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1. Introduction

Modeling the transformation of atmospheric CO,
into microalgal biomass¥

Mohammed Fahad Hasan and Frank Vogt @ *

Marine phytoplankton acts as a considerable sink of atmospheric CO, as it sequesters large quantities of
this greenhouse gas for biomass production. To assess microalgae’s counterbalancing of global warming,
the quantities of CO, they fix need to be determined. For this task, it is mandatory to understand which
environmental and physiological parameters govern this transformation from atmospheric CO, to micro-
algal biomass. However, experimental analyses are challenging as it has been found that the chemical
environment has a major impact on the physiological properties of the microalgae cells (diameter
typ. 5-20 pm). Moreover, the cells can only chemically interact with their immediate vicinity and thus
compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, com-
puter simulations are a more promising approach than the experimental studies. Modeling software has
been developed that describes the dissolution of atmospheric CO, into oceans followed by the formation
of HCOz™ which is then transported to individual microalgae cells. The second portion of this model
describes the competition of different cell species for this HCO3™, a nutrient, as well as its uptake and util-
ization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata,
were cultured individually and in a competition situation under different atmospheric CO, conditions. It is
shown that this novel model's predictions of biomass production are in very good agreement with the
experimental flow cytometry results. After model validation, it has been applied to long-term prediction
of phytoplankton generation. These investigations were motivated by the question whether or not cell
production slows down as cultures grow. This is of relevance as a reduced cell production rate means
that the increase in a culture’s CO,-sinking capacity slows down as well. One implication resulting from
this is that an increase in anthropogenic CO, may not be counterbalanced by an increase in phytoplank-
ton production. Modeling studies have found that for several different atmospheric CO, levels provided to
single-species cultures as well as to species in competing scenarios the cell production rate does slow
down over time.

transformation process, the surrounding chemical environ-
ment and its interaction with phytoplankton need to be

Due to increased industrialization, the production of anthro-
pogenic CO, is increasing” and the fate of this greenhouse gas
has become a major concern.” On the other hand, about half
of the primary carbon production is due to algal
photosynthesis®® and CO, sequestration by phytoplankton
has thus a considerable impact on the climate.®** Therefore,
for realizing the impact of future environmental conditions, it
is crucial to quantitatively understand the fixation of CO, into
phytoplankton biomass. It has also been found that the chemi-
cal environment effects the biomass production and therefore
the amount of fixed CO,."”*® Hence, in order to quantify the
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investigated.

Marine microalgae’s carbon sequestration occurs via two
pathways:"' (i) uptake of dissolved CO,q) and (ii) uptake of
HCO;™ which is produced via CO,(g) — COyaq) + H,O = H,CO;
= HCO;~ + H'. This study only focuses on (ii), i.e. on the
sequestration of HCO;™. Experimental analyses of HCO;~ con-
centrations remaining in an ecosystem would enable the quan-
titation of carbon sequestration. However, such measurements
are challenging because in ecosystems often 10°-107 cells per
mL exist. These cells (typical size 5-20 pm'®) only access
HCO;™ in their immediate, microscopic surroundings and
thereby create a highly inhomogeneous concentration distri-
bution. Computer models on the other hand can be tuned to
relevant spatial resolutions and physiological parameters. In
this study, the fixation of atmospheric CO, into algal biomass
has been quantitatively modeled by linking all the interactions
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involved in the transformation process. From an analytical per-
spective, such an integrated approach can provide a novel
framework to investigate this experimentally inaccessible
environmental system.

A novel modeling methodology is presented that describes
all chemical processes from dissolution of atmospheric CO,,
HCO;~ formation and transport within an aqueous ecosystem,
microalgae species-specific HCO,~ uptake, nutrient compe-
tition among different species,”®*' and HCO;™ utilization for
biomass production. The model has been developed to simu-
late the microscopic ecosystem with the aim of quantifying the
algal biomass as a function of environmental conditions.
Since the model links HCO;~ concentrations with the pro-
duced biomass, this procedure also enables determining a
HCO;~ distribution, which itself is difficult to probe, via a
property that can easily be measured. Therefore, model
validation has been accomplished by comparing predicted cell
concentrations with experimental flow cytometry measure-
ments. The comparison against flow cytometry experiments
then allows for an assessment of the model’s performance and
validity. Since the cells respond to their micro-environment as
opposed to culture-average concentrations, the approach pre-
sented here gains a much more accurate assessment of the
true conditions the cells experience. Therefore, quantitative
statements derived by means of our modeling approach are
more realistic and accurate. For experimental comparison,
microalgae cultures of two species were grown under a series
of different atmospheric CO, conditions.”” As an additional
aspect, these microalgae species were cultured individually as
well as together which then enabled investigating competition
impacts on the biomass production. Once validated, an appli-
cation of such a model was presented to analyze the long term
capacity of phytoplankton to transform atmospheric CO, into
algal biomass.

2. Materials and methods

2.1. Theory

To link all the aforementioned steps leading from atmospheric
CO, to microalgal biomass, the methodology ‘concentration
field’ ¢(x,t) has been introduced here. This concentration field
is determined by four terms:

(i) A ‘compound source’ S(x,t), ie. the dissolution of atmos-
pheric CO, into the aqueous phase and its subsequent reac-
tion to HCO;~ (also see the ESIT)

(ii) A ‘transport term’ T'(x,t) which comprises diffusion and
advection of HCO;~ within the aqueous phase

(iii) A ‘compound drain’ D(x,t), i.e. microalgae’s uptake of
HCO,;~ out of the concentration field ¢(x,t). D(x,t) has to reflect
that every microalgae species has specific compound uptake
characteristics which may depend on c(x,t) itself and poten-
tially on the presence of competing species.

(iv) A ‘utilization term’ which describes how microalgae use
this sequestered compound to produce new biomass. This was
also anticipated to be species specific.
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Terms (i) and (ii) describe the pathway by which HCO;™
reaches the cells. Terms (iii) and (iv) model the actual chemical
transformation from an inorganic compound into microalgal
biomass. As ¢(x,t) is space- and time-dependent, it is being
expressed as a 3-dimensional partial differential equation
(PDE) which must be numerically solved:

de(x,t)
T S(x,t) + T(x,t) + D(x,t)

(1)

In order to keep modeling steps straightforward, algae cul-
tures were considered to be stored in a box-shaped container
rather than an odd-shaped Erlenmeyer flask.

2.1.1. The source term S(x,t). All microalgae cultures were
grown in open bottles protected by a cotton plug. Into these
bottles’ headspace, well-defined CO, concentrations had been
provided®® which then produced HCO;™ in the aqueous phase
(see the ESIf). Therefore, the source, S(x,t), is spatially
restricted to the interface between the atmosphere and the
liquid culturing medium. Consequently, S(x,t) has been
expressed as a Dirichlet boundary condition S(X|iop surface t) =
S(pCO,,...) = ¢(X|top surface, t)- For the container’s remaining five
walls, S(x|walls except tops £) = 0 and thus Neumann boundary

de(x,t)

conditions ——— = 0 were implemented.

walls except top
2.1.2. The transport term T(x,t). Compound transport
within an ecosystem is governed by diffusion and advection.

The diffusion mechanism is defined by Fick’s second law, i.e.

de(x, t oo .

ox,t) =k -V?¢(x,t). The diffusion coefficient x of
Ot gitrusion

HCO," as determined in ref. 23 has been utilized in this study.

In this modeling application, k is assumed to be independent

of temporal and spatial factors. Compound transport due to

advection is described by @ = V-(v(x, t)-c(x, )

advection
where v(x,t) is the velocity of the medium. The net compound

transport is a combination of these two mechanisms ie.

T(x,t) :m +m . For this study, only
ot diffusion ot adwection

diffusion has been considered though since the cell cultures

were not mechanically moved and were at a homogeneous
temperature. In conclusion:

dc(x, t)

T(x,t) = o

= k-V2¢(x, t).

diffusion

(2)

2.1.3. The drain term D(x,t). In order to produce another
microalgae cell, a cell located at x, requires nutrients which it
drains from the concentration field ¢(xq,t) immediately sur-
rounding it. Several quantitative models have been proposed
for describing this phytoplankton based nutrient uptake for
cell production.>* For this modeling application, the classic
Michaelis-Menten kinetics (MM)*” has been chosen to charac-
terize the nutrient uptake mechanism. MM describes a cell’s
Umax‘c(x{); E)
a+ c(Xo, t)
the maximum uptake rate and a representing the cell’s nutri-

nutrient uptake rate as ug = with Upay, denoting
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ent affinity (or ‘half-saturation constant’).** When, over time,
the cells are being produced at x,, a total of N(x,,t) cells results

which deplete the concentration field according to

dc(xo, ) Umax'€(Xo, t)

_— = — -Nxor :—7‘NXOE :onr d
dt Ug ( ! ) (I+C(}I ,f) ( ! ) ( ! ) an

thereby establish the drain term for a single species culture
which can be expanded to describe the drain performed by
multiple species.

The relationship between nutrient concentration and its
transformation into algal biomass was proposed by Monod.*®
dN(xg,1)

dt

In order to describe the cell production, ie. , Monod

introduced a ‘nutrient efficiency’ § as the number of cells pro-
duced per unit of the nutrient taken up. Thus, N(xgt) cells
consume the resource at the rate ug-N(x,,t) and therefore, the

dN(xo,t) _
& = f-ug(t)-N(xp, t).

Expanding these two considerations to Q species located at
Xy, all of which simultaneously drain ¢(x,,t), leads to a system
of Q + 1 ordinary differential equations (ODEs) (3):

cell count increases by

de(xg, t ? Unmax,-€ Xo, ¢
Dixo,8) = (dr ) - amm:c(( r)) Nalo,)
g=1 q xo’ (3)
dNg (X, ) Unnax, ¢(Xo, £)
=p, -N, t
dt q ag + C(XO, r) Q(XO! )

Fusing the top eqn (3) and (2) into (1) together with the
source term S(x,t) (section 2.1.1) describes how the concen-
tration field at x, changes over time. Since the considerations
leading to (3) are valid for any x,, they are valid at all x. Thus,
(4 top) describes how atmospheric CO, is sunk into an ecosys-
tem. The equation (4 bottom) explains for all locations x the
utilization of this nutrient to produce, over time, Ny, o cells
of Q microalgae species. Integration of the concentration field
and biomass produced after nutrient utilization together into
(4) allows the quantitative analysis of the sequestration
process. In conclusion, solving the system of Q + 1 partial
differential eqn (4) models the transformation of atmospheric
CO, into microalgal biomass.

dc(x,t) o2 Q Unax, €(X, t) ‘
ar —S(x, r) +K \% C(x, r) — ;m Nq(x, r) (4)
ONg(x,t) B Umax, €(X, t) ) B
e q‘aq—i—c(x,r) ‘Ny(x,t) withg=1,...,Q

2.2. Software tools and computations

The modeling was carried out on a computer operating under
CentOS 7 that featured two Intel Xeon processors E5-2650 v3
(2 % 10 cores) and 128 GB RAM. The system of PDEs (4) has
been solved on a grid of size x x y x z = 1024 x 1024 x 32
which, in conjunction with the experimentally realized
culture volume of 100 mL, translated into the model’s spatial
resolution of 100 um in either direction. Solutions of (4) have
been computed by means of the ‘Portable, Extensible Toolkit
for Scientific Computation’ (PETSc)** software package which
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was augmented by the SUNDIALS library.** PETSc handles
large scale linear and nonlinear problems through the ‘Krylov
Space method’ (KSP; used here for initializing c(x,t = 0); see
next paragraph) and the ‘simplified nonlinear equation
solver’ (SNES; used to solve (4) in time steps), respectively.
For core-to-core and/or processor-to-processor communi-
cation, PETSc relies on the Message Passing Interface
(MPI).*” For this study the openMPI implementation version
1.10.0*® has been utilized in conjunction with the g++ compi-
ler version 5.2.0.*°

Prior to solving the PDE system (4), ¢(x,t) needed to be initi-
alized which has been done via the following procedure: first,
the concentration field is assumed to be void of HCO;;
however, a user-selected CO,-concentration is present in the
‘atmosphere’ on top of the ‘liquid culturing medium’.
Through the gas-liquid interface, atmospheric CO, partitions
into the liquid phase and creates a [HCO;™] = ¢(X|top surfaces £) =
f(pCOsy,...) (see the ESIf). This top layer of HCO;™ acts as the
HCO; -source S(x,t) for the entire concentration field. The
aforementioned KSP solver is then applied to determine a
steady-state the diffusion equation
dc(x, t) 2 : . e

T k-V?¢(x, t). This steady-state solution serves as initia-
lization of the concentration field, ie. ¢(x,t = 0). Then, at ¢ = 0,
the nutrient uptake of the microalgae cells, ie. D(xt), is
‘turned on’ and the PETSc’s time stepper (TS) library advances
the concentration field stepwise in time as microalgae
consume HCO; . At each time point, SNES is employed for
solving (4). This HCO; -sequestration creates localized and
microscopic concentration depressions which are replenished
by the transport term T(x,t).

For a reliable comparison of predicted and experimentally
determined cell numbers, both need to be initialized with
the same Ny, . o(x,t = 0) distributed in the same way across
the culture volume or any difference would amplify over
time. Thus, the first experimental cell count is chosen as an
‘inoculation cell number’ for the modeling. In simulations,
this cell number is homogeneously distributed among all
grid points. However, compared to an ‘inner’ grid point, grid
points on a container wall only got half that number
assigned, grid points on a container edge a quarter, and
corner grid points one eighth. Experimentally, a homo-
geneous distribution of Ny, . o(x,t = 0) has been ensured by
swirling the Erlenmeyer flask right after inoculation. Once
the boundary conditions are implemented and model para-
meters are initialized, solutions of PDE system (4) are calcu-
lated at different atmospheric CO, levels for experimental
model validation.

solution of

2.3. Experiments for model validation

Model validation has been based on comparing experimentally
generated, species-specific quantities of microalgal biomasses
Ny-,,.. o to those predicted by eqn (4). For this study, two
marine microalgae species were selected, ie. Dunaliella salina
and Nannochloropsis oculata (supplier: http://www.utex.org).
D. salina is a well-characterized species*® and N. oculata is
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known for its considerable chemical response to changing the
HCO;~ levels.*" These two different microalgae species have
been included in this study to demonstrate the model’s
general validity and to investigate competition impacts on the
biomass production.

Microalgae cultures were provided with different levels of
HCO;~ either by dissolving NaHCO; into the culturing
medium (section 2.3.1) or by flushing a certain CO, concen-
tration into a culture’s headspace (section 2.3.2), respectively.
All other nutrients were supplied via the culturing medium
(‘Enriched Seawater, Artificial Water’, ESAW) at concentrations
in accordance with the standard protocol.*>** Microalgae con-
centrations in the resulting cultures were measured by means
of flow cytometry (Guava easyCyte equipped with 488 nm
laser). Both microalgae species show a unique red fluorescence
which facilitated an accurate cell count. The clearly different
sizes of D. salina and N. oculata ensured a reliable quantitation
for both species even in mixtures. Furthermore, six replicate
flow cytometry data were extracted from the same culture and
analyzed in order to assess the reproducibility of these cell
counts. From these replicated analyses, the error bars shown
in subsequent graphs comparing measured versus predicted
cell counts were derived.

2.3.1. Culture preparation for determining nutrient uptake
characteristics. Prior to modeling (4), values for the species-
dependent nutrient uptake characteristics a, §, and U,,,, need
to be determined experimentally. It has been hypothesized
that these parameters depend on the species, on the HCO;™
concentration, and on the presence of nutrient competitors.
For each species in individual and mixed cultures, these para-
meters’ values have been determined for a series of fixed
initial HCO,” concentrations (0.518 mM, 1.035 mM,
1.553 mM, 2.071 mM, 2.919 mM, 3.443 mM) by means of
growth curves (Fig. 1 in ref. 44).} For extracting a, f, and Umnax
from growth curves, a method** has been employed which
combines solving the ODE system (MM,”” Monod>®)

de(t) _ Unax-€(t)

dt a+c(t) N
dN(t)  , Unaxc(t)
a Par c(t) N

with a nonlinear least-squares regression step that estimates
values for a, , and Upay, such that the numerical solution of
the ODE system is optimum in a least-squares sense. Once a,
B, and Upga had been determined for all HCO;~ concen-
trations and for all three culture types (D. salina, N. oculata,
and D. salina + N. oculata), first and second order poly-
nomials in [HCO;~] were fitted to these data points (Fig. 1).
The resulting polynomials such as [HCO;"]) = 6, +
6,-[HCO;7] + 6, [HCO;"J were then incorporated into the
modeling software evaluating (4) to describe nutrient uptake
characteristics as a continuous function of [HCO;™] = ¢(x,t).

{Growth curves describe cell counts or cell concentrations over time and are
usually of sigmoidal shape.
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Whether or not a zeroth, first, or second order polynomial is
the best has been tested by means of an Analysis of Variance
(ANOVA, confidence level 95%*°). First, Fig. 1 reveals that for
all three culture types, all three parameters exhibit a strong
dependency on the HCO; -concentration which clearly jus-
tifies  incorporating «([HCO;7]), p([HCO;"]), and
Umax([HCO;™]) into (4) as HCO; -dependent functions rather
than constants.

The impact of nutrient competition on the growth para-
meters a, ff, and Upax can be deduced by comparing the fol-
lowing panels in Fig. 1: A-C (D. salina individual) to D-F
(D. salina in mixtures) as well as G-I (N. oculata individual)
to J-L (N. oculata in mixtures). Values for the half satur-
ation constant, a, for both species individually and in mix-
tures were in the same order of magnitude and with the
exception of pure D. salina at high concentration, a-values
were found to be increasing with the HCO; -concentration.
ANOVA implied a linear relationship for D. salina in mixed
culture, while nonlinearity was significant for the other
three situations. The nutrient efficiency, g, for D. salina was
one order of magnitude lower than that for N. oculata in
individual cultures. This is assumed to be the reason why a
higher cell concentration of N. oculata has been observed
compared to D. salina (cf. section 3). Moreover, competition
for nutrients influenced both the shape and the magnitude
of concentration dependent f-values for D. salina. On the
other hand, N. oculata exhibited a similar trend in p-values
with a slight increase in magnitude. Concentration depen-
dency of the maximum uptake rate, Up,,,, for both single-
species cultures was in comparable order of magnitude.
For both species in mixed cultures, there was a significant
decrease in the Up,,, values compared to the corresponding
single-species cultures. Moreover, the functional relation
between Upmax and [HCO; | was found to be very similar
between both single-species cultures as well as for both
species in mixtures but very different for single- and mixed-
species cultures.

2.3.2. Culture preparation for model validation. For a
model validation purpose, experimental data were required
which have been acquired from microalgae that were exposed
to a known chemical steady-state environment. In particular
the concentration of atmospheric CO, in the cultures’ head-
space needed to be well-defined and stable over the course of
several days because only then the atmospheric conditions
can be related to the microalgal biomass produced. By means
of two mass flow controllers (Sierra Instruments), CO, had
been mixed with synthetic air resulting in gas mixtures con-
taining 300 ppm, 350 ppm, 400 ppm, 450 ppm, and 500 ppm
CO,, respectively, which were then continuously flushed
through five different cultures’ headspaces. These concen-
trations were chosen to simulate pre-industrial, current, and
potential future atmospheric conditions. All other nutrients
the cells require were provided via the culturing medium
(ESAW). In order to replenish consumed, aqueous phase
nutrients, fresh ESAW was slowly but continuously dripped
into the Erlenmeyer flasks which were equipped with an over-
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Fig. 1 Concentration dependency of the parameters «, 5, and Unax, Which describe the cells’ nutrient uptake, for individual D. salina (A—C) and indi-
vidual N. oculata (G-1) cultures as well as their counterparts determined in binary mixtures of D. salina (D—F) plus N. oculata (J-L). Since nonlinear
regression cannot determine unique solutions,*® nonlinear regression calculations have been repeated five times leading to the error bars.

flow through which consumed medium was released. Over 3 Resylts and discussion — model

the course of several days, small aliquots of these cultures
were extracted for the determination of a culture’s current
cell concentrations by means of flow cytometry. These experi-

validation

mental data were then compared to cell concentrations pre- The concentration field ¢(x,t) and species-specific cell counts
dicted by means of (4). Ng=1,..0(x,¢) have been computed from (4) for the same
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Fig. 2 Model validation with experimental data for D. salina in individual
species cultures (left column) and binary species mixtures (right column)
at different atmospheric CO,-concentrations (300-500 ppm).

environmental conditions under which the real-world micro-
algae were grown (see section 2.3.2). PETSc’s time-stepper
(section 2.2) advanced c(x,t) to the same points of time at
which the cultures were subjected to flow cytometry experi-
ments.§ The model predicted absolute cell numbers which
were converted into cell concentration utilizing the known
culture volume. This procedure enabled a direct comparison
between predicted experimentally
concentrations.

and obtained cell

§Note that it is important to utilize the single-species version of the species-
specific nutrient uptake characteristics aq, fq, and Unax, (section 2.3.1) for single
species cultures and their multi-species counterparts for species mixtures (see
Fig. 1).
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3.1. Modeling of Dunaliella salina production

The left column of Fig. 2 compares experimental and predicted
cell concentrations obtained for single-species cultures grown
at different atmospheric CO, concentrations. For all CO, situ-
ations a convincing agreement has been found which indicates
that the PDE (4) is a good description of the transformation of
atmospheric CO, into D. salina biomass. This agreement
between theory and experiment stretches over the course of
ten days which demonstrated that (4) not only properly
describes quantities but also explains the dynamics of
D. salina production. The right column depicts equivalent
information but in these cultures, D. salina was competing
with N. oculata. Again the predictions are capable of explaining
the experimental data well. For all investigated atmospheric
CO, concentrations, the cell concentration is approximately
one order of magnitude lower in the binary species cultures
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Fig. 3 Model validation with experimental data for N. oculata in individ-

ual species cultures (left column) and binary species mixtures (right

column) at different atmospheric CO,-concentrations (300-500 ppm).
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compared to sole D. salina cultures. The decrease in the
maximum uptake rate values (Upax) in mixed cultures (Fig. 1C
vs. F) is possibly responsible for these reduced cell concen-
trations. It is also noticeable that compared to pure D. salina
cultures, in such competition situations, the CO, concen-
tration does have a pronounced impact on the resulting cell
concentration which increases with [CO,].

3.2. Modeling of Nannochloropsis oculata production

Fig. 3 depicts information equivalent to Fig. 2 but for
N. oculata. First, it is notable that the model (4) describes the
production of N. oculata cells well, too, and that the dynamics
of cell production is again in good agreement with the experi-
ment. This was found for single-species N. oculata cultures
(Fig. 3 left column) as well as for N. oculata in mixtures with
D. salina (Fig. 3 right column). For all investigated atmos-
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pheric CO, concentrations, the quantity of N. oculata biomass
is considerably higher than that for D. salina (cf. left columns
of Fig. 3 and 2). This can be explained by N. oculata’s higher
nutrient efficiency value, f, compared to D. salina’s (Fig. 1H
vs. B) which implies that N. oculata produces more cells per
nutrient unit. The cell concentration of N. oculata in binary
mixtures (Fig. 3 right column) is approximately one order of
magnitude lower compared to single-species culture. This
can be explained by the reduced values of the maximum
uptake rate, Upmax, for N. oculata in binary mixtures with
D. salina compared to cultures containing exclusively
N. oculata cells (compare Fig. 1L vs. I). It is also evident that,
in contrast to single D. salina cultures, the atmospheric CO,
concentration has a considerable impact on the N. oculata
biomass production in both single-species and binary mixed
cultures.
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Fig. 4 Predicted cell concentrations increasing over time produced by different levels of atmospheric CO, — (A) D. salina grown individually; (B)
N. oculata grown individually; (C) D. salina in competition with N. oculata; (D) N. oculata in competition with D. salina; note the log;o-scale on the

Z-axis.
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Hence, it can be concluded that for the chosen species the
concentration field method properly describes the main
driving forces behind the transformation of atmospheric CO,
into microalgal biomass. This assessment holds for individu-
ally cultured as well as for competing species.

3.3. Assessing a culture’s long-term capability for CO,
sequestration

For assessing phytoplankton’s CO, sinking capacities, it has
been investigated whether a microalgae culture reaches an
upper limit in cell numbers or whether it continues growing
unrestrictedly. If, over time, the cell production slows down, so
does the increase of sequestered CO,. If a culture’s growth is
unrestricted, its CO, sinking capacity increases unimpededly.
Model (4) has been employed for long-term predictions of pro-
duced cell numbers. These simulations have been performed
for a period of 100 days under different atmospheric CO, con-
centrations ranging from 300-500 ppm.

Fig. 4 displays predicted cell concentrations over time as a
function of atmospheric CO, concentration. Four scenarios
were considered, i.e. D. salina and N. oculata growing individu-
ally as well as both species competing with each other. From
Fig. 4(A and B), it can be concluded that both species in indi-
vidual cultures exhibit a qualitatively similar behavior with
N. oculata having a faster growth and a stronger dependency
on the CO, concentration. Most importantly though, it is
noticeable that both species’ growth slows down as indicated
by the surfaces becoming much flatter at later times. Based on
the flatness of these plateaus, it can be concluded that
D. salina slows down more than N. oculata. Moreover,
N. oculata cultured at high CO, concentrations seems to slow
down more and faster compared to low CO, concentrations.
D. salina’s slowdown on the other hand features a much lower
dependency on the CO, concentration. In conclusion, the
main findings of this analysis are that overall the production
of new cells slows down with time. This fact means that the
CO, sequestration at later points of time does not increase as
much as at earlier times. In other words, an increase in
anthropogenic CO, release may outweigh an increase in phyto-
plankton production.

In a competition situation (Fig. 4C and D), the cell pro-
duction by both species generally shows a much stronger
dependency on the CO, concentration. It also is considerably
lower than in the corresponding single-species cultures
(Fig. 4A and B). Apparently, competition suppresses cell
growth with D. salina being the more impacted species.
Moreover, the growth rates are lower in a competition scenario

9 For an assessment of competition impacts, e.g. D. salina in single-species cultures
versus D. salina in mixtures, experimental data cannot be used as inoculating two
separate cultures with the same number of cells q)j:;inglc =N at t=0) is
essentially impossible. Yet, both cultures need to started with an identical
number of cells as even small differences in cell concentration at ¢ = 0 would
amplify over time and thereby prohibit a realistic assessment of competition
impacts. Nutrient competition can be studied in silico (4) though as an identical
number of inoculated cells in two cultures can be simulated.
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as indicated by the shallower slopes of the surfaces in time-
direction. It is also obvious, that over time cell production
tends to slow down but much less than in the single species
cases. Nonetheless, it is reasonable to assume that these sur-
faces reach a plateau at times >100 days. From these findings,
it may be concluded that mixed species cultures sequester less
CO, than a single-species culture. This is another aspect to
consider when assessing phytoplankton’s CO, sequestration
capacity.

4. Conclusions

A modeling method has been developed to describe phyto-
plankton based CO, sequestration and thus the transform-
ation of this greenhouse gas into algal biomass. Modeling
comprises of several steps, i.e. CO, partitioning from the atmo-
sphere into bodies of water, its conversion into HCO;™, bicar-
bonate’s transport from source to consumers, and species-
specific compound uptake for biomass production. All but the
last step have been described by chemical kinetics and mass
transport. The nutrient (HCO; ) uptake mechanism by micro-
algae cells has been realized through Michaelis—-Menten kine-
tics. Subsequent nutrient utilization has been described by the
Monod model which quantitatively relates the sequestration of
nutrients to biomass production. Furthermore, the model was
designed to incorporate multiple microalgae species in order
to describe real-world ecosystems where several species
compete for a common nutrient source. Through this novel
modeling methodology, transformation of an inorganic com-
pound into algal biomass can be assessed quantitatively.

For modeling purposes, three parameters that describe the
cells’ nutrient uptake characteristics had to be determined
experimentally. It was found that these parameters depend on
the species, the nutrient availability, and the presence of nutri-
ent competitors. With these concentration dependent para-
meters describing the situation specific dynamics of nutrient
uptake, species-specific biomass production could be
expressed as a system of partial differential equations (PDEs).
Numerically solving this PDE system then predicted the quan-
tities of produced microalgae cells over time.

For experimental validation, two microalgae species
(Dunaliella salina and Nannochloropsis oculata) had been
chosen and were cultured individually and in a competition
situation. Flow cytometry was used to measure experimental
cell concentration over the course of ten days for both single-
species and binary species cultures. For all three culture types
(single D. salina, single N. oculata, and D. salina + N. oculata)
and for all analyzed atmospheric CO,-concentrations
(300 ppm-500 ppm) a very good agreement between experi-
ment and model has been found.

After confirming that the novel modeling approach can
with high accuracy predict the species-dependent production
of microalgae cells, this model has been applied to study long-
term trends in cell production. Motivation for this is to deter-
mine whether the cell production continues unimpededly or

This joumal is © The Royal Society of Chemistry 2017
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slows down as the culture grows. If the cell production is not
slowed down over time, neither is the phytoplankton-based
CO, sequestration. If biomass generation does slow down, the
CO,-storage capacity of microalgae diminishes. Simulations
determined that the latter is the case for all considered atmos-
pheric CO, concentrations and all three culture types. One
potential consequence of this fact is that future increases of
anthropogenic CO, releases may not be counterbalanced by
growing phytoplankton cultures.

Moreover, it was found that nutrient competition among
different species considerably reduces the number of cells pro-
duced. This means that a real-world, mixed species culture has
a lower CO,-sinking capability than the individual species.
There are indications that the cell production in mixed-species
cultures also slows down over time but that this slowdown is
delayed. Again, a potential consequence is that mixed species
cultures need to be considered when assessing phytoplank-
ton’s CO, sequestration capacity.

Ongoing research is expanding the aforementioned model-
ing software describing the biomass production to actually
determining quantities of sequestered CO, and other in-
organic compounds. For model and software validation,
experimental setups need to be developed for online measur-
ing the average concentrations of the said inorganics in the
aqueous phase and the headspace of a culture. This has to be
performed for multiple concentrations per compound.

Ultimately, the experimental investigations of dynamic
adaptation of phytoplankton to a chemically changing environ-
ment and the modeling software determining the quantities of
sequestered inorganic compounds need to be fused together.
This will then result in a comprehensive, quantitative descrip-
tion and prediction of future responses of marine environ-
ments to anthropogenic pollution.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was partially supported by the National Science
Foundation under CHE-1710175. The authors are grateful to
Erik Zinser and Benjamin Calfee, Department of Microbiology
at the University of Tennessee, for their guidance in perform-
ing flow cytometry experiments and for granting us access to
their instrument.

References

1 G. P. Peters, G. Marland, C. Le Quere, T. Boden,
J. G. Canadell and M. R. Raupach, Nat. Clim. Change, 2012,
2, 2-4.

This journal is © The Royal Society of Chemistry 2017

Paper

2 M. Eby, K. Zickfeld, A. Montenegro, D. Archer,
K. J. Meissner and A. ]J. Weaver, J. Clim., 2009, 22, 2501-
2511.

3 J. Raven, M. Giordano, J. Beardall and S. Maberly,
Photosynth. Res., 2011, 281-296.

4 M. Behrenfeld, R. O’Malley, D. Siegel, C. McClain,
J. Sarmiento, G. Feldman, A. Milligan, P. Falkowski,
R. Letelier and E. Boss, Nature, 2006, 444, 752-755.

5 C. B. Field, M. ]J. Behrenfeld, ]J. T. Randerson and
P. Falkowski, Science, 1998, 281, 237-240.

6 G. C. Hays, A. ]J. Richardson and C. Robinson, Trends Ecol.
Evol., 2005, 20, 337-344.

7 R. Bardgett, C. Freeman and N. Ostle, ISME J., 2008, 2, 805-
814.

8 J. Berges and P. Falkowski, Limnol. Oceanogr., 1998, 43,
129-135.

9 S. Sanudo-Wilhelmy, A. Kustka, C. Gobler, D. Hutchins,
M. Yang, K. Lwiza and J. Burns, Nature, 2001, 66-69.

10 S. Burkhardt, I. Zondervan and U. Riebesell, Limnol.
Oceanogr., 1999, 43, 129-135.

11 M. Giordano, J. Beardall and J. A. Raven, Annu. Rev. Plant
Biol., 2005, 56, 99-131.

12 E. Huertas, G. Navarro, S. Rodriguez-Galvez and L. Prieto,
Can. J. Bot., 2005, 83, 929-940.

13 D. Bilanovic, A. Andargatchew, T. Kroeger and G. Shelef,
Energy Convers. Manage., 2009, 50, 262-267.

14 J. Beardall, S. Stojkovic and S. Larsen, Plant Ecol. Divers.,
2009, 2, 191-205.

15 G. Amoroso, D. Siiltemeyer, C. Thyssen and H. P. Fock,
Plant Physiol., 1998, 116, 193-201.

16 M. B. McConico and F. Vogt, J. Chemom., 2013, 27, 217-
219.

17 U. Riebesell, J. Oceanogr., 2004, 60, 719-729.

18 F. Vogt and L. White, Anal. Chim. Acta, 2015, 867, 18-28.

19 A. G. Dickson, C. L. Sabine and J. R. Christian, Guide to Best
Practices for Ocean CO, Measurements, North Pacific Marine
Science Organization, Sidney, British Columbia, 2007.

20 M. McConico and F. Vogt, Anal. Lett., 2013, 46, 2752-2766.

21 L. White, D. Martin, K. Witt and F. Vogt, J. Chemom., 2014,
28, 448-461.

22 Z.L. Ogburn and F. Vogt, Anal. Chim. Acta, 2017, 954, 1-13.

23 R. E. Zeebe, Geochim. Cosmochim. Acta, 2011, 75, 2483—
2498.

24 J. A. Bonachela, M. Raghib and S. A. Levin, Proc. Natl. Acad.
Sci. U. S. A., 2011, 108, 20633-20638.

25 C. A. Klausmeier, E. Litchman and S. A. Levin, Limnol
Oceanogr., 2004, 49, 1463-1470.

26 D. L. Aksnes and J. K. Egge, Mar. Ecol.: Prog. Ser., 1991, 70,
65-72.

27 U. Deichmann, S. Schuster, J. P. Mazat and A. Cornish-
Bowden, FEBS J., 2014, 281, 435-463.

28 J. Monod, Annu. Rev. Microbiol., 1949, 3, 371-394.

29 R. C. Dugdale and ]. J. Goering, Limnol. Oceanogr., 1967,
12, 196-206.

30 M. R. Droop, J. Phycol., 1973, 9, 264-272.

31 D. E. Burmaster, Am. Nat., 1979, 113, 123-134.

Analyst, 2017, 142, 4089-4098 | 4097



Paper

32 M. ]. R. Fasham, H. W. Ducklow and S. M. Mckelvie, J. Mar.
Res., 1990, 48, 591-639.

33 J. D. Haney and G. A. Jackson, J. Plankton Res., 1996, 18,
63-85.

34 R. W. Eppley, J. N. Rogers and ]. J. McCarthy, Limnol.
Oceanogr., 1969, 14, 912-920.

35 S. Balay, S. Abhyankar, M. F. Adams, ]J. Brown, P. Brune,
K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. Knepley, L. C. McInnes, K. Rupp, B. Smith,
S. Zampini and H. Zhang, PETSc Web page, http:/www.
mcs.anl.gov/petsc, (accessed 6/23/2017).

36 A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban,
D. Shumaker and C. Woodward, ACM Trans. Math. Softw.,
2005, 31, 363-396.

37 P. S. Pacheco, Parallel Programming with MPI, Morgan
Kaufmann Publishers Inc., 1996.

4098 | Analyst, 2017, 142, 4089-4098

38

39

40
41

42

43

44

45

46

Analyst

Open MPI Webpage, http:/www.open-mpi.org/software/
ompi/v1.10/, (accessed 10/4/2017).

GCC, the GNU Compiler Collection Webpage, https://www.
gnu.org/software/gcc/, (accessed 6/23/2017).

A. Oren, Saline Syst., 2005, 1, 2.

S. Y. Chiu, C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen and
C. S. Lin, Bioresour. Technol., 2009, 100, 833-838.

R. Anderson, Algal Culturing Techniques, Elsevier Academic
Press, Burlington, MA, 2005.

J. A. Berges, D. ]J. Franklin and P. J. Harrison, J. Phycol.,
2001, 37, 8.

F. Vogt and S. D. Fleming, Anal. Lett.,, 2016, 49, 2043-
2051.

N. Draper and H. Smith, Applies Regression Analysis, J.
Wiley, New York, 3rd edn, 1998.

F. Vogt, J. Chemom., 2015, 29, 71-79.

This journal is © The Royal Society of Chemistry 2017



