactions with the applied field.
V̂ = V̂el + V̂dip contains all interactions between the species,
with contributions that include the electronic potential V̂el

and the dipole-dipole interaction V̂dip. In Secs. II B, II C, and
II D, we will reduce the formalism to a model that consists in
taking the long-range interaction of the molecules and treating
the short-range interaction using an absorbing potential. The
Hamiltonian for an isolated dipolar rotor is

Ĥ1,2 ≡ Ĥmol = n̂2

2I
− d̂ · F̂ = n̂2

2I
− d F cos θ, (2)

where n̂ is the rotational angular momentum and I is the
moment of inertia of the dipolar rotor. The corresponding
rotational constant is related to the moment of inertia by
B = h̄2/2I . The angle θ corresponds to the angle between the
permanent dipole moment and the electric field. The dipolar
interaction is

V̂dip = −
√

6

4πε0
r−3 T 2(d̂1,d̂2) · T 2(ur ), (3)

where T k represents a spherical tensor of rank k and ur is
a unit vector in the direction of r . We do not consider the
hyperfine structure of the molecules as the hyperfine coupling
constants are much smaller than the rotational constant [50].
We solve the quantum-mechanical scattering problem using
the coupled-channel method. The total wave function is
first expanded in a set of N conveniently chosen basis
functions |i〉,

|�(r,ξ )〉 = r−1
∑

i

χi(r) |i〉, (4)

where ξ is a collective variable including all coordinates except
r , and i is the set of quantum numbers that label the basis
functions. Each different combination of quantum numbers i

defines a channel. We choose for the individual species the set
of bare basis functions |α1,2〉 ≡ |α〉 = |nmn〉, so that

〈α|Ĥmol|α′〉 = B n(n + 1) δα,α′ − d F 〈α| cos θ |α′〉. (5)

The eigenfunctions of the corresponding matrix become the
dressed internal states |α̃1,2〉 ≡ |α̃〉 = |ñ mn〉. The projection
quantum number mn remains a good quantum number while

n is not. ñ indicates that the dressed state |ñ mn〉 has a
main character in n when F � 0, but is in general a linear
combination of the bare states |nmn〉. The corresponding
eigenvalues of the dipolar rotors 1 and 2 in the field are Eα̃1

and Eα̃2 . The basis functions are then symmetrized in terms
of |α̃1,2〉, adding the orbital angular momentum, so that |i〉 is
defined in Eq. (4) by

|i〉 ≡ 1√
2(1 + δα̃1α̃2 )

(|α̃1〉|α̃2〉 + η|α̃2〉|α̃1〉)|lml〉. (6)

The corresponding energy of the channel |i〉 is Ei = Eα̃1 +
Eα̃2 , the energy of the two separated dipolar rotors 1 and 2
in the field. η = +1 (η = −1) corresponds to a symmetric
(antisymmetric) function with respect to permutation P̂ of the
identical species 1 and 2. The permutation operator acts on the
basis function as P̂ |i〉 = η (−1)l|i〉. On the other hand, from
the symmetrization principle, P̂ |�〉 = εP |�〉, where εP = +1
for identical bosons and εP = −1 for identical fermions. This
condition implies from Eq. (4) that P̂ |i〉 = εP |i〉 and im-
poses the selection rule η (−1)l = εP . The time-independent
Schrödinger equation Ĥ|�〉 = Etot|�〉, for the scattering wave
function |�〉 expanded over the dummy argument i ′ and for a
total energy Etot of the colliding system, provides a set of N

by N coupled differential equations for the channel functions
χi ′ (r) when projected onto the N possible bra 〈i|,

〈i|(Ĥ − Etot)|�〉 =
∑

i ′
〈i|(Ĥ − Etot)|r−1χi ′(r)|i ′〉

= 0. (7)

Using the form of the Hamiltonian in Eq. (1), we get the
following set of coupled equations,[

− h̄2

2μ

d2

dr2
+ h̄2l(l + 1)

2μr2
+ Ei − Etot

]
χi(r)

+
∑

i ′
Vi,i ′ (r) χi ′(r) = 0, (8)

where we used the notation Vi,i ′ ≡ 〈i|V̂|i ′〉. The total energy
Etot = Einit + Ec is the sum of the initial combined molecular
state and the collision energy Ec. Sometimes, it is convenient
to diagonalize the matrix whose elements are given by[

h̄2l′(l′ + 1)

2μr2
+ Ei ′ − Etot

]
δi,i ′ + Vi,i ′(r). (9)

The corresponding set of eigenvalues for a given r are called
the adiabatic energies, and one can plot the different set of
energies as a function of r . The resulting curves are a very
good indication of the way the molecules interact when they
approach to each other as r decreases. This is shown later in
Sec. III. Each term of Eqs. (8) has dimensions of energy. We
will now get rid of the dimensional character of the equations.

B. The adimensional scattering problem

The adimensional problem is set up by defining a typical
characteristic length and energy from the form of the inter-
action. A Cn/rn type interaction defines characteristic length
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and energy scales [48]

srn
≡

(
2μCn

h̄2

) 1
n−2

, sEn
≡ h̄2

2μ s2
rn

. (10)

As the physics of the shielding occurs due to the dipole-dipole
interactions at nonzero applied electric field at a large r ,
the dominant and most relevant energy scale of the theory
is the dipolar interaction. The matrix representation of this
interaction in 〈i|V̂|i ′〉 can be written as

〈i|V̂dip|i ′〉 = C3

r3
ζi,i ′(l,l

′,ml,m
′
l ; F ), (11)

with C3 ≡ d2

4πε0
and ζi,i ′ (l,l′,ml,m

′
l ; F ) being adimensional

geometrical coefficients depending on the orbital angular
momentum as well as the rotational angular momentum via the
dressed states i,i ′. We also indicated the implicit dependence
of the coefficients on F . Hence, the length scale for the r−3

dipolar interaction term is

sr3 ≡ 2μC3

h̄2 = 2μ

h̄2

d2

4πε0

= 2(μ/a.u.)(d/a.u.)2, (12)

and the corresponding energy scale is

sE3 ≡ h̄2

2μ s2
r3

= h̄6

(2μ)3 (d2/4πε0)2

= [8(μ/a.u.)3(d/a.u.)4]−1. (13)

This defines adimensional lengths, r̃ ≡ r/sr3 and energies Ẽ ≡
E/sE3 . If one includes only V̂dip in V̂ , the rescaled coupled-
channel equation for a given channel |i〉 becomes[

− d2

dr̃2
+ l(l + 1)

r̃2
+

(
Ei − Einit

B

)
B̃ − Ẽc

]
χi(r̃)

+
∑

i ′

(
ζi,i ′ (l,l′,ml,m

′
l ; F̃ )

r̃3

)
χi ′(r̃) = 0. (14)

There are as many equations as channels |i〉. The above
adimensional equations display three adimensional quantities
relating to the physical parameters of the colliding system. The
first one,

B̃ = B

sE3

= 8Bμ3

h̄6

(
d2

4πε0

)2

= 8(B/a.u.)(μ/a.u.)3(d/a.u.)4, (15)

represents the rotational constant rescaled over the dipolar
energy. It depends on the rotational constant, the reduced mass,
and the full electric dipole moment of the system. Therefore
the first parameter contains all the information of an individual
dipolar rotor and is fixed for a given system. The second
parameter in Eqs. (14) is

Ei − Einit

B
. (16)

It represents the difference between the energy Ei of two
separated dipolar rotors in channel |i〉 and the energy Einit

of the initial state, rescaled by the rotational constant. The
individual rescaled energies Eα̃1,2/B are obtained directly from
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FIG. 1. Rescaled energies Eα̃i
/B of a dipolar rotor as a function

of the rescaled field F̃ = dF/B. Some dressed states |ñimni
〉 are

explicitly indicated.

Eq. (5) when the equation is divided on both sides by the
rotational constant B [51]. They are function of a rescaled
field defined by

F̃ = d F

B
(17)

and plotted in Fig. 1 as a function of F̃ . The rescaled energies
Ei/B are plotted in Fig. 2 as a function of F̃ . In the following,
as the rescaled energies, their differences, as well as the
coefficients ζi,i ′ are fixed for a given rescaled field, the second
parameter is monitored implicitely by the rescaled field F̃ in
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FIG. 2. Rescaled energies Ei/B of two combined dipolar rotors
as a function of the rescaled field F̃ = dF/B. Some combined
dressed states |ñ1mn1 〉|ñ2mn2 〉 are explicitly indicated. The field at
which the initial state |1̃0〉|1̃0〉 (red bold dashed line) crosses the
|0̃0〉|2̃0〉 one is F̃ = 3.25. The red bold dashed and red bold solid
lines correspond to states with mn1 = mn2 = 0.
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which the system is colliding. The third parameter in Eqs. (14),

Ẽc = Ec

sE3

, (18)

corresponds to the collision energy rescaled over the dipolar
energy. In this study, we will consider the ultracold regime so
that Ẽc → 0 and is fixed for a given initial state of the system.
The adimensional equations depend solely on B̃ and F̃ .

C. Adding the electronic van der Waals interaction

Equations (14) are useful to determine which parameters
are the relevant ones using an adimensional perspective.
However, this is possible because we have only used the dipolar
interaction as the typical interaction, which defined the proper
length and energy scales sr3 and sE3 . In practice we also have to
include the electronic interaction. We use a simple long-range,
isotropic description based on the leading dispersion term. The
matrix representation of the electronic interaction in 〈i|V̂|i ′〉
is then

〈i|V̂el|i ′〉 ≈ δi,i ′
Cel

6

r6
, (19)

where Cel
6 represents the electronic van der Waals coefficient

between the two dipolar rotors. It must be noted, however,
that this term is not rigorously scale-free in r̃ for it defines a
different characteristic length

sr6 ≡
(

2μ

h̄2

∣∣Cel
6

∣∣) 1
4


= sr3 . (20)

Therefore, we cannot end up in general with a strictly adi-
mensional study. Neglecting the electronic van der Waals term
is also not possible given that in some cases the geometrical
factor ζi,i ′ vanishes in the diagonal element of 〈i|V̂dip|i ′〉, such
as for an incoming and outgoing s wave l = l′ = 0. However, if
the electronic van der Waals term plays a negligible role in the
shielding effect, the study can be considered adimensional. In
practice, we do not use the adimensional coupled equations
Eqs. (14) to compute the scatering properties. We instead
solve the dimensional coupled equations in Eqs. (8) for a
fixed electronic Cel

6 coefficient and appropriately come back
to adimensional rescaled quantities. At the end of Sec. III, we
discuss in more detail for which systems the electronic van der
Waals interactions play a negligible part and therefore when
the study becomes adimensional.

D. Cross sections, rate coefficients, and scattering length

The close-coupling equations are solved for each r from
a minimum value rmin to a maximum value rmax using a log-
derivative propagation method [52,53]. At rmin, we initialize
the propagation by a complex, diagonal log-derivative matrix
Z whose elements are given by [43]

Z(r = rmin) = kmin(4sc
√

1 − pSR − i pSR)

c2(
√

1 − pSR − 1)2 + s2(
√

1 − pSR + 1)2
,

(21)

where

kmin =
√

2μ

h̄2

[
Etot −

(
Vi,i(rmin) + h̄2l(l + 1)

2μrmin
2

)]
, (22)

c = cos (kminrmin + δSR), and s = sin (kminrmin + δSR). 0 �
pSR � 1 and 0 � δSR � π are two parameters that tune the
loss probability and the phase shift of the incoming flux at rmin

[54]. This is as if we had approximated the chemically active
internal configuration region (r � rmin) of each channel |i〉 by
a square-well potential from r = 0 to r = rmin, whose depth is
given by

C3

r3
min

ζi,i + Cel
6

r6
min

+ h̄2l(l + 1)

2μr2
min

, (23)

and whose corresponding log-derivative is Eq. (21) at r =
rmin. At the end of the propagation, one usually obtains
the scattering matrix S by applying asymptotic boundary
conditions at rmax when Vi,i(r = rmax) → 0. As we start with
an arbitrary complex log-derivative in Eq. (21) mimicking
a phenomenological loss at short range, it implies that the
S matrix is not necessarily unitarity. The diagonal element
of a given column determines the magnitude of the elastic
process while the sum of the off-diagonal terms determines
the inelastic processes. The (positive) difference of unity with
the sum of the modulus square of the elements of a matrix
column determines the (phenomenological) loss processes. In
our study, we do not distinguish between loss and inelastic
processes; they all contribute to destruction or removal of the
molecules in an experimental trap. Therefore, we consider only
the quenching processes which are the sum of the inelastic and
the loss processes.

As we are interested in scattering properties that are
independent of the collision energy, it is then more useful to
present and compute the scattering length instead of the cross
sections or the rate coefficients. The s-wave scattering length
becomes a constant when the wave vector k =

√
2μEc/h̄

2 →
0. It is defined as [55]

a = are − i aim = 1

i k

(
1 − S00(k)

1 + S00(k)

)∣∣∣∣
k→0

, (24)

with aim � 0. S00 represents the diagonal elements of the
S matrix corresponding to the initial collisional state taken
into consideration. The cross sections and rate coefficients are
related to the scattering length by

σel = 4π |a|2�, σqu = 4π aim

k
�, (25)

βel = 4πh̄k|a|2
μ

�, βqu = 4πh̄ aim

μ
�, (26)

where � = 2 if the particles are identical and start in
indistinguishable states and � = 1 otherwise. Since we are
using the dimensional equations (8), we have to rescale the
quantities so that they are adimensional. This is done by
dividing the scattering length by the characteristic length sr3 ,
ã = ãre − i ãim = a/sr3 . Similarly, we get the rescaled cross
sections σ̃ = σ/sσ3 using a characteristic cross section sσ3 =
4πs2

r3
. The rescaled rate coefficients β̃ = β/sβ3 are obtained
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by using a characteristic rate coefficient sβ3 = sσ3sv3 , where
sv3 = h̄/μsr3 corresponds to a characteristic velocity. The
rescaled scattering length, cross sections, and rate coefficients
are now related by

σ̃el = |ã|2�, σ̃qu = ãim

k̃
�, (27)

β̃el = k̃ |ã|2�, β̃qu = ãim�, (28)

where k̃ =
√

Ẽc = √
Ec/sE3 → 0. Note that k̃ is characterized

via sE3 by the full dipole moment of the molecule, measured
in a body-fixed frame (molecular frame). In reality, what
one observes in a space-fixed frame (laboratory frame) is
the expectation value of the dipole moment, namely the
induced dipole moment dind, for a given applied electric
field. Therefore, a more appropriate characteristic energy that
quantifies the dipolar interaction between the molecules is the
one using the induced dipole moment instead of the full dipole
moment. This energy depends on the applied electric field F̃

and characterizes the typical energy at and below which the
quantum regime is reached, typically when indistinguishable
bosons collide in the single partial wave l = 0 (s wave) or
indistinguishable fermions in the single partial wave l = 1 (p
wave). We note this “quantum regime” energy EQR(F̃ ), and
the limit of validity k̃ → 0 above corresponds to the condition
Ec � EQR(F̃ ).

Finally, an important quantity for experiments is the ratio
γ of the elastic over the quenching cross section or rate
coefficient. This ratio is given by

γ = βel

βqu
= σel

σqu
= |a|2

aim
k = |ã|2

ãim
k̃. (29)

This ratio determines the efficiency of the evaporative cooling
technique in order to reach the quantum degeneracy of
ultracold gases.

III. RESULTS AND DISCUSSION

We consider ultracold identical bosonic molecules prepared
initially in the state |ñ1mn1〉|ñ2mn2〉 = |1̃0〉|1̃0〉 (for example,
in the ground electronic state X1�+ and in the ground
vibrational state v = 0). Another state |0̃0〉|2̃0〉 crosses the
initial state at a rescaled field F̃ = 3.25. The energy curves
of these states are indicated in the inset of Fig. 2, where the
initial energy Einit is indicated as a red bold dashed line. It
has been shown and explained [42–44] that the quenching
processes were suppressed compared to the elastic ones,
slightly beyond this field. We are then interested in the
molecule-molecule scattering properties around this field. We
assume the worst scenario for the molecules: When the two
molecules are sufficiently close to each other, they disappear
from the experimental trap. This can be due, for example, to a
chemically reactive collision [35], inelastic transitions to other
states, or collisional losses mediated by a long-lived complex
[37,38]. In our calculations, this is satisfied when full loss
pSR = 1 is invoked in Eq. (21). Thus the starting diagonal
elements of the log-derivative matrix for a given channel
are purely imaginary and given by Z = −i kmin. Spontaneous
emission of molecules in the first excited rotational state can
be neglected here as the lifetimes are on the order of 104 s,

using the formula for the Einstein coefficient of spontaneous
emission. Black-body radiation driving either rotational or
vibrational excitations of the molecules at room temperature
can be neglected as the lifetimes are on the order of 102 s
or more for heteronuclear alkali molecules [71]. Both types
of lifetime are much longer than any other time scales of an
experiment (mean collision time, evaporative cooling time,
trapping time), which are on the order of seconds. We used
n1,2 = [0–3] for the rotational basis set. We used l = [0–10]
for the partial wave basis employed in Eq. (6). As we consider
initial molecules in indistinguishable states, only symmetric
states with η = +1 must be taken into account in Eq. (6).
As we consider identical bosonic molecules, then εP = +1.
The selection rules η (−1)l = εP implies even partial waves l.
The projection quantum number M = mn1 + mn2 + ml of the
total angular momentum on the quantization axis is conserved
during the collision. We performed calculations for M = 0
since the initial mn1 = mn2 = 0 and ml = 0 is the dominant
projection at ultralow collision energies. In the following, we
employ an arbitrary fixed rotational constant B∗ = 10−7 a.u.
(∼0.2 cm−1) and electric dipole moment d∗ = 1 a.u. (∼2.54
Debye) while the mass μ∗ is varied in order to vary the
parameter B̃ = 8(B∗/a.u.)(μ∗/a.u.)3(d∗/a.u.)4 in Eq. (15).
The star characterizes a hypothetical dipolar molecule, say
XY∗, defined by those values which also define a characteristic
length sr∗

3
, energy sE∗

3
, cross section sσ ∗

3
, and rate coefficient sβ∗

3
.

Fixing B∗ and d∗ is also convenient for varying the rescaled
field F̃ = d∗F/B∗, since it is sufficient to vary the electric
field F only. We consider the scattering properties at collision
energies E∗

c = 100 nK so that the third parameter Ẽc is fixed.
We used rmin = 5 a0 and rmax is chosen so that k∗ r∗

max ∼ 5.
As the mass μ∗ is changed here to vary the parameter B̃, k∗
changes accordingly, and so does r∗

max. Most of the systems
investigated in experiments are diatomic dipolar molecules of
alkali atoms for which the electronic Cel

6 coefficients belongs
to the range −20 000 � Cel

6 � −3000 a.u. [54,54,56,72,73].
In this study, we use a fixed value of C

el,∗
6 = −10 000 a.u.

between two molecules XY∗. We discuss the effect of the Cel
6

coefficient at the end of this section. We obtain the rescaled
scattering length ã and all related quantities [see Eq. (28)]
by dividing the scattering length a∗ by sr∗

3
computed for the

hypothetical molecule XY∗, for different values of μ∗ and F ∗
corresponding to different values of B̃ and F̃ .

The quantity |ã|2/ãim ≡ γ /k̃ is plotted in Fig. 3 as a
function of B̃ and F̃ . Different contour plots are drawn from
dark blue for low values of this quantity (10−4) to dark
red for high values (106). White contour plots correspond
to value � 106. When multiplying |ã|2/ãim by the rescaled
wave vector k̃, this provides the ratio γ for the collision
energy Ẽc; see Eq. (28). Therefore, this plot gives directly
the ratio γ for k̃ = 1, that, is when Ec = sE3 . For efficient
evaporative cooling to occur, a ratio γ � 100 [39], and perhaps
a safer value of γ � 1000, is required. The latter condition
corresponds in the figure to the orange, red, dark red, and
white contour plots. Therefore, the condition for favorable
evaporative cooling is delimited approximately by the region
B̃ � 108 and 3.25 � F̃ � 3.8, with a maximum ratio reached
for F̃ � 3.4 for a given B̃. Any other position in the plot is
likely to be unfavorable. This universal feature is due to the
shielding mechanism [42–45] when the incident collisional
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FIG. 3. |ã|2/ãim ≡ γ /k̃ as a function of B̃ and F̃ . The color scale, presented at the right of the picture, goes from 10−4 to 106. The white
area corresponds to values �106. The B̃ values of some characteristic dipolar molecules are also included.

channel becomes repulsive enough so that the quenching rate
coefficient is suppressed.

The characteristic values of the dipolar bi-alkali-metal
molecules are reported in Table I. The B̃ values are reported on
the right of Fig. 3 as yellow dashed lines. This distinguishes
two groups of molecules for evaporative cooling: the good
candidates from the bad. Group 1 (RbCs, NaK, KCs, LiK,
NaRb, LiRb, NaCs, LiCs) for which B̃ > 108 has favorable
candidates, while group 2 (LiNa, KRb) has unfavorable ones
since B̃ 
 108. This holds at collision energies Ec = sE3 (see
Table I for the values), when k̃ = 1. As mentioned in Sec. II D,
a more appropriate value is when the collision energy is on
the order of the quantum regime energy (Ec = EQR) since
it better reflects the magnitude of the interaction and the
collision for the given applied field. Let us take the example
of F̃ = 3.4. At this field, dind � 0.13 d (this can be directly
calculated from Fig. 1 using the slope of the |1̃0〉 curve at
F̃ = 3.4). Then EQR(F̃ = 3.4) � sE3/0.134 � 3500 sE3 . The
corresponding values for each molecule are reported in
Table I. If now Ec = EQR , the ratio should become γ (F̃ =

3.4) = k̃QR|ã|2/ãim with k̃QR = √
EQR/sE3 � √

3500 � 60.
The ratio should increase by a factor of 60 for this example
compared to the one for Ec = sE3 . The precedent conclusions
remain unchanged since for the first group, the ratio γ will
be bigger than 1000, while for the second group, the ratio
increases by the factor of 60 but is not enough to reach the
ratio of 1000.

The white contour plots in Fig. 3 correspond to values of
the ratio bigger than 106 at k̃ = 1. This area is not shown
in more detail since we encounter numerical issues leading
to unphysical oscillations in the values of the scattering
quantities. In this region, the quenching processes are so
strongly suppressed that the values of ãim compared to the
ones of |ãre| are very tiny, about 10−10 smaller (see Fig. 4
below). We believe the log-derivative method cannot achieve
higher precision and produces numerical errors. One can use,
for example, more appropriate methods for better numerical
precision [74] to fulfill the plot in the white area. From an
experimental point of view, though, the ratio presented in
the figure is already more than sufficient. When ãim 
 ãre,
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TABLE I. Summary of the different system parameters obtained from the reduced mass μ, the rotational constant B [56], and the full electric
dipole moment d [57] for bosonic 1� molecules and bosonic 2� molecules [58–70]. sr3 ,sE3 ,sσ3 , and sβ3 are respectively the characteristic length,
energy, cross section, and rate coefficient for the dipolar interaction (see text for definitions). EQR � 3500 sE3 is the characteristic quantum
regime energy at the field F̃ = 3.4 where the s wave is predominant. B̃ is the rescaled rotational constant. FF̃=[3.25−3.8] is the approximate range
of the electric field where the ratio γ would be favorable for successful evaporative cooling. The systems are ordered in increasing values of
B̃. We provide useful conversion factors: 1 a.u. � 1822.88 a.m.u.; 1 a.u. � 219475 cm−1; 1 a.u. � 2.5417 D; 1 a0 � 0.529 × 10−10 m; 1 a.u.
� 315775 K; 1 a.u. � 2.80 × 10−17 cm2; 1 a.u. � 6.126 × 10−9 cm3/s; 1 a.u. � 5.1422 × 106 kV/cm.

EQR(K) F (kV/cm)
μ(a.u.) B(10−7 a.u.) d (a.u.) sr3 (a0) sE3 (K) (at F̃ = 3.4) sσ3 (cm2) sβ3 (cm3/s) B̃ F̃ = [3.25 − 3.8]

1�

7Li23Na 27 349 19.4 0.200 2 188 1.2×10−6 4.2×10−3 1.68×10−9 6.16×10−9 5.07×105 [161.8–189.2]
41K87Rb 116 547 1.67 0.226 11 888 9.6×10−9 3.4×10−5 4.97×10−8 7.85×10−9 5.48×106 [12.3–14.4]
87Rb133Cs 200 349 0.77 0.49 96 207 8.5×10−11 3.0×10−7 3.26×10−6 3.70×10−8 2.87×108 [2.64–3.08]
23Na41K 58 288 4.28 1.12 146 234 1.3×10−10 4.4×10−7 7.52×10−6 1.93×10−7 1.07×109 [6.39–7.47]
41K133Cs 158 470 1.37 0.75 178 279 3.1×10−11 1.1×10−7 1.12×10−5 8.66×10−8 1.38×109 [3.05–3.56]
7Li41K 43 729 13.4 1.39 168 978 1.3×10−10 4.4×10−7 1.01×10−5 2.98×10−7 3.33×109 [16.05–18.77]
23Na87Rb 100 167 3.19 1.35 365 108 1.2×10−11 4.1×10−8 4.69×10−5 2.81×10−7 8.52×109 [3.95–4.62]
7Li87Rb 85 608 11.57 1.63 454 902 8.9×10−12 3.1×10−8 7.28×10−5 4.09×10−7 4.10×1010 [11.87–13.87]
23Na133Cs 142 090 2.64 1.85 972 605 1.2×10−12 4.1×10−9 3.33×10−4 5.27×10−7 7.10×1010 [2.39–2.79]
7Li133Cs 127 531 9.93 2.15 1 179 020 8.9×10−13 3.1×10−9 4.89×10−4 7.12×10−7 3.52×1011 [7.72–9.03]

2�

87Rb84Sr 155 695 0.82 0.606 114 309 7.8×10−11 2.7×10−7 4.60×10−6 5.65×10−8 3.34×108 [2.26–2.65]
40Ca19F 53 740 15.6 1.21 156 797 1.2×10−10 4.2×10−7 8.65×10−6 2.24×10−7 4.12×109 [21.6–25.3]
40CaH 37342 192.7 0.99 73996 7.7×10−10 2.7×10−6 1.92×10−6 1.52×10−7 7.88×109 [323.5 - 378.2]
84Sr19F 93 798 11.43 1.365 349 535 1.4×10−11 4.8×10−8 4.30×10−5 2.87×10−7 2.62×1010 [13.99–16.36]
138Ba19F 143 009 9.84 1.247 444 881 5.6×10−12 2.0×10−8 6.97×10−5 2.40×10−7 5.57×1010 [13.18–15.41]
89Y16O 95 611 17.68 1.78 605 801 4.5×10−12 1.6×10−8 1.29×10−4 4.88×10−7 1.24×1011 [16.60–19.41]

|ã|2 � |ãre|2 so that |ã|2/ãim � |ãre|2/ãim. Since |are|/ãim ∼
1010 and |are| � 10−4 (see Fig. 4), the white area corresponds
to |ãre|2/ãim � 106.

The results in Fig. 3 are promising for bosonic dipo-
lar molecules under current experimental interest, such as
87Rb133Cs [14,15] and 23Na87Rb [16], since they belong to the
first group as defined above. For NaRb, at F̃ � 3.4, the ratio γ

reaches values above 106 for the collision energy range from

sE3 = 1.2 × 10−11 K (k̃ = 1) to EQR = 4.1 × 10−8 K. This is
then well appropriate to reach quantum degeneracy of ultracold
dipolar gases and form Bose-Einstein condensates of dipolar
molecules. To compare, the typical critical temperature Tc ∼
3.3125 h̄2 n2/3/mkB where condensation takes place (though
for an ideal noninteracting Bose gas) with a typical density of
1012 molecules/cm3 is Tc ∼ 10 nK for NaRb, which belongs
to the energy range where the ratio is favorable for evaporative
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FIG. 4. Absolute value of the real part |ãre| (left panel) and imaginary part ãim (right panel) of the rescaled scattering length as a function
of F̃ for different values of B̃. The order of the curves at F̃ = 6 corresponds to the order of the B̃ values displayed in the legend from top to
bottom.
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cooling. It should be noted that EQR is not an upper limit
of the collision energy above which the evaporative cooling
technique would become unfavorable. The ratio can still
remain big (above 1000) for even higher collision energies.
It just means that one cannot strictly use Eq. (29) to convert
the quantity |ã|2/ãim to the ratio γ using k̃. For instance, for
NaRb, the ratio is above 106 at Ec = EQR , but it can take a
high collision energy for the ratio to get down to 1000 (see
Ref. [44]), so that at the Ec ∼ μK regime the ratio is still
favorable. To answer the maximum collision energy for each
system, one has then to repeat the calculation presented in
Fig. 3 as a function of the collision energies. This is not shown
here but can be calculated upon request (and for a specific
system to save computational time). For RbCs, the ratio γ

can reach values of 1000 or above for the collision energy
range from sE3 = 8.5 × 10−11 K to EQR = 3 × 10−7 K, but
at a somewhat more limited range of electric fields as shown
in Fig. 3, around F̃ � 3.4. Above or below this field, the ratio
can decrease and could become unfavorable.

The results of this paper are not necessarily constrained
to bosonic molecules. Earlier studies [42,43] showed that
fermionic molecules also experience quenching suppression.
In addition, the adimensional study and parameters remain
valid, so that similar outcomes are expected for identi-
cal fermionic molecules. Examples of fermionic dipolar
molecules of current experimental interest are 40K87Rb [12]
and 23Na40K [13]. While fermionic KRb are not good
candidates (this was shown already in Ref. [43]), we can expect
that NaK will be a good candidate for quenching suppression.
In contrast with fermionic neutral particles (alkali atoms,
homonuclear molecules) which interact via the van der Waals
interaction at long range, fermionic dipolar particles in an
electric field interact via the dipolar interaction. This modifies
the p-wave threshold laws of the elastic process [46,75]. The
elastic cross section tends to a constant at vanishing collision
energies, in contrast with the van der Waals interaction where
the elastic cross section vanishes as Ec

2. Since the quenching
cross section behaves as

√
Ec, the ratio γ increases at ever

lower collision energies. Therefore, successful evaporative
cooling can also be used to reach quantum degeneracy and
form degenerate Fermi gases of dipolar molecules.

Another important experimental issue is the range of fields
at which the suppression takes place, reported as FF̃=[3.25−3.8]
in the last column of Table I. For example, the LiNa
system would require electric fields that are too high, above
100 kV/cm, to implement the already weak suppression.
Generally in an experiment, electric fields up to ∼5 kV/cm
can be created when the electrodes stand outside the vacuum
chamber [17]. Therefore, the suppression can be implemented
in such circumstances for the RbCs, KCs, NaRb, and NaCs
systems, which require electric fields smaller than 5 kV/cm.
For the remaining systems, KRb, NaK, LiK, LiRb, and LiCs,
higher fields are required, and the electrodes must be included
inside the vacuum chamber [76].

The characteristic values of representative 2� dipolar
molecules such as CaH, SrF, RbSr, CaF, YO, and BaF, which
are also of experimental interest [20–29,77–79] are reported
in Table I. These molecules are not perfect Hund’s case b
type of molecules since they have an additional fine and
hyperfine structure that should be included in the Hamiltonian.
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FIG. 5. Ratio |ãre|/ãim as a function of F̃ for B̃ = 8 × 105 (black
thin curves) and B̃ = 8 × 109 (red bold curves). Solid curves: full
calculation; dashed curves: mn1 = mn2 = 0 approximation.

Nevertheless, around the electric field F̃ = 3.25, the electronic
and nuclear spins can mainly act as spectators [44], and to the
same extent the formalism for 1� molecules can be applied
to 2� molecules. The corresponding B̃ values, reported as
red solid lines on the left of Fig. 3, show that for CaF, SrF,
BaF, and YO the quantity |ã|2/ãim is well above 103, making
them potential candidates for successful evaporative cooling
under the assumption that the spins are spectators. For CaH,
the electric field range is too high as for the LiNa system. For
RbSr, this is like RbCs as discussed above, since they share a
similar value of B̃. γ can reach 1000 but at a restricted range
of electric fields.

One cannot tell from Fig. 3 whether high ratios are due to
high values of ã, low values of ãim, or a combination of both.
This can be seen in Fig. 4, which shows the absolute value
of the real part |ãre| (left) and imaginary part ãim (right) of
the rescaled scattering length as a function of F̃ , for different
values of B̃, from 8 × 103 to 8 × 1013. |ãre| does not vary much
with F̃ while ãim does. When the field crosses the value F̃ ∗ =
3.25, it strongly suppresses the quenching processes while the
elastic ones remain relatively steady. The reason for the high
ratio comes then from a suppressed value of ãim rather than
an enhanced value of |ãre|. These two plots are also useful to
have a direct magnitude of the quenching rate coefficients and
elastic cross sections. ãim gives the quenching rate coefficients
when multiplied by sβ3� (see the values in Table I) while |ãre|2,
when ãim 
 ãre, does the same for the elastic cross sections
when multiplied by sσ3� [see Eq. (28)].

Figure 5 confirms useful information on the mechanism of
the quenching suppression. As mentioned in Ref. [44], a useful
approximation nearby F̃ = 3.25 consists in taking only the
mn = 0 projection of the molecules in the calculation (mn1 =
mn2 = 0). This will correspond in Fig. 2 to selecting only the
combined molecular states indicated as red bold dashed and
red bold solid lines, while a full calculation employs all the
curves (red and black). Figure 5 shows the ratio |ãre|/ãim as a
function of F̃ for two values of B̃ = 8 × 105 and 8 × 109.
The solid curves result from the full calculation, as also
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the |1̃0〉|1̃0〉 and |0̃0〉|2̃0〉 combined molecular states.

shown in the previous figures, while the dashed curves result
from the approximation mn1 = mn2 = 0 for the rotational
states of the molecules. As one can see, the approximation
is valid for fields in the range 3.25 � F̃ � 3.3. For higher
fields, the approximation becomes less valid. It strongly
overestimates the results at larger fields. The approximated
calculation is much faster than the full calculation as it takes
far fewer molecular states and channels into account in the
scattering, decreasing the size of the coupled equations. This
can be clearly seen in Fig. 6, where the rescaled adiabatic
energies have been plotted as a function of r̃ for the case
B̃ = 8 × 109 and F̃ = 3.3. The black thin curves correspond
to the channels used in the full calculation while the red bold
curves correspond to the channels used in the approximation.
There are fewer curves involved in the approximation case, yet
they reproduce quite well the long-range behavior of the fully
coupled calculation, especially for the channels corresponding
to the |1̃0〉|1̃0〉 and |0̃0〉|2̃0〉 combined molecular states (see
inset). Therefore, the approximation is really worth using
at fields in the range 3.25 � F̃ � 3.3, especially due to its
numerical simplicity. This range is somewhat restricted in field
but even at F̃ = 3.3 it can indicate with not much numerical
effort that the suppression can be already quite strong.

Effect of the electronic van der Waals coefficient

Finally, we discuss the effect of the Cel
6 coefficient. As

mentioned previously in Sec. II C, the study is in general not
strictly adimensional because of the van der Waals Cel

6 /r6

interaction term. But to which extent is this true? This is what
Fig. 7 answers, where the ratio |ãre|/ãim is plotted as a function
of F̃ for different values of B̃ and different values of C

el,∗
6 . The

ratio does not change for the different C
el,∗
6 employed. The

reason can be understood as follows. There are two competing
effects for the dispersion term between two XY molecules:
(i) an attractive “electronic” van der Waals interaction with
a negative coefficient Cel

6 and (ii) a “rotational” van der
Waals interaction with a coefficient Crot

6 that can be tuned
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FIG. 7. Ratio |ãre|/ãim as a function of F̃ for different values
of B̃. Solid red curves: C

el,∗
6 = −10 000 a.u., green cross curves:

C
el,∗
6 = −3000 a.u., blue circle curves: C

el,∗
6 = −20 000 a.u.

positive or negative depending on the electric field [43]. The
former coefficients are taken from Ref. [72] between two |0̃0〉
molecules and are negative since the interaction is attractive.
These coefficients constitute an upper value in magnitude
for the coefficient between two |1̃0〉 molecules. The latter
coefficient can be estimated semiquantitatively by second-
order perturbation theory where the correction behaves as �
W 2/�E. The dipolar interaction scales as W � (d2/4πε0)/r3.
An upper value of the difference in energy between the
states |1̃0〉|1̃0〉 and |0̃0〉|2̃0〉 is approximately �E � B for
F̃ � 3.25 (see Fig. 2). This provides an order of magnitude of
the repulsive van der Waals interaction � (d2/4πε0)2/(Br6)
with a positive Crot

6 � (d/a.u.)4/(B/a.u.) for the initial state
|1̃0〉|1̃0〉. Both values are reported in Table II. The value we
use is actually not Cel

6 but C
el,∗
6 = −10 000 a.u. as mentioned

above for the hypothetical system XY∗. This is a fixed value.

TABLE II. Van der Waals C6 coefficients for different systems.
Crot

6 � (d/a.u.)4/(B/a.u.) is the repulsive “rotational” van der Waals
coefficient responsible for the repulsive interaction [43]. Cel

6 is the
“electronic” van der Waals coefficient, taken from Ref. [72]. The
two last columns are the rescaling factor and the rescaled electronic
van der Waals coefficient C

el,resc.
6 from the fixed coefficient C

el,∗
6 =

−10 000 a.u. used in our study (see text for details). 1 a.u. of C6 =
1 Eha

6
0 where Eh is a Hartree and a0 the Bohr radius.

Crot
6 (a.u.) Cel

6 (a.u.)
sE3 s6

r3
sE∗

3
s6
r∗3

C
el,resc.
6 (a.u.)

7Li23Na 826 −3 342 0.00008 −0.8
41K87Rb 15 623 −12 636 0.0016 −16
87Rb133Cs 744 251 −17 760 0.074 −744
23Na41K 3 673 910 −7532 0.37 −3 674
41K133Cs 2 314 772 −16 230 0.23 −2 315
7Li41K 2 796 249 −6 689 0.28 −2 796
23Na87Rb 10 414 091 −9 046 1.04 −10 414
7Li87Rb 6 099 595 −8 114 0.61 −6 100
23Na133Cs 44 324 439 −11 998 4.43 −44 324
7Li133Cs 21 512 044 −11 007 2.15 −21 512
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However, to obtain the rescaled C
el,resc.
6 coefficient for the real

bi-alkali-metal dipolar molecules, we have to rescale C
el,∗
6 with

a rescaling factor so that

C
el,resc.
6 = C

el,∗
6

sE3s
6
r3

sE∗
3
s6
r∗

3

, (30)

which depends on the system. This is due to the fact that we
use a characteristic length and energy relative to the dipolar
interaction instead of the van der Waals interaction. The values
of the rescaling factor and the resulting C

el,resc.
6 from C

el,∗
6 =

−10 000 a.u. are reported in Table II. One can see that the
C

el,resc.
6 coefficients are always much smaller than the Crot

6 ones
so it will not affect the scattering quantities, as seen in Fig. 7.
In that sense, the study can be considered as independent of
this coefficient and then adimensional for this specific C

el,∗
6 .

But is it appropriate to use the value C
el,∗
6 = −10 000 a.u.

to describe the real molecules XY? And does it quantitatively
affect the results? For the systems of group 1, although the
values of |Cel,resc.

6 | do not reproduce exactly the values of
the real |Cel

6 |, this is still acceptable since they are much
smaller than |Crot

6 |. In other words, as far as |Cel
6 | remains

small compared to |Crot
6 |, the value of the scattering quantities

are not going to be affected with this value of C
el,∗
6 employed,

and the study is considered adimensional for this group. This
is questionable for group 2 though, where |Cel

6 | is comparable
or bigger than |Crot

6 |, and one has to be careful with the value
of C

el,∗
6 used. One can see that the |Cel,resc.

6 | coefficients are
much smaller than the real ones |Cel

6 | so that we strongly
underestimate their values in our calculation. In contrast with
group 1, this is not acceptable since we cannot neglect the
value of |Cel

6 | compared to the value of |Crot
6 |. Therefore, the

scattering quantities and the ratio γ are certainly affected and
the study cannot be considered as adimensional for group 2.
A systematic study is then recommended including the proper
Cel

6 coefficient. But when doing so, for KRb, for instance [43],
the order of magnitude of the ratio γ still remains far below
1000. Then the definition of group 1 and 2 determined above
remains unchanged.

IV. CONCLUSION

In conclusion, we performed a general study on shielding
ultracold dipolar rotors using an adimensional perspective,

in order to identify which systems are good candidates for
efficient evaporative cooling based on two-body collisions. We
showed that, among the bi-alkali-metal dipolar molecules, two
groups can be distinguished. Group 1, including the molecules
RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is
favorable for efficient evaporative cooling using the shielding
mechanism as they have a ratio of elastic to quenching
processes over 1000 at a collision energy equal to and
even higher than their characteristic dipolar energy. Group 2,
including LiNa and KRb, is not favorable. In general, the study
is not strictly adimensional since it contains two competing
interactions, the electronic van der Waals interaction and the
dipolar interaction, from which different characteristic length
and energy can be defined. As we rescale the Schrödinger
equation with the dipolar length and energy, the rescaled
expression of the electronic van der Waals interaction breaks
the adimensionality. However, the study can be considered
adimensional for the first group since the electronic van der
Waals coefficient is small in magnitude compared to the
rotational one, responsible for the shielding. For group 2, it
cannot be considered adimensional as the electronic van der
Waals coefficient is comparable or even bigger in magnitude
compared to the rotational one, so that the electronic van der
Waals coefficient we used is underestimated. A systematic
study is then recommended for group 2. Despite that, the
conclusions of the paper remained qualitatively unchanged.

For some molecules of group 1, large static electric fields
are required to reach the shielding regime. An alternative
method would consist in using electromagnetic waves such as
microwaves [80,81] to perform the suppression of quenching
collisions. This will be investigated in a future work using
the same time-independent quantum formalism presented here
including a Floquet formalism [82,83]. Finally, further studies
could be investigated to see if a similar shielding scheme is
possible for cold polyatomic molecules [30–32].
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