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Quantum spin liquids are a class of magnetic ground states reliant on non-local entanglement. Motivated by recent advances in
the control of ultracold polar molecules and the development of dipolar quantum materials, we show that dipolar interactions
between S =1/2 moments stabilize spin liquids on the triangular and kagome lattices. In the latter case, the moments sponta-
neously break time-reversal, forming a chiral spin liquid with robust edge modes and emergent semions. We propose a simple
route toward synthesizing a dipolar Heisenberg antiferromagnet from lattice-trapped polar molecules using only a single pair

of rotational states and a constant electric field.

n strongly frustrated systems, competing interactions can conspire

with quantum fluctuations to prevent classical order down to zero

temperature. In an antiferromagnet, frustration allows magnetic
moments to evade the formation of conventional long-range order,
leading to the magnetic analogue of liquid phases. Such quantum
spin liquids are characterized by long-range entanglement and can
exhibit a panoply of exotic properties, ranging from emergent gauge
fields and fractionalized excitations to robust chiral edge modes'~.
Definitively finding and characterizing such an exotic paramagnet
remains one of the outstanding challenges in strongly interacting
physics.

When antiferromagnetic interactions are short-ranged, frustra-
tion relies on geometry; for example, lattices containing plaquettes
with an odd number of sites may frustrate Néel order. This route
is most pertinent in solid-state magnets, where exchange interac-
tions are short-ranged, and has led to the discovery of a number
of exciting spin liquid candidates in layered two-dimensional Mott
insulators™. An alternative route to frustration is provided by
longer-range interactions® . An array of numerical studies have
demonstrated that adding farther-neighbor couplings can destabi-
lize classical order and lead to spin liquid phases; in addition, par-
ent Hamiltonians for spin liquids have been constructed using 1/r*
interactions'®"”. Unfortunately, liquid phases are often found only
for a narrow range of farther-neighbor couplings comparable to the
nearest-neighbour exchange, making it challenging to identify rel-
evant physical systems.

The recent emergence of dipolar quantum materials'*'® and
polar-molecular gases opens new routes toward long-range interac-
tions'”~*’. In contrast to both their atomic cousins and conventional
quantum materials, polar molecules exhibit strong, dipolar inter-
actions”~*. However, these interactions are neither isotropic nor
obviously frustrated, leading to many proposals that ‘engineer’ frus-
trated phases via the use of multiple molecular states, microwave
dressing fields and spatially varying optical potentials*-*°.

Furthermore, although long-ranged, the dipolar couplings
are not easily fine-tuned; rather, scale invariance dictates that the
simplest effective Hamiltonian one could hope for is a ‘dipolar
Heisenberg antiferromagnet’:
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Two fundamental questions arise: is H naturally realized, and what
is its ground state?

Here, we answer both of these questions. First, we consider
synthetic quantum magnets constructed from an array of lattice-
trapped, polar molecules interacting via dipole-dipole interac-
tions. We demonstrate that this system easily realizes the dipolar
Heisenberg antiferromagnet, requiring only a judicious choice of
two, undressed molecular rotational states (to represent a pseudo-
spin) and a constant electric field””. The simplicity of our proposal
stems from using rotational states with no angular momentum
about the electric field axis. This contrasts with previous works
where non-zero matrix elements appear for the transverse elec-
tric dipole operator, unavoidably generating ferromagnetic spin—
spin interactions because of the inherent anisotropy of the dipolar
interaction®**.

Second, motivated by this physical construction, we perform a
large-scale density matrix renormalization group (DMRG)***' study
of the dipolar Heisenberg model and find evidence for quantum
spin liquid ground states on both triangular and kagome lattices
(Fig. 1). As a result of the long-range interactions and the need for
time-reversal breaking complex wavefunctions, our model is signif-
icantly more challenging to simulate numerically than earlier near-
est-neighbour models. Thus, using the infinite, translation invariant
version of the algorithm, iDMRG, provides an important speed-up.
The farther-neighbour dipolar couplings play a crucial role, leading
to a different phase of matter for both lattice geometries when com-
pared with their nearest-neighbour counterparts realized in Mott
insulating materials. This contrasts with the case of three-dimen-
sional classical spin ice™. We compute the phase diagram of the
dipolar Heisenberg model as a function of experimental parameters
(the electric field strength and tilt) for ultracold polar molecules.

Realization. We consider a two-dimensional array of polar mole-
cules trapped in an optical lattice. The lattice freezes the translational
motion, leaving each molecule to behave as a simple dipolar rigid
rotor”*. The Hamiltonian governing these molecular rotations is
Hm=B]2 +E-d, where B is the rotational constant, J is the angu-
lar momentum operator, E is the external electric field and d is the
dipole operator. For |E|=0, each molecule has eigenstates indexed
by |, M), where M is the z component of angular momentum. An
applied electric field, E = EZ, weakly aligns the molecules along the
field direction, mixing states with identical M. Each |J, M) evolves
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Fig. 1| Phase diagram of the dipolar Heisenberg model. a,b, Phases on
the kagome lattice (YC8 geometry truncated at Jg) (a) and the triangular
lattice (YC6 geometry truncated at J;) (b) as a function of the XXZ
anisotropy A (which is controlled by the magnitude of the applied electric
field (see Fig. 2)) and the polar tilt, ©,, of the applied electric field (the
azimuthal angle is given by the green arrow). Near ©,=0, where the
model is fully frustrated, we observe quantum spin liquid ground states
on both geometries. Ordered phases for @, > O are shown inset with their
corresponding magnetization density (S7).

adiabatically with E, picking up a dipole moment and splitting the

degeneracy within each ] manifold at order (dE)*/B (inset Fig. 2).
The molecules 1nteract with one another via the electric dipole-

dipoleinteraction, H, =5 £y, 4 7[‘1 -d; 3(d )(d R, )]iwhere

g=1/(4ne,) and R;; is the dlsplacement between molecules 7 and j.
Referring to Fig. 2 we select the doublet||) =]0,0) and |1) =1, 0),
which are energetically resolved from all other rotational states, to
play the role of a ‘spin’”’. We let $* denote the usual spin operators
in this subspace, but note, that unlike S=1/2 moments, this doublet
a priori lacks SO(3) symmetry. To derive the effective Hamiltonian,
we project Hy, onto the two-level subspace and drop S*non-conserv-
ing terms as they are strongly off-resonant. This projection is physi-
cally justified by the separation of energy scales between the dipolar
interaction and the rotational level-splittings: gd*/R* < B, (dE)*/B.

When the electric field is aligned perpendicular to the lattice
plane (©,=0, inset Fig. 2), we find”

eff_gz

where d,=(1,0/d,|0,0) is the transition dipole moment, and
dy=0,0]d,|0,0) and p, =(1,0|d,|1,0) are the electric-field-induced
‘permanent’ dipole moments. The sign of the couplings shows that
the interaction is antiferromagnetic along all spin axes.

As depicted in Fig. 2, the ratio A = (u,—d,)’/2d, between the
Ising and XY interactions (equation (2)) is controlled by the mag-
nitude of the applied electric field. SO(3) symmetry emerges for
|dE| =~ 1.7B, at which point the effective Hamiltonian is precisely the
dipolar Heisenberg model. We note that H is in stark contrast to
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Fig. 2 | XXZ anisotropy as a function of electric field. The XXZ anisotropy
A is controlled by the electric field strength, E, measured relative to the
rotational splitting divided by the dipole moment, B/d. Top left inset: the
rotational states used as the two-level pseudo-spin. Bottom right inset:
molecules reside in the XY plane and the electric field is oriented along Z.

the typical spin models analysed for polar molecules. In particular,
previous works have generally considered rotational states that lead
to ferromagnetic interactions favouring easy-plane (XY) magne-
tism; frustrated phases arise only on fine-tuning via microwave and
optical dressing* .

Ground state of the dipolar Heisenberg antiferromagnet. While
long-range interactions generate frustration on any lattice, geom-
etries with triangular motifs enhance this frustration as it is impos-
sible for all neighbouring spins to anti-align. Here, we consider
kagome and triangular lattices, both of which have been realized in
optical lattices™

The ground state of the dipolar Heisenberg antiferromagnet is
unknown for either lattice. Even for short-range interactions, the
phase diagram in these geometries has been an open question
for more than two decades, due to delicate energetic competition
between many competing phases. Recently, progress has been made
using DMRG**. As DMRG is a one-dimensional (1D) method,
it requires mapping the 2D lattice to a quasi-1D geometry; here,
we focus on infinitely long cylinders of circumference L, by using
the iDMRG algorithm®. The dipolar interaction introduces an
additional difficulty, as its range must be truncated for a consis-
tent definition on the cylinder. Thus, our numerics require a triple
extrapolation in L, the interaction range, and the accuracy of the
iDMRG, which is controlled by the ‘bond dimension’ m. Larger
m simulations are more accurate, with a computational cost that
scales as m”.

Detecting and characterizing a quantum spin liquid phase fol-
lows a decision tree. By definition, ‘liquid’ refers to the absence
of spontaneous symmetry-breaking, specifically of spin rotations
and translation invariance. Any liquid phase with half-integer
spin in the unit cell must be exotic: the Hastings—Oshikawa-
Lieb-Schultz-Mattis theorem requires that the phase be either
a gapless spin liquid or a gapped spin liquid with fractionalized
excitations*“‘. In the gapless case, the ground state has a diverg-
ing correlation length as the circumference of the cylinder is
increased. In the gapped case, the ground state will have expo-
nentially decaying correlations, protected ground-state degen-
eracy and certain characteristic signatures in its entanglement
spectrum*”*.

There exists a zoo of gapped spin liquids distinguished by the
braiding and statistics of their fractional excitations. The two sim-
plest cases are the time-reversal symmetric Z, spin liquid and the
time-reversal breaking chiral spin liquid (CSL)>*; the spontane-
ous breaking of time-reversal is detected by using a chiral order
parameter y= <S .S xSk>/3, where i, j and k are the three sites
of a triangle.
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Let us now turn to the numerics. We refer to the cylinder geom-
etries using the following notation™: YC2n is a cylinder of cir-
cumference 2# lattice spacings periodized along a Bravais vector
(Fig. 3b,c). We emphasize that, when using the iDMRG algorithm,
all cylinders are infinitely long. For both lattices, we define J, to
be the coupling between nth nearest-neighbour sites, ordered by
their distance in real space, R,. We will begin by characterizing the
ground state of each lattice at the dipolar Heisenberg point and
will subsequently map out the full phase diagram of the molecular
proposal.

Kagome model. Extensive theoretical and numerical studies of the
J,-J,-J; kagome model reveal a rich phase diagram, consisting of
a honeycomb valence bond solid, a time-reversal symmetric spin
liquid, a chiral spin liquid and a multitude of ordered Néel sta
tes'>=*>%0-% In contrast to these previous studies, the long-range
dipolar couplings cannot be tuned. For the kagome lattice, it is
necessary to distinguish be tween two couplings of length R,=2
lattice sites: J; (across hexagons) and J; (along bow ties) (Fig. 3b).
Motivated by exchange interactions in Mott insulating materi-
als, previous numerics have always considered J;=0. In the dipo-
lar Heisenberg model, all couplings at a given distance are equally
important and we find a finite J; in fact stabilizes the CSL phase
(see Supplementary Information for details). This is highlighted by

the fact that keeping only the J, or J; part of the dipolar interaction
results in the magnetically ordered q=(0, 0) phase®-*}; only upon
restoring the dipolar tail of the interaction does the system transi-
tion into the CSL.

Let us now turn to the diagnostics of liquidity. We study cylin-
ders of circumference L=8, 10 and 12 with dipolar cutoffs ranging
from J, to J;;. In addition to the YC2n geometry, we also consider
the so-called “YC2n-2" geometry in which cylinders are rolled
up with a ‘twist’ that identifies sites that differ by Bravais vector
na,+a, (see the YC10-2 hashes in Fig. 3b). This convenient choice
of boundary condition reduces the computational cost by decreas-
ing the effective iDMRG unit cell by n, enabling better conver-
gence for certain diagnostics. Crucially, neither the spin liquids
nor the q=(0, 0) phase is frustrated by this boundary condition;
more generally, for liquid phases, the resulting physics should be
unaffected once the cylinder circumference is larger than the cor-
relation length.

An advantage of the infinite-cylinder geometry is that discrete
symmetries, such as translation or an Ising symmetry, can be spon-
taneously broken. Thus, if the phase spontaneously breaks a discrete
symmetry in the 2D limit, we expect it will do so on a sufficiently
large cylinder as well (as we observe in other parts of the phase dia-
gram discussed below and in the Supplementary Information). To
check that translational symmetry is preserved (that is, to rule out
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Fig. 3 | Numerical signatures of spin liquid behaviour and phase transitions. a, Triple extrapolation of the chiral order parameter y as a function of the
iDMRG bond dimension m (larger is more accurate), the cylinder circumference (L = 8, 10 or 12) and the range of the dipolar interaction (J;-J;;). For YC8-2
and YC10-2, all numerics have converged to a truncation error < 10-°, while for YC12-2, we observe a truncation error ~ 2.9 x 10-° at bond dimension m =
6,600. b,c, The nearest-neighbour and next-nearest-neighbour <Sl-~ S]-> correlations of the kagome (YC10-2)/triangle (YC8) spin liquid, respectively. The
magnitude of the correlation function for each bond is shown and is directly proportional to the linewidth of the bond (see Supplementary Information for
further detail). The correlations preserve the lattice symmetries, showing the absence of valence bond order. d, Phase transition out of the CSL (holding
A=1.0 fixed and varying @,) as characterized by the vanishing of the chiral order parameter y (solid) and the appearance of magnetic order, observable in

the spin-spin correlation function C.(8) = <S,~ S,»+851>

(dashed). e, Phase transition out of the triangular spin liquid (holding A =1.6 fixed and varying @,) as

characterized by g, = % Y (S,-Z>2, the variance in magnetization across the unit cell (solid) and the correlation length & (dashed).

NATURE PHYSICS | VOL 14 | APRIL 2018 | 405-410 | www.nature.com/naturephysics

407

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://www.nature.com/naturephysics

ARTICLES

NATURE PHYSICS

valence-bond order), we verify that the bond correlations are trans-
lation invariant (Fig. 3b) and also calculate the overlap of the ground
state, | ¥), with a translated version ofitself, (| T | P)= (1-¢)".
This overlap scales with the volume of the system, V, with error
e < 0.004. The above are quoted for a YC10 geometry with cou-
plings up to J;, but similar results are found when truncating to J;
or extending to J;;, as well as on the smaller YC8 geometry and the
larger YC12-2 geometry (see the Supplementary Information for
details, and for comparison with a known valence-bond solid state).

While discrete symmetries can be spontaneously broken,
Néel order that breaks a continuous symmetry is ruled out by
the Mermin-Wagner theorem in our quasi-1D geometry, and we
indeed find (S/) — 0 as the iDMRG accuracy m is increased. In
our diagnostics, a tendency toward Néel order will instead appear
as algebraic correlations beyond the dipolar cutoff, or a correlation
length that diverges with cylinder circumference. To ensure that this
is not the case, we employ two additional quantitative and qualita-
tive tests, namely, by checking for the absence of algebraic order-
ing at fixed circumference and the absence of increasing long-range
order as the cylinder circumference increases. Indeed, we find an
extremely short correlation length £ < 0.9a (as calculated from the
iDMRG transfer matrix) that does not significantly increase with
the iDMRG accuracy or cylinder circumference (see Supplementary
Information for details), consistent with a gapped paramagnet.
Moreover, the absence of long-range correlations (Fig. 3) indicates
that spin rotation symmetry is also preserved. By stark contrast,
when the interaction is truncated to J;, J,, we observe clear long-
range order, and the resulting correlations are qualitatively distinct,
as shown in the Supplementary Information.

A key requirement for the CSL phase is the spontaneous break-
ing of time-reversal symmetry. To this end, the chiral order param-
eter |y| is shown in Fig. 3a as a function of the size of the cylinder,
the cutoff of the dipolar interaction and the iDMRG accuracys; |y|
increases weakly with cylinder circumference, converges with the
DMRG accuracy m and saturates for large dipolar cutoff.

In addition to spontaneous time-reversal breaking, the most
spectacular signature of a CSL is a chiral edge state. Quantum
entanglement provides a way to probe these edge states given only
the ground state. The reduced density matrix p, for half of the cyl-
inder can be viewed as a thermal density matrix of a semi-infinite
cylinder, introducing a single ‘edge’ The spectrum p =e™ of p;
(that is, the ‘entanglement spectrum’) is known to mimic the energy
spectrum E, of the physical edge’***°. On YC2n, the entanglement
cut runs parallel to the Bravais vector na, used to compactify the
cylinder (scissors in Fig. 3c), so that p, preserves the rotational
symmetry of the cylinder, allowing us to assign a corresponding
momentum k, € 2™ to each level. Plotting E, versus the momenta
k, should reveal a chiral dispersion relation. As shown in Fig. 4a,b,
there is a low-lying set of levels dispersing rightward, roughly as
E, ~ vka. Focusing on the levels with §*=0, the number of levels at
each momenta k follows the level counting {1, 1,2,3,5-- }; these are
the partitions of integers expected when occupying a set of bosonic
edge modes ka ,k> 0. Each level is in fact an SO(3) multiplet, con-
sistent with the SU(2), Wess—-Zumino-Witten edge theory™°.
Furthermore, we find a second degenerate ground state (analo-
gous to the expected two-fold topological degeneracy of a CSL on a
torus), whose entanglement spectrum is consistent with the semion
sector of the CSL*. Note that a right-moving spectrum spontane-
ously breaks time-reversal; when the iDMRG is initialized differ-
ently, right- and left-moving spectra appear with equal probability.

Triangular model. We now turn to the triangular lattice. Truncating
the dipolar Heisenberg model at short range leads to Néel order: for
J, only, a 120° Néel phase®, and for ], J,, a two-sublattice collinear
Néel phase****. However, adding in the dipolar J; coupling directly
penalizes the order of the collinear state and appears to drive the

408

system into a liquid; this is evidenced by a drastic change in the
<Si~Sj> correlation function as the long-range tail of the interac-
tion is restored (see Supplementary Information). With couplings
through J;, the YC8 ground state has an XY correlation length of
¢ < 1.4a and is translationally symmetric with € <4 x107°. Similar
results are found when truncating to J; or extending to J,, as well as
on the smaller YC6 geometry and the larger YC10 geometry.

The phenomenology of the observed spin liquid phase is equiva-
lent to the J,-J, spin liquid reported previously*****>%. The lowest
energy state is time-reversal symmetric and has an entanglement
spectrum consistent with the fermionic spinon topological sector
of a Z, or U(1) spin liquid®**; it exhibits a four-fold degeneracy and
a half-integral representation of SO(3) as shown in Fig. 4*. While
the bond correlations are translation invariant (Fig. 3¢), they exhibit
a noticeable striping consistent with nematic ordering (note that
this nematicity may be an artefact of the cylindrical geometry that
breaks C; symmetry)*. The nature of this triangular spin liquid is
not yet fully understood.

Phase diagram. The above results (for both triangular and
kagome) were presented for the SO(3) symmetric Heisenberg
antiferromagnet (A=1) at |dE| ~ 1.7B. For both stronger (4=1.6)
and weaker (4=0.6) electric fields, the SO(3) model is broken
down to a U(1) XXZ model, but our numerics find that the spin
liquid phases are completely consistent with those observed at the
SO(3) point*”. Note that the Hastings—Oshikawa-Lieb-Schultz-
Mattis theorem requires only U(1) invariance about the zaxis and
zero net magnetization.

As one tilts the electric field into the lattice plane, the spin liquids
we observe begin to compete with magnetically ordered phases. The
tilt generates angular dependence in the effective Hamiltonian,

Hy=g z %[1—3c052(¢—¢0)sin2@0]
v 3)
X[Zdozo(sfxsf + SJ‘ySiy) + (/‘o—do)zsizsjz

where @ and @, are the polar angles of R;; and the electric field
orientation, respectively (inset of Fig. 2). For non-zero 6, full frus-
tration is lost as dipoles begin to point head-to-tail along the field
direction, thereby exhibiting ferromagnetic interactions. For large
0,, a variety of ordered phases appear as shown in Fig. la,b (for
more details, see Supplementary Information). Here, we restrict our
interest to the phase boundaries of the spin liquid states.

In Fig. 3d,e, we present two representative vertical cuts: out of
the kagome CSL at A=1.0, and out of the triangular spin liquid at
A=1.6. In the kagome case, we identify the transition out of the
CSL via the vanishing of the chiral order parameter (Fig. 3d). In
the triangular case, we diagnose the phase transition by examining
thecorrelationlengthandthevarianceofthe S“magnetization (Fig. 3e).
This reveals two phases, an XY magnet directly proximate to the
spin liquid and the expected striped Néel phase for larger 6,. In
addition to showing that the spin liquid phases persist to moderate
electric field tilts, understanding the nature of the ordered phases
surrounding the spin liquids may enable the adiabatic preparation
of these topological states®; such preparation may benefit from uti-
lizing molecules with larger dipole moments (since our approach
is generic to all bi-alkali polar molecules), enabling preparation on
faster timescales. An alternative route for preparation—natural in
the context of optical lattices—is to utilize a bilayer geometry where
one layer plays the role of an entropy/energy sink and ‘cools’ the
adjacent layer (see Supplementary Information for more details).
This specific approach is particularly simple in systems with long-
range interactions such as polar molecules, whereby decreasing the
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are shown here. a, The kagome YC10 model truncated at J;. The levels have right-moving chiral dispersion, implying that time-reversal is broken. The
momentum-resolved entanglement spectrum is consistent with the vacuum sector of a CSL and exhibits the characteristic counting {1,1,2,3, -+ }
predicted by the chiral edge theory, with S? taking integer values (for example, S =0 is centred). b, Entanglement spectrum of the second, degenerate
YC10 ground state, which corresponds to the semion sector of the CSL; all levels are two-fold degenerate, consistent with half-integral representations of
SO(3) (for example, S = +1/2)"% ¢, The triangular YC8 model truncated at Js. The spectrum is consistent with the fermionic spinon topological sector of a

Z, or U(1) spin ligquid.

density of particles in the sink layer naturally enables it to behave
as a coolant®™. However, even before ground-state cooling, one
must first prepare the system in the zero-magnetization manifold
of the molecular pseudo-spin states; a particularly simple approach
is to perform a uniform n/2 pulse starting from the |])=|0,0)
state. While elegant, this approach exhibits intrinsic ./N magneti-
zation fluctuations, which should be unimportant for sufficiently
large numbers of molecules (a number of alternative initialization
techniques that do not exhibit magnetization fluctuations are also
detailed in the Supplementary Information).

We note that realizing a gapped spin liquid such as the kagome
CSL affords some flexibility in the required lattice filling fraction®.
In particular, the chiral spin liquid will tolerate some amount of lat-
tice dilution: each vacancy will be ‘screened’ by a spinon, preserving
the spin gap. Only at some critical dilution will the spin liquid order
be destroyed. A rough estimate of this critical dilution is when the
inter-vacancy distance is comparable to the correlation length £ ~ 1
lattice site, suggesting that our observed CSL phase may remain
robust to ~10% dilution.

Once prepared, there are a number of approaches to detecting the
CSL based on either spontaneous or stimulated Bragg scattering®’.
In addition to revealing the spin excitation gap, the fractionaliza-
tion of a single ‘spin’ flip into a pair of spinon excitations would be
captured by the shape of the spectral line. In particular, rather than
observing a sharp magnon mode, one expects to observe a broad
spectrum, reflecting the two-spinon continuum. Moreover, the
onset of the spin-excitation spectrum near the gap also shows sig-
natures of quasiparticle self-braiding, exhibiting a functional power
law whose exponent captures the semionic statistics of the chiral
spin liquid phase®®.

In summary, our proposal provides a new route toward study-
ing frustrated quantum magnetism in an ultracold lattice gas. The
dipolar Heisenberg antiferromagnet exhibits promising signs of
spin liquid behaviour on both the kagome and triangular lattices,
distinct from models of nearest-neighbour exchange. In addition to
lattice trapped molecules, long-range Heisenberg antiferromagnets
may also be found in designer magnetic lattices®”° as well as dipolar
quantum materials'*~'°. Looking forward, it is important to consider
the effects of lattice vacancies and dipolar relaxation as well as to
identify unique signals of frustration in quench dynamics. It would
also be of interest to consider higher-spin models, which may host
non-Abelian phases”.
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