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We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their first
rotational excited state, using an adimensional approach. We establish a map of good and bad candidates for
efficient evaporative cooling based on this shielding mechanism, by presenting the ratio of elastic over quenching
processes as a function of a rescaled rotational constant B = B /SE, and a rescaled electric field F =dF/B.
B.,d,F, and sg, are respectively the rotational constant, the full electric dipole moment of the molecules, the
applied electric field, and a characteristic dipole-dipole energy. We identify two groups of bi-alkali-metal dipolar
molecules. The first group, including RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is favorable with a
ratio over 1000 at collision energies equal to (or even higher than) their characteristic dipolar energy. The second
group, including LiNa and KRb, is not favorable. More generally, for molecules well described by Hund’s case
b, our adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate
rescaled rotational constant and rescaled field is approximately B > 10® and 3.25 < F < 3.8, with a maximum
ratio reached for ' ~ 3.4 for a given B. We also discuss the importance of the electronic van der Waals interaction

on the adimensional character of our study.
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I. INTRODUCTION

Ultracold dipolar molecules have been the subject of
tremendous experimental and theoretical investigations these
past years. They are promising candidates for many interesting
applications [1] using electromagnetic field manipulation [2],
from many-body physics [3] to ultracold controlled chemistry
[4-8] and from quantum information [9] to precision mea-
surements [ 10]. Different kinds of ultracold dipolar molecules
produced from already cold atoms exist now. They have been
produced in ultracold gases with sufficiently high densities
to study their two-body interactions and collisions [11]. They
can possess an electric or magnetic dipole moment so that they
can be controlled by either an electric or magnetic field. These
molecules can be fermionic or bosonic, chemically reactive or
not, and produced in the absolute ground state or in a weakly
bound state. Examples of fermionic molecules are “°K®’Rb
[12] and #*Na*’K [13] while ¥Rb'*Cs [14,15] and **Na®*"Rb
[16] are examples of bosonic molecules. They were produced
in their absolute ground state in which they possess an electric
dipole moment and can then be controlled by an electric
field [17,18]. Magnetic dipolar ultracold molecules such as
Er, have also been produced in a weakly bound state. They
possess a magnetic dipole moment and can be controlled with
a magnetic field [19]. Dipolar molecules can also be cooled
directly by laser cooling [20-29], by Sisyphus cooling [30-32]
for polyatomic molecules, or by evaporative cooling [33].

However, all these molecules share the same problem: They
can suffer from two-body collisional losses (quenching), due
to the chemical reactivity of the molecules [34-36], inelastic
collisions to lower molecular states [ 19], or possible collisional
losses mediated by long-lived complexes [37,38]. It is then
problematic to reach the quantum degeneracy of an ultracold
gas of dipolar molecules. Quantum degeneracy can be reached
by evaporative cooling, which was successfully applied to
obtain Bose-Einstein condensates of ultracold neutral atoms
[39,40] and degenerate Fermi gases [41]. The technique relies

2469-9926/2017/96(3)/032718(12)

032718-1

(atleast but not only) on large two-body elastic rate coefficients
for fast thermalization times and on small quenching rate
coefficients for low collisional losses. Therefore, shielding the
molecules from these unwanted collisional losses is absolutely
essential to reach quantum degeneracy in ultracold gases.

A somewhat counterintuitive scheme has been proposed to
shield polar molecules from quenching collisions by preparing
them in their first rotationally excited state. In this state,
if the electric field is tuned just above a critical value,
there results an effective repulsion that keeps the molecules
from changing their internal state or reacting. This has been
studied for inelastic collisions [42], reactive collisions of !X
molecules [43], and 2% molecules [44]. In contrast with these
previous works, this paper presents a systematic study using
an adimensional perspective. We determine adimensional
rescaled parameters that govern the dynamics of the systems,
namely a rescaled rotational constant, a rescaled electric field,
and a rescaled collision energy. Then, all molecules are treated
on equal footing with the same rescaled formalism [45-49]. We
find the molecules and the range of the rescaled parameters for
which the collisional loss suppression is high enough so that
evaporative cooling techniques can be used efficiently to reach
quantum degeneracy in ultracold gases of dipolar molecules.

The paper is organized as follows. In Sec. II, we briefly
recall the formalism used in the former papers [42—44] using
dimensional quantities. Then we introduce the adimensional
formalism based on the dipolar interaction which defines
a characteristic length and energy. We obtain adimensional
rescaled cross sections, rate coefficients, and scattering length
as a function of the rescaled parameters. We present and
discuss our results in Sec. III. With a single figure, one
can determine the good molecular candidates for efficient
evaporative cooling based on the shielding. We also discuss
the importance of the electronic van der Waals interaction on
the adimensional character of our study. Finally, we conclude
in Sec. IV.
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II. THEORY

A. Presentation of the scattering problem using
dimensional quantities

We consider collisions between two species 1 and 2 of
mass m; and mj, in the presence of an external electric
field F. The direction of the electric field is chosen as the
space-fixed quantization axis. The species 1 and 2 are diatomic
molecules considered in this study as dipolar rotors with
permanent electric dipole momentd; = d, = d. The scattering
Hamiltonian can be written

. h? 2 I? N s
+——+Hi+H+V, 1
2ur?

where @ = mimy/(m; + my) is the reduced mass for the
molecule-molecule collision, r is the distance between the
species’ centers of mass, and [ is the space-fixed operator
for the orbital angular momentum between the two species.
ﬂl and 7%2 describe the Hamiltonian of the isolated species
1 and 2, including their interactions with the applied field.
V="Vg+ f/dip contains all interactions between the species,
with contributions that include the electronic potential f/el
and the dipole-dipole interaction f/d,-p. In Secs. II B, IIC, and
11D, we will reduce the formalism to a model that consists in
taking the long-range interaction of the molecules and treating
the short-range interaction using an absorbing potential. The
Hamiltonian for an isolated dipolar rotor is

~ ~ A . . A2
H],zszm:ﬁ—d~F=a—chose, 2)

where 7 is the rotational angular momentum and [ is the
moment of inertia of the dipolar rotor. The corresponding
rotational constant is related to the moment of inertia by
B = li*/21. The angle 6 corresponds to the angle between the
permanent dipole moment and the electric field. The dipolar
interaction is

NG

ﬁdip = _4

= T2(dydy) - T (uy), 3)
TTEQ

where T* represents a spherical tensor of rank k and u, is
a unit vector in the direction of r. We do not consider the
hyperfine structure of the molecules as the hyperfine coupling
constants are much smaller than the rotational constant [50].
We solve the quantum-mechanical scattering problem using
the coupled-channel method. The total wave function is
first expanded in a set of N conveniently chosen basis
functions |i),

W) =r"" > xi) i), )

where £ is a collective variable including all coordinates except
r, and i is the set of quantum numbers that label the basis
functions. Each different combination of quantum numbers i
defines a channel. We choose for the individual species the set
of bare basis functions |« ») = |a) = |nm,), so that

(@ Hmole) = Bn(n + 1)840 —d Fla|cosfla’). (5

The eigenfunctions of the corresponding matrix become the
dressed internal states |&; ) = |&) = |fi m,). The projection
quantum number m,, remains a good quantum number while
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n is not. 7 indicates that the dressed state |7im,) has a
main character in n when F =~ 0, but is in general a linear
combination of the bare states |nm,). The corresponding
eigenvalues of the dipolar rotors 1 and 2 in the field are Eg,
and Eg,. The basis functions are then symmetrized in terms
of |&; ), adding the orbital angular momentum, so that |i) is
defined in Eq. (4) by

1
V2 + 8g,4,)

The corresponding energy of the channel i) is E; = Eg, +
Es,, the energy of the two separated dipolar rotors 1 and 2
in the field. n = 41 (n = —1) corresponds to a symmetric
(antisymmetric) function with respect to permutation P of the
identical species 1 and 2. The permutation operator acts on the
basis function as P|i) = n(—1)'|i). On the other hand, from
the symmetrization principle, P|W) = €p| V), where ep = +1
for identical bosons and €p = —1 for identical fermions. This
condition implies from Eq. (4) that Pli) = epli) and im-
poses the selection rule 1 (—1)) = €p. The time-independent
Schrédinger equation H|W) = Ew| V), for the scattering wave
function |W) expanded over the dummy argument i’ and for a
total energy E of the colliding system, provides a set of N
by N coupled differential equations for the channel functions
xi'(r) when projected onto the N possible bra (i|,

i) = (la1)|@2) + nlaz)la Dlimy).  (6)

(i[(H = Eo)lW) = > (il(H — Eo)lr ™" xi(rli")

o

l

=0. 7)

Using the form of the Hamiltonian in Eq. (1), we get the
following set of coupled equations,

B d? h21(1+1)+E E )

2 dr? 2//”’2 i tot [ Xilr

+ D Vi) xie(r) =0, ®)
where we used the notation V; ;; = (i |1>|i ’). The total energy

E.: = E;uit + E. is the sum of the initial combined molecular
state and the collision energy E.. Sometimes, it is convenient
to diagonalize the matrix whose elements are given by

|:h2l/(l’ +1)

2 + Ei — Elot:| Siin + Vi (r). (€))

The corresponding set of eigenvalues for a given r are called
the adiabatic energies, and one can plot the different set of
energies as a function of ». The resulting curves are a very
good indication of the way the molecules interact when they
approach to each other as r decreases. This is shown later in
Sec. III. Each term of Egs. (8) has dimensions of energy. We
will now get rid of the dimensional character of the equations.

B. The adimensional scattering problem

The adimensional problem is set up by defining a typical
characteristic length and energy from the form of the inter-
action. A C,,/r" type interaction defines characteristic length
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and energy scales [48]

2uC, \ ™ 12
K= L SE = .
Tn 72 E, 2u srzn

As the physics of the shielding occurs due to the dipole-dipole
interactions at nonzero applied electric field at a large r,
the dominant and most relevant energy scale of the theory
is the dipolar interaction. The matrix representation of this
interaction in (i |\>|i’) can be written as

(10)

BEe ./ C
(i Vaipli’y = 733 G (L1 my,m); F), (11)

with C3 = % and ¢ i(/,I',m;,m;; F) being adimensional

geometrical coefficients depending on the orbital angular
momentum as well as the rotational angular momentum via the
dressed states i,i’. We also indicated the implicit dependence
of the coefficients on F. Hence, the length scale for the r3
dipolar interaction term is

2 d?
B2 R?4meo
= 2(u/a.u)(d/a.u.)?,
and the corresponding energy scale is
n? n°
2us2 T Qup (d/Ameo)?
[8(u/a.u.)’(d/au)* L. (13)

This defines adimensional lengths, # = r/s,, and energies E =
E/sg,. If one includes only f/dip in V, the rescaled coupled-
channel equation for a given channel |i) becomes

> 10+ Ei—Ein\ 5 =
—-—— B —E.|xi(F
|: pTe + =2 + ( 3 ) ]X 7)

o (L smy,m); F) _

i’

2/,LC3
Sy = —5—

12)

SE3

(14)

There are as many equations as channels |i). The above
adimensional equations display three adimensional quantities
relating to the physical parameters of the colliding system. The

first one,
s_ B 8B &Y
o SE; - ﬁ6 4JT60

= 8(B/a.u.)(n/a.u.)*(d/a.u.)*,

15)

represents the rotational constant rescaled over the dipolar
energy. It depends on the rotational constant, the reduced mass,
and the full electric dipole moment of the system. Therefore
the first parameter contains all the information of an individual
dipolar rotor and is fixed for a given system. The second
parameter in Egs. (14) is

E; — Eiy
TR

It represents the difference between the energy E; of two
separated dipolar rotors in channel |i) and the energy Eini
of the initial state, rescaled by the rotational constant. The
individual rescaled energies Eg, ,/ B are obtained directly from

(16)
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FIG. 1. Rescaled energies Eg, /B of a dipolar rotor as a function
of the rescaled field F = dF/B. Some dressed states |fi;m,,) are
explicitly indicated.

Eq. (5) when the equation is divided on both sides by the
rotational constant B [51]. They are function of a rescaled
field defined by

. dF
F= B 17)
and plotted in Fig. 1 as a function of F. The rescaled energies
E; /B are plotted in Fig. 2 as a function of F. In the following,
as the rescaled energies, their differences, as well as the
coefficients ¢; ;- are fixed for a given rescaled field, the second
parameter is monitored implicitely by the rescaled field F in

6
[10>]10>

I I | I I | | S
8. 10 12 14 16 18 20

F=dF/B

FIG. 2. Rescaled energies E;/B of two combined dipolar rotors
as a function of the rescaled field F = dF/B. Some combined
dressed states |ijm,, )|fi,m,,) are explicitly indicated. The field at
which the initial state |10)|10) (red bold dashed line) crosses the
|00)|20) one is F = 3.25. The red bold dashed and red bold solid
lines correspond to states with m,,, = m,,, = 0.
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which the system is colliding. The third parameter in Egs. (14),

. E
E.=—, (18)

SE;

corresponds to the collision energy rescaled over the dipolar
energy. In this study, we will consider the ultracold regime so
that £. — 0 and is fixed for a given initial state of the system.
The adimensional equations depend solely on B and F.

C. Adding the electronic van der Waals interaction

Equations (14) are useful to determine which parameters
are the relevant ones using an adimensional perspective.
However, this is possible because we have only used the dipolar
interaction as the typical interaction, which defined the proper
length and energy scales s,, and sg,. In practice we also have to
include the electronic interaction. We use a simple long-range,
isotropic description based on the leading dispersion term. The
matrix representation of the electronic interaction in (i |\>|i "
is then

s C
(i Velli') = 8y =2, (19)
r

where Cgl represents the electronic van der Waals coefficient
between the two dipolar rotors. It must be noted, however,
that this term is not rigorously scale-free in 7 for it defines a
different characteristic length

Sy = ( |cg‘|) £ 5,,. (20)

Therefore, we cannot end up in general with a strictly adi-
mensional study. Neglecting the electronic van der Waals term
is also not possible given that in some cases the geometrical
factor ¢; ;- vanishes in the diagonal element of (i |]>dip|i 'y, such
as for an incoming and outgoing s wavel = I’ = 0. However, if
the electronic van der Waals term plays a negligible role in the
shielding effect, the study can be considered adimensional. In
practice, we do not use the adimensional coupled equations
Egs. (14) to compute the scatering properties. We instead
solve the dimensional coupled equations in Egs. (8) for a
fixed electronic Cgl coefficient and appropriately come back
to adimensional rescaled quantities. At the end of Sec. III, we
discuss in more detail for which systems the electronic van der
Waals interactions play a negligible part and therefore when
the study becomes adimensional.

D. Cross sections, rate coefficients, and scattering length

The close-coupling equations are solved for each r from
a minimum value ry,;, to a maximum value ry,, using a log-
derivative propagation method [52,53]. At rpyi,, We initialize
the propagation by a complex, diagonal log-derivative matrix
Z whose elements are given by [43]

kmin(4sc/1 — psr — i psr)
A(JT=psg — D+ s2(/T—= psg + 1?’
(21

Z(V = rmin) =
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where

2u R+ 1)
kmin = \/ﬁg [Etol (Vi,i(rmin) + m , (22)

¢ = COS (kminrmin + 8SR), and s = sin (kminrmin + (SSR)' 0 <
psr < 1 and 0 < dsgr < 7 are two parameters that tune the
loss probability and the phase shift of the incoming flux at ry;,
[54]. This is as if we had approximated the chemically active
internal configuration region (r < ry;n) of each channel |i) by
a square-well potential from r = 0 to r = rpy,, whose depth is
given by

c c R+ 1)
= Gii s (23)
mm mm rmm

and whose corresponding log-derivative is Eq. (21) at r =
rmin- At the end of the propagation, one usually obtains
the scattering matrix S by applying asymptotic boundary
conditions at ry,x when V; ;(r = rmax) — 0. As we start with
an arbitrary complex log-derivative in Eq. (21) mimicking
a phenomenological loss at short range, it implies that the
S matrix is not necessarily unitarity. The diagonal element
of a given column determines the magnitude of the elastic
process while the sum of the off-diagonal terms determines
the inelastic processes. The (positive) difference of unity with
the sum of the modulus square of the elements of a matrix
column determines the (phenomenological) loss processes. In
our study, we do not distinguish between loss and inelastic
processes; they all contribute to destruction or removal of the
molecules in an experimental trap. Therefore, we consider only
the quenching processes which are the sum of the inelastic and
the loss processes.

As we are interested in scattering properties that are
independent of the collision energy, it is then more useful to
present and compute the scattering length instead of the cross
sections or the rate coefficients. The s-wave scattering length

becomes a constant when the wave vector k = /2 E./h*> —
0. It is defined as [55]
1 (1 — Soo(k
0=t — i i = ,-(—00( )> L
ik \ 1+ Sook) k=0

with aj, > 0. Sgo represents the diagonal elements of the
S matrix corresponding to the initial collisional state taken
into consideration. The cross sections and rate coefficients are
related to the scattering length by

4 im
o = 47lal?A, Oqn = ”k“ A, (25
4 hk|a)? 4 h a,
ﬂel = A, ,Bqu = A, (26)
w w

where A =2 if the particles are identical and start in
indistinguishable states and A = 1 otherwise. Since we are
using the dimensional equations (8), we have to rescale the
quantities so that they are adimensional. This is done by
dividing the scattering length by the characteristic length s,,,
a = dye — [ dim = a/s,,. Similarly, we get the rescaled cross
sections & = o/s,, using a characteristic cross section s,, =
4nsi. The rescaled rate coefficients § = /Sp, are obtained
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by using a characteristic rate coefficient sg, = s4,5,,, where
sy, = h/us,, corresponds to a characteristic velocity. The
rescaled scattering length, cross sections, and rate coefficients
are now related by

&im

Go = |a*A, Gqu = A (27)

Pa=klalA, P =amA, (28)
wherek = E, = \/E./sg, — 0.Note that £ is characterized
via sg, by the full dipole moment of the molecule, measured
in a body-fixed frame (molecular frame). In reality, what
one observes in a space-fixed frame (laboratory frame) is
the expectation value of the dipole moment, namely the
induced dipole moment dj,g, for a given applied electric
field. Therefore, a more appropriate characteristic energy that
quantifies the dipolar interaction between the molecules is the
one using the induced dipole moment instead of the full dipole
moment. This energy depends on the applied electric field F
and characterizes the typical energy at and below which the
quantum regime is reached, typically when indistinguishable
bosons collide in the single partial wave [ = 0 (s wave) or
indistinguishable fermions in the single partial wave [ =1 (p
wave). We note this “quantum regime” energy EQR(F ), and
the limit of validity £ — 0 above corresponds to the condition
E. < Eqr(F).
Finally, an important quantity for experiments is the ratio
y of the elastic over the quenching cross section or rate
coefficient. This ratio is given by
_fa_oa _laP, Gl
IBqu Oqu dim
This ratio determines the efficiency of the evaporative cooling
technique in order to reach the quantum degeneracy of
ultracold gases.

(29)

III. RESULTS AND DISCUSSION

We consider ultracold identical bosonic molecules prepared
initially in the state |7i;m,, )|fiam,,) = |10)|10) (for example,
in the ground electronic state X'X* and in the ground
vibrational state v = 0). Another state |00)|20) crosses the
initial state at a rescaled field F = 3.25. The energy curves
of these states are indicated in the inset of Fig. 2, where the
initial energy Ejy is indicated as a red bold dashed line. It
has been shown and explained [42-44] that the quenching
processes were suppressed compared to the elastic ones,
slightly beyond this field. We are then interested in the
molecule-molecule scattering properties around this field. We
assume the worst scenario for the molecules: When the two
molecules are sufficiently close to each other, they disappear
from the experimental trap. This can be due, for example, to a
chemically reactive collision [35], inelastic transitions to other
states, or collisional losses mediated by a long-lived complex
[37,38]. In our calculations, this is satisfied when full loss
psr = 1 is invoked in Eq. (21). Thus the starting diagonal
elements of the log-derivative matrix for a given channel
are purely imaginary and given by Z = —i kp,. Spontaneous
emission of molecules in the first excited rotational state can
be neglected here as the lifetimes are on the order of 10* s,
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using the formula for the Einstein coefficient of spontaneous
emission. Black-body radiation driving either rotational or
vibrational excitations of the molecules at room temperature
can be neglected as the lifetimes are on the order of 10% s
or more for heteronuclear alkali molecules [71]. Both types
of lifetime are much longer than any other time scales of an
experiment (mean collision time, evaporative cooling time,
trapping time), which are on the order of seconds. We used
nj» = [0-3] for the rotational basis set. We used [ = [0-10]
for the partial wave basis employed in Eq. (6). As we consider
initial molecules in indistinguishable states, only symmetric
states with n = +1 must be taken into account in Eq. (6).
As we consider identical bosonic molecules, then g¢p = +1.
The selection rules n (—1)" = &p implies even partial waves /.
The projection quantum number M = m,,, + m,, + m; of the
total angular momentum on the quantization axis is conserved
during the collision. We performed calculations for M = 0
since the initial m,, = m,, = 0 and m; = 0 is the dominant
projection at ultralow collision energies. In the following, we
employ an arbitrary fixed rotational constant B* = 10~ a.u.
(~0.2 cm™") and electric dipole moment d* = 1 a.u. (~2.54
Debye) while the mass p* is varied in order to vary the
parameter B = 8(B*/a.u.)(u*/a.u.)’(d*/a.u.)* in Eq. (15).
The star characterizes a hypothetical dipolar molecule, say
XY?*, defined by those values which also define a characteristic
length Srs, ENEIZY S+, CrOSS section So7s and rate coefficient Sps-
Fixing B* and d* is also convenient for varying the rescaled
field F = d*F/B*, since it is sufficient to vary the electric
field F only. We consider the scattering properties at collision
energies E = 100 nK so that the third parameter E. is fixed.
We used rmin = Sagp and ryay is chosen so that k* ), ~ 5.
As the mass p* is changed here to vary the parameter B, k*
changes accordingly, and so does r}},,. Most of the systems
investigated in experiments are diatomic dipolar molecules of
alkali atoms for which the electronic Cgl coefficients belongs
to the range —20000 < Cgl < —3000 a.u. [54,54,56,72,73].
In this study, we use a fixed value of Cgl'* = —10000 a.u.
between two molecules XY*. We discuss the effect of the Cgl
coefficient at the end of this section. We obtain the rescaled
scattering length @ and all related quantities [see Eq. (28)]
by dividing the scattering length a* by s,: computed for the
hypothetical molecule XY*, for different values of u* and F*
corresponding to different values of B and F.

The quantity |@|?/d@, = y/k is plotted in Fig. 3 as a
function of B and F. Different contour plots are drawn from
dark blue for low values of this quantity (10~*) to dark
red for high values (10°). White contour plots correspond
to value > 10%. When multiplying |@|? /@, by the rescaled
wave vector k, this provides the ratio y for the collision
energy E.; see Eq. (28). Therefore, this plot gives directly
the ratio y for k =1, that, is when E, = sg,. For efficient
evaporative cooling to occur, aratio y > 100 [39], and perhaps
a safer value of y > 1000, is required. The latter condition
corresponds in the figure to the orange, red, dark red, and
white contour plots. Therefore, the condition for favorable
evaporative cooling is delimited approximately by the region
B > 108 and 3.25 < F < 3.8, with a maximum ratio reached
for F ~ 3.4 for a given B. Any other position in the plot is
likely to be unfavorable. This universal feature is due to the
shielding mechanism [42—45] when the incident collisional
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3.9

4.0
F=dF/B

FIG. 3. |d@|?/@m = y/k as a function of B and F. The color scale, presented at the right of the picture, goes from 10~* to 10°. The white
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area corresponds to values >10°. The B values of some characteristic dipolar molecules are also included.

channel becomes repulsive enough so that the quenching rate
coefficient is suppressed.

The characteristic values of the dipolar bi-alkali-metal
molecules are reported in Table I. The B values are reported on
the right of Fig. 3 as yellow dashed lines. This distinguishes
two groups of molecules for evaporative cooling: the good
candidates from the bad. Group 1 (RbCs, NaK, KCs, LiK,
NaRb, LiRb, NaCs, LiCs) for which B > 10% has favorable
candidates, while group 2 (LiNa, KRb) has unfavorable ones
since B <« 10%. This holds at collision energies E. = sg, (see
Table I for the values), when k = 1. As mentioned in Sec. I[I D,
a more appropriate value is when the collision energy is on
the order of the quantum regime energy (E. = Egg) since
it better reflects the magnitude of the interaction and the
collision for the given applied field. Let us take the example
of F = 3.4. At this field, di,g =~ 0.13 d (this can be directly
calculated from Fig. 1 using the slope of the |10) curve at
F =3.4). Then Eqr(F = 3.4) = sg,/0.13* ~ 3500 sg,. The
corresponding values for each molecule are reported in
Table 1. If now E. = Egg, the ratio should become y(F =

34) = ];Qleﬂz/ﬁim with I;QR = \/EQR/SE3 ~ \/3500 ~ 60.
The ratio should increase by a factor of 60 for this example
compared to the one for E. = sg,. The precedent conclusions
remain unchanged since for the first group, the ratio y will
be bigger than 1000, while for the second group, the ratio
increases by the factor of 60 but is not enough to reach the
ratio of 1000.

The white contour plots in Fig. 3 correspond to values of
the ratio bigger than 10° at k£ = 1. This area is not shown
in more detail since we encounter numerical issues leading
to unphysical oscillations in the values of the scattering
quantities. In this region, the quenching processes are so
strongly suppressed that the values of d, compared to the
ones of |dr| are very tiny, about 107! smaller (see Fig. 4
below). We believe the log-derivative method cannot achieve
higher precision and produces numerical errors. One can use,
for example, more appropriate methods for better numerical
precision [74] to fulfill the plot in the white area. From an
experimental point of view, though, the ratio presented in
the figure is already more than sufficient. When d;, < dpe,
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TABLEI. Summary of the different system parameters obtained from the reduced mass (., the rotational constant B [56], and the full electric
dipole moment d [57] for bosonic ! £ molecules and bosonic > molecules [58—70]. Sry.8E5:80;, and sg, are respectively the characteristic length,
energy, cross section, and rate coefficient for the dipolar interaction (see text for definitions). Egg 2 3500 s, is the characteristic quantum
regime energy at the field ¥ = 3.4 where the s wave is predominant. B is the rescaled rotational constant. F F—[3.25-3.8) 1S the approximate range
of the electric field where the ratio y would be favorable for successful evaporative cooling. The systems are ordered in increasing values of
B. We provide useful conversion factors: 1 a.u. >~ 1822.88 a.m.u.; 1 a.u. >~ 219475 cm';1au. ~25417D;1ay >~ 0.529 x 107 m; 1 a.u.
~315775K; 1au. >~ 2.80 x 1077 cm?; 1 a.u. =~ 6.126 x 10™° cm3/s; 1 a.u. >~ 5.1422 x 10° kV/cm.

Egr(K) F(kV /cm)
pau) B(1077auw) d(au)  s,(a) sE5(K) (at F =3.4) S03(cm?) spy(cm?/s) B F =[3.25-3.8]
I's
TLi®Na 27349 19.4 0.200 2188 12x107%  42x1073 1.68x107°  6.16x107° 5.07x10° [161.8-189.2]
4IK87Rb 116547 1.67 0.226 11888 9.6x107°  34x1075  4.97x1078  7.85x107° 5.48x10° [12.3-14.4]
87TRb!BCs 200349 0.77 0.49 96207  8.5x10~ 1 3.0x1077  326x107°  3.70x1078 2.87x108 [2.64-3.08]
BNa*'K 58288 428 1.12 146234 13x10710  44x1077  7.52x107° 1.93x1077 1.07x10° [6.39-7.47]
4RIBCs 158470 1.37 0.75 178279  3.1x107!! 1.1x1077 1.12x1073 8.66x1078 1.38x10° [3.05-3.56]
LYK 43729 13.4 1.39 168978 1.3x10710 4.4x1077 1.01x1073 2.98x1077 3.33x10° [16.05-18.77]
ZNa¥’Rb 100167 3.19 1.35 365108 1.2x1071 41x107%  4.69x107° 2.81x1077 8.52x10° [3.95-4.62]
"Li¥Rb 85608 11.57 1.63 454902 8.9% 10712 3.1x1078 7.28%1073 4.09% 1077 4.10x10'0 [11.87-13.87]
BNal®Cs 142090 2.64 1.85 972605 12x10712  4.1x107°  3.33x107*  527x1077  7.10x10'° [2.39-2.79]
TLi'BCs 127531 9.93 215 1179020  8.9x10713 3.1x107°  4.89x10™*  7.12x1077 3.52%10'! [7.72-9.03]
’y
87Rb%4Sr 155695 0.82 0.606 114309  7.8x107! 2.7x1077 4.60x10~° 5.65x1078 3.34x108 [2.26-2.65]
Ocal%F 53740 15.6 1.21 156797 12x10710  42x1077  8.65x107°  2.24x1077 4.12x10° [21.6-25.3]
40CaH 37342 192.7 0.99 73996  7.7x10710  27x107° 1.92x107° 1.52x1077 7.88x10° [323.5 - 378.2]
845r19F 93798 11.43 1.365 349535 1.4x10~ ! 48x107%  4.30x1073 2.87x1077  2.62x10'0 [13.99-16.36]
38Bal%F 143009 9.84 1247 444881 56x10712 2.0x107%  6.97x107° 2.40x1077  5.57x10'0 [13.18-15.41]
8yleo 95611 17.68 1.78 605 801 45x10712 1.6x1078 1.29%x10~*  4.88x1077 1.24x10! [16.60-19.41]

|d@|? > |Gre|* so that |G@|?/@im = |Gre|*/Gim. Since |arel/@im ~ 55, = 1.2 x 1071 K (k = 1) to Egg = 4.1 x 1078 K. This is
10'% and |a,.| > 10~* (see Fig. 4), the white area corresponds then well appropriate to reach quantum degeneracy of ultracold
t0 |dire|? /im > 10°. dipolar gases and form Bose-Einstein condensates of dipolar

The results in Fig. 3 are promising for bosonic dipo- molecules. To compare, the typical critical temperature 7, ~
lar molecules under current experimental interest, such as 3.3125 > n*/3 /mkp where condensation takes place (though
87Rb!33Cs [14,15] and > Na®’Rb [16], since they belong to the  for an ideal noninteracting Bose gas) with a typical density of
first group as defined above. For NaRb, at F ~ 3.4, theratioy  10'> molecules/cm? is 7, ~ 10 nK for NaRb, which belongs
reaches values above 10° for the collision energy range from  to the energy range where the ratio is favorable for evaporative

E T T T T T T T T T T T T T T 3 10()% 3
E E AF E
%
= of
We—— 10°F 3
—_———————————— af el
- = 107E E
E af E
T ————— 10 ¢ =
— B=8x10’ _ 10°E — B=8x10° ——
— B=8x10’ — B=sx10’
a 5 B 6L 5 s 4
B=8x10 = gt 10 ¢ B=8x10
— B=8x10° 3 107k — B=8x10° s
B=8x10’ E 8f B=8x10" E
— B=gx10° E 10 ¢ — B=8x10’ E
— B=8x10’ N 10°F — B=8x10’ s
B=8x10'" E 0 B=8x10" E
— B=8x10" E 10 ¢ — B=8x10"’ 3
B=8x10" ] 10ME B=8x10"" E
| |— B=8x10" E ot |— B=8x10" E
4 5 6 103 4 5 6
F=dF/B F=dF/B

FIG. 4. Absolute value of the real part |d.| (left panel) and imaginary part @, (right panel) of the rescaled scattering length as a function
of F for different values of B. The order of the curves at F' = 6 corresponds to the order of the B values displayed in the legend from top to
bottom.
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cooling. It should be noted that Egg is not an upper limit
of the collision energy above which the evaporative cooling
technique would become unfavorable. The ratio can still
remain big (above 1000) for even higher collision energies.
It just means that one cannot strictly use Eq. (29) to convert
the quantity |@|?/d, to the ratio y using k. For instance, for
NaRb, the ratio is above 10° at E. = E oR, but it can take a
high collision energy for the ratio to get down to 1000 (see
Ref. [44]), so that at the E. ~ uK regime the ratio is still
favorable. To answer the maximum collision energy for each
system, one has then to repeat the calculation presented in
Fig. 3 as a function of the collision energies. This is not shown
here but can be calculated upon request (and for a specific
system to save computational time). For RbCs, the ratio y
can reach values of 1000 or above for the collision energy
range from sg, = 8.5 x 10~ K to Eor =3 x 1077 K, but
at a somewhat more limited range of electric fields as shown
in Fig. 3, around F ~ 3.4. Above or below this field, the ratio
can decrease and could become unfavorable.

The results of this paper are not necessarily constrained
to bosonic molecules. Earlier studies [42,43] showed that
fermionic molecules also experience quenching suppression.
In addition, the adimensional study and parameters remain
valid, so that similar outcomes are expected for identi-
cal fermionic molecules. Examples of fermionic dipolar
molecules of current experimental interest are 4O0K3TRY [12]
and 2*Na*®K [13]. While fermionic KRb are not good
candidates (this was shown already in Ref. [43]), we can expect
that NaK will be a good candidate for quenching suppression.
In contrast with fermionic neutral particles (alkali atoms,
homonuclear molecules) which interact via the van der Waals
interaction at long range, fermionic dipolar particles in an
electric field interact via the dipolar interaction. This modifies
the p-wave threshold laws of the elastic process [46,75]. The
elastic cross section tends to a constant at vanishing collision
energies, in contrast with the van der Waals interaction where
the elastic cross section vanishes as E.2. Since the quenching
cross section behaves as +/E., the ratio y increases at ever
lower collision energies. Therefore, successful evaporative
cooling can also be used to reach quantum degeneracy and
form degenerate Fermi gases of dipolar molecules.

Another important experimental issue is the range of fields
at which the suppression takes place, reported as Fj_35_3 5]
in the last column of Table 1. For example, the LiNa
system would require electric fields that are too high, above
100 kV/cm, to implement the already weak suppression.
Generally in an experiment, electric fields up to ~5 kV/cm
can be created when the electrodes stand outside the vacuum
chamber [17]. Therefore, the suppression can be implemented
in such circumstances for the RbCs, KCs, NaRb, and NaCs
systems, which require electric fields smaller than 5 kV/cm.
For the remaining systems, KRb, NaK, LiK, LiRb, and LiCs,
higher fields are required, and the electrodes must be included
inside the vacuum chamber [76].

The characteristic values of representative X dipolar
molecules such as CaH, SrF, RbSr, CaF, YO, and BaF, which
are also of experimental interest [20-29,77-79] are reported
in Table 1. These molecules are not perfect Hund’s case b
type of molecules since they have an additional fine and
hyperfine structure that should be included in the Hamiltonian.

PHYSICAL REVIEW A 96, 032718 (2017)
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FIG. 5. Ratio |dye|/dim as a function of F for B = 8 x 10° (black
thin curves) and B = 8 x 10° (red bold curves). Solid curves: full
calculation; dashed curves: m,, = m,, = 0 approximation.

Nevertheless, around the electric field F = 3.25, the electronic
and nuclear spins can mainly act as spectators [44], and to the
same extent the formalism for 'Y molecules can be applied
to 2X molecules. The corresponding B values, reported as
red solid lines on the left of Fig. 3, show that for CaF, SrF,
BaF, and YO the quantity |d|?/d;, is well above 10°, making
them potential candidates for successful evaporative cooling
under the assumption that the spins are spectators. For CaH,
the electric field range is too high as for the LiNa system. For
RbSr, this is like RbCs as discussed above, since they share a
similar value of B. y can reach 1000 but at a restricted range
of electric fields.

One cannot tell from Fig. 3 whether high ratios are due to
high values of d, low values of dj,, or a combination of both.
This can be seen in Fig. 4, which shows the absolute value
of the real part |d..| (left) and imaginary part G, (right) of
the rescaled scattering length as a function of F, for different
values of B, from 8 x 103 to 8 x 10'3. || does not vary much
with F while @, does. When the field crosses the value F* =
3.25, it strongly suppresses the quenching processes while the
elastic ones remain relatively steady. The reason for the high
ratio comes then from a suppressed value of dj, rather than
an enhanced value of |d,.|. These two plots are also useful to
have a direct magnitude of the quenching rate coefficients and
elastic cross sections. d@iy, gives the quenching rate coefficients
when multiplied by s, A (see the values in Table I) while | 12,
when d;, < dre, does the same for the elastic cross sections
when multiplied by s,, A [see Eq. (28)].

Figure 5 confirms useful information on the mechanism of
the quenching suppression. As mentioned in Ref. [44], a useful
approximation nearby F = 3.25 consists in taking only the
m,, = 0 projection of the molecules in the calculation (m,, =
my, = 0). This will correspond in Fig. 2 to selecting only the
combined molecular states indicated as red bold dashed and
red bold solid lines, while a full calculation employs all the
curves (red and black). Figure 5 shows the ratio |d..|/dim as a
function of F for two values of B =8 x 10° and 8 x 10°.
The solid curves result from the full calculation, as also
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FIG. 6. Rescaled adiabatic energies as a function of 7 for B =
8 x 10° and F = 3.3. Black thin curves: full calculation; red bold
curves: m,, = m,, = 0 approximation. The inset shows a zoom of
the |10)|10) and [00)|20) combined molecular states.

shown in the previous figures, while the dashed curves result
from the approximation m,, = m,, =0 for the rotational
states of the molecules. As one can see, the approximation
is valid for fields in the range 3.25 < F < 3.3. For higher
fields, the approximation becomes less valid. It strongly
overestimates the results at larger fields. The approximated
calculation is much faster than the full calculation as it takes
far fewer molecular states and channels into account in the
scattering, decreasing the size of the coupled equations. This
can be clearly seen in Fig. 6, where the rescaled adiabatic
energies have been plotted as a function of 7 for the case
B =8 x 10° and F = 3.3. The black thin curves correspond
to the channels used in the full calculation while the red bold
curves correspond to the channels used in the approximation.
There are fewer curves involved in the approximation case, yet
they reproduce quite well the long-range behavior of the fully
coupled calculation, especially for the channels corresponding
to the |10Y|10) and |00)|20) combined molecular states (see
inset). Therefore, the approximation is really worth using
at fields in the range 3.25 < F < 3.3, especially due to its
numerical simplicity. This range is somewhat restricted in field
but even at F = 3.3 it can indicate with not much numerical
effort that the suppression can be already quite strong.

Effect of the electronic van der Waals coefficient

Finally, we discuss the effect of the Cgl coefficient. As
mentioned previously in Sec. IIC, the study is in general not
strictly adimensional because of the van der Waals C&l/r®
interaction term. But to which extent is this true? This is what
Fig. 7 answers, where the ratio |G |/din is plotted as a function
of F for different values of B and different values of Cgl’*. The
ratio does not change for the different Cgl’* employed. The
reason can be understood as follows. There are two competing
effects for the dispersion term between two XY molecules:
(i) an attractive “electronic” van der Waals interaction with
a negative coefficient Cgl and (ii) a “rotational” van der
Waals interaction with a coefficient C{** that can be tuned

PHYSICAL REVIEW A 96, 032718 (2017)
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FIG. 7. Ratio |G|/ as a function of F for different values
of B. Solid red curves: cgl’* = —10000 a.u., green cross curves:
CeH* = —3000 a.u., blue circle curves: Cg"* = —20000 a.u.

positive or negative depending on the electric field [43]. The
former coefficients are taken from Ref. [72] between two |00)
molecules and are negative since the interaction is attractive.
These coefficients constitute an upper value in magnitude
for the coefficient between two |10) molecules. The latter
coefficient can be estimated semiquantitatively by second-
order perturbation theory where the correction behaves as =~
W?2/AE.Thedipolarinteraction scales as W ~ (d?/4meg)/r>.
An upper value of the difference in energy between the
states |10)|10) and |00)|20) is approximately AE ~ B for
F > 3.25 (see Fig. 2). This provides an order of magnitude of
the repulsive van der Waals interaction =~ (d*/4mey)? /(Br®)
with a positive C¢™' >~ (d/a.u.)*/(B/a.u.) for the initial state
|10)|10). Both values are reported in Table II. The value we
use is actually not C¢! but Cg"* = —10000 a.u. as mentioned
above for the hypothetical system XY*. This is a fixed value.

TABLE II. Van der Waals C¢ coefficients for different systems.
Ct~(d /a.u.)*/(B/a.u.) is the repulsive “rotational” van der Waals
coefficient responsible for the repulsive interaction [43]. CZ is the
“electronic” van der Waals coefficient, taken from Ref. [72]. The
two last columns are the rescaling factor and the rescaled electronic
van der Waals coefficient C¢™* from the fixed coefficient CZ"* =
—10000 a.u. used in our study (see text for details). 1 a.u. of C¢ =

1 Ehag where E), is a Hartree and a the Bohr radius.

CP (au)  CY(au) P Ce™ (au.)
3

"Li®Na 826 —3342 0.00008 -0.8
“K¥Rb 15623 —12636  0.0016 —16
87Rb'33Cs 744251 —17760  0.074 —744
BNa*'K 3673910 —7532 0.37 —3674
K133 2314772 —16230 023 —2315
LYK 2796249  —6689 0.28 —21796
ZNa¥Rb 10414091 —9046 1.04 —10414
"Li¥Rb 6099595 —8114 0.61 —6100
BNa'*Cs 44324439 —11998  4.43 —44 324
TLi"%3Cs 21512044 —11007 2.15 —21512
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However, to obtain the rescaled Cgl’resc' coefficient for the real

bi-alkali-metal dipolar molecules, we have to rescale Cgl’* with

a rescaling factor so that

6
Cel,rese _ Cel,* SE3Sr3 30
elrese. _ e , (30)

6
SE§ Sr;

which depends on the system. This is due to the fact that we
use a characteristic length and energy relative to the dipolar
interaction instead of the van der Waals interaction. The values
of the rescaling factor and the resulting C¢"™* from Cg"* =
—10000 a.u. are reported in Table II. One can see that the
CE™™ coefficients are always much smaller than the C:** ones
so it will not affect the scattering quantities, as seen in Fig. 7.
In that sense, the study can be considered as independent of
this coefficient and then adimensional for this specific Cgl'*.

But is it appropriate to use the value Cgl’* = —10000 a.u.
to describe the real molecules XY? And does it quantitatively
affect the results? For the systems of group 1, although the
values of |CS"™| do not reproduce exactly the values of
the real |CZ'|, this is still acceptable since they are much
smaller than |C{*|. In other words, as far as |C§1| remains

small compared to |C¢|, the value of the scattering quantities

are not going to be affected with this value of CS"* employed,
and the study is considered adimensional for this group. This
is questionable for group 2 though, where |C gl| is comparable

or bigger than |C{”'|, and one has to be careful with the value

of CS"* used. One can see that the |Cg"™*| coefficients are
much smaller than the real ones |Cgl| so that we strongly
underestimate their values in our calculation. In contrast with
group 1, this is not acceptable since we cannot neglect the
value of |C§1| compared to the value of |C¢”'|. Therefore, the
scattering quantities and the ratio y are certainly affected and
the study cannot be considered as adimensional for group 2.
A systematic study is then recommended including the proper
Cgl coefficient. But when doing so, for KRb, for instance [43],
the order of magnitude of the ratio y still remains far below
1000. Then the definition of group 1 and 2 determined above
remains unchanged.

IV. CONCLUSION

In conclusion, we performed a general study on shielding
ultracold dipolar rotors using an adimensional perspective,

PHYSICAL REVIEW A 96, 032718 (2017)

in order to identify which systems are good candidates for
efficient evaporative cooling based on two-body collisions. We
showed that, among the bi-alkali-metal dipolar molecules, two
groups can be distinguished. Group 1, including the molecules
RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is
favorable for efficient evaporative cooling using the shielding
mechanism as they have a ratio of elastic to quenching
processes over 1000 at a collision energy equal to and
even higher than their characteristic dipolar energy. Group 2,
including LiNa and KRb, is not favorable. In general, the study
is not strictly adimensional since it contains two competing
interactions, the electronic van der Waals interaction and the
dipolar interaction, from which different characteristic length
and energy can be defined. As we rescale the Schrodinger
equation with the dipolar length and energy, the rescaled
expression of the electronic van der Waals interaction breaks
the adimensionality. However, the study can be considered
adimensional for the first group since the electronic van der
Waals coefficient is small in magnitude compared to the
rotational one, responsible for the shielding. For group 2, it
cannot be considered adimensional as the electronic van der
Waals coefficient is comparable or even bigger in magnitude
compared to the rotational one, so that the electronic van der
Waals coefficient we used is underestimated. A systematic
study is then recommended for group 2. Despite that, the
conclusions of the paper remained qualitatively unchanged.

For some molecules of group 1, large static electric fields
are required to reach the shielding regime. An alternative
method would consist in using electromagnetic waves such as
microwaves [80,81] to perform the suppression of quenching
collisions. This will be investigated in a future work using
the same time-independent quantum formalism presented here
including a Floquet formalism [82,83]. Finally, further studies
could be investigated to see if a similar shielding scheme is
possible for cold polyatomic molecules [30-32].
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