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Modeling the transformation of atmospheric CO2

into microalgal biomass†

Mohammed Fahad Hasan and Frank Vogt *

Marine phytoplankton acts as a considerable sink of atmospheric CO2 as it sequesters large quantities of

this greenhouse gas for biomass production. To assess microalgae’s counterbalancing of global warming,

the quantities of CO2 they fix need to be determined. For this task, it is mandatory to understand which

environmental and physiological parameters govern this transformation from atmospheric CO2 to micro-

algal biomass. However, experimental analyses are challenging as it has been found that the chemical

environment has a major impact on the physiological properties of the microalgae cells (diameter

typ. 5–20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus

compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, com-

puter simulations are a more promising approach than the experimental studies. Modeling software has

been developed that describes the dissolution of atmospheric CO2 into oceans followed by the formation

of HCO3
− which is then transported to individual microalgae cells. The second portion of this model

describes the competition of different cell species for this HCO3
−, a nutrient, as well as its uptake and util-

ization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata,

were cultured individually and in a competition situation under different atmospheric CO2 conditions. It is

shown that this novel model’s predictions of biomass production are in very good agreement with the

experimental flow cytometry results. After model validation, it has been applied to long-term prediction

of phytoplankton generation. These investigations were motivated by the question whether or not cell

production slows down as cultures grow. This is of relevance as a reduced cell production rate means

that the increase in a culture’s CO2-sinking capacity slows down as well. One implication resulting from

this is that an increase in anthropogenic CO2 may not be counterbalanced by an increase in phytoplank-

ton production. Modeling studies have found that for several different atmospheric CO2 levels provided to

single-species cultures as well as to species in competing scenarios the cell production rate does slow

down over time.

1. Introduction

Due to increased industrialization, the production of anthro-
pogenic CO2 is increasing

1 and the fate of this greenhouse gas
has become a major concern.2 On the other hand, about half
of the primary carbon production is due to algal
photosynthesis3–5 and CO2 sequestration by phytoplankton
has thus a considerable impact on the climate.6–14 Therefore,
for realizing the impact of future environmental conditions, it
is crucial to quantitatively understand the fixation of CO2 into
phytoplankton biomass. It has also been found that the chemi-
cal environment effects the biomass production and therefore
the amount of fixed CO2.

15–18 Hence, in order to quantify the

transformation process, the surrounding chemical environ-
ment and its interaction with phytoplankton need to be
investigated.

Marine microalgae’s carbon sequestration occurs via two
pathways:11 (i) uptake of dissolved CO2(aq) and (ii) uptake of
HCO3

− which is produced via CO2(g) → CO2(aq) + H2O ⇌ H2CO3

⇌ HCO3
− + H+. This study only focuses on (ii), i.e. on the

sequestration of HCO3
−. Experimental analyses of HCO3

− con-
centrations remaining in an ecosystem would enable the quan-
titation of carbon sequestration. However, such measurements
are challenging because in ecosystems often 105–107 cells per
mL exist. These cells (typical size 5–20 μm19) only access
HCO3

− in their immediate, microscopic surroundings and
thereby create a highly inhomogeneous concentration distri-
bution. Computer models on the other hand can be tuned to
relevant spatial resolutions and physiological parameters. In
this study, the fixation of atmospheric CO2 into algal biomass
has been quantitatively modeled by linking all the interactions
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involved in the transformation process. From an analytical per-

spective, such an integrated approach can provide a novel

framework to investigate this experimentally inaccessible

environmental system.

A novel modeling methodology is presented that describes

all chemical processes from dissolution of atmospheric CO2,

HCO3
−formation and transport within an aqueous ecosystem,

microalgae species-specific HCO3
− uptake, nutrient compe-

tition among different species,20,21and HCO3
−utilization for

biomass production. The model has been developed to simu-

late the microscopic ecosystem with the aim of quantifying the

algal biomass as a function of environmental conditions.

Since the model links HCO3
− concentrations with the pro-

duced biomass, this procedure also enables determining a

HCO3
− distribution, which itself is difficult to probe,viaa

property that can easily be measured. Therefore, model

validation has been accomplished by comparing predicted cell

concentrations with experimental flow cytometry measure-

ments. The comparison against flow cytometry experiments

then allows for an assessment of the model’s performance and

validity. Since the cells respond to their micro-environment as

opposed to culture-average concentrations, the approach pre-

sented here gains a much more accurate assessment of the

true conditions the cells experience. Therefore, quantitative

statements derived by means of our modeling approach are

more realistic and accurate. For experimental comparison,

microalgae cultures of two species were grown under a series

of different atmospheric CO2conditions.
22As an additional

aspect, these microalgae species were cultured individually as

well as together which then enabled investigating competition

impacts on the biomass production. Once validated, an appli-

cation of such a model was presented to analyze the long term

capacity of phytoplankton to transform atmospheric CO2into

algal biomass.

2. Materials and methods
2.1. Theory

To link all the aforementioned steps leading from atmospheric

CO2to microalgal biomass, the methodology‘concentration

field’c(x,t) has been introduced here. This concentration field

is determined by four terms:

(i) A‘compound source’S(x,t),i.e.the dissolution of atmos-

pheric CO2into the aqueous phase and its subsequent reac-

tion to HCO3
−(also see the ESI†)

(ii) A‘transport term’T(x,t) which comprises diffusion and

advection of HCO3
−within the aqueous phase

(iii) A‘compound drain’D(x,t),i.e.microalgae’s uptake of

HCO3
−out of the concentration fieldc(x,t).D(x,t) has to reflect

that every microalgae species has specific compound uptake

characteristics which may depend onc(x,t) itself and poten-

tially on the presence of competing species.

(iv) A‘utilization term’which describes how microalgae use

this sequestered compound to produce new biomass. This was

also anticipated to be species specific.

Terms (i) and (ii) describe the pathway by which HCO3
−

reaches the cells. Terms (iii) and (iv) model the actual chemical

transformation from an inorganic compound into microalgal

biomass. Asc(x,t) is space- and time-dependent, it is being

expressed as a 3-dimensional partial differential equation

(PDE) which must be numerically solved:

@cðx;tÞ

@t
¼Sðx;tÞþTðx;tÞþDðx;tÞ ð1Þ

In order to keep modeling steps straightforward, algae cul-

tures were considered to be stored in a box-shaped container

rather than an odd-shaped Erlenmeyer flask.

2.1.1. The source termS(x,t).All microalgae cultures were

grown in open bottles protected by a cotton plug. Into these

bottles’headspace, well-defined CO2concentrations had been

provided22which then produced HCO3
−in the aqueous phase

(see the ESI†). Therefore, the source,S(x,t), is spatially

restricted to the interface between the atmosphere and the

liquid culturing medium. Consequently,S(x,t) has been

expressed as a Dirichlet boundary conditionS(x|top surface,t)=

f(pCO2,…)=c(x|top surface,t). For the container’s remaining five

walls,S(x|walls except top,t) = 0 and thus Neumann boundary

conditions
@cðx;tÞ

@x walls except top

¼0 were implemented.

2.1.2. The transport termT(x,t).Compound transport

within an ecosystem is governed by diffusion and advection.

The diffusion mechanism is defined by Fick’s second law,i.e.

@cðx;tÞ

@t diffusion

¼κ∇2cðx;tÞ. The diffusion coefficientκof

HCO3
−as determined in ref. 23 has been utilized in this study.

In this modeling application,κis assumed to be independent

of temporal and spatial factors. Compound transport due to

advection is described by
@cðx;tÞ

@t advection

¼∇ vðx;tÞcðx;tÞð Þ

wherev(x,t) is the velocity of the medium. The net compound

transport is a combination of these two mechanismsi.e.

Tðx;tÞ¼
@cðx;tÞ

@t diffusion

þ
@cðx;tÞ

@t advection

. For this study, only

diffusion has been considered though since the cell cultures

were not mechanically moved and were at a homogeneous

temperature. In conclusion:

Tðx;tÞ¼
@cðx;tÞ

@t diffusion

¼κ∇2cðx;tÞ: ð2Þ

2.1.3. The drain termD(x,t).In order to produce another

microalgae cell, a cell located atx0requires nutrients which it

drains from the concentration fieldc(x0,t) immediately sur-

rounding it. Several quantitative models have been proposed

for describing this phytoplankton based nutrient uptake for

cell production.24–33For this modeling application, the classic

Michaelis–Menten kinetics (MM)27has been chosen to charac-

terize the nutrient uptake mechanism. MM describes a cell’s

nutrient uptake rate asuR¼
Umaxcx0;tð Þ

αþcx0;tð Þ
withUmax denoting

the maximum uptake rate andαrepresenting the cell’s nutri-
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ent affinity (or‘half-saturation constant’).34When, over time,

the cells are being produced atx0, a total ofN(x0,t) cells results

which deplete the concentration field according to

dcx0;tð Þ

dt
¼ uRNx0;tð Þ¼

Umaxcx0;tð Þ

αþcx0;tð Þ
Nx0;tð Þ¼Dx0;tð Þand

thereby establish the drain term for a single species culture

which can be expanded to describe the drain performed by

multiple species.

The relationship between nutrient concentration and its

transformation into algal biomass was proposed by Monod.28

In order to describe the cell production,i.e.
dNx0;tð Þ

dt
, Monod

introduced a‘nutrient efficiency’βas the number of cells pro-

duced per unit of the nutrient taken up. Thus,N(x0,t) cells

consume the resource at the rateuR·N(x0,t) and therefore, the

cell count increases by
dNx0;tð Þ

dt
¼βuRtðÞNx0;tð Þ.

Expanding these two considerations toQspecies located at

x0, all of which simultaneously drainc(x0,t), leads to a system

ofQ+ 1 ordinary differential equations (ODEs) (3):

Dx0;tð Þ¼
dcx0;tð Þ

dt
¼
XQ

q¼1

Umaxqcx0;tð Þ

αqþcx0;tð Þ
Nqx0;tð Þ

dNqx0;tð Þ

dt
¼βq

Umaxqcx0;tð Þ

αqþcx0;tð Þ
Nqx0;tð Þ

ð3Þ

Fusing the top eqn (3) and (2) into (1) together with the

source termS(x,t) (section 2.1.1) describes how the concen-

tration field atx0changes over time. Since the considerations

leading to (3) are valid for anyx0, they are valid at allx. Thus,

(4 top) describes how atmospheric CO2is sunk into an ecosys-

tem. The equation (4 bottom) explains for all locationsxthe

utilization of this nutrient to produce, over time,Nq=1,…Qcells

ofQmicroalgae species. Integration of the concentration field

and biomass produced after nutrient utilization together into

(4) allows the quantitative analysis of the sequestration

process. In conclusion, solving the system ofQ+ 1 partial

differential eqn (4) models the transformation of atmospheric

CO2into microalgal biomass.

@cx;tð Þ

@t
¼Sx;tð Þþκ∇2cx;tð Þ

XQ

q¼1

Umaxqcx;tð Þ

αqþcx;tð Þ
Nqx;tð Þ

@Nqx;tð Þ

@t
¼βq

Umaxqcx;tð Þ

αqþcx;tð Þ
Nqx;tð Þ withq¼1;...;Q

ð4Þ

2.2. Software tools and computations

The modeling was carried out on a computer operating under

CentOS 7 that featured two Intel Xeon processors E5-2650 v3

(2×10cores)and128GBRAM.ThesystemofPDEs(4)has

been solved on a grid of sizex×y×z= 1024 × 1024 × 32

which, in conjunction with the experimentally realized

culture volume of 100 mL, translated into the model’s spatial

resolution of 100 µm in either direction. Solutions of (4) have

been computed by means of the‘Portable, Extensible Toolkit

for Scientific Computation’(PETSc)35software package which

was augmented by the SUNDIALS library.36PETSc handles

large scale linear and nonlinear problems through the‘Krylov

Space method’(KSP; used here for initializingc(x,t=0);see

next paragraph) and the ‘simplified nonlinear equation

solver’(SNES; used to solve (4) in time steps), respectively.

For core-to-core and/or processor-to-processor communi-

cation, PETSc relies on the Message Passing Interface

(MPI).37For this study the openMPI implementation version

1.10.038has been utilized in conjunction with the g++ compi-

ler version 5.2.0.39

Prior to solving the PDE system (4),c(x,t) needed to be initi-

alized which has been doneviathe following procedure: first,

the concentration field is assumed to be void of HCO3
−;

however, a user-selected CO2-concentration is present in the

‘atmosphere’on top of the ‘liquid culturing medium’.

Through the gas–liquid interface, atmospheric CO2partitions

into the liquid phase and creates a [HCO3
−]=c(x|top surface,t)=

f(pCO2,…) (see the ESI†). This top layer of HCO3
−acts as the

HCO3
−-sourceS(x,t) for the entire concentration field. The

aforementioned KSP solver is then applied to determine a

steady-state solution of the diffusion equation

@cx;tð Þ

@t
¼κ∇2cx;tð Þ. This steady-state solution serves as initia-

lization of the concentration field,i.e. c(x,t= 0). Then, att=0,

the nutrient uptake of the microalgae cells,i.e. D(x,t), is

‘turned on’and the PETSc’s time stepper (TS) library advances

the concentration field stepwise in time as microalgae

consume HCO3
−. At each time point, SNES is employed for

solving (4). This HCO3
−-sequestration creates localized and

microscopic concentration depressions which are replenished

by the transport termT(x,t).

For a reliable comparison of predicted and experimentally

determined cell numbers, both need to be initialized with

the sameNq=1,…,Q(x,t= 0) distributed in the same way across

the culture volume or any difference would amplify over

time. Thus, the first experimental cell count is chosen as an

‘inoculation cell number’for the modeling. In simulations,

this cell number is homogeneously distributed among all

grid points. However, compared to an‘inner’grid point, grid

points on a container wall only got half that number

assigned, grid points on a container edge a quarter, and

corner grid points one eighth. Experimentally, a homo-

geneous distribution ofNq=1,…,Q(x,t= 0) has been ensured by

swirling the Erlenmeyer flask right after inoculation. Once

the boundary conditions are implemented and model para-

meters are initialized, solutions of PDE system (4) are calcu-

lated at different atmospheric CO2levels for experimental

model validation.

2.3. Experiments for model validation

Model validation has been based on comparing experimentally

generated, species-specific quantities of microalgal biomasses

Nq=1,…,Q to those predicted by eqn (4). For this study, two

marine microalgae species were selected,i.e. Dunaliella salina

andNannochloropsis oculata (supplier: http://www.utex.org).

D. salinais a well-characterized species40andN. oculatais
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known for its considerable chemical response to changing the

HCO3
−levels.41These two different microalgae species have

been included in this study to demonstrate the model’s

general validity and to investigate competition impacts on the

biomass production.

Microalgae cultures were provided with different levels of

HCO3
− either by dissolving NaHCO3 into the culturing

medium (section 2.3.1) or by flushing a certain CO2concen-

tration into a culture’s headspace (section 2.3.2), respectively.

All other nutrients were suppliedviathe culturing medium

(‘Enriched Seawater, Artificial Water’, ESAW) at concentrations

in accordance with the standard protocol.42,43Microalgae con-

centrations in the resulting cultures were measured by means

of flow cytometry (Guava easyCyte equipped with 488 nm

laser). Both microalgae species show a unique red fluorescence

which facilitated an accurate cell count. The clearly different

sizes ofD. salinaandN. oculataensured a reliable quantitation

for both species even in mixtures. Furthermore, six replicate

flow cytometry data were extracted from the same culture and

analyzed in order to assess the reproducibility of these cell

counts. From these replicated analyses, the error bars shown

in subsequent graphs comparing measuredversuspredicted

cell counts were derived.

2.3.1. Culture preparation for determining nutrient uptake

characteristics.Prior to modeling (4), values for the species-

dependent nutrient uptake characteristicsα,β, andUmaxneed

to be determined experimentally. It has been hypothesized

that these parameters depend on the species, on the HCO3
−

concentration, and on the presence of nutrient competitors.

For each species in individual and mixed cultures, these para-

meters’values have been determined for a series of fixed

initial HCO3
− concentrations (0.518 mM, 1.035 mM,

1.553 mM, 2.071 mM, 2.919 mM, 3.443 mM) by means of

growth curves (Fig. 1 in ref. 44).‡For extractingα,β, andUmax
from growth curves, a method44has been employed which

combines solving the ODE system (MM,27Monod28)

dcðtÞ

dt
¼
UmaxcðtÞ

αþcðtÞ
NðtÞ

dNðtÞ

dt
¼β

UmaxcðtÞ

αþcðtÞ
NðtÞ

with a nonlinear least-squares regression step that estimates

values forα,β,andUmaxsuch that the numerical solution of

the ODE system is optimum in a least-squares sense. Onceα,

β,andUmax had been determined for all HCO3
− concen-

trations and for all three culture types (D. salina,N. oculata,

andD. salina+N. oculata), first and second order poly-

nomials in [HCO3
−] were fitted to these data points (Fig. 1).

The resulting polynomials such as α([HCO3
−]) =θ0 +

θ1·[HCO3
−]+θ2·[HCO3

−]2were then incorporated into the

modeling software evaluating (4) to describe nutrient uptake

characteristics as a continuous function of [HCO3
−]=c(x,t).

Whether or not a zeroth, first, or second order polynomial is

the best has been tested by means of an Analysis of Variance

(ANOVA, confidence level 95%45). First, Fig. 1 reveals that for

all three culture types, all three parameters exhibit a strong

dependency on the HCO3
−-concentration which clearly jus-

tifies incorporating α([HCO3
−]), β([HCO3

−]), and

Umax([HCO3
−]) into (4) as HCO3

−-dependent functions rather

than constants.

Theimpactofnutrientcompetitiononthegrowthpara-

metersα,β,andUmaxcan be deduced by comparing the fol-

lowing panels in Fig. 1: A–C(D. salinaindividual) to D–F

(D. salinainmixtures)aswellasG–I(N. oculataindividual)

to J–L(N. oculatain mixtures). Values for the half satur-

ation constant,α, for both species individually and in mix-

tures were in the same order of magnitude and with the

exception of pureD. salinaat high concentration,α-values

were found to be increasing with the HCO3
−-concentration.

ANOVA implied a linear relationship forD. salinain mixed

culture, while nonlinearity was significant for the other

three situations. The nutrient efficiency,β,forD. salinawas

one order of magnitude lower than that forN. oculatain

individual cultures. This is assumed to be the reason why a

higher cell concentration ofN. oculatahas been observed

compared toD. salina(cf. section 3). Moreover, competition

for nutrients influenced both the shape and the magnitude

of concentration dependentβ-values forD. salina.Onthe

other hand,N. oculataexhibited a similar trend inβ-values

with a slight increase in magnitude. Concentration depen-

dency of the maximum uptake rate,Umax, for both single-

species cultures was in comparable order of magnitude.

For both species in mixed cultures, there was a significant

decrease in theUmaxvalues compared to the corresponding

single-species cultures. Moreover, the functional relation

betweenUmax and [HCO3
−] was found to be very similar

between both single-species cultures as well as for both

speciesinmixturesbutverydifferent for single- and mixed-

species cultures.

2.3.2. Culture preparation for model validation.For a

model validation purpose, experimental data were required

which have been acquired from microalgae that were exposed

to a known chemical steady-state environment. In particular

the concentration of atmospheric CO2in the cultures’head-

space needed to be well-defined and stable over the course of

several days because only then the atmospheric conditions

can be related to the microalgal biomass produced. By means

of two mass flow controllers (Sierra Instruments), CO2had

been mixed with synthetic air resulting in gas mixtures con-

taining 300 ppm, 350 ppm, 400 ppm, 450 ppm, and 500 ppm

CO2, respectively, which were then continuously flushed

through five different cultures’headspaces. These concen-

trations were chosen to simulate pre-industrial, current, and

potential future atmospheric conditions. All other nutrients

the cells require were providedviathe culturing medium

(ESAW). In order to replenish consumed, aqueous phase

nutrients, fresh ESAW was slowly but continuously dripped

into the Erlenmeyer flasks which were equipped with an over-
‡Growth curves describe cell counts or cell concentrations over time and are

usually of sigmoidal shape.
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flow through which consumed medium was released. Over
the course of several days, small aliquots of these cultures
were extracted for the determination of a culture’s current
cell concentrations by means of flow cytometry. These experi-
mental data were then compared to cell concentrations pre-
dicted by means of (4).

3. Results and discussion – model
validation

The concentration field c(x,t ) and species-specific cell counts
Nq=1,…,Q(x,t ) have been computed from (4) for the same

Fig. 1 Concentration dependency of the parameters α, β, and Umax, which describe the cells’ nutrient uptake, for individual D. salina (A–C) and indi-
vidual N. oculata (G–I) cultures as well as their counterparts determined in binary mixtures of D. salina (D–F) plus N. oculata (J–L). Since nonlinear
regression cannot determine unique solutions,46 nonlinear regression calculations have been repeated five times leading to the error bars.
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environmental conditions under which the real-world micro-
algae were grown (see section 2.3.2). PETSc’s time-stepper
(section 2.2) advanced c(x,t ) to the same points of time at
which the cultures were subjected to flow cytometry experi-
ments.§ The model predicted absolute cell numbers which
were converted into cell concentration utilizing the known
culture volume. This procedure enabled a direct comparison
between predicted and experimentally obtained cell
concentrations.

3.1. Modeling of Dunaliella salina production

The left column of Fig. 2 compares experimental and predicted
cell concentrations obtained for single-species cultures grown
at different atmospheric CO2 concentrations. For all CO2 situ-
ations a convincing agreement has been found which indicates
that the PDE (4) is a good description of the transformation of
atmospheric CO2 into D. salina biomass. This agreement
between theory and experiment stretches over the course of
ten days which demonstrated that (4) not only properly
describes quantities but also explains the dynamics of
D. salina production. The right column depicts equivalent
information but in these cultures, D. salina was competing
with N. oculata. Again the predictions are capable of explaining
the experimental data well. For all investigated atmospheric
CO2 concentrations, the cell concentration is approximately
one order of magnitude lower in the binary species cultures

Fig. 2 Model validation with experimental data for D. salina in individual
species cultures (left column) and binary species mixtures (right column)
at different atmospheric CO2-concentrations (300–500 ppm).

Fig. 3 Model validation with experimental data for N. oculata in individ-
ual species cultures (left column) and binary species mixtures (right
column) at different atmospheric CO2-concentrations (300–500 ppm).

§Note that it is important to utilize the single-species version of the species-
specific nutrient uptake characteristics aq, βq, and Umaxq (section 2.3.1) for single
species cultures and their multi-species counterparts for species mixtures (see
Fig. 1).
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compared to sole D. salina cultures. The decrease in the
maximum uptake rate values (Umax) in mixed cultures (Fig. 1C
vs. F) is possibly responsible for these reduced cell concen-
trations. It is also noticeable that compared to pure D. salina
cultures, in such competition situations, the CO2 concen-
tration does have a pronounced impact on the resulting cell
concentration which increases with [CO2].

3.2. Modeling of Nannochloropsis oculata production

Fig. 3 depicts information equivalent to Fig. 2 but for
N. oculata. First, it is notable that the model (4) describes the
production of N. oculata cells well, too, and that the dynamics
of cell production is again in good agreement with the experi-
ment. This was found for single-species N. oculata cultures
(Fig. 3 left column) as well as for N. oculata in mixtures with
D. salina (Fig. 3 right column). For all investigated atmos-

pheric CO2 concentrations, the quantity of N. oculata biomass
is considerably higher than that for D. salina (cf. left columns
of Fig. 3 and 2). This can be explained by N. oculata’s higher
nutrient efficiency value, β, compared to D. salina’s (Fig. 1H
vs. B) which implies that N. oculata produces more cells per
nutrient unit. The cell concentration of N. oculata in binary
mixtures (Fig. 3 right column) is approximately one order of
magnitude lower compared to single-species culture. This
can be explained by the reduced values of the maximum
uptake rate, Umax, for N. oculata in binary mixtures with
D. salina compared to cultures containing exclusively
N. oculata cells (compare Fig. 1L vs. I). It is also evident that,
in contrast to single D. salina cultures, the atmospheric CO2

concentration has a considerable impact on the N. oculata
biomass production in both single-species and binary mixed
cultures.

Fig. 4 Predicted cell concentrations increasing over time produced by different levels of atmospheric CO2 – (A) D. salina grown individually; (B)
N. oculata grown individually; (C) D. salina in competition with N. oculata; (D) N. oculata in competition with D. salina; note the log10-scale on the
z-axis.
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Hence, it can be concluded that for the chosen species the

concentration field method properly describes the main

driving forces behind the transformation of atmospheric CO2
into microalgal biomass. This assessment holds for individu-

ally cultured as well as for competing species.

3.3. Assessing a culture’s long-term capability for CO2
sequestration

For assessing phytoplankton’sCO2sinking capacities, it has

been investigated whether a microalgae culture reaches an

upper limit in cell numbers or whether it continues growing

unrestrictedly. If, over time, the cell production slows down, so

does the increase of sequestered CO2. If a culture’s growth is

unrestricted, its CO2sinking capacity increases unimpededly.

Model (4) has been employed for long-term predictions of pro-

duced cell numbers. These simulations have been performed

for a period of 100 days under different atmospheric CO2con-

centrations ranging from 300–500 ppm.

Fig. 4 displays predicted cell concentrations over time as a

function of atmospheric CO2concentration. Four scenarios

were considered,i.e. D. salinaandN. oculatagrowing individu-

ally as well as both species competing with each other. From

Fig. 4(A and B), it can be concluded that both species in indi-

vidual cultures exhibit a qualitatively similar behavior with

N. oculatahaving a faster growth and a stronger dependency

on the CO2concentration. Most importantly though, it is

noticeable that both species’growth slows down as indicated

by the surfaces becoming much flatter at later times. Based on

the flatness of these plateaus, it can be concluded that

D. salina slows down more thanN. oculata. Moreover,

N. oculatacultured at high CO2concentrations seems to slow

down more and faster compared to low CO2concentrations.

D. salina’s slowdown on the other hand features a much lower

dependency on the CO2concentration. In conclusion, the

main findings of this analysis are that overall the production

of new cells slows down with time. This fact means that the

CO2sequestration at later points of time does not increase as

much as at earlier times. In other words, an increase in

anthropogenic CO2release may outweigh an increase in phyto-

plankton production.

In a competition situation (Fig. 4C and D),¶the cell pro-

duction by both species generally shows a much stronger

dependency on the CO2concentration. It also is considerably

lower than in the corresponding single-species cultures

(Fig. 4A and B). Apparently, competition suppresses cell

growth withD. salina being the more impacted species.

Moreover, the growth rates are lower in a competition scenario

as indicated by the shallower slopes of the surfaces in time-

direction. It is also obvious, that over time cell production

tends to slow down but much less than in the single species

cases. Nonetheless, it is reasonable to assume that these sur-

faces reach a plateau at times >100 days. From these findings,

it may be concluded that mixed species cultures sequester less

CO2than a single-species culture. This is another aspect to

consider when assessing phytoplankton’sCO2sequestration

capacity.

4. Conclusions

A modeling method has been developed to describe phyto-

plankton based CO2sequestration and thus the transform-

ation of this greenhouse gas into algal biomass. Modeling

comprises of several steps,i.e.CO2partitioning from the atmo-

sphere into bodies of water, its conversion into HCO3
−, bicar-

bonate’s transport from source to consumers, and species-

specific compound uptake for biomass production. All but the

last step have been described by chemical kinetics and mass

transport. The nutrient (HCO3
−) uptake mechanism by micro-

algae cells has been realized through Michaelis–Menten kine-

tics. Subsequent nutrient utilization has been described by the

Monod model which quantitatively relates the sequestration of

nutrients to biomass production. Furthermore, the model was

designed to incorporate multiple microalgae species in order

to describe real-world ecosystems where several species

compete for a common nutrient source. Through this novel

modeling methodology, transformation of an inorganic com-

pound into algal biomass can be assessed quantitatively.

For modeling purposes, three parameters that describe the

cells’nutrient uptake characteristics had to be determined

experimentally. It was found that these parameters depend on

the species, the nutrient availability, and the presence of nutri-

ent competitors. With these concentration dependent para-

meters describing the situation specific dynamics of nutrient

uptake, species-specific biomass production could be

expressed as a system of partial differential equations (PDEs).

Numerically solving this PDE system then predicted the quan-

tities of produced microalgae cells over time.

For experimental validation, two microalgae species

(Dunaliella salina andNannochloropsis oculata) had been

chosen and were cultured individually and in a competition

situation. Flow cytometry was used to measure experimental

cell concentration over the course of ten days for both single-

species and binary species cultures. For all three culture types

(singleD. salina, singleN. oculata, andD. salina+N. oculata)

and for all analyzed atmospheric CO2-concentrations

(300 ppm–500 ppm) a very good agreement between experi-

ment and model has been found.

After confirming that the novel modeling approach can

with high accuracy predict the species-dependent production

of microalgae cells, this model has been applied to study long-

term trends in cell production. Motivation for this is to deter-

mine whether the cell production continues unimpededly or

¶For an assessment of competition impacts,e.g.D. salinain single-species cultures

versus D. salinain mixtures, experimental data cannot be used as inoculating two

separate cultures with the same number of cells N
single
q ¼Nmixtureq att¼0 is

essentially impossible. Yet, both cultures need to be started with an identical

numberofcellsasevensmalldifferences in cell concentration att=0would

amplify over time and thereby prohibit a realistic assessment of competition

impacts. Nutrient competition can be studiedin silico(4) though as an identical

number of inoculated cells in two cultures can be simulated.
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slows down as the culture grows. If the cell production is not
slowed down over time, neither is the phytoplankton-based
CO2 sequestration. If biomass generation does slow down, the
CO2-storage capacity of microalgae diminishes. Simulations
determined that the latter is the case for all considered atmos-
pheric CO2 concentrations and all three culture types. One
potential consequence of this fact is that future increases of
anthropogenic CO2 releases may not be counterbalanced by
growing phytoplankton cultures.

Moreover, it was found that nutrient competition among
different species considerably reduces the number of cells pro-
duced. This means that a real-world, mixed species culture has
a lower CO2-sinking capability than the individual species.
There are indications that the cell production in mixed-species
cultures also slows down over time but that this slowdown is
delayed. Again, a potential consequence is that mixed species
cultures need to be considered when assessing phytoplank-
ton’s CO2 sequestration capacity.

Ongoing research is expanding the aforementioned model-
ing software describing the biomass production to actually
determining quantities of sequestered CO2 and other in-
organic compounds. For model and software validation,
experimental setups need to be developed for online measur-
ing the average concentrations of the said inorganics in the
aqueous phase and the headspace of a culture. This has to be
performed for multiple concentrations per compound.

Ultimately, the experimental investigations of dynamic
adaptation of phytoplankton to a chemically changing environ-
ment and the modeling software determining the quantities of
sequestered inorganic compounds need to be fused together.
This will then result in a comprehensive, quantitative descrip-
tion and prediction of future responses of marine environ-
ments to anthropogenic pollution.
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